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Within the self-consistenT-matrix approximation, a diagrammatic approach is presented to describe the
effect of nonmagnetic-impurity scattering dhadensity-waveg DDW) conductors. We show that the presence of
DDW order alters dramatically usual diagrammatic rules. As a result, the disorder effect in the DDW state is
qualitatively different from that in thed-wave superconducting state. It is found that the usual weak-
localization effect is absent in the DDW state due to time-reversal symmetry breaking.
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The d-density-wave(DDW) state is characterized by a found that the presence of DDW order alters dramatically the
condensate of electron-hole pair§he key feature of such a usual diagrammatic rules. We show that the cooperon propa-
state is staggered orbital magnetic moments, staggered gator in the DDW state does not contain any diffusive pole,
currentg which break parity and time-reversal symmetry asand thus the usual WL effect is absent in DDW metals. This
well as the translation invariance by one lattice constant anfeature is qualitatively different from the disorder effect in
rotation byr/2. It was suggested that the typical characterthe DWS state.
istics of the psudogap of higFs cuprates as observed in  For a perfect 2D square lattice, the electronic spectrum in
many experiments, including photomissiotynneling® and  the tight-binding approximation readsf,=-2t(cosk.a
muon spin relaxatiofi,can be explained by the DDW order +coska), wheret is the nearest-neighbor hopping integral,
model. Although the debate about the mechanism for thanda is the lattice constant. Thé,._»-density-wave order
psudogap is far from settled, theoretical investigations for theparameter is given by, =A(cosk,a—cosk,a). The Hamil-
features of the two-dimensiong2D) DDW state are inter- tonian describing the DDW state of a clean system can be
esting. Recently, the effect of impurity scattering in theexpressed a#i®=%,(&Cl, Ci,+iACl, Ciros), Where g
DDW state has been received much attention. Several au¢, - ,© with 4© the chemical potential;,,, and c;:a rep-
thors studied the quasiparticle transport in disordered DDWesent, respectively, the annihilation and creation operators
conductors—8 The resonant state around a single impurity of electrons witho the spin indexg, denotes the summation
was also investigatetl. of k over the first Brillouin zone, an@ is one of the four

Generally speaking, weak localizatiOWL ) has a signifi-  nesting vectorg+/a, +7/a) with k+Q located also within

cant effect on transport properties of disordered 2D electhe first Brillouin zone. As shown in Fig. 1, K is located
tronic systems? It describes the quantum interference effectyithin (out of) the reduced Brillouin zone, thenk+Q

that results from constructive interference between the closed sjtuated out of(within) the reduced Brillouin zone.

e|ectl’0n pathS and theil’ time-rever3a| CounterpartS. In th@'herefore, the Ham”tonian can be a|so expressed as
diagrammatic language, the WL effect is captured by thQ-|(°)=E,Q(,(ekCE(,CkU+ €k+QCE+QUCk+Qo+i AkCEUCk+Qa+i Areg
cooperon propagator with a d|ffu5|v9 po_Ie. Itis wgll known CLQ(erU)y whereX/ represents the summationlobver the
that the_V_VL effect Ieads to a logarithmic correction to the oqicedBrillouin zone. Using the nesting symmetey.q
pondu_ctlv!ty |n132D disordered normal metals. Recent:_gk and A.o=-A,, one can express the Hamiltonian in
investigation&!~ r_eyealed that both the_ densﬂy of states andy,q spinor representation MO)ZEIL ‘I’l EV,,, with ‘I’E
transport  coefficients of quasiparticles in  the ot 7
d-wave-superconductind®dWS) state are also subject to WL pky
corrections due to impurity scatterings. However, the issue
whether the WL effect has any manifestation in a disordered
DDW conductor has not been yet studied. This is the very
motivation of the present work. ky
In this paper, by the diagrammatic techniques, we study
the effect of nonmagnetic-impurity scattering in 2D DDW k; k.44
conductors with the impurities randomly distributed on a
small fraction of the sites. The Fermi surface is assumed to
be nearly nested, so that the low-energy quasiparticles can be 0; Q,
considered as Dirac fermions. We treat the impurity scatter-
ing within the self-consistentT-matrix approximation FIG. 1. Brillouin zone for the DDW state. The area enclosed by
(SCTMA), which has been used in the studies of heavythe heavy lines is theeducedBrillouin zone.Q;(i=1,2,3,4 de-
fermion superconductors and the DWS stat¥ 12 It is  note the nesting vectors.
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:(CEU,—iCLQU) and & =A, 1y + &ms— u O 1, where, is the H_T X N lﬁ\ o

