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Ginzburg-Landau vortex lattice in superconductor films of finite thickness
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The Ginzburg-Landau equations are solved for ideally periodic vortex lattices in superconducting films of
arbitrary thickness in a perpendicular magnetic field. The order parameter, current density, magnetic moment,
and the three-dimensional magnetic field inside and outside the film are obtained in the entire ranges of the
applied magnetic field, Ginzburg-Landau paramateand film thickness. The superconducting order param-
eter varies very little near the surfate1%) and the energy of the film surface is small. The shear modulus
Ces Of the triangular vortex lattice in thin films coincides with the bulg taken at largex. In thin type-I
superconductor films witk <1/12, cgg can be positive at low fields and negative at high fields. The magne-
tization of thin films at small applied fields is enhanced beyond its bulk valig due to the energy of the
magnetic stray field.
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I. INTRODUCTION ces oriented perpendicular to the film plane. Due to the Fou-

Since Abrikosov’$ prediction of the flux-line lattice in Fer ansatz, the magnetic stray field energy is easily ac-
type-Il superconductors from Ginzburg-Land@gL) theory, counted for in this method. Moreover, it turns out that the
most theoretical work on this vortex lattice in bulk and thin €xtension from 2D to a 3D problem only slightly increases
film superconductors considered the situation when the ag required computation time and computer memory, so that

. L . high precision can be achieved easily on a personal com-
plied magnetic field and the average inductibare close to uter. As in Refs. 11 and 12, we consider here vortex lattices
the upper critical fieldB.,=uoHe, since analytical solutions puter- : ’

may be obtained for this particular case. In the opposite IimiWlth arbitrary shape of the unit cell containing one vortex,
_ R _ ’ _ 5.e., our method computes triangular, rectangular, square lat-

of low inductionB<B.,, the properties of an isolated vortex tjces, etc., and yields also the shear moduif the equilib-
and the interaction between vortices are obtained to googlym lattices. The approximate shear modutygof the tri-
approximation from the London theory when the GL param-angular vortex lattice in thin films was computed from GL
eterx is not too small, 2> 1.1-*The problem of an isolated theory forb<1 and 1-b<1 in Ref. 14. For early work on
vortex in thin films was solved analytically within London fjims with a perpendicular vortex lattice see Refs. 2, 3, and
theory by Pearf;the interaction energy of such Pearl vortices 15_19.
(or pancake vorticés is easily calculated by noting that  Though we consider here isotropic superconductors, the
within London theory the currents and magnetic fields of thecorresponding results for anisotropic superconductors with
vortices superimpose linearly and that the force on a Vort€principal symmetry axes along y, z may be obtained from
equals the thickness-integrated supercurrent density at thgjs isotropic method by scaling the coordinates and intro-
vortex core times the quantum of flul,. In thin films with ducing an effective GL paramet&?®-22 The magnetic field
thicknessd smaller than the London magnetic penetrationgf 5 vortex inside a uniaxially anisotropic superconductor
depth A the range of the vortex-vortex interaction is in- \ith surface parallel to tha, ¢ symmetry plane and perpen-
creased to the effective penetration depthx?/d since the  gicular to the vortex line was calculated from anisotropic
interaction now occurs mainly via the magnetic stray field| gndon theory® and compared with experiments in Ref. 23.
outside the filnt:5 Vortices in superconducting films of finite The main effect of the flat surface of a superconductor
thickness(d<\ andd=\) and in the superconducting half jm or half space is the widening of the magnetic field lines
space(d>\) were calculated from GL theohand London  of the vortices as they approach the surface. This widening
theory/~* o minimizes the sum of the bulk free energy plus the energy of

At larger reduced inductiorb=B/B,>0.05 when the the magnetic stray field outside the superconductor. The re-
London theory does not apply, the properties of the GL vorsulting magnetic field lines cross the superconductor surface
tex lattice have to be computed numerically. A very efficientsmoothly, see Fig. 1 for the vortex lattice and Figs. 1 and 2 of
method® uses Fourier series as trial functions for the GLRef. 9 for isolated vortices. One can see that for tbeex
function |(x,y)|? and magnetic field(x,y) and minimizes lattice the field lines at the boundary of the Wigner-Seitz cell
the GL free energy with respect to a finite number of Fourierare exactly parallel te, inside and outside the supercon-
coefficients. This numerical method was recentlyductor, and at some distance outside from the surface
improved?? by solving the GL equations iteratively with (=half the vortex spacingthe magnetic field becomes uni-
high precision. form and thus the field lines are parallel and equidistant. For

The present paper extends this two-dimensiof2ld)  the isolated vortex the field lines away from the surface
method to the three-dimension@D) problem of a film of  approach radial lines as if they would originate from a point
arbitrary thickness containing a periodic lattice of GL vorti- source, a magnetic monopole with strength,Xituated on
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FIG. 1. Magnetic field linegtop) and profiles of order parameter
[42=w(x,0,z) and magnetic fieldB,(x,0,z) (bottom) for a super-

conductor film calculated from Ginzburg-Landau theory for the tri-

angular vortex lattice. Shown is the exampieB/B.,=0.04,
=14, triangular lattice with vortex spacingunit length x;
=37V42d,/B)2=5x%,(By) = 10\, film thickness d=0.8«; ~8\.
Top: The left half shows the field lines that would apply if the field
in the film would not change near the surfazestd/2 marked by

dashed lines. The right half shows the correct solution. The densit

of the depicted field lines is proportional to the local inductjBh
see the Appendix and Fig. 2. Bottom: The solid lines skoandB
in the center of the film(z:O)_and the dashed lines at the film

surfaces. The average inductiBnis marked as a dotted line.

the vortex core at a distance 1X2Below the surfacé.
In Ref. 6 the widening of the field lines inside the super-

PHYSICAL REVIEW B71, 014521(2009

Il. SOLUTION METHOD

The properties of the vortex lattice within GL theory are
calculated by minimizing the GL free energy of the super-
conductor with respect to the complex GL functigfr) and
to the vector potential(r) of the local magnetic induction

B(r)=V X A. In the usual reduced unit$ [Iength)\ mag-
netic mductlon \ZMOHC, energy denS|ty,uoHC, where H.
=H 2/(\2;<) is the thermodynamic critical fie]ldhe spatially
averaged free energy denskyof the GL theory referred to
the Meissner statéy=1,B=0) within the superconductor

(1-|y??

reads
V 2
F= + (,——A)zp +B?).
2 2

Here (---y=(1/V)[yd- -+ means spatial averaging over the
superconductor with volumé. Introducing the supervelocity
Q(r)=A-Vo/x and the magnitudef(r)=|¢| of ¥r)
=f(r)exdie(r)] one may writeF as a functional of the real
and gauge-invariant functiorfsand Q,

. < A=y o0,
2 K?

