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Within the self-consistentT-matrix approximation, a diagrammatic approach is presented to describe the
effect of nonmagnetic-impurity scattering ind-density-wavesDDWd conductors. We show that the presence of
DDW order alters dramatically usual diagrammatic rules. As a result, the disorder effect in the DDW state is
qualitatively different from that in thed-wave superconducting state. It is found that the usual weak-
localization effect is absent in the DDW state due to time-reversal symmetry breaking.
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The d-density-wavesDDWd state is characterized by a
condensate of electron-hole pairs.1 The key feature of such a
state is staggered orbital magnetic momentssi.e., staggered
currentsd which break parity and time-reversal symmetry as
well as the translation invariance by one lattice constant and
rotation byp /2. It was suggested that the typical character-
istics of the psudogap of high-Tc cuprates as observed in
many experiments, including photomission,2 tunneling,3 and
muon spin relaxation,4 can be explained by the DDW order
model. Although the debate about the mechanism for the
psudogap is far from settled, theoretical investigations for the
features of the two-dimensionals2Dd DDW state are inter-
esting. Recently, the effect of impurity scattering in the
DDW state has been received much attention. Several au-
thors studied the quasiparticle transport in disordered DDW
conductors.5–8 The resonant state around a single impurity
was also investigated.9

Generally speaking, weak localizationsWLd has a signifi-
cant effect on transport properties of disordered 2D elec-
tronic systems.10 It describes the quantum interference effect
that results from constructive interference between the closed
electron paths and their time-reversal counterparts. In the
diagrammatic language, the WL effect is captured by the
cooperon propagator with a diffusive pole. It is well known
that the WL effect leads to a logarithmic correction to the
conductivity in 2D disordered normal metals. Recent
investigations11–13revealed that both the density of states and
transport coefficients of quasiparticles in the
d-wave-superconductingsDWSd state are also subject to WL
corrections due to impurity scatterings. However, the issue
whether the WL effect has any manifestation in a disordered
DDW conductor has not been yet studied. This is the very
motivation of the present work.

In this paper, by the diagrammatic techniques, we study
the effect of nonmagnetic-impurity scattering in 2D DDW
conductors with the impurities randomly distributed on a
small fraction of the sites. The Fermi surface is assumed to
be nearly nested, so that the low-energy quasiparticles can be
considered as Dirac fermions. We treat the impurity scatter-
ing within the self-consistentT-matrix approximation
sSCTMAd, which has been used in the studies of heavy-
fermion superconductors14 and the DWS state.11–13 It is

found that the presence of DDW order alters dramatically the
usual diagrammatic rules. We show that the cooperon propa-
gator in the DDW state does not contain any diffusive pole,
and thus the usual WL effect is absent in DDW metals. This
feature is qualitatively different from the disorder effect in
the DWS state.

For a perfect 2D square lattice, the electronic spectrum in
the tight-binding approximation readsjk=−2tscoskxa
+coskyad, wheret is the nearest-neighbor hopping integral,
and a is the lattice constant. Thedx2−y2-density-wave order
parameter is given byDk=Dscoskxa−coskyad. The Hamil-
tonian describing the DDW state of a clean system can be
expressed asHs0d=okssekCks

† Cks+ iDkCks
† Ck+Qsd, where ek

=jk−ms0d with ms0d the chemical potential,Cks andCks
† rep-

resent, respectively, the annihilation and creation operators
of electrons withs the spin index,ok denotes the summation
of k over the first Brillouin zone, andQ is one of the four
nesting vectorss±p /a, ±p /ad with k+Q located also within
the first Brillouin zone. As shown in Fig. 1, ifk is located
within sout ofd the reduced Brillouin zone, then k+Q
is situated out of swithind the reduced Brillouin zone.
Therefore, the Hamiltonian can be also expressed as
Hs0d=oks8 sekCks

† Cks+ek+QCk+Qs
† Ck+Qs+ iDkCks

† Ck+Qs+ iDk+Q

Ck+Qs
† Cksd, whereok8 represents the summation ofk over the

reducedBrillouin zone. Using the nesting symmetryjk+Q
=−jk and Dk+Q=−Dk, one can express the Hamiltonian in
the spinor representation asHs0d=oks8 Cks