2X 2 unity matrix, andry, 7, and 3 stand for the Pauli T + FA /\

matrices. The spinor operators satisfii‘lfka,\lfl,g,h N ‘?a’)“ -

=6 6,01 To- The Green's function matrix is defined by ¥ X f

G(ko)(q-):—<T[\Ifk(,(7)\lfﬁg(0)]>. One can easily show that =+ / SO A

G (€)= (ieyro—E) 7 yielding P 2
(b)

i (0)
, i€+ 7o+ Ay + &
Gf(O)(IGn)=[ n* i 7o Ay + & 2 (1) FIG. 2. Diagrams fofa) the T matrix (double dashed lineand

H 0)12 2
[ien+ ’u( )] " (b) the T matrix (double dotted ling The single-dashed and single-
where e,=(2n+1)kgT is the Matsubara frequency, aiff dot.ted. lines yvith crosses represent, respecti\)ém, andVr,. T,he
- \J"§E+A§- Equation(1) indicates that the quasiparticle ener- ;ohd Ime_s with arrows denote the impurity-averaged Green’s func-
gies are given by E,. The retarded and advanced Green's!on matrices.
functions are obtained by the analytic continuationigf
— e+i0* in Eq. (1). Throughout this paper, the Fermi surface =VN,84, andU,(k, k') =(VN;/N)Zze kK +*QR=0 whereN
is assumed to be nearly nestgd?| is very small, so that s the total number of sites. Then the first-order contribution
the low-lying quasiparticles are excited around the fourto the T matrix is given byT"=Vr,. For thenth contribu-
nodesk;=(+m/2a, m/2a)(i=1,2,3,4. Then the dispersion tion, we haveU; (k,ky)U; (ki,Kp)---U; (Kn-1,K")=V"N; S
relation of the nodal quasiparticles can be linearized€gas (if there are even number dfl,), or 0 (if there are odd
z*/(vf-hli)2+(vg-hli)2, wherew; =&/ K, vg= A/ ok, andk nu_mb_er quz), whereiq, iy, ... i, can be equal to 0 or 2.
is the momentum measured from the ndgleA simple cal- This |mpl|es that only t_he terms with aa,fve_nnumber ofr,
culation yieIdSUf=2v‘§ta and ng\@Aa' The directions of appearin the perturbative series of fhmatnx,_as shown by _
the Fermi velocityo; and “gap velocity'v, at the four nodes F|g: 2(a). For examples, the second—. and thlrd—ozrder contri-
can be described by Fig. 1 in Ref. 13. A more realistic band?Utions can be expressed, respectively, Te=VA(1,Gro
structure would include the next-nearest neighbor hopping 2672) ~ and T(s).:VS(ToGTo.GTo‘“TOGTZGTszzGToGTz
energy(, =4t cogka)codk,a) in the single-particle disper- +72G7:G70) with Glie) =2,G(iy), where G(ie,) is the
sion relation. As pointed out in Ref. 5, however, the effect ofimpurity-averaged Green’s function matrix. As indicated be-
t’ can be neglected within the nodal-quasiparticle approxilow [see Eq.(4)], G(ie,) has the expression a=gym
mation, due to the fact that both anddz,/dk are vanishing +0s73 With go(i€,) and gs(ie,) the expansion coefficients.
at the nodes. If the system is far from half filling so that theThus we gef™®=2V2gy7, andT®=4V3g3r,. The above cal-
nodal-quasiparticle approximation is not suitable, the effectulations indicate that the terms containigg cancel each
of t’ should be considered. other. Such a law can be shown to remain in all orders of the