1)

+f2Q%+ (V X Q)2> (2)

In the presence of vortice®(r) has to be chosen such that
VX Q has the appropriate singularities along the vortex
cores, wherd vanishes. By minimizing thig with respect

to ¢, A or f, Q, one obtains the GL equations together with
the appropriate boundary conditions. For the superconduct-
ing film considered here, one has to add the energy of the
magnetic stray field outside the film, which mak@scon-
tinuous at the film surface, see below.

The 3D solution of the GL equations for an infinitely
large, thick or thin film with periodic lattice of vortices per-
pendicular to the film plane, can be obtained numerically by
a modification of the 2D method developed in Refs. 11 and
12. This is possible since in any plageconst parallel to the
film the solutions for the ideal vortex lattice are still periodic.

ctually this periodicity applies even to tilted and arbitrarily
curved vortex lines, and to anisotropic superconductors,
which may be computed by a similar method. These more
complex problems will be considered in future work.

For the present problem of straight vortices alangne
may choose a general ansatz for the magnitude of the GL
function f(x,y,2)=|#(x,y,2)| in form of the following 3D
Fourier series for the smooth functidf

conductor was missed, but some maodification of the super-

conductor order parameter near the surface was calculated w(r)=f2=2 ac(1-cosK ,r )cosK,z. (3)
from GL theory. Below we obtain that the correct modifica- K

. o : oo ]

tion of |4f2 is very small: the vortex core, visualized as con Here r=(x,y,2),r.=(x,y), K=(KoK, K), and K,

2, widens near the surface by only a

=(Ky,Ky). In all sums here and below the terkh, =0 is
The outline of this paper is as follows. In Sec. Il the excluded. For vortex positiorB=Rmn=(Md%+nX, ny,) the

solution method is outlined. Section Il presents a selectlorfec'procal lattice vectors ar& | =K,=(27/S)(my,, ¥

of results for thin and thick films: Magnetic field lines, pro- *mMx) with S=x;y,= ®o/B the unit cell area andm
files of the order parameter and magnetic field, the variances0,+1,+2,.., n=0,+1,+2,... The z-component oK is

of the periodic order parameter and magnetic field inside anghosen asKZ=(27r/d)I with |=0, 1, 2,... andd the film
outside the film, surface energy and stray-field energy, anthickness. This ansatz guarantees thiéR,z)=0 at the
shear modulus of the triangular vortex lattice in the film. A (straigh} vortex cores and that at the two surfaces of the film
summary is given in Sec. IV. z=+d/2 one has)(f?)/9z=0, as it follows from the variation

few percent.
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of the GL free energy functiond®). If only the termK,=01is  within the circular cell approximatidsf both assumptions
kept, the ansat3) reduces to that for the 2D vortex lattice in are satisifed. With these two assumptiapss fully deter-
Ref. 1. Formally, the 3D Fourier seri¢3) may also be ex- mined by thez-component ob=(b ,b,):
pressed as a 2D Fourier series witependent coefficients
ay (2= ax cosKz b,(r) = >, by cosK ,r | cosK,z,

For the supervelocityQ and magnetic inductiol=V K
X Q inside the film we chose the general ansatz

— K, K
Q(r) =Qa(r ) +q(r), b, (r)=> by Kiz ZsinK |1, sinK,z,
K 1
B(r)=Bz+b(r), <(b(r))=0,
ZXK, .
b(r)=V X q(r). (4) q(r) = >, bk 2 SinK 1, cosKz, (8)
K 1
Here Qa(x,y) is the supervelocity of the AbrikosdB,, so- ) ) _
lution, which satisfies with K, =|K | |. Formally, these 3D Fourier seri¢8) may
L also be expressed as 2D Fourier series witlependent co-
VX Qa=|B-®y>, &, -R) |2, (5)  efficients by (2)=Z bk cosK,zz and their derivatives
R

b,’&(z). The solution is thus completely determined by the

where 8,(r | )=8(x)8(y) is the 2D delta function and, the  two infinite sets of scalar Fourier coefficientg and by,
quantum of flux,®,=2m/« in reduced units. Formulgs) ~ Which are obtained by minimizing the total free energy with
shows thatd, is the velocity field of a lattice of ideal vortex respect to these coefficients for given parameteiand B
lines but with zero average rotation. Near each vortex centeand film thicknesgl. For the computation | shall use a large
one hasQa(r | )=2xr' /(2«xr’?) and f(r)?«r'? with r’  but finite number ofy andby in the sense of a Ritz varia-
=r, —R. Q(r ) may be expressed as a slowly convergingtional method.

Fourier series by integrating E@5) using divQ=divQ, _ The total free energy¥,,; per unit volume of the infinite
=0. It is, however, more convenient to takg, from the film is the sum of the GL free energy, E@®), and the stray-
exact relation field energyFgy In reduced units and referred to the state

where =0 and B(r)=Bz=u¢H,Z one has with g

Vop X Z
Qur )=, ©  =(VH2i2=(Vo)?l (4idw);
A
where wa(x,y)=f(x,y)? is the AbrikosovB,, solution given Fot= <_ o+ }wz +g+ wQ2+ b2> + @y
by a rapidly converging series of ty$8) with z-independent 2
coefficients
A _ _ (_ q\m+mmn _ w2 © _
B, =~ DT e - K S @m] (1) Faa=2| (B(N?2-B), 0z (©)
d/2

for general vortex-lattice symmetry, andt’,il:—(—l)V
xXexp(—mv/ \@)(v:mz+mn+n2) for the triangular lattice. The factor of 2 comes from the two half spaces above and
The wp from Eq. (7) is normalized to{wa(x,y))=1; this  below the film, which contribute equally ., The stray
yields the strange relatiag aj =1 for any lattice symme- field B(x,y,z>d/2) with constant planar average
try. Another strange property of the Abrikosov solutighis  (B(x,y,2))xy,=Bz is determined by the Laplace equation
that (Vwa/ wa)?=V?wpl wp=4m/S=const, although both V2B=0 (sinceV-B=0 andV X B=0 in vacuun and by its
terms diverge at the vortex positions; this relation followsperpendicular component at the film surfased/2, sinceB,
from Egs.(5) and (6) using E:q;o/sz 2w/ (kS). The useful has to be continuous across this surface. This yields with Eq.
formula (6) may be proven via the compleR,, solution (8) the stray field:
Ya(X,y); it means that neaB, the second and third terms in _
theF, Eq. (2), are equal. B,(x,y,z=d/2) = 2, bk  cosK 1 )exd-K, (z-d/2)]+B,