† EkCks, with Cks
†

FIG. 1. Brillouin zone for the DDW state. The area enclosed by
the heavy lines is thereducedBrillouin zone. Qisi =1,2,3,4d de-
note the nesting vectors.
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=sCks
† ,−iCk+Qs

† d andEk=Dkt1+jkt3−ms0dt0, wheret0 is the
232 unity matrix, andt1, t2, and t3 stand for the Pauli
matrices. The spinor operators satisfyhCks ,Ck8s8

† j+

=dkk8dss8t0. The Green’s function matrix is defined by
Gk

s0dstd=−kT fCksstdCks
† s0dgl. One can easily show that

Gk
s0dsiend=sient0−Ekd−1, yielding

Gk
s0dsiend =

fien + ms0dgt0 + Dkt1 + jkt3

fien + ms0dg2 − Ek
2 , s1d

whereen=s2n+1dpkBT is the Matsubara frequency, andEk

=Îjk
2+Dk

2. Equations1d indicates that the quasiparticle ener-
gies are given by ±Ek. The retarded and advanced Green’s
functions are obtained by the analytic continuation ofien
→e± i0+ in Eq. s1d. Throughout this paper, the Fermi surface
is assumed to be nearly nestedfums0du is very smallg, so that
the low-lying quasiparticles are excited around the four
nodeski =s±p /2a, ±p /2adsi =1,2,3,4d. Then the dispersion
relation of the nodal quasiparticles can be linearized asEk

<Îsv f ·k̃d2+svg·k̃d2, wherev f =]jk /]k, vg=]Dk /]k, and k̃
is the momentum measured from the nodeki. A simple cal-
culation yieldsv f =2Î2ta and vg=Î2Da. The directions of
the Fermi velocityv f and “gap velocity”vg at the four nodes
can be described by Fig. 1 in Ref. 13. A more realistic band
structure would include the next-nearest neighbor hopping
energyzk=4t8 cosskxadcosskyad in the single-particle disper-
sion relation. As pointed out in Ref. 5, however, the effect of
t8 can be neglected within the nodal-quasiparticle approxi-
mation, due to the fact that bothzk and]zk /]k are vanishing
at the nodes. If the system is far from half filling so that the
nodal-quasiparticle approximation is not suitable, the effect
of t8 should be considered.

The nonmagnetic impurities are assumed to be pointlike,
and randomly substituted on a small fraction of host atoms.
The Hamiltonian for the impurity scattering readsHimp

=Vo j=1
Ni oscjs

† cjs=Vo j=1
Ni osokk8cks

† ck8seisk−k8d·Rj, where V is
the impurity potential,Ni is the total number of impurities,
andRj is the position of the impurity on sitej . One can also
write Himp=Vo j=1

Ni osokk8
8 fcks

† ck8s+ck+Qs
† ck8+Q8seisQ−Q8d·Rj

+ck+Qs
† ck8seiQ·Rj +cks

† ck8+Q8se−iQ8·Rjgeisk−k8d·Rj, with k and k8
limited within the reduced Brillouin zone. Noting that
eisQ−Q8d·Rj =1 for nesting vectorsQ andQ8, we can reexpress
Himp as

Himp = o
kk8s

8Cks
† fU0sk,k8dt0 + U2sk,k8dt2gCk8s, s2d

with U0sk ,k8d=Vo j=1
Ni eisk−k8d·Rj and U2sk ,k8d

=Vo j=1
Ni eisk−k8+Qd·Rj.

