Erratum: Evidence for a low-spin to intermediate-spin state transition in LaCoO₃ [Phys. Rev. B 66, 020402 (R)(2002)]

C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Revcolevschi (Received 16 December 2004; published 31 January 2005) DOI: 10.1103/PhysRevB.71.019902 PACS number(s): 75.80.+q, 65.40.-b, 99.10.Cd

The expression given for the scaling factor C between thermal expansion α and susceptibility χ in Eq. (4) is erroneous. The correct expression is

$$C = \frac{N_A g^2 \mu_B^2}{3k_B} \frac{S(S+1)}{d}.$$

Thus *C* does not depend explicitly on the orbital degeneracy ν . Consequently, the values for the scenarios with ν =3 have to be multiplied by 3. Moreover, a more detailed analysis of the susceptibility data (see Ref. 1) yields a somewhat smaller background susceptibility, which leads to a larger *g* factor of *g*=2.28 instead of *g*=2.13 in the respective fit. This causes a 15% increase of the scaling factors of all four scenarios and Table I should therefore read as noted below.

The smaller background susceptibility causes a similar increase for the experimental value C_{exp} of the scaling factor to $C_{exp}=195 \text{ emuK/mole}$. Therefore, our conclusion is unaffected because the very good agreement between the experimental result and the expected value for the LS/IS scenario with $\nu=1$ remains unchanged and the deviation from the other scenarios is as large or even larger than before.

TABLE I. Parameters d and Δ of the fits of the anomalous thermal expansion $\Delta \alpha$ of LaCoO₃ (see Fig. 2) obtained for a LS/IS and for a LS/HS scenario with (ν =3) and without (ν =1) orbital degeneracy of the excited IS (HS) state. The respective scaling factors C of Eq. (4) are given in the last row. Experimentally we find C^{\exp} =195 emuK/mole.

	LS/IS: S=1		LS/HS: S=2	
	$\nu = 1$	<i>v</i> =3	$\nu = 1$	<i>v</i> =3
d (%)	0.66	0.44	0.55	0.38
Δ (K)	185	265	205	256
C (emuK/mole)	190	290	690	1000

¹J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B 71, 014443 (2005).