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The Ginzburg-Landau equations are solved for ideally periodic vortex lattices in superconducting films of
arbitrary thickness in a perpendicular magnetic field. The order parameter, current density, magnetic moment,
and the three-dimensional magnetic field inside and outside the film are obtained in the entire ranges of the
applied magnetic field, Ginzburg-Landau parameterk, and film thickness. The superconducting order param-
eter varies very little near the surfaces<1%d and the energy of the film surface is small. The shear modulus
c66 of the triangular vortex lattice in thin films coincides with the bulkc66 taken at largek. In thin type-I
superconductor films withk,1/Î2, c66 can be positive at low fields and negative at high fields. The magne-
tization of thin films at small applied fields is enhanced beyond its bulk value −Hc1 due to the energy of the
magnetic stray field.
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I. INTRODUCTION

Since Abrikosov’s1 prediction of the flux-line lattice in
type-II superconductors from Ginzburg-LandausGLd theory,
most theoretical work on this vortex lattice in bulk and thin
film superconductors considered the situation when the ap-

plied magnetic field and the average inductionB̄ are close to
the upper critical fieldBc2=m0Hc2, since analytical solutions
may be obtained for this particular case. In the opposite limit

of low inductionB̄!Bc2, the properties of an isolated vortex
and the interaction between vortices are obtained to good
approximation from the London theory when the GL param-
eterk is not too small, 2k2@1.1–3 The problem of an isolated
vortex in thin films was solved analytically within London
theory by Pearl;4 the interaction energy of such Pearl vortices
sor pancake vortices5d is easily calculated by noting that
within London theory the currents and magnetic fields of the
vortices superimpose linearly and that the force on a vortex
equals the thickness-integrated supercurrent density at the
vortex core times the quantum of fluxF0. In thin films with
thicknessd smaller than the London magnetic penetration
depth l the range of the vortex-vortex interaction is in-
creased to the effective penetration depthL=l2/d since the
interaction now occurs mainly via the magnetic stray field
outside the film.4,5 Vortices in superconducting films of finite
thicknesssd,l anddùld and in the superconducting half
spacesd@ld were calculated from GL theory6 and London
theory.7–9

At larger reduced inductionb=B̄/Bc2.0.05 when the
London theory does not apply, the properties of the GL vor-
tex lattice have to be computed numerically. A very efficient
method10 uses Fourier series as trial functions for the GL
function ucsx,ydu2 and magnetic fieldBsx,yd and minimizes
the GL free energy with respect to a finite number of Fourier
coefficients. This numerical method was recently
improved11,12 by solving the GL equations iteratively with
high precision.

The present paper extends this two-dimensionals2Dd
method to the three-dimensionals3Dd problem of a film of
arbitrary thickness containing a periodic lattice of GL vorti-

ces oriented perpendicular to the film plane. Due to the Fou-
rier ansatz, the magnetic stray field energy is easily ac-
counted for in this method. Moreover, it turns out that the
extension from 2D to a 3D problem only slightly increases
the required computation time and computer memory, so that
high precision can be achieved easily on a personal com-
puter. As in Refs. 11 and 12, we consider here vortex lattices
with arbitrary shape of the unit cell containing one vortex,
i.e., our method computes triangular, rectangular, square lat-
tices, etc., and yields also the shear moduli13 of the equilib-
rium lattices. The approximate shear modulusc66 of the tri-
angular vortex lattice in thin films was computed from GL
theory forb!1 and 1−b!1 in Ref. 14. For early work on
films with a perpendicular vortex lattice see Refs. 2, 3, and
15–19.

Though we consider here isotropic superconductors, the
corresponding results for anisotropic superconductors with
principal symmetry axes alongx, y, z may be obtained from
this isotropic method by scaling the coordinates and intro-
ducing an effective GL parameterk̃.20–22The magnetic field
of a vortex inside a uniaxially anisotropic superconductor
with surface parallel to thea, c symmetry plane and perpen-
dicular to the vortex line was calculated from anisotropic
London theory13 and compared with experiments in Ref. 23.

The main effect of the flat surface of a superconductor
film or half space is the widening of the magnetic field lines
of the vortices as they approach the surface. This widening
minimizes the sum of the bulk free energy plus the energy of
the magnetic stray field outside the superconductor. The re-
sulting magnetic field lines cross the superconductor surface
smoothly, see Fig. 1 for the vortex lattice and Figs. 1 and 2 of
Ref. 9 for isolated vortices. One can see that for thevortex
lattice the field lines at the boundary of the Wigner-Seitz cell
are exactly parallel toz, inside and outside the supercon-
ductor, and at some distance outside from the surface
s<half the vortex spacingd the magnetic field becomes uni-
form and thus the field lines are parallel and equidistant. For
the isolated vortex, the field lines away from the surface
approach radial lines as if they would originate from a point
source, a magnetic monopole with strength 2F0 situated on
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the vortex core at a distance 1.27l below the surface.9

In Ref. 6 the widening of the field lines inside the super-
conductor was missed, but some modification of the super-
conductor order parameter near the surface was calculated
from GL theory. Below we obtain that the correct modifica-
tion of ucu2 is very small: the vortex core, visualized as con-
tour lines of ucsx,y,zdu2, widens near the surface by only a
few percent.

The outline of this paper is as follows. In Sec. II the
solution method is outlined. Section III presents a selection
of results for thin and thick films: Magnetic field lines, pro-
files of the order parameter and magnetic field, the variances
of the periodic order parameter and magnetic field inside and
outside the film, surface energy and stray-field energy, and
shear modulus of the triangular vortex lattice in the film. A
summary is given in Sec. IV.