In the SCTMA, the impurity-averaged self-energy is
given by Ssiend=niTsiend, where the impurity concentration
ni is very small. The impurity-averaging approach for normal
metals is detailed in Ref. 15. However, it should be noted
that the impurity-averaging procedure is very subtle for the
DDW state. Sincek and k8 are located within the reduced
Brillouin zone, we obtain the following results of averaging
over the impurity positions:U0sk ,k8d=sVNi /NdoReisk−k8d·R

=VNidkk8, andU2sk ,k8d=sVNi /NdoReisk−k8+Qd·R=0, whereN
is the total number of sites. Then the first-order contribution
to the T matrix is given byTs1d=Vt0. For thenth contribu-
tion, we haveUi1

sk ,k1dUi2
sk1,k2d¯Uin

skn−1,k8d=VnNidkk8
sif there are even number ofU2d, or 0 sif there are odd
number ofU2d, where i1, i2, . . . ,in can be equal to 0 or 2.
This implies that only the terms with anevennumber oft2
appear in the perturbative series of theT matrix, as shown by
Fig. 2sad. For examples, the second- and third-order contri-
butions can be expressed, respectively, asTs2d=V2st0Gt0

+t2Gt2d and Ts3d=V3st0Gt0Gt0+t0Gt2Gt2+t2Gt0Gt2

+t2Gt2Gt0d with Gsiend=ok8Gksiend, where Gksiend is the
impurity-averaged Green’s function matrix. As indicated be-
low fsee Eq.s4dg, Gsiend has the expression asG=g0t0

+g3t3 with g0siend and g3siend the expansion coefficients.
Thus we getTs2d=2V2g0t0 andTs3d=4V3g0

2t0. The above cal-
culations indicate that the terms containingg3 cancel each
other. Such a law can be shown to remain in all orders of the
perturbation theory. Generally, thenth contribution to theT
matrix is shown to beTsnd=dnV

ng0
n−1t0 with dn=C0

n+C2
n

+C4
n+¯ =2n−1. As a result, we getSsiend=S0siendt0 and

Tsiend=T0siendt0, where

S0 = niT0 = nio
n=1

`

Vns2g0dn−1 =
ni

V−1 − 2g0
. s3d

A use of Dyson’s equation,Gksiend−1=Gk
s0dsiend−1−Ssiend,

yields a formal result as

Gksiend =
fien + ms0d − S0siendgt0 + Dkt1 + jkt3

fien + ms0d − S0siendg2 − Ek
2 . s4d

Similarly with the DWS case,11–13the self-energy for low-
energy quasiparticles has the form asS0

RsAdsed<sh7 idg
+l±e for ueu!g, whereg is the impurity-induced relaxation
rate,l± is the mass renormalization factor, andh is a dimen-
sionless parameter. Thus one obtains

Gk
RsAdsed =

fs1 − l±de + z±gt0 + Dkt1 + jkt3

fs1 − l±de + z±g2 − Ek
2 , s5d

where z±=m± ig, with m=ms0d−hg the modified chemical
potential. The density of states at the Fermi surface is calcu-
lated as r f =−s1/pdIm oks8 Tr Gk

Rs0d=4slg+umd / sp2v fvgd
for g!ec and umu!ec, where u=arctansm /gd, l

FIG. 2. Diagrams forsad the T matrix sdouble dashed lined and

sbd the T̃ matrix sdouble dotted lined. The single-dashed and single-
dotted lines with crosses represent, respectively,Vt0 andVt2. The
solid lines with arrows denote the impurity-averaged Green’s func-
tion matrices.
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=lnsec/Îm2+g2d, and ec,Îv fvg/a. From Eq. s5d, one
gets g0

RsAdsed< 7 ipr f /4−slm−ugd /pv fvg+sl±−1dsl
−1±iude /pv fvg. Substituting the expressions ofS0

RsAdsed and
g0

RsAdsed into Eq. s3d, we obtain g=2ni / fpr fs1+h2dg, l±
−1

=1−sh± idsl +um /gd / fsh7 idsl −1±iudg, and h=2/pr fU
with U−1=V−1+2slm−ugd /pv fvg. The above self-consistent
expressions ofr f, g, l±, and h are suitable for nodal-
quasiparticle approximation and low impurity concentration.
These results will be used to investigate the quasiparticle
transport. One notes that the Fermi surface is exactly nested
for umu=0, and thus the deviation from the nesting case is
measured by the magnitude ofumu. In the case ofumu!g, the
results of Born suhu@ ld and unitary suhu!1d limits are
readily obtained, given, respectively, by

g =
p

2
nir fU

2, r f =
4lg

p2v fvg
, l± = 1 − l ,

and

g =
2ni

pr f
, r f =

4lg

p2v fvg
, l± =

l − 1

2l − 1
.