The nonmagnetic impurities are assumed to be pointlikeperturbation theory. Generally, thgh contribution to thel
and randomly substituted on a small fraction of host atomsmatrix is shown to beT(”):ng”gg‘lq-0 with d,=Cj+C})

The Hamiltonian for the impurity scattering readt,, +Ch+---=2"1 As a result, we geB(ie,)=3(ie,)7 and
=VEN S el ¢, =VEN,S Syl e @ KR, where V is  T(ien)=Tolien) 7o, where

the impurity potential N; is the total number of impurities, w

i iti i i iti _ n;
anq R; is the p05|t|,\lqn of t’he |T1pur|ty ?n Site One'(c(:ga_tg,?é;o S0=nTo= niE V(2go)" L = \fl—l o (3)
write Himp=VZ 21262 4/ [CkoCkr o+ ChrguCi/ +Q7 o€ i n=1 9o

+Cl oSk o€ ORI+ €l G €9 RIIEKKIRS with k and k'’
limited within the reduced Brillouin zone. Noting that
gQQIRi=1 for nesting vector® andQ’, we can reexpress

A use of Dyson'’s equationGk(ien)*:Gl((o)(i €) 1-2(i€y),
yields a formal result as

lien+ 1@ —Solie) o+ Ayry + &7s

Himp @s Gie) = 4
E , k( En) [iEn + M(O) _ 20(| En)]2 _ EE ( )
Himp = "W\ [Uo(K,K") 7+ Ua(K,K") 7] W/ 4, 2 o .
e o ol Dok k') 70+ Ualk k') Wi @ Similarly with the DWS casé!~*3the self-energy for low-
energy quasiparticles has the form 3§ (e)=(n¥i)y
with UO(k,k’):VEj!\';lei(k‘k')'Ri and Us(k,k’)  +\.efor | <7y, wherey is the impurity-induced relaxation
=vzNi dkK+QR; rate,\. is the mass renormalization factor, ands a dimen-
In the SCTMA, the impurity-averaged self-energy is Sionless parameter. Thus one obtains
given by3(ie,)=n;T(ie,), where the impurity concentration (1=\)e+ 2]+ Agry + &
n; is very small. The impurity-averaging approach for normal GE(A)(G) =[ ) 7o+ Ary * i =3 (5)

metals is detailed in Ref. 15. However, it should be noted [(1-Noe+ 2] - B
that the impurity-averaging procedure is very subtle for theyhere z,=u*iy, with M:#(O)—ﬂ)’ the modified chemical
DDW state. Sincek andk’ are located within the reduced potential. The density of states at the Fermi surface is calcu-
Brillouin zone, we obtain the following results of ave,raging lated as p;=—(1/m)ImZ; Tr GE(O):4(|7+ Gu)l(wzvag)

over the impurity positionsUg(k,k')=(VN/N)Zge® )R for y<e, and |u|<e, where 6¢=arctarfu/y), |
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=In(e./ Vu2++?), and ec~\s"rvg/a. From Eq. (5), one :E — :II + :IEE:
gets g™ (e) = Fimps/ 4—(1u—0y) ] mow g+ (A= 1)(1 B

—1+if)e/ mvvg Substituting the expressionsf)ﬁ(A)(e) and _ T T
of®(e) into Eq. (3), we obtain y=2n/[mpi(1+72)], A :[ = .t +._§_,

=1-(pxi)(I+60ul/PI/[(p=i)(-1%i0)], and 5n=2/mpU _

with U_1:V_1+2(|,LL_0’)/)/7TUng. The above self-consistent FIG._3. Ladder diagrams for the cooperon propagésbaded
expressions ofor, 7, A, and 7 are suitable for nodal- P/0CKS in the DDW state.

quasiparticle approximation and low impurity concentration.