II. SOLUTION METHOD

The properties of the vortex lattice within GL theory are
calculated by minimizing the GL free energy of the super-
conductor with respect to the complex GL functioncsr d and
to the vector potentialAsr d of the local magnetic induction
Bsr d= ¹ 3A. In the usual reduced units1,2 flength l, mag-
netic induction Î2m0Hc, energy densitym0Hc

2, where Hc
=Hc2/ sÎ2kd is the thermodynamic critical fieldg the spatially
averaged free energy densityF of the GL theory referred to
the Meissner statesc=1,B=0d within the superconductor
reads

F =Ks1 − ucu2d2

2
+ US¹

ik
− ADcU2

+ B2L . s1d

Here k¯l=s1/VdeVd3r¯ means spatial averaging over the
superconductor with volumeV. Introducing the supervelocity
Qsr d=A − ¹w /k and the magnitudefsr d= ucu of csr d
= fsr dexpfiwsr dg one may writeF as a functional of the real
and gauge-invariant functionsf andQ,

F =Ks1 − f2d2

2
+

s¹ fd2

k2 + f2Q2 + s¹ 3 Qd2L . s2d

In the presence of vorticesQsr d has to be chosen such that
¹3Q has the appropriate singularities along the vortex
cores, wheref vanishes. By minimizing thisF with respect
to c , A or f , Q, one obtains the GL equations together with
the appropriate boundary conditions. For the superconduct-
ing film considered here, one has to add the energy of the
magnetic stray field outside the film, which makesB con-
tinuous at the film surface, see below.

The 3D solution of the GL equations for an infinitely
large, thick or thin film with periodic lattice of vortices per-
pendicular to the film plane, can be obtained numerically by
a modification of the 2D method developed in Refs. 11 and
12. This is possible since in any planez=const parallel to the
film the solutions for the ideal vortex lattice are still periodic.
Actually this periodicity applies even to tilted and arbitrarily
curved vortex lines, and to anisotropic superconductors,
which may be computed by a similar method. These more
complex problems will be considered in future work.

For the present problem of straight vortices alongz one
may choose a general ansatz for the magnitude of the GL
function fsx,y,zd= ucsx,y,zdu in form of the following 3D
Fourier series for the smooth functionf2:

vsr d = f2 = o
K

aKs1 − cosK 'r 'dcosKzz. s3d

Here r =sx,y,zd , r '=sx,yd , K =sKx,Ky,Kzd, and K '

=sKx,Kyd. In all sums here and below the termK '=0 is
excluded. For vortex positionsR=Rmn=smx1+nx2,ny2d the
reciprocal lattice vectors areK '=K mn=s2p /Sdsmy2,nx1

+mx2d with S=x1y2=F0/ B̄ the unit cell area andm
=0, ±1, ±2,… , n=0, ±1, ±2,…. The z-component ofK is
chosen asKz=s2p /ddl with l =0, 1, 2, … and d the film
thickness. This ansatz guarantees thatfsR ,zd=0 at the
sstraightd vortex cores and that at the two surfaces of the film
z= ±d/2 one has]sf2d /]z=0, as it follows from the variation

FIG. 1. Magnetic field linesstopd and profiles of order parameter
ucu2=vsx,0 ,zid and magnetic fieldBzsx,0 ,zid sbottomd for a super-
conductor film calculated from Ginzburg-Landau theory for the tri-

angular vortex lattice. Shown is the exampleb=B̄/Bc2=0.04,k
=1.4, triangular lattice with vortex spacingsunit lengthd x1

=3−1/4s2F0/ B̄d1/2=5x1sBc2d<10l, film thickness d=0.8x1<8l.
Top: The left half shows the field lines that would apply if the field
in the film would not change near the surfacesz= ±d/2 marked by
dashed lines. The right half shows the correct solution. The density
of the depicted field lines is proportional to the local inductionuBu,
see the Appendix and Fig. 2. Bottom: The solid lines showv andB
in the center of the filmsz=0d and the dashed lines at the film

surfaces. The average inductionB̄ is marked as a dotted line.
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of the GL free energy functionals2d. If only the termKz=0 is
kept, the ansatzs3d reduces to that for the 2D vortex lattice in
Ref. 1. Formally, the 3D Fourier seriess3d may also be ex-
pressed as a 2D Fourier series withz-dependent coefficients
aK '

szd=oKz
aK cosKzz.

For the supervelocityQ and magnetic inductionB= ¹
3Q inside the film we chose the general ansatz

Qsr d = QAsr 'd + qsr d,

Bsr d = B̄ẑ + bsr d, kbsr dl = 0,

bsr d = ¹ 3 qsr d. s4d

HereQAsx,yd is the supervelocity of the AbrikosovBc2 so-
lution, which satisfies

¹ 3 QA = FB̄ − F0o
R

d2sr ' − RdGẑ, s5d

whered2sr 'd=dsxddsyd is the 2D delta function andF0 the
quantum of flux,F0=2p /k in reduced units. Formulas5d
shows thatQA is the velocity field of a lattice of ideal vortex
lines but with zero average rotation. Near each vortex center
one hasQAsr 'd< ẑ3 r '8 / s2kr'8

2d and fsr d2~ r'8
2 with r '8

=r '−R. QAsr 'd may be expressed as a slowly converging
Fourier series by integrating Eq.s5d using divQ=div QA
=0. It is, however, more convenient to takeQA from the
exact relation

QAsr 'd =
¹vA 3 ẑ

2kvA
, s6d

wherevAsx,yd= fsx,yd2 is the AbrikosovBc2 solution given
by a rapidly converging series of types3d with z-independent
coefficients

aK '

A = − s− 1dm+mn+n expf− Kmn
2 S/s8pdg s7d

for general vortex-lattice symmetry, andaK '

A =−s−1dn

3exps−pn /Î3dsn=m2+mn+n2d for the triangular lattice.
The vA from Eq. s7d is normalized tokvAsx,ydl=1; this
yields the strange relationoK '

8 aK '

A =1 for any lattice symme-
try. Another strange property of the Abrikosov solutions7d is
that s¹vA/vAd2−¹2vA/vA=4p /S=const, although both
terms diverge at the vortex positions; this relation follows

from Eqs.s5d and s6d using B̄=F0/S=2p / skSd. The useful
formula s6d may be proven via the complexBc2 solution
cAsx,yd; it means that nearBc2 the second and third terms in
the F, Eq. s2d, are equal.