These two limiting results have the same formulas with those
of the DWS state.13 In the case ofumu@ lg, we have

g =
p

2
nir fU

2, r f =
2umu

pv fvg
, l± = 0,

for the Born limit suhu@ ld, and

g =
2ni

pr f
, r f =

2umu
pv fvg

, l± = 0,

for the unitary limit suhu!1d.
The operator for electric-current density can be derived

via the charge conservation lawq·jq=hrq,Hj−, where rq

=−eoks8 Cks
† Ck+qs is the operator for the charge density. For

q→0, one gets j =oks8 Cks
† LkCks with Lk=−efvgskdt1

+v fskdt3g, which has been obtained in Ref. 8. The quasipar-
ticle dc conductivity is calculated viasd=s1/2pdResPRA

−PRRd, where PRA and PRR stand, respectively, for the
current-current correlation functions in retarded-advanced
sRAd and retarded-retardedsRRd channels.13,15 The contri-
bution of “bare bubble” diagram is given by
PRAsRRd=s1/2doks8 TrfLkGk

Rs0d ·LkGk
AsRds0dg, yielding PRA

=zuae2/p and PRR=−ae2/p, wherea=sv f
2+vg

2d /v fvg and
z=sm2+g2d /mg. Thus we obtain the Drude conductivity

sd = sae2/2p2ds1 + zud, s6d

leading tosd=ae2/p2 for um u !g, andsd=ae2um u /4pg for
um u @g. These two limiting results ofsd agree with those
obtained in Ref. 8. Using the Einstein relation,sd=e2r fD,
one gets the diffusion coefficientD=sv f

2+vg
2ds1+zud /8slg

+umd. For um u !g, we obtainD=sv f
2+vg

2d /4lg, which has
the same form with that of DWS state.11–13 In the case of
um u @ lg, one getsD=sv f

2+vg
2d /8g.

In order to investigate the issue whethersd is subject to a
WL correction, we consider the cooperon equation in RA
channel13 ssee Fig. 3d

Csq;e,e8d = Wse,e8d + Wse,e8dHsq;e,e8dCsq;e,e8d, s7d

where Hsq;e ,e8d=ok8Gq−k
R sed ^ Gk

Ase8d, and Wse ,e8d
=niT

Rsed ^ TAse8d+niT̃
Rsed ^ T̃Ase8d. It is worthwhile to note

that for the DDW state an additionalT̃ matrix appears in the
expression ofWse ,e8d, different from the case of DWS

state.11–13 The T̃ matrix is diagrammatically represented by

Fig. 2sbd, and expressed asT̃siend=Vt2+V2st2Gt0+t0Gt2d
+ V3st2Gt0Gt0 + t0Gt2Gt0 + t0Gt0Gt2 + t2Gt2Gt2d +¯,

yielding T̃siend=t2/ sV−1−2g0d. Similar to the case of the
one-particle Green’s function, each term in the perturbative
series ofWse ,e8d should containevennumber oft2 due to
the impurity-averaging procedure. Although only the terms
with oddnumber oft2 appear in the perturbative series of the

T̃ matrix, each term in the perturbative series of the direct

product niT̃
Rsed ^ T̃Ase8d containsevennumber oft2. One

notes that bothHs0;0,0d andWs0,0d are finite. Let usas-
sumethat the cooperonCsq;e ,e8d has a diffusive pole atq
=0 ande=e8=0, then Eq.s7d yields

ACsq;e,e8d = 0, s8d

for small q, e, ande8, whereA=t0 ^ t0−Ws0,0dHs0;0,0d.
Using the decomposition ofX=oi jXijti ^ t j for C, W, H, and
A, one can show that the nonvanishing components ofA
satisfyA00=1+A22, A21= iA03, andA12= iA30. It then follows
from Eq. s8d that