The general ansatz fay(r)=(qy,qy,q,) is a Fourier series Ky
for all three components, satisfyingx q=b. For simplicity
here | shall assumg,=0, which means planar supercurrents. K, .
In the considerecrjr%ase of vortices peIerendicngr 0 the filnB1(xy.z=d2) =2 bSKLK_LS'”(KLU)eXF[_ Ki(z=d/2)],
plane this is an excellent approximation, which is exact in K1 +
the limit of small induction and probably also at large induc-
tions B=B,,, and it is exact for thin films. | further assume k, =bg (z=d/2)= > by cogal) (10
V-Q=0, which is exact in several special caseg., forB !
<B andB=B,) and is possibly exact even in the general (1=0, 1, 2,...). For spatial averaging we shall need the or-
case, though | did not find a proof for this. Note also thatthonormality relations valid foK | #0:
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<C05(KJL)COS(KLM)>X,y: <Sin(KLrL)Sin(KlrL)>x,y tude of w but not its shape. Namely, frodF .,/ w)=0 we
1 obtain
= —5K K’ (11) - - 2
27 o = a2 9- Q) (18
(%)
<c0327£c03277—|2> =6 1+ @,o’ Similarly, an iteration equation for tHg is obtained from
d d /, & 2 the equationF ./ dbx =0 by reordering the terms appropri-
ately. From Eqgs(8)—(13) one has
27z | 27wl'z 1_5|,0 2
sin—gsin— = ) =&y ———. (12) IO (1+89K] + (189K .
‘ abe K 2K2 ’ (19
Averaging the squared stray field oveandy and using Egs. -
H S \2 _ _
(11) and (12 gne obtains termsbKi) exgd-2K , (z—d/2)], I (0@ 2P
and thusFg,, in Eq. (9) becomes T = e (20
K
5 B )
Fetray= . 13
stray o K, (13) }&Fstray: SK 2 cogl) (21)
d db LodK,
The Fourier coefficientsx and by may be computed by K -
iterating appropriate GL equations as shown in Refs. 11 andith bsKL from Eq.(10) and
12. Minimizing F, Eq. (2), with respect td andQ yields the .
two GL equations for bulk superconductors Pk = ((Qy)Ky = QKy)sinK 1, cosK;z). (22)
KV =—f+ 3+ fQ?, (14)  Equating the sum of the ternt$9)—21) to zero and adding
and subtracting an appropriate tectm)by that improves the
j=VXB=V X VXxQ=-f2Q. (15) convergencegwith some constant=1 or largej, one ob-
] ) _ ] tains an iteration equation for th:
The first GL equatior(14) applies also to our film; the sec-
ond GL equatior(15), too, but when it is written as an equa- _ _ 2 s
tion for theby it has to be supplemented by a stray-field term 2Py + c(w)by P, cog(m)
~ 8Fgray OQ ON its right-hand side, which originates from by := 1 . (23
the boundary condition foB. A possible iteration equation 5|’0K2l +=(1- 8 gK? + c(w)
for the ax is obtained from Eq.(14) using the relation 2
2fV2f=V20=(Vw)?/ (20) to give The solutionsw(r), B(r), and Q(r) are obtained itera-
V20 = 2k%(- 0 + 02 + 0Q? + Q) (16)  tively by first finding the 2D solution as in Refs. 11 and 12,

keeping only the terms witliK,=0 and starting, e.g., with
aK:(l—B/Bcz)aQL and by =0 and then iterating the three

equationd17), (18), and(23) by turns a few times; after this,

To obtain better convergence of the iteration | subtract a terrq1 S . L e ; i

5 . Py the 3D solution is obtained by continuing this iteration with
2«“w on both sides of Eq(16), such thak*® is replaced by the terms for alK, included until the coefficientax andb,
K2+2«?; this choice yields fastest convergence. Using the z 8« K

- do not change any more. With the empirical choce 3
ansatz(3) and the orthonormalitie$l1l) and (12) we then N D L L
obtain an iteration equation for theg +(0.4+6Mm7) k“x,/d this iteration is stable for ab, x, andd

and the free energy decreases smoothly until it becomes sta-
tionary (with accuracy 10*) after 25-50 iteration steps.

with g=(Vw)?/ (4x’w) as above. Note that here means the
3D Nabla operator, while the similar E() of Ref. 11 is 2D.

. {(0? - 2w+ wQ?+g)cosK ;1 | cosK,z)
K =

1 (17)
1 2 2

_(5KZ’0+ 1)(K /2K + 1)

4 Ill. SOME RESULTS
where( - ) averages ovex,y,z. In particular, ifo andQ do

not depend o1z, Eq.(17) reduces to Eq(11) of Ref. 11 and . . .
yieldsay =0 for all K, # 0. Other forms of iteration equations _ Figure 1 shows one example for the resulting magnetic
for the a, are possible, e.g., one containing in the denomi-fi€ld lines and some cross sectionsutk,y,z) andB(x,y,2)

nator K2 instead ofK2, but one should choose that which 8longx in the planey=0 atz=0 (center plane of the filin
yields the fastest convergence of the iteration. In general, th@nd z=d/2 (film surface, for a film of finite thicknessd
iteration of any equation for some parametegiven in the  =0.8;~ 8\ at reduced inductiob=B/B.,=0.04 and GL pa-
original form a:=F(a) may be made more stable or faster rameterx=1.4, yielding for the triangular vortex lattice a
converging by rewriting it in the forma:=(1-c)a+cF(a) vortex spacing ok;(B)=5x;(Be)=1.25d= 10\. The left half
with some constant<1 (or evenc>1 in some cases of Fig. 1 shows the field lines that result if the unchanged 2D
The convergence is accelerated by alternating the iteratiobulk solutions forB(x,y) andw(x,y) are assumed inside the
step(17) with an iteration step that changes only the ampli-film. The right half shows the correct solution, exhibiting