The general ansatz forqsr d=sqx,qy,qzd is a Fourier series
for all three components, satisfying¹3q=b. For simplicity
here I shall assumeqz=0, which means planar supercurrents.
In the considered case of vortices perpendicular to the film
plane this is an excellent approximation, which is exact in
the limit of small induction and probably also at large induc-

tions B̄<Bc2, and it is exact for thin films. I further assume

¹ ·Q=0, which is exact in several special casesse.g., for B̄

!Bc2 andB̄<Bc2d and is possibly exact even in the general
case, though I did not find a proof for this. Note also that

within the circular cell approximation1,2 both assumptions
are satisifed. With these two assumptionsq is fully deter-
mined by thez-component ofb=sb' ,bzd:

bzsr d = o
K

bK cosK 'r ' cosKzz,

b'sr d = o
K

bK
K 'Kz

K'
2 sinK 'r ' sinKzz,

qsr d = o
K

bK
ẑ 3 K '

K'
2 sinK 'r ' cosKzz, s8d

with K'= uK 'u. Formally, these 3D Fourier seriess8d may
also be expressed as 2D Fourier series withz-dependent co-
efficients bK '

szd=oKz
bK cosKzz and their derivatives

bK '
8 szd. The solution is thus completely determined by the

two infinite sets of scalar Fourier coefficientsaK and bK ,
which are obtained by minimizing the total free energy with

respect to these coefficients for given parametersk and B̄
and film thicknessd. For the computation I shall use a large
but finite number ofaK andbK in the sense of a Ritz varia-
tional method.

The total free energyFtot per unit volume of the infinite
film is the sum of the GL free energy, Eq.s2d, and the stray-
field energyFstray. In reduced units and referred to the state

where c=0 and Bsr d=B̄ẑ=m0Haẑ one has with g
=s¹fd2/k2=s¹vd2/ s4k2vd:

Ftot =K− v +
1

2
v2 + g + vQ2 + b2L +

Fstray

d
,

Fstray= 2E
d/2

`

kBsr d2 − B̄2lx,ydz. s9d

The factor of 2 comes from the two half spaces above and
below the film, which contribute equally toFstray. The stray
field Bsx,y,z.d/2d with constant planar average

kBsx,y,zdlx,y=B̄ẑ is determined by the Laplace equation
¹2B=0 ssince¹ ·B=0 and¹3B=0 in vacuumd and by its
perpendicular component at the film surfacez=d/2, sinceBz
has to be continuous across this surface. This yields with Eq.
s8d the stray field:

Bzsx,y,zù d/2d = o
K '

bK '

s cossK 'r 'dexpf− K'sz− d/2dg + B̄,

B'sx,y,zù d/2d = o
K '

bK '

s K '

K'

sinsK 'r 'dexpf− K'sz− d/2dg,

bK '

s = bK '
sz= d/2d = o

l

bK cosspld s10d

sl =0, 1, 2,…d. For spatial averaging we shall need the or-
thonormality relations valid forK 'Þ0:
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kcossK 'r 'dcossK '8 r 'dlx,y = ksinsK 'r 'dsinsK '8 r 'dlx,y

=
1

2
dK 'K

'8
, s11d

Kcos
2plz

d
cos

2pl8z

d
L

z
= dl,l8

1 + dl,0

2
,

Ksin
2plz

d
sin

2pl8z

d
L

z
= dl,l8

1 − dl,0

2
. s12d

Averaging the squared stray field overx andy and using Eqs.
s11d and s12d one obtains termssbK '

s d2expf−2K'sz−d/2dg,
and thusFstray in Eq. s9d becomes

Fstray= o
K '

sbK '

s d2

K'

. s13d

The Fourier coefficientsaK and bK may be computed by
iterating appropriate GL equations as shown in Refs. 11 and
12. MinimizingF, Eq. s2d, with respect tof andQ yields the
two GL equations for bulk superconductors

k−2¹2f = − f + f3 + fQ2, s14d

j = ¹ 3 B = ¹ 3 ¹ 3 Q = − f2Q. s15d

The first GL equations14d applies also to our film; the sec-
ond GL equations15d, too, but when it is written as an equa-
tion for thebK it has to be supplemented by a stray-field term
,dFstray/dQ on its right-hand side, which originates from
the boundary condition forB. A possible iteration equation
for the aK is obtained from Eq.s14d using the relation
2f¹2f =¹2v−s¹vd2/ s2vd to give

¹2v = 2k2s− v + v2 + vQ2 + gd s16d

with g=s¹vd2/ s4k2vd as above. Note that¹ here means the
3D Nabla operator, while the similar Eq.s9d of Ref. 11 is 2D.
To obtain better convergence of the iteration I subtract a term
2k2v on both sides of Eq.s16d, such thatK2 is replaced by
K2+2k2; this choice yields fastest convergence. Using the
ansatzs3d and the orthonormalitiess11d and s12d we then
obtain an iteration equation for theaK :

aK ª

ksv2 − 2v + vQ2 + gdcosK 'r ' cosKzzl
1

4
sdKz,0

+ 1dsK2/2k2 + 1d
, s17d

wherek¯l averages overx,y,z. In particular, ifv andQ do
not depend onz, Eq. s17d reduces to Eq.s11d of Ref. 11 and
yieldsaK =0 for all KzÞ0. Other forms of iteration equations
for the aK are possible, e.g., one containing in the denomi-
nator K'

2 instead ofK2, but one should choose that which
yields the fastest convergence of the iteration. In general, the
iteration of any equation for some parametera given in the
original form aªFsad may be made more stable or faster
converging by rewriting it in the formaª s1−cda+cFsad
with some constantcø1 sor evenc.1 in some casesd.