These results will be used to investigate the quasiparticle C(q;e€,€’) =W(e, €') + W(e, € )H(Q; €,€')C(q; €,€'), (7)
transport. One notes that the Fermi surface is exactly nested IR A ,
for |u|=0, and thus the deviation from the nesting case idV1€e H(die.€ );Equ—lg(f)Q@Gk(E_ ), and _W(e’e)
measured by the magnitude [pf]. In the case ofu|<7y,the  =nTR(e) @ TA(e') +nTR(e) @ TA(€'). It is worthwhile to note

results of Born(|7/>1) and unitary (|/<1) limits are  that for the DDW state an addition&lmatrix appears in the

readily obtained, given, respectively, by expression ofW(e,€'), different from the case of DWS
- ) 4y state!13 The T matrix is diagrammatically represented by
Y= Enipr v Pr= 2oy Ae=1-1, Fig. 2b), and expressed ai(ie,) =Vr+V2(1,G 1+ ;G 1)
K + V3(1n,G7Gry + 10G7G1y + 10G7G + GG +- -+,
and yielding Tr(i €)=/ (V'1-2g,). Similar to the case of the
2 Ay -1 one-particle Green’s function, each term in the perturbative
Y= W_pf' pt= ﬂzvag’ T o121 series ofWW(e, €') should contairevennumber of7, due to

o . the impurity-averaging procedure. Although only the terms
These two |Imltlng results have the same formulas with thOSQVith oddnumber 0f7-2 appear in the perturbative series of the

3 S -~ . . . . .
of the DWS staté? In the case ofu|> 1y, we have T matrix, each term in the perturbative series of the direct

LA 2|y =0 product n,TR(e) ® TA(¢') containsevennumber of 7,. One
Y=5Mmen e g notes that botlt(0;0,0 andW(0,0) are finite. Let usas-
o sumethat the cooperoi€(q;e,€’) has a diffusive pole af
for the Born limit (| >1), and =0 ande=€' =0, then Eq(7) yields
g2 2k o AC(; e €) =0, (8)
i MUVg ' - -
_ o for smallqg, €, ande€’, where A=7,® 7,—-W(0,07(0;0,0.
for the unitary limit(| 7 <1). Using the decomposition 0f=X;X;; 7@ 7, for C, W, H, and

The operator for electric-current density can be derived4, one can show that the nonvanishing componentsiof
via the charge conservation lag-j ={pq,H}-, Where p;  satisfy Agy=1+A,,, Ay =iAgz andA;,=iAg, It then follows
:—eE{(U\I’lU\Ikaqu is the opTerator for the charge density. For from Eq. (8) that
q—0, one getsj=%, W, AWy, with A=-elvgk)m _ _ o _
+v4(K) 73], which has been obtained in Ref. 8. The quasipar- Coo = C22= C1y+ Ca3= Coa+1C21 = Cyp+1Cyp
ticle dc conductivity is calculated viary=(1/2m)Re(ITRA = (1 + 2Ap)Coo= (1 + 2A,,)Cy;

—IIRR), where IIRA and IIRR stand, respectively, for the _ _ :
current-current correlation functions in retarded-advanced =(1+2A2)Cp3=(1+2A2)C3=0.  (9)
(RA) and retarded-retarde@RR) channels31 The contri-  Equations(7)~(9) are shown to be also suitable for the RR
bution of “bare bubble” diagram is given by channel. A direct calculation yieldaR'=—(u?+y?)/4u(ly
HRA(RR)=(1/2)EIL(,Tr[AkGE(O)-AkGﬁ(R)(O)],Z yiglding IRA 4 gu) #-1/2 andARR=y(7—i)/4(1y+ ) (n+i) # -1/2, in-
={0a€?/ 7 and IIRR=-a€?/ 7, where a=(vi+vg) /vy and  dicating that all components 6fare vanishing. This implies
{=(u?+~%)/ wy. Thus we obtain the Drude conductivity that the above assumption is incorrect, and the cooperon
: C(q;e,€') is actually of no diffusive pole. Therefore, the
0= (a€277)(1+£0), (6) usual WL effect is in fact absent in the DDW state. As shown