A. Magnetic field and order parameter
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FIG. 2. Comparison of the magnetic field lines plotted either as

stream linegsolid lineg that flow along the exact direction of the

PHYSICAL REVIEW B 71, 014521(2005

slope ofB and start at equidistant points far away from the
film surface, wherd8=B,=(0,0,B)=const(in infinitely ex-

tended films the average inducti@equals the applied in-
ductionB, outside and inside the filmbut their 1D density

is not proportional to the 2D flux densi&=|B|. The dashed
lines in Fig. 2 are field lines that have approximately the
slope ofB(x,0,z) and have a density proportional By see
the Appendix. This type of field lines is depicted also in Figs.
1 and 3.

In Fig. 3 the magnetic field lines are shown for films of
various thicknessesl/x;=0.4, 0.2, 0.1, and 0.05 fob
=0.04 andk=1.4 as in Fig. 1, wherd/x;=0.8. These thick-
nesses correspond tiA =4, 2, 1, and 0.5and 0.25 in Fig.
1). At low inductionsb< «~2 and not too smalk>5, these
field patterns may also be obtained by linear superposition of
the fields of isolated London vortices given by E¢®—(9)
of Ref. 9, with an appropriately cutoff vortex core introduced

magnetic field but do not show the correct 2D flux density, or astO consider the finite coherence lengthThis superposition

contour linegdashed lines, see the Appenidikat show the correct

also applies to nonperiodic vortex arrangements.

flux density but have only approximately the orientation the mag-

netic field. Shown are the examplies 0.04, triangular lattice, with
(right plot) k=2, d=0.6x; =4\ and(left plot) k=1, d=0.6x; =~ 8\.
The horizontal dashed lines indicate the film surfazesd/2.

smooth field lines across the film surface, and a very weak

widening of the vortex core near the surface.

Figure 2 shows the magnetic field lines for a film with
thicknessd=0.6x; at b=0.04 for k=2 (d=4\, left) and «
=1 (d=8\, right), triangular lattice. The solid lines are the
stream lines oB(x,0,2z)=(B,,0,B,); they have the correct

B. Variance of the magnetic induction
Figures 4 and 5 show the two relative varianogando |
of the magnetic induction defined here as

o{2) =([B/xY,2) - B)}?B, (24)

7 1(2) =(Bx.Y, 2%+ By(x,y,22)}2/B. (25)

These measures of the relative variation of the periodic in-
duction depend om: Deep inside thick filmsg,(z) reduces

FIG. 3. The magnetic field
lines of the vortex lattice in films
of various thicknessed/\ =4, 2,
1, 0.5, corresponding tod/x;

z/x1

-0.4

=0.4, 0.2, 0.1, 0.05, fob=0.04
andx=1.4. Depicted is the field in
the planey=0 in one lattice cell.
The film surfaces are marked by
two dashed lines. The field lines
of an isolated vortex in such films
are shown in Fig. 2 of Ref. 9.

0.4 0.3 -02 -0.1 0
X/ X 1

-05-04-03-02-01 0 01 02 03 04 05

x/x1

01 02 03 04 05
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b=004, Kk=1, oa b b=03, k=14
27 dix, =0.1,02,04..1.4 . d/x,=0.1,02,04..14
7\./X1 =0.0743 MX1 =0.285
15k 1.4 surface z = d/2 ] 0.15 F .
. ’ i . — \ surface z = d/2
o —— triangular lattice © \ /
. - \
N -~ - square lattice o 0.1 —— triangular lattice
o - - - square lattice
y { \
05} 0.05 r ‘ N
HU SN
N \\ z J‘
% \ D
0 0 ,,l_,—_’%}_ =
0.6 =——== — ' '
= 3.5
b=001, x=1.4
b=004, x=3 , )
’ ’ dix,=01,02,04 .14
05 L o, dix, =01,0.2,04..1.4 | al *s
RN ;\/X1 =0.223 \
0.4 . 0.8 \1 1.2\1.4 25
04l o6 i )
o 02 ti ol
w0 / 1 o" 15
©
\0 1 N cl\\
02| N/ N\ N
N 4 N /’ N 1
\y
S 3 /’ >
o S 6=
o1} ) 7 XK KK ! 1 0.5
= S Z \\\~‘_\‘*~-_ ‘\\‘»__ 0 "
0 s - 0 0.2 0.4 0.6 0.8 1 1.2 14
0 0.2 0.4 0.6 0.8 1 1.2 1.4
z/x
z/x 1

. T FIG. 5. Same as Fig. 4 but for=1.4 and twob values. Top:
FIG. 4. The variances of the longitudinal and transverse compo- = - _ i _
L . . Large b=0.3, yielding A/x;=0.285. Bottom: Lowb=0.01, thus

nents of the magnetic induction,(z) and o, (z), defined by Egs. N/x.=0.0520
(24) and (25), plotted versusz/x;(x;=vortex spacing at reduced 1= '
induction b=0.04 for films of various thicknessetix;=0.1, 0.2, ) .
0.4, 0.6, 0.8, 1, 1.2, and 1.4. Top: Far=1, yielding \/x;  varianceo, (2) increases from zero a=0 and reaches a
=0.0743. Bottom: Fork=3, thus \/x;=0.223. While 0(2) de- sharp cusp-shaped maximum at the surface, where it joins
creases monotonically with increasingo  (2) has a sharp peak at o,(z) and then decreases again to zero away from the film.
the film surfacez=d/2. Outside the film(|z=d/2) one haso(z2) ~ For large k=2 and d/x;=0.7 these curves are approxi-
=0,(2). mately symmetric,

to the variance of the 2D vortex lattice in the buliky,, o/l4 < dI2) = gy~ oAd = 2)),
computed, e.g., in Ref. 12 as a functionboénd «, and one
has o, =0 sinceBl z for the considered case. As one ap-
proaches the surface from inside the film,z) decreases
and o, (2) increases until they coincide at the surfaze

o, (74 <dl2)=o(d-|2),

=d/2. Outside the superconductor one has exactly o (d2) = 0(d/2) = opyd2. (27)
aﬁ(z? d/i2)= ai(z? d’2) This is so since foik > x,/27 the outer and inner magnetic
1 stray fields are symmetric.
=—> (b )2exgd- 2K, (z-d/2)]. Shown in Figs. 4 and 5 are both variances for various
2k, * values ofb and « for eight film thicknessesl/x;=0.1, 0.2,