The convergence is accelerated by alternating the iteration
steps17d with an iteration step that changes only the ampli-

tude ofv but not its shape. Namely, from]Ftot/]kvl=0 we
obtain

aK ª aK
kv − g − vQ2l

kv2l
. s18d

Similarly, an iteration equation for thebK is obtained from
the equation]Ftot/]bK =0 by reordering the terms appropri-
ately. From Eqs.s8d–s13d one has

] kb2l
] bK

= bK
s1 + dl,0dK'

2 + s1 − dl,0dKz
2

2K'
2 , s19d

] kvQ2l
] bK

=
2PK

K'
2 , s20d

1

d

] Fstray

] bK
= bK '

s 2 cosspld
dK'

, s21d

with bK '

s from Eq. s10d and

PK = kvsQyKx − QxKydsinK 'r ' cosKzzl. s22d

Equating the sum of the termss19d–s21d to zero and adding
and subtracting an appropriate termckvlbK that improves the
convergenceswith some constantc<1 or largerd, one ob-
tains an iteration equation for thebK :

bK ª

− 2PK + ckvlbK −
2

d
K'bK '

s cosspld

dl,0K'
2 +

1

2
s1 − dl,0dK2 + ckvl

. s23d

The solutionsvsr d , Bsr d, and Qsr d are obtained itera-
tively by first finding the 2D solution as in Refs. 11 and 12,
keeping only the terms withKz=0 and starting, e.g., with

aK =s1−B̄/Bc2daK '

A and bK =0 and then iterating the three
equationss17d, s18d, ands23d by turns a few times; after this,
the 3D solution is obtained by continuing this iteration with
the terms for allKz included until the coefficientsaK andbK
do not change any more. With the empirical choicec<3
+s0.4+60b2dk2x1/d this iteration is stable for allb,k, andd
and the free energy decreases smoothly until it becomes sta-
tionary swith accuracy 10−14d after 25–50 iteration steps.

III. SOME RESULTS

A. Magnetic field and order parameter

Figure 1 shows one example for the resulting magnetic
field lines and some cross sections ofvsx,y,zd andBsx,y,zd
along x in the planey=0 at z=0 scenter plane of the filmd
and z=d/2 sfilm surfaced, for a film of finite thicknessd

=0.8x1<8l at reduced inductionb=B̄/Bc2=0.04 and GL pa-
rameterk=1.4, yielding for the triangular vortex lattice a
vortex spacing ofx1sBd=5x1sBc2d=1.25d<10l. The left half
of Fig. 1 shows the field lines that result if the unchanged 2D
bulk solutions forBsx,yd andvsx,yd are assumed inside the
film. The right half shows the correct solution, exhibiting

ERNST HELMUT BRANDT PHYSICAL REVIEW B71, 014521s2005d

014521-4



smooth field lines across the film surface, and a very weak
widening of the vortex core near the surface.

Figure 2 shows the magnetic field lines for a film with
thicknessd=0.6x1 at b=0.04 for k=2 sd<4l, leftd and k
=1 sd<8l, rightd, triangular lattice. The solid lines are the
stream lines ofBsx,0 ,zd=sBx,0 ,Bzd; they have the correct

slope ofB and start at equidistant points far away from the

film surface, whereB=Ba=s0,0,B̄d=constsin infinitely ex-

tended films the average inductionB̄ equals the applied in-
ductionBa outside and inside the filmd, but their 1D density
is not proportional to the 2D flux densityB= uBu. The dashed
lines in Fig. 2 are field lines that have approximately the
slope ofBsx,0 ,zd and have a density proportional toB, see
the Appendix. This type of field lines is depicted also in Figs.
1 and 3.

In Fig. 3 the magnetic field lines are shown for films of
various thicknessesd/x1=0.4, 0.2, 0.1, and 0.05 forb
=0.04 andk=1.4 as in Fig. 1, whered/x1=0.8. These thick-
nesses correspond tod/l<4, 2, 1, and 0.5sand 0.25 in Fig.
1d. At low inductionsb!k−2 and not too smallk.5, these
field patterns may also be obtained by linear superposition of
the fields of isolated London vortices given by Eqs.s5d–s9d
of Ref. 9, with an appropriately cutoff vortex core introduced
to consider the finite coherence lengthj. This superposition
also applies to nonperiodic vortex arrangements.

B. Variance of the magnetic induction

Figures 4 and 5 show the two relative variancessz ands'

of the magnetic induction defined here as

szszd = kfBzsx,y,zd − B̄g2lx,y
1/2/B̄, s24d

s'szd = kBxsx,y,zd2 + Bysx,y,zd2lx,y
1/2/B̄. s25d

These measures of the relative variation of the periodic in-
duction depend onz: Deep inside thick films,szszd reduces

FIG. 2. Comparison of the magnetic field lines plotted either as
stream linesssolid linesd that flow along the exact direction of the
magnetic field but do not show the correct 2D flux density, or as
contour linessdashed lines, see the Appendixd that show the correct
flux density but have only approximately the orientation the mag-
netic field. Shown are the examplesb=0.04, triangular lattice, with
sright plotd k=2, d=0.6x1<4l andsleft plotd k=1, d=0.6x1<8l.
The horizontal dashed lines indicate the film surfacesz= ±d/2.

FIG. 3. The magnetic field
lines of the vortex lattice in films
of various thicknessesd/l<4, 2,
1, 0.5, corresponding tod/x1

=0.4, 0.2, 0.1, 0.05, forb=0.04
andk=1.4. Depicted is the field in
the planey=0 in one lattice cell.
The film surfaces are marked by
two dashed lines. The field lines
of an isolated vortex in such films
are shown in Fig. 2 of Ref. 9.
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to the variance of the 2D vortex lattice in the bulk,sbulk,
computed, e.g., in Ref. 12 as a function ofb andk, and one
has s'=0 sinceB i ẑ for the considered case. As one ap-
proaches the surface from inside the film,szszd decreases
and s'szd increases until they coincide at the surfacez
=d/2. Outside the superconductor one has exactly

sz
2szù d/2d = s'

2 szù d/2d

=
1

2B̄2
o
K '

sbK '

s d2 expf− 2K'sz− d/2dg.

s26d

This follows from Eqs.s10d for the magnetic stray field. At
large uzu−d/2@x1/ s2pd, the variance decreases exponen-
tially with z, sz=s'~exps−K10uzud, where K10<2p /x1 is
the shortest reciprocal lattice vector of the vortex lattice de-
fined below Eq.s3d. Thus szszd decreases monotonically
from its bulk valuesbulk inside a thick film to zero far away
from the film, reaching at the surface approximately half its
bulk valuesfor thick filmsd. In contrast to this, the transverse

variances'szd increases from zero atz=0 and reaches a
sharp cusp-shaped maximum at the surface, where it joins
szszd and then decreases again to zero away from the film.
For large kù2 and d/x1ù0.7 these curves are approxi-
mately symmetric,

szsuzu , d/2d = sbulk − szsd − uzud,

s'suzu , d/2d < szsd − uzud,

s'sd/2d = szsd/2d < sbulk/2. s27d

This is so since forl@x1/2p the outer and inner magnetic
stray fields are symmetric.