leading tooy=ae?/ 7 for |u| <y, andog=a€?|u|/4myfor  above, it is the appearance Bfmatrix in the expression of
|u|>v. These two limiting results ofy agree with those (e, ¢') that leads to the absence of diffusive pole in the
obtained in Ref. 8. Using the Einstein relationy=€’pD,  cooperon. The physical origin of the absence of WL effect is
one gets the diffusion coefficier®=(v+v3)(1+£0)/8(y  the breaking of the time-reversal symmetry by the DDW
+0u). For |u| <y, we obtainD=(vf+vi)/4ly, which has  order. It has been shown that the WL effect in normal metals
the same form with that of DWS stat&® In the case of is also suppressed by perturbations such as magnetic-
|| >1y, one getD=(vf+v})/8y. impurity scattering® and applied magnetic field, which

In order to investigate the issue whethgris subject to a break the time-reversal symmetry. If these perturbations are
WL correction, we consider the cooperon equation in RAstrong enough, the WL effect will be killed completely. In
channe¥® (see Fig. 3 the present work, the disordered DDW conductor is shown to
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be also a typical 2D Fermion system without the WL effect.teraction introduces a temperature-dependent dephasing
We wish to point out that the present theory is not suitabldime for the quantum interference effect. As a result, the WL
for the systems in which the DDW order is very small. Thiscorrection to the dc conductivity is also dependent of the
is because in such DDW conductors the low-energy quasitemperature through the dephasing time. Therefore, the WL
particles are excited near the whole Fermi surface, and thusffect can be revealed by the experimental measurements on
the nodal-quasiparticle approximation is not valid for thesetemperature behavior of the electronic conductiveg in a
systems. 2D normal conductdf), or thermal conductivityas was ex-

It is worth while to compare our results with those of the pected for the DWS stat®. According to the present theo-
DWS state. The WL effect has been shown to be prominentetical prediction, the WL behavior of the conductivity
in the DWS staté!~13 With a nonperturbative approach, should be absent in the experimental result made on the
Pépin and Le¥ obtained a logarithmic correction to the low- DDW phase.
energy density of states @ (e) ~n;/ (2] €|In?| e/ Ag|) (Aq is In summary, we have developed a SCTMA theory for the
the superconducting gapin the limit of strong, dilute scat- effects of nonmagnetic-impurity scattering in disordered
ters in the DWS state. The results of Ref. 18 are unlikely toDDW conductors. The appearance of DDW order makes the
hold for the DDW state, which is essentially different from diagrammatic rules quite different from the cases of DWS
the DWS state. While a superconducting state is of a constate and normal metals. The dc conductivity is obtained
densate of particle-particle pairs, in which the time-reversawithin the SCTMA. The WL effect, which was found to be
symmetry is preserved, the DDW order results from particlefrominent in the DWS state, is shown to be absent in DDW
hole pairing with the time-reversal symmetry broken. It isconductors due to the breaking of time-reversal symmetry.
believed that the absence of WL effect is a generic propertyuch a qualitative difference between the disorder effects in
of the pure DDW state. Thus the density of states at théDW and DWS states might be helpful to settle the problem
Fermi surface remains a finite value, having no WL correcwhether the psudogap behavior of cuprates results from the
tion. The present theory is suitable for a pure DDW statedevelopment of DDW order.
which was suggested to be a possible candidate phase in the
pseudogap regime of the cuprates, i.e., at the temperature
region of T.<T<T* with T, the superconducting transition  This work was supported by the National Natural Science
temperature. Folr <T,, there coexist the DWS and DDW Foundation of China under Grant Nos. 10274008, 10347105,
orders. In such a coexisting state, the WL effect is expectednd 10374046, and the Jiangsu-Province Natural Science
to be partially destroyethot completely killed, as the DDW  Foundation of China under Grant No. BK2002050. Part of
order is considered to be a subdominant one. this work was performed while the first auth@f.H.Y.) was

Generally, the WL effect may manifest itself in low- visiting Department of Physics, Tunghai University, Taiwan.
temperature electronic transport of disordered systdifike  Y.H.Y. would like to thank the hospitality of their theoretical
inelastic scatteringelectron-electron or electron-phonon in- group.
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