(26) 0.4, 0.6, 0.8, 1, 1.2, and 1.4 for the triangular vortex lattice
(solid lines and for d/x;=0.1, 0.4, 0.8, and 1.2 for the

This follows from Egs.(10) for the magnetic stray field. At square vortex latticédashed lines The variances for these
large |z-d/2>x,/(2m), the variance decreases exponen-two lattice symmetries are almost identical.
tially with z, o,=0, xexp(—-Kyqlz|), where K o=2m/x, is
the shortest reciprocal lattice vector of the vortex lattice de-
fined below Eq.(3). Thus o,z decreases monotonically
from its bulk valueoy,,, inside a thick film to zero far away Figure 6 shows the variance of the order parameter
from the film, reaching at the surface approximately half itsw(x,y,2)=|¢(x,y,2)|? inside films with periodic vortex lat-
bulk value(for thick films). In contrast to this, the transverse tice,

C. Variance of the order parameter
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35 d=4x ., x=1.4, b=0.99 08, ...0.01

triangular lattice
- - - - square lattice

c2’

30

102 [B(0) - 1] + 10* [B - B(0)]

10° [B(0) - 1] + 10* [B - B(0)]

2z/d

FIG. 6. The spatial variancéAbrikosov parameter 5(2)
—(wz)xy/(w)x , of the order parametes(x,y,2)=|#(x,y,2)[? plot-
ted as 1@,8(2) B(0)]+104 B(0)-1] vs z/(d/2) for several re-

duced induction$=0.99, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, and 0.01 for

«x=1.4 and for both trianguldsolid lineg and squarédashed lines
vortex lattices. Top: Thick film withd=4x.,. Bottom: Thinner film
with d=x.,. Herex,=x;1b=2.7¢ is the vortex spacing a@=B,.

The extremely small variation g8(z) is enlarged by plotting 10
X [B(2)-B(0)]. Adding the constant #)B8(0)-1] allows one to
identify (at z=0) the bulk Abrikosov valuesB(0)= B,=1.1596
(1.8039 occurring for the triangulatsquare lattice in thick films
whenb—1.

o) = (Y2,

. 28
(w(%,Y,2)%y 28

At large reduced inductions=B/B,—1 in the middle of
thick films B(z) coincides with the Abrikosov parametgp
=1.15960 for the triangular vortex lattice aftl=1.18034
for the square lattice. At low inductions— 0O one hasp
—1 since the order parameter is constant except in the
small vortex cores. Figure 6 shows thaz), and thus the
shape ofw(X,y,z), changes very little witte. For films of
thicknessd>4x.,, one has constant bulg in a central re-
gion aroundz=0, and az approaches the surface of the film,

B(z) increases by at most a factor of 1.0033 within a layer o

thickness=~x,. Here x,,=x,(B.) =x;\b is the vortex dis-
tance atB=B,. One hask,=(4w/+3)& for the triangular

PHYSICAL REVIEW B 71, 014521(2005

larger and smalleb, the variation of3(z) is even smaller.

Thus, to a very good approximation, one may assume that
the order parametew(x,y,z) of the vortex lattice inside
films in perpendicular magnetic field is independent ahd
for not too thin films has the same form as the 2D order
parametero(x,y) of the bulk vortex lattice. For very thin
films with d< ¢ at b<<1 the vortex cores are slightly wider
than in the bulk. For example, &=0.04,«=1.4, the core
width increases by about 25% whdnh¢é decreases from 0.5
to 0.005, but then saturates and does not increase further in
thinner films. This is just the interval ofl in which the
modulation 1-B;,/Bnax Of the periodic magnetic field
B(x,y,0) decreases frore=1 to <1 since the effective pen-
etration depth ®%/d becomes larger.

Close toB,, the constancy along of the GL function
#(X,y,z) applies to thicker and thicker films. This numerical
result is consistent with the finding in Ref. 24 of a correlation
lengthl, —§/(2\1 b) that diverges folb— 1 and describes
the extension along the vortex lines of perturbations in
#(x,y,z) caused by small material inhomogeneitigéns).
Interestingly, a similar diverging leng (2\b—1) describes
the long axis(along z) of a cigar-shaped superconducting
region(nucleus that nucleates at applied fields abd®g at
a small defect with transition temperatufg(r) higher than
the bulk T..1° In superconducting films of thickness< &b
-1]7¥2, or at applied fields satisfyingB,/Be,—1| < &/d?,
small inclusions or precipitates are thus expected to cause a
virtually 2D perturbation that has rmdependence.

D. Surface energy

Next | consider the additional free energy caused by the
presence of the two surfaces of the film. This energy per unit
area of the film is composed of two terms:

(@ Fsiay the magnetic energy of the stray field outside
the film, defined by Eq(9) and expressed in Eq13) in
terms of the Fourier coefficient:f<L of the field component
B,(x,y,d/2) at the surface; and

(b) Fg, the actual surface energy defined as the dif-
ference of the free energy of the film per unit aréapd,
minus the 2D bulk free energy density of the infinite vortex
lattice, F,p, timesd, thus