Shown in Figs. 4 and 5 are both variances for various
values ofb and k for eight film thicknessesd/x1=0.1, 0.2,
0.4, 0.6, 0.8, 1, 1.2, and 1.4 for the triangular vortex lattice
ssolid linesd and for d/x1=0.1, 0.4, 0.8, and 1.2 for the
square vortex latticesdashed linesd. The variances for these
two lattice symmetries are almost identical.

C. Variance of the order parameter

Figure 6 shows the variance of the order parameter
vsx,y,zd= ucsx,y,zdu2 inside films with periodic vortex lat-
tice,

FIG. 4. The variances of the longitudinal and transverse compo-
nents of the magnetic induction,szszd and s'szd, defined by Eqs.
s24d and s25d, plotted versusz/x1sx1=vortex spacingd at reduced
induction b=0.04 for films of various thicknessesd/x1=0.1, 0.2,
0.4, 0.6, 0.8, 1, 1.2, and 1.4. Top: Fork=1, yielding l /x1

=0.0743. Bottom: Fork=3, thus l /x1=0.223. While szszd de-
creases monotonically with increasingz, s'szd has a sharp peak at
the film surfacez=d/2. Outside the filmsuzuùd/2d one hasszszd
=s'szd.

FIG. 5. Same as Fig. 4 but fork=1.4 and twob values. Top:
Large b=0.3, yielding l /x1=0.285. Bottom: Lowb=0.01, thus
l /x1=0.0520.
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bszd =
kvsx,y,zd2lx,y

kvsx,y,zdlx,y
2 . s28d

At large reduced inductionsb=B̄/Bc2→1 in the middle of
thick films bszd coincides with the Abrikosov parameterbA

=1.15960 for the triangular vortex lattice andbA=1.18034
for the square lattice. At low inductionsb→0 one hasb
→1 since the order parameterv is constant except in the
small vortex cores. Figure 6 shows thatbszd, and thus the
shape ofvsx,y,zd, changes very little withz. For films of
thicknessd.4xc2, one has constant bulkb in a central re-
gion aroundz=0, and asz approaches the surface of the film,
bszd increases by at most a factor of 1.0033 within a layer of
thickness<xc2. Here xc2=x1sBc2d=x1

Îb is the vortex dis-

tance atB̄=Bc2. One hasxc2
2 =s4p /Î3dj2 for the triangular

and xc2
2 =2pj2 for the square vortex lattice. The maximum

change occurs atb<0.15 anddù4xc2. For thinner films and

larger and smallerb, the variation ofbszd is even smaller.
Thus, to a very good approximation, one may assume that

the order parametervsx,y,zd of the vortex lattice inside
films in perpendicular magnetic field is independent ofz and
for not too thin films has the same form as the 2D order
parametervsx,yd of the bulk vortex lattice. For very thin
films with d!j at b!1 the vortex cores are slightly wider
than in the bulk. For example, atb=0.04,k=1.4, the core
width increases by about 25% whend/j decreases from 0.5
to 0.005, but then saturates and does not increase further in
thinner films. This is just the interval ofd in which the
modulation 1−Bmin/Bmax of the periodic magnetic field
Bsx,y,0d decreases from<1 to !1 since the effective pen-
etration depth 2l2/d becomes larger.

Close toBc2 the constancy alongz of the GL function
csx,y,zd applies to thicker and thicker films. This numerical
result is consistent with the finding in Ref. 24 of a correlation
length lz=j / s2Î1−bd that diverges forb→1 and describes
the extension along the vortex lines of perturbations in
csx,y,zd caused by small material inhomogeneitiesspinsd.
Interestingly, a similar diverging lengthj / s2Îb−1d describes
the long axissalong zd of a cigar-shaped superconducting
regionsnucleusd that nucleates at applied fields aboveBc2 at
a small defect with transition temperatureTcsr d higher than
the bulk Tc.

19 In superconducting films of thicknessd,jub
−1u−1/2, or at applied fields satisfyinguBa/Bc2−1u,j2/d2,
small inclusions or precipitates are thus expected to cause a
virtually 2D perturbation that has noz-dependence.

D. Surface energy

Next I consider the additional free energy caused by the
presence of the two surfaces of the film. This energy per unit
area of the film is composed of two terms:

sad Fstray, the magnetic energy of the stray field outside
the film, defined by Eq.s9d and expressed in Eq.s13d in
terms of the Fourier coefficientsbK '

s of the field component
Bzsx,y,d/2d at the surface; and

sbd Fsurf, the actual surface energy defined as the dif-
ference of the free energy of the film per unit area,F3Dd,
minus the 2D bulk free energy density of the infinite vortex
lattice,F2D, timesd, thus

Fsurf = sF3D − F2Ddd. s29d

The total surface energy, originating from both surfaces of
the film, is the sum of these two terms,Fstray+Fsurf. Both
terms tend to a constant when the film thicknessd increases
above the vortex spacingx1. These thick-film values ofFstray
andFsurf are of the same order, and they are approximately
equal for largek@1 and also at large reduced inductionsb
→1. This is so since the order parametervsx,y,zd in the film
is nearly independent ofz, and thusFsurf is virtually only of
magnetic origin, i.e., it is the energy of the magnetic field
change caused inside the film by the surface. When the mag-
netic penetration depth is large,l.x1/2p!d, this “inner
stray field” is symmetric to the outer stray field. This equality
applies also nearb=1, since inside the superconductor the
magnetic screening is reduced by the reduction of the order

FIG. 6. The spatial variancesAbrikosov parameterd bszd
=kv2lx,y/ kvlx,y

2 , of the order parametervsx,y,zd= ucsx,y,zdu2, plot-
ted as 104fbszd−bs0dg+100fbs0d−1g vs z/ sd/2d for several re-
duced inductionsb=0.99, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, and 0.01 for
k=1.4 and for both triangularssolid linesd and squaresdashed linesd
vortex lattices. Top: Thick film withd=4xc2. Bottom: Thinner film

with d=xc2. Herexc2=x1
Îb<2.7j is the vortex spacing atB̄=Bc2.