C00 − C22 = C11 + C33 = C03 + iC21 = C30 + iC12

= s1 + 2A22dC00 = s1 + 2A22dC11

= s1 + 2A22dC03 = s1 + 2A22dC30 = 0. s9d

Equationss7d–s9d are shown to be also suitable for the RR
channel. A direct calculation yieldsA22

RA=−sm2+g2d /4mslg
+umdÞ−1/2 andA22

RR=gsh− id /4slg+umdsh+ idÞ−1/2, in-
dicating that all components ofC are vanishing. This implies
that the above assumption is incorrect, and the cooperon
Csq;e ,e8d is actually of no diffusive pole. Therefore, the
usual WL effect is in fact absent in the DDW state. As shown

above, it is the appearance ofT̃ matrix in the expression of
Wse ,e8d that leads to the absence of diffusive pole in the
cooperon. The physical origin of the absence of WL effect is
the breaking of the time-reversal symmetry by the DDW
order. It has been shown that the WL effect in normal metals
is also suppressed by perturbations such as magnetic-
impurity scattering16 and applied magnetic field,17 which
break the time-reversal symmetry. If these perturbations are
strong enough, the WL effect will be killed completely. In
the present work, the disordered DDW conductor is shown to

FIG. 3. Ladder diagrams for the cooperon propagatorsshaded
blocksd in the DDW state.
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be also a typical 2D Fermion system without the WL effect.
We wish to point out that the present theory is not suitable
for the systems in which the DDW order is very small. This
is because in such DDW conductors the low-energy quasi-
particles are excited near the whole Fermi surface, and thus
the nodal-quasiparticle approximation is not valid for these
systems.

It is worth while to compare our results with those of the
DWS state. The WL effect has been shown to be prominent
in the DWS state.11–13 With a nonperturbative approach,
Pépin and Lee18 obtained a logarithmic correction to the low-
energy density of states asdrsed<ni / s2ue u ln2ue /D0u d sD0 is
the superconducting gapd, in the limit of strong, dilute scat-
ters in the DWS state. The results of Ref. 18 are unlikely to
hold for the DDW state, which is essentially different from
the DWS state. While a superconducting state is of a con-
densate of particle-particle pairs, in which the time-reversal
symmetry is preserved, the DDW order results from particle-
hole pairing with the time-reversal symmetry broken. It is
believed that the absence of WL effect is a generic property
of the pure DDW state. Thus the density of states at the
Fermi surface remains a finite value, having no WL correc-
tion. The present theory is suitable for a pure DDW state,
which was suggested to be a possible candidate phase in the
pseudogap regime of the cuprates, i.e., at the temperature
region ofTc,T,T* with Tc the superconducting transition
temperature. ForT,Tc, there coexist the DWS and DDW
orders. In such a coexisting state, the WL effect is expected
to be partially destroyedsnot completely killedd, as the DDW
order is considered to be a subdominant one.

Generally, the WL effect may manifest itself in low-
temperature electronic transport of disordered systems.10 The
inelastic scatteringselectron-electron or electron-phonon in-

teractiond introduces a temperature-dependent dephasing
time for the quantum interference effect. As a result, the WL
correction to the dc conductivity is also dependent of the
temperature through the dephasing time. Therefore, the WL
effect can be revealed by the experimental measurements on
temperature behavior of the electronic conductivitysas in a
2D normal conductor10d, or thermal conductivitysas was ex-
pected for the DWS state12d. According to the present theo-
retical prediction, the WL behavior of the conductivity
should be absent in the experimental result made on the
DDW phase.

In summary, we have developed a SCTMA theory for the
effects of nonmagnetic-impurity scattering in disordered
DDW conductors. The appearance of DDW order makes the
diagrammatic rules quite different from the cases of DWS
state and normal metals. The dc conductivity is obtained
within the SCTMA. The WL effect, which was found to be
prominent in the DWS state, is shown to be absent in DDW
conductors due to the breaking of time-reversal symmetry.
Such a qualitative difference between the disorder effects in
DDW and DWS states might be helpful to settle the problem
whether the psudogap behavior of cuprates results from the
development of DDW order.
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