Fsut= (Fap — F2p)d. (29

The total surface energy, originating from both surfaces of
the film, is the sum of these two termBg .+ Fg,+ Both
terms tend to a constant when the film thickndsacreases
above the vortex spacing. These thick-film values dfgy
andFg,; are of the same order, and they are approximately
equal for largex>1 and also at large reduced inductidms
— 1. This is so since the order paramet€k,y, z) in the film
is nearly independent of and thusk, is virtually only of
{nagnetic origin, i.e., it is the energy of the magnetic field

change caused |n5|de the film by the surface. When the mag-
netic penetration depth is large>x,/2m7<<d, this “inner
stray field” is symmetric to the outer stray field. This equality

and x§2:27-r§2 for the square vortex lattice. The maximum applies also neab=1, since inside the superconductor the
change occurs dt=0.15 andd= 4x,. For thinner films and magnetic screening is reduced by the reduction of the order
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b— 1 one has gyay~ Fsur (1-b)?/ & (in units ugH2\) since
the amplitude of the periodiB,(x,y,d/2) decreases dﬁl
«(1-b)/«x and the depth of the stray field K;p=~x,/27
« ¢=N/ k. Therefore, when plotted in uniysngg, all curves

b=0.15

d/x1

FIG. 7. The energ¥ 4, of the magnetic stray fieltsolid lines
and the surface enerdy,; of the film (dashed linesplotted vs the

film thicknessd for k=2 andb=0.02, 0.15, and 0.4, see text. These

energies per unit area are plotted in ur)b@-liglzo 000 to enlarge
them to order of unity and show their close coincidence at large

parameter and thus the effective penetration depth
=N {w)"?=N\/(1-b)*? increased?

The dependence &, andFs,on the film thickness is
shown in Fig. 7 fork=2 andb=0.02, 0.15, and 0.4. With

Fsiray @and all Fg,¢ practically coincide for allk>1 andb
>0.4, see Fig. 8.

Note that the total surface enerdyyq +Fs, is very
small, never exceeding the vaIue<&(T4,u0H§§ reached at

«>1 andb~0.2/\«.

E. Shear modulus of vortex lattice

Finally, the elastic shear modulagg of the vortex lattice
will be discussed. As shown in Ref. 11, the shear modulus of
the triangular vortex lattice can be expressed with high ac-
curacy by the difference of the free energies of the rectangu-
lar lattice, Fyec (With x,=0 andy,=3x;/2), and the triangu-
lar lattice, Fy, (with X,=x;/2 and the samg,=13x,/2),

Ce6 = (3772/2)(Frect_ Ftr)-

This is so since the free energy for constant unit cell height
y, varies practically sinusoidally withx,:F(x,) = F+[1
+cog 27X/ X1) |(Freci—Fy) /2, thus the definition cgg
=#F/ da? at small shear angle=arctaf(x,—0.5)/y,] yields

Eq. (30).25 Expressed in unitgoHZ, the shear modulus de-
pends on three variableggg=cg4(b, x,d). There are thus
several ways to present the numerical data dgy each

(30)

increasingd both energies increase from zero and saturate t?/ielding different physical insight.

constant values at abod{x;=0.7 for all « andb. Figure 8
shows these thick-film limits oF g,y and Fg,; as functions
of the reduced inductiob. Note thatF,, is slightly larger

One result is that in the limit of small film thicknesk
< ¢ the shear modulus for a film with anytends to the bulk
shear modulus at— o0, as already obtained by Conen and

thanFg,; this reflects the fact that the stray field inside theSchmid.“ This finding may be understood from the fact that

film is screened by’ <, while outside the film there is no

screening A ==). Both Fg, andFg, vanish ato— 0 and at
b—1 and have a maximum in between. Bt+-0 one has

in thin films the vortices are Pearl vortices that have a long
interaction range ¥2/d exceeding the London penetration
depth\.*° This argument yields the correct limit— o for

Fstray~ Fsurt b since each vortex contributes separately. Atd/)\_>0, but for k<o the cg of films does not quantita-

NN
7k / N . . A
Q thick—film limit
x=20 AN —_—
A\ .
6t N units:
- N
s ez TN\ u B2 & /20000
’ N
% I/ \\\
[T i Il \\
.4r ! N stray
§ ! 77T surf
] LT T
w3 ~ s
! 27 k=071 TN
1 d
! //
21 s N
i ’ \
fl /7
f /
1h //
s
/
0 . . . \
0 0.2 0.4 0.6 0.8 1
b=B/B
c2

FIG. 8. The thick-film limits of the stray-field energlsay
(solid lines and the surface enerdyy,s (dashed linesplotted vs
the reduced inductio for k=0.71, 2, and 20 in unit&OHgglz
X 10%

tively coincide with the bulkcgg for an effective ke
=2\?/dé=(2\/d) k> K, sincecgg is determined not only by
the range but by the full shape of the interaction potential
between vortices, which differs for Abrikosband Peafl
vortices. If this potential i8/(r) with r=(x>+y?? and the

vortex density isn,=B/®,, one has for a 2D triangular lat-
tice with positionsk,,, defined below Eq(3):262"

Cos= 2[RV (Ry) + 3RV (Ry)], (3D)

16,

see also Eq99) and(11) of Ref. 28.

Figures 9 and 10 showgg as a function of the reduced
inductionb for different film thicknessed expressed in units
of the GL coherence length, d/¢=10"%94=0.1, ..., 32,
and for GL parameterg=0.5, 1, and 2. For large=5, the
curvescgg(b) for various thicknesses are very close to each
other and to the bulkge. In general, the curves for finite film
thickness all fall between the two limiting casgs» « coin-
ciding with the bulkcgg(x), andd— 0 coinciding with the
bulk cgg(k=20). This interval is very small for large and not
too smallb sincecgg( k=) — Cgq( k) = k2. This means that for
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) 2
bulk ¢ / (1,H? / 1000) film Cgq / (hoH, /1000)

K =1
d/& =0.1,0.32,0.56, 1,
\ 1.8,3.2,5.6, 10,32

! 2
film cgq / (u HE / 1000)

K =2
d/&=0.1,0.32,0.586, 1,
1.8,3.2,5.6, 10, 32

S film ¢y / (uoHE /1000)
x =05

dfe = 0.1,0.32, 0.56, 1,
1.8,3.2, 5.6, 10, 32

30 ’

FIG. 10. The shear modulegg of the triangular vortex lattice in
films of various thicknesses like in Fig. 9 bottom, but for 1 (top)
and =2 (bottom), in units xyHZ/1000.