The extremely small variation ofbszd is enlarged by plotting 104

3 fbszd−bs0dg. Adding the constant 102fbs0d−1g allows one to
identify sat z=0d the bulk Abrikosov valuesbs0d<bA=1.1596
s1.8034d occurring for the triangularssquared lattice in thick films
whenb→1.
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parameter and thus the effective penetration depthl8
=l / kvl1/2<l / s1−bd1/2 increases.13

The dependence ofFstray andFsurf on the film thickness is
shown in Fig. 7 fork=2 andb=0.02, 0.15, and 0.4. With
increasingd both energies increase from zero and saturate to
constant values at aboutd/x1ù0.7 for all k andb. Figure 8
shows these thick-film limits ofFstray and Fsurf as functions
of the reduced inductionb. Note thatFstray is slightly larger
thanFsurf; this reflects the fact that the stray field inside the
film is screened byl8,`, while outside the film there is no
screeningsl=`d. Both Fstray andFsurf vanish atb→0 and at
b→1 and have a maximum in between. Atb→0 one has
Fstray<Fsurf~b since each vortex contributes separately. At

b→1 one hasFstray<Fsurf~ s1−bd2/k sin unitsm0Hc
2ld since

the amplitude of the periodicBzsx,y,d/2d decreases asbK '

s

~ s1−bd /k and the depth of the stray field isK10<x1/2p
~j=l /k. Therefore, when plotted in unitsm0Hc

2j, all curves
Fstray and all Fsurf practically coincide for allk.1 and b
.0.4, see Fig. 8.

Note that the total surface energyFstray+Fsurf is very
small, never exceeding the value 8310−4m0Hc

2j reached at
k@1 andb<0.2/Îk.

E. Shear modulus of vortex lattice

Finally, the elastic shear modulusc66 of the vortex lattice
will be discussed. As shown in Ref. 11, the shear modulus of
the triangular vortex lattice can be expressed with high ac-
curacy by the difference of the free energies of the rectangu-
lar lattice,Frect swith x2=0 andy2=Î3x1/2d, and the triangu-
lar lattice,Ftr swith x2=x1/2 and the samey2=Î3x1/2d,

c66 = s3p2/2dsFrect− Ftrd. s30d

This is so since the free energy for constant unit cell height
y2 varies practically sinusoidally withx2:Fsx2d<Ftr+f1
+coss2px2/x1dgsFrect−Ftrd /2, thus the definition c66

=]2F /]a2 at small shear anglea=arctanfsx2−0.5d /y2g yields
Eq. s30d.25 Expressed in unitsm0Hc

2, the shear modulus de-
pends on three variables:c66=c66sb,k ,dd. There are thus
several ways to present the numerical data forc66, each
yielding different physical insight.

One result is that in the limit of small film thicknessd
!j the shear modulus for a film with anyk tends to the bulk
shear modulus atk→`, as already obtained by Conen and
Schmid.14 This finding may be understood from the fact that
in thin films the vortices are Pearl vortices that have a long
interaction range 2l2/d exceeding the London penetration
depthl.4,5 This argument yields the correct limitkeff→` for
d/l→0, but for k,` the c66 of films does not quantita-
tively coincide with the bulk c66 for an effective keff
=2l2/dj=s2l /ddk@k, sincec66 is determined not only by
the range but by the full shape of the interaction potential
between vortices, which differs for Abrikosov1 and Pearl4

vortices. If this potential isVsrd with r =sx2+y2d1/2 and the

vortex density isnv=B̄/F0, one has for a 2D triangular lat-
tice with positionsRmn defined below Eq.s3d:26,27

c66 =
nv

16om,n
fRmn

2 V9sRmnd + 3RmnV8sRmndg, s31d

see also Eqs.s9d and s11d of Ref. 28.
Figures 9 and 10 showc66 as a function of the reduced

inductionb for different film thicknessesd expressed in units
of the GL coherence lengthj , d/j=10s−4,…,6d/4=0.1, …, 32,
and for GL parametersk=0.5, 1, and 2. For largekù5, the
curvesc66sbd for various thicknesses are very close to each
other and to the bulkc66. In general, the curves for finite film
thickness all fall between the two limiting casesd→` coin-
ciding with the bulkc66skd, and d→0 coinciding with the
bulk c66sk=`d. This interval is very small for largek and not
too smallb sincec66sk=`d−c66skd~k−2. This means that for

FIG. 7. The energyFstrayof the magnetic stray fieldssolid linesd
and the surface energyFsurf of the film sdashed linesd plotted vs the
film thicknessd for k=2 andb=0.02, 0.15, and 0.4, see text. These
energies per unit area are plotted in unitsm0Hc

2j /20 000 to enlarge
them to order of unity and show their close coincidence at largeb.

FIG. 8. The thick-film limits of the stray-field energyFstray

ssolid linesd and the surface energyFsurf sdashed linesd plotted vs
the reduced inductionb for k=0.71, 2, and 20 in unitsm0Hc

2j /2
3104.
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largekù5 the shear modulus is nearly the same for thin and
thick films. Note that for the bulk andkù5 one hasc66
<BF0/ s16pm0l2d~b for 1/s2k2døbø0.15 ssee Fig. 9
topd; this applies also to films. Forkø5 we confirm the
finding of Ref. 14 thatc66~b3/2 for b!1, but this law applies
only to intermediate film thicknesses 0.5ød/lø3 at b
ø0.1.

An interesting feature can be seen from Fig. 9. The upper
part shows thebulk c66sb,kd for valuesk=0.4 to`, i.e., also
for k,1/Î2=0.707 corresponding to type-I superconduct-
ors, in which the vortex lattice is energetically unfavorable in
the bulk. For k,0.707 one findsnegative c66,0. This
means the bulk rectangular and square vortex lattices25 have

lower energy than the triangular latticesthe Meissner state
without vortices has even lower energy in this cased. How-
ever, as can be seen in the lower plot for films withk=0.5, in
sufficiently thin type-I superconductor films the triangular
vortex lattice can be stablesi.e., c66.0d when the induction
is sufficiently small. This behavior was seen also in Ref. 14.

The dependence ofc66 on the film thicknessd is visual-
ized in Fig. 11 by plotting the difference

fsd,b,kd = fc66sd,b,kd − c66s`,b,kdg · sd/jd · k s32d

san energy per unit aread versusd at variousk values forb
=0.3 snear the maximum ofc66d. One can see that this func-
tion saturates when the film thickness exceeds a few coher-
ence lengthsj. For all values ofk andb.1/k2 one can fit
these curves closely by

fsdd < fs`df1 − exps− d/ldg. s33d

In Fig. 11 sat b=0.3d the lengthl of the best fit accidentally
coincides withj, but in generall depends onb and is pro-
portional to the vortex spacingx1: l <0.195x1=sÎ6/4pdx1

=Î2/K10, thus l /j<31/4s2pd−1/2/Îb=0.525/Îb, yielding l
=0.96j at b=0.3. This saturation means that the additional
rigidity of the vortex lattice caused by the film surfaces and
measured byfsd,b,kd becomes independent ofd in films
thicker than a few coherence lengths, and thus one has
c66sdd−c66s`d~1/d. For thin films with d!j one has

FIG. 9. Top: The shear modulusc66 of the bulk sd→`d trian-
gular vortex lattice as a function of the reduced inductionb

=B̄/Bc2 for GL parametersk=0.4, 0.5, 0.6, 0.707, 0.75, 1, 1.4, 2, 3,
5, 7, 10, and 100, in unitsm0Hc

2/1000. Fork,2−1/2=0.707 one has
formally c66,0, though vortices and a vortex lattice are unstable in
such type-I superconductors. Bottom: The shear modulusc66 of the
triangular vortex lattice in films with thicknessesd/j=0.1, 0.32,
0.56, 1, 1.8, 3.2, 5.6, 10, and 32, plotted vsb for k=0.5. Thisc66 is
positive, i.e., the triangular vortex lattice is stable for sufficiently
thin films or small inductions. Ford@j the bulk c66 at the same
k=0.5 is reachedsdash-dotted lined, and ford!j the bulkc66 in the
limit k@1 is reachedsdashed lined.

FIG. 10. The shear modulusc66 of the triangular vortex lattice in
films of various thicknesses like in Fig. 9 bottom, but fork=1 stopd
andk=2 sbottomd, in units m0Hc

2/1000.
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fsd,b,kd~d sincec66sdd−c66s`d is a constant independent
of d.

Figure 12 visualizes thek dependence of the shear modu-
lus of the triangular lattice by plottingfc66s` ,b,`d
−c66sd,b,kdg ·k2 versus 1/k at b=0.1, 0.3, and 0.7, for film
thicknessesd/j=0.1, …, 10. Also shown are the limitsd
=0 sthe x-axisd, proving that c66sd→0,b,kd=c66sd
→` ,b,k→`d for any k, andd=` supper dashed lined that
coincides withfc66

bulksk=`d−c66
bulkskdg ·k2. These plots prove

that the differences of any twoc66 values vanish ask−2 when
k→`. One can see that this asymptotic law is a good ap-
proximation even for not so largekù2, and at largeb
ù0.7 it practically applies to allkù0.71, and even for type-I
superconductors with not too smallk,0.71.

In Fig. 13 the numericalc66sd,b,kd is compared with the
analytical result of Conen and Schmid, Fig. 1 of Ref. 14,
valid at large inductions 1−b!1. Their result was obtained
from an elegant expression derived by Lasher18 for the free
energy of films with the vortex lattice of arbitrary symmetry
at b→1. Lasher18 implicitly used the fact that the magnetic
stray field inside the film is not screened in this limit ofb
→1.

F. Magnetization of infinite films

For infinitely extended films the average magnetic induc-

tion B̄ equals the applied field,B̄=m0Ha, and the magnetiza-
tion M is defined as the magnetic moment per unit volume of
the film. The demagnetization factor of infinite films isN
=1, and thus the effective lower critical field at which the
first vortices penetrate isHc18 =s1−NdHc1=0. For the magne-
tization of superconductors with the general demagnetizing
factor 0øNø1 see, e.g., Refs. 19 and 29. Noting that the
total free energy per volumeFtot, Eq. s9d, equals the work

done by the applied field, which may be written as −eMdB,
one obtains the relationM =−]Ftot/]B. Figure 14 shows
magnetization curves for films of various thicknessesd/j
=0.1, 1, 3, 10, and̀ for GL parametersk=0.5, 1/Î2, 1, and
1.5.

For thick films sd@j ,ld at k=1/Î2 one hasFtot=−1
2s1

−bd2 and thus −m=1−b=1−h; for largerk.0.707 the thick
film −mshd is concaveshas positive curvatured; and for
smallerk,0.707stype I superconductorsd −mshd is convex
shas negative curvatured and the vortex lattice is not stable.
However, for sufficiently thin films, even whenk,0.707 the
curvature of −mshd can be positive and even may change
sign at a certain value ofh=b. Note that the plotted curves
−mshd for various d/j cut each other approximately ath
=b<1/k. For thick films the initial slope is −m8shduh=0

=−1 for all k, and −ms0d=hc1=Hc1/Hc2. This is so since
when surface contributions may be disregarded, one has for
superconducting ellipsoids −M =Hc1 at H=Hc18 whereB=0.
The enhancement of −mshd at smallh,k for thin films in
Fig. 14 originates from the energy of the magnetic stray field,
which enhances the self-energy of a vortex beyond its bulk

FIG. 11. Dependence of the shear modulusc66 of the triangular
lattice on the film thicknessd. Plotted is the additional rigidity
caused by the film surfaces in the form offsd,b,kd=fc66sd,b,kd
−c66s` ,b,kdg ·sd/jd ·k vs d at b=0.3 for variousk=1, …, 20 ssolid
lines, c66 in units m0Hc

2/1000d. The dashed lines show the fit, Eq.
s32d, with l =j.