0 012 0.4 ‘0.6 Oj8
b=B/B
c2

FIG. 9. Top: The shear moduligs of the bulk (d— o) trian- lower energy than the triangular latti¢ehe Meissner state
gular vortex lattice as a function of the reduced induction Without vortices has even lower energy in this gastow-
—B/B... for GL parameters=0.4, 0.5, 0.6, 0.707, 0.75, 1, 1.4, 2, 3 ever, as can be seen in the lower plot for films wth0.5, in
5 7 1% and 100. in unitﬁOHzilbob "Fork< 2-12=0.707 one has  Sufficiently thin type-I superconductor films the triangular
formally cgg<<0, though vortices and a vortex lattice are unstable inYOfteX, Igttlce can be st_ab(ee., C_66>0) when the |nQuctlon
such type-I superconductors. Bottom: The shear modugyief the 1S sufficiently small. This behavior was seen also in Ref. 14,

triangular vortex lattice in films with thicknesse#¢=0.1, 0.32,  1he dependence a;g on the film thicknessl is visual-
0.56, 1, 1.8, 3.2, 5.6, 10, and 32, plottedovior x=0.5. Thiscggis  12z€d in Fig. 11 by plotting the difference
positive, i.e., the triangular vortex lattice is stable for sufficiently £(d,b, k) = [Ceg(d, b, ) — Ceg(0,b, )] - (A/E) -k (32)

thin films or small inductions. Fod> ¢ the bulk cgg at the same
«k=0.5 is reacheddash-dotted ling and ford< ¢ the bulkcgginthe  (an energy per unit arg¢aersusd at variousx values forb
limit x> 1 is reacheddashed ling =0.3 (near the maximum ofge). One can see that this func-
tion saturates when the film thickness exceeds a few coher-

large k=5 the shear modulus is nearly the same for thin ancence lengths. For all values of« andb>1/«* one can fit
thick films. Note that for the bulk an¢=5 one hascgs  these curves closely by
= BCI)O/.(16’7T,£LO-7\2) «b for 1/(2K2) <b=<0.15 (see Flg 9 f(d) = f(oo)[]_ _ exr{— d/|)] (33)
top); this applies also to films. Fok<5 we confirm the
finding of Ref. 14 thatese<b*2 for b< 1, but this law applies In Fig. 11 (atb=0.3) the lengthl of the best fit accidentally
only to intermediate film thicknesses @&&/A<3 at b  coincides with¢, but in general depends orb and is pro-
<0.1. portional to the vortex spacing,: | ~0.195;=(\6/4m)x,

An interesting feature can be seen from Fig. 9. The upper\2/Kyq, thus I/¢=~3Y42m) 12/ (b=0.525Ab, yielding |
part shows théulk cg(b, x) for valuesk=0.4 tox, i.e., also  =0.96 at b=0.3. This saturation means that the additional
for k<1/,2=0.707 corresponding to type-I superconduct-rigidity of the vortex lattice caused by the film surfaces and
ors, in which the vortex lattice is energetically unfavorable inmeasured byf(d,b, ) becomes independent of in films
the bulk. For k<0.707 one findsnegative g<<0. This thicker than a few coherence lengths, and thus one has
means the bulk rectangular and square vortex laffidemve  cgg(d) —Cge(0) < 1/d. For thin films with d<¢& one has
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100~~~

.. d/£=0,0.1,0.32,056,1,1.78,3.16,10, =
b= 0.1 1

d/&

_FIG. 11. Dependence of the shear modtﬂg@of t_h_e trian_gl_Jlgr 6r a=10 d/E=0,0.1,0.32, 056, 1,1.78, 3.16, 10, i
lattice on the film thicknessl. Plotted is the additional rigidity 5r b0y
caused by the film surfaces in the form fdfl,b, k) =[cge(d, b, k) at B
—Cgg(0,b, x)]-(d/ &) -k vsd atb=0.3 for variousk=1, ..., 20 (solid 3t /et
lines, cgg IN units MOHﬁ/looq. The dashed lines show the fit, Eq. )
(32), with 1=¢.

g

f(d,b, k) «d since cgg(d) —Cgg() is a constant independent OO‘ o2 04 o8 o8 1 12 14
of d. 1/x

Figure 12 visualizes the dependence of the shear modu-
lus of the triangular lattice by plotting[cgg(e,b,) FIG. 12. Dependence of the shear modulgsof the triangular

—cee(d,b K)]_Kz versus 1k atb=0.1. 0.3. and 0.7. for film lattice on the GL parametex. Plotted is the functiomcgg(e0, b, )

thicknessesd/ £=0.1, ..., 10. Also shown are the limitsl ~Ce(d,b, k)] k2 vs 1/k atb=0.1(top), 0.3 (middle), and 0.7(bot-
=0 (the x-axi9, proving that ce(d— 0,b,x)=Cee(d tom), for various film thicknessed/¢ (cgg in units MOHﬁ/lOOO.

—vo0,b, k—0) for any k, andd=o (upper dashed linethat The dashed lines show the limids=0 (x-axis) andd=< (upper ling

inaiding with [ QUK .= bulk 2 1t
S e bulk o\ bulk 5 coinciding with[cgg" (k=) —Cgg" (k) ]-k*. It is clearly seen that the
coincides with[cgg (=) ~Cgg («)]-x*. These plots prove gierences of any twagg values vanish ag™2 when k— . This

that the differences of any twgs values vanish as™ when asymptotic law is good even for=2, and it practically applies to
k—. One can see that this asymptotic law is a good apa|| x=0.71 at large inductionb=0.7.

proximation even for not so large=2, and at largeb
=0.7 it practically applies to alk=0.71, and even for type-I o i i
superconductors with not too smadk 0.71. done by the applied field, which may be written a@vdB,

In Fig. 13 the numericatg(d, b, ) is compared with the ©ON€ obf[ain_s the reIatiorM;—aFwt/aB._Figure_ 14 shows
analytical result of Conen and Schmid, Fig. 1 of Ref. 14,magnenzatlon curves for films of various thlcl‘c(_nessh!@t
valid at large inductions 1b<1. Their result was obtained -°-1, 1,3, 10, ane for GL parameters=0.5, 142, 1, and
from an elegant expression derived by Ladhéor the free o = 1
energy of films with the vortex lattice of arbitrary symmetry ~ For thick films (d>¢,1) at k=1/12 one hasFq=—5(1
atb— 1. Lashet® implicitly used the fact that the magnetic ~0)? and thus m=1-b=1-h; for largerx>0.707 the thick
stray field inside the film is not screened in this limitlof film —m(h) is concave(has positive curvatuig and for
1. smallerk<0.707 (type | superconductoys-m(h) is convex
(has negative curvaturend the vortex lattice is not stable.
However, for sufficiently thin films, even when<0.707 the
curvature of (h) can be positive and even may change