FIG. 12. Dependence of the shear modulusc66 of the triangular
lattice on the GL parameterk. Plotted is the functionfc66s` ,b,`d
−c66sd,b,kdg ·k2 vs 1/k at b=0.1 stopd, 0.3 smiddled, and 0.7sbot-
tomd, for various film thicknessesd/j sc66 in units m0Hc

2/1000d.
The dashed lines show the limitsd=0 sx-axisd andd=` supper lined
coinciding withfc66

bulksk=`d−c66
bulkskdg ·k2. It is clearly seen that the

differences of any twoc66 values vanish ask−2 when k→`. This
asymptotic law is good even forkù2, and it practically applies to
all kù0.71 at large inductionsbù0.7.
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valuedF0Hc1. More details about this will be published else-
where.

IV. SUMMARY

It is shown how the Ginzburg-Landau equations can be
solved for a periodic lattice of Abrikosov vortices in super-
conducting films in a perpendicular magnetic field. As an
illustration of how well this iteration method works, some
results are presented. The widening of the magnetic field
lines as they exit the film surface is correctly obtained, Figs.
1 and 2, but this leads only to a very small correction of the

order parameter near the surface, Fig. 1. The variance of the
transverse component of the magnetic induction is sharply
peaked at the surface and vanishes deep inside and far out-
side the film, Figs. 4 and 5. The variance of the periodic
order parametersAbrikosov parameterbd varies very little
across the film thickness, by at most a factor 1.0033, Fig. 6.
The surface energy saturates for large film thicknessd and
vanishes linearly at smalld, Fig. 7. For not too thin films the
surface energy originates mainly from the magnetic stray
field, which comes in approximately equal parts from outside
and inside the film, in particular for largek or largeb, Fig. 8.
For very thin films the stray field energy may be disregarded
and the very small surface energy comes mainly from the
small modification of the order parameter, Fig. 7. The shear
modulusc66sd,b,kd of the triangular vortex lattice in thin
films approaches thec66s` ,b,`d of thick films sbulk limitd at
k→`, Fig. 10, the difference being proportional tok−2, Fig.
12. While the bulkc66s` ,b,kd is negative in type-I super-
conductorssk,0.707d, the c66 of sufficiently thin films can
be positive and may change sign at some value ofb, Fig. 9.
The magnetization curves of films withk,0.707 may have
positive or negative curvature, depending on the film thick-
ness, Fig. 14. More results will be published elsewhere. Ex-
tensions of this method to vortices with several flux quanta
and to the periodic lattice of curved vortices in superconduct-
ing films in a tilted magnetic field are underway.

APPENDIX: PRESENTATION OF FIELD LINES

A practical question is how to plot the magnetic field lines
of this 3D problem such that they have the correct orienta-
tion of Bsx,y,zd and their 1D densitysreciprocal distanced in
the plotted plane is proportional to the magnitudeuBsx,y,zdu.
A simple consideration shows that this is possible only for
2D planar problems, when the field lines coincide with the
contour lines of the vector potential, e.g.,Aysx,0 ,zd. But for
3D magnetic fields, and even for cylindrically symmetric
fields, such 2D plots of the field lines are not possible since
the magnitudeuBsx,y,zdu here is proportional to the 2D den-
sity of the 3D field lines, but not to the 1D density of the
plotted 2D field lines. For our 3D problem of a thick film
with a 2D periodic vortex lattice we have two possibilities to
plot field lines that approximately have the above-mentioned
properties.

First method.One may use numerical programs that plot
the field lines sstream linesd of the 2D planar field
Bsx,0 ,zd=sBx,Bzd for any other planar cross section of
Bsx,y,zdg starting from equidistant pointssx=xi ,y=0,z

=−z0d far away from the film surface so thatBsx,y,zd< B̄ẑ
=const. Such field lines have the correct slope, but their den-
sity is only approximately proportional touBsx,y,zdu.

Second method.In this paper the 2D plots of the magnetic
field lines show the contour lines of the function

wsx,zd =E
0

x

Bzsx,0,zddxYE
0

x1

Bzsx,0,zddx, sA1d

which ranges fromws0,zd=0 at x=0 svortex centerd to

FIG. 13. The shear modulusc66~ s1−bd2 of the vortex lattice in
films at high inductions 1−b!1, plotted vs the film thicknessd.
For comparison with Fig. 1 of Ref. 14,c66 is in the same unitss1
−bd2m0Hc

2/2. The horizontal dashed lines denote the bulkc66. This
plot, computed forb=0.98, applies approximately to allbù0.6 and
agrees with the analytic expression plotted in Fig. 1 of Ref. 14.

FIG. 14. The magnetization of infinite films with thickness
d/j=0.1, 1, 3, 10, and̀ , containing a triangular vortex lattice with
one flux quantum per vortex. Plotted is −m=−M /Hc2 vs h
=H /Hc2=b=B/Bc2 for k=0.5, 0.707, 1, and 1.5.
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wsx1/2 ,zd=1 smiddle plane between two vorticesd and has a
periodic derivative. Such field lines have a 1D density along
x proportional touBzsx,0 ,zdu, and a density perpendicular to
these lines which is close touBsx,y,zdu, since their orienta-

tion is close to the orientation ofBsx,y,zd. Figure 2 shows
that these two types of field lines are very similar. In particu-
lar, the contour lines ofwsx,zd, Eq. s1d, have slopes that are
close to the correct slope.
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