For infinitely extended films the average magnetic induc-sign at a certain value df=b. Note that the plotted curves
tion B equals the applied field®=uoH,, and the magnetiza- —m(h) for various d/¢ cut each other approximately &t
tion M is defined as the magnetic moment per unit volume offb~1/«. For thick films the initial slope is m’'(h)|=o
the film. The demagnetization factor of infinite films N =-1 for all x, and -m(0)=h,;=H/H,. This is so since
=1, and thus the effective lower critical field at which the when surface contributions may be disregarded, one has for
first vortices penetrate id/;=(1-N)H;=0. For the magne- superconducting ellipsoidsM=H.; at H=H/; whereB=0.
tization of superconductors with the general demagnetizinghe enhancement ofm(h) at smallh<« for thin films in
factor 0O=N=<1 see, e.g., Refs. 19 and 29. Noting that theFig. 14 originates from the energy of the magnetic stray field,
total free energy per volumE,y,, Eq. (9), equals the work which enhances the self-energy of a vortex beyond its bulk

F. Magnetization of infinite films
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order parameter near the surface, Fig. 1. The variance of the
transverse component of the magnetic induction is sharply
peaked at the surface and vanishes deep inside and far out-
side the film, Figs. 4 and 5. The variance of the periodic
order parametefAbrikosov parametep3) varies very little
across the film thickness, by at most a factor 1.0033, Fig. 6.
The surface energy saturates for large film thickretssd
vanishes linearly at smadl, Fig. 7. For not too thin films the
surface energy originates mainly from the magnetic stray
field, which comes in approximately equal parts from outside
and inside the film, in particular for largeor largeb, Fig. 8.
For very thin films the stray field energy may be disregarded
and the very small surface energy comes mainly from the
small modification of the order parameter, Fig. 7. The shear
s 1(; o 16‘ 162 moduluscgg(d, b, k) of the triangular vortex lattice in thin

dre films approaches thg(, b, ) of thick films (bulk limit) at

k— o, Fig. 10, the difference being proportional £, Fig.

FIG. 13. The shear moduluge (1—b)2 of the vortex lattice in ~ 12. While the bulkcsg(,b, x) is negative in type-I super-
films at high inductions 1b<1, plotted vs the film thicknesd. ~ conductors(x<0.707, the cgg of sufficiently thin films can
For comparison with Fig. 1 of Ref. 1444 is in the same unitél be positive and may change sign at some valub, ¢fig. 9.
~b)2ueH2/2. The horizontal dashed lines denote the bgk This ~ The magnetization curves of films with<0.707 may have
plot, computed fob=0.98, applies approximately to &l=0.6 and  positive or negative curvature, depending on the film thick-
agrees with the analytic expression plotted in Fig. 1 of Ref. 14. ness, Fig. 14. More results will be published elsewhere. Ex-

tensions of this method to vortices with several flux quanta

valued®yH,;. More details about this will be published else- and to the periodic lattice of curved vortices in superconduct-
where. ing films in a tilted magnetic field are underway.

Cogldib) [(1-0)7 nHZ /2]

IV. SUMMARY APPENDIX: PRESENTATION OF FIELD LINES

It is shown how the Ginzburg-Landau equations can be
solved for a periodic lattice of Abrikosov vortices in super-
conducting films in a perpendicular magnetic field. As an
illustration of how well this iteration method works, some : : :
results are presented. The widening of the magnetic fiel e.plotted p'a’?e IS proportlonal to the.m_agnltthﬂl(a(,y,z)|.
lines as they exit the film surface is correctly obtained, Figs simple consideration shows that this is possible only for

1 and 2, but this leads only to a very small correction of the2D p'ana!f problems, when the f'?ld lines coincide with the
contour lines of the vector potential, e.é\(x,0,2). But for

. , : : 3D magnetic fields, and even for cylindrically symmetric
251 d/§1= magnetization of films 1 fields, such 2D plots of the field lines are not possible since
' the magnitudeéB(x,y,z)| here is proportional to the 2D den-
sity of the 3D field lines, but not to the 1D density of the
plotted 2D field lines. For our 3D problem of a thick film
with a 2D periodic vortex lattice we have two possibilities to
plot field lines that approximately have the above-mentioned
properties.

First method.One may use numerical programs that plot
the field lines (stream lines of the 2D planar field
B(x,0,2=(B,,B,) [or any other planar cross section of
B(x,y,2)] starting from equidistant point§x=x;,y=0,z
=-z,) far away from the film surface so th8ix,y,z) ~ Bz
=const. Such field lines have the correct slope, but their den-
sity is only approximately proportional i8(x,y,2)|.

Second methodin this paper the 2D plots of the magnetic

A practical question is how to plot the magnetic field lines
of this 3D problem such that they have the correct orienta-
tion of B(x,y,2) and their 1D densityreciprocal distangen

heb ' field lines show the contour lines of the function
N s ) . . X X1
FIG. 14. The magnetization of infinite films with thickness _
d/¢=0.1, 1, 3, 10, aneb, containing a triangular vortex lattice with ¢(x2)= fo BZ(X’O'Z)dX/ fo B.(x,02)dx, (A1)

one flux quantum per vortex. Plotted ism=-M/H. vs h
=H/Hg=b=B/B, for k=0.5, 0.707, 1, and 1.5. which ranges frome(0,2)=0 at x=0 (vortex center to
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¢o(x1/2,2)=1 (middle plane between two vorticeand has a

PHYSICAL REVIEW B71, 014521(2009

tion is close to the orientation d@(x,y,z). Figure 2 shows

periodic derivative. Such field lines have a 1D density alonghat these two types of field lines are very similar. In particu-

x proportional to|B,(x,0,2)|, and a density perpendicular to
these lines which is close 18(x,y,2)|, since their orienta-

lar, the contour lines ob(x,z), Eq. (1), have slopes that are
close to the correct slope.
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