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Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the
ab plane and along thec axis. It is shown that the experimental curves should be described assuming that the
superconducting gap is nonuniformly distributed over the Fermi surface. The largest and the smallest gaps have
been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conduc-
tivity in the c direction is made by a smaller gap and, in theab plane by a larger gap. The deviation from the
one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The tempera-
ture range, where the deviation occurs, is for thec direction approximately 1.5 times more than in theab plane.
TheG parameter, allowing quantitative estimates of the gap anisotropy by one-gap fitting, in thec direction is
also about 1.5 times greater than in theab plane. Since it is impossible to describe satisfactorily such gap
distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over
the Fermi surface should be used to describe superconductivity in this material.
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I. INTRODUCTION

The goal of this study was to investigate the anisotropy of
the energy gap in nickel borocarbide superconductors
ReNi2B2C. The crystallographic structure of these com-
pounds resembles to some extent the structure of HTSC
materials.1 It consists of alternatingRe-C and Ni2-B2 layers
sRe is a rare earth metald. There is a point of view that the
electron properties ofReNi2B2C compounds in the normal
state are isotropic because of the strong carbon bond along
the tetragonalc axis.2 This is supported by the temperature
dependence of isotropical resistivity in the single crystal of
YNi2B2C.3 On the other hand, there is also data about a
substantial anisotropy in these compounds.4 In the supercon-
ducting state the experimental data are also contradictory.
The upper critical fields forH parallel and perpendicular to
thec axis and the derived superconducting parameters do not
show any anisotropy for the YNi2B2C single-crystal samples
in agreement with magnetization and torque magnetometry
measurements, but a small anisotropy is observed for the
LuNi2B2C single crystals.3,5 Meanwhile, a very strong aniso-
tropy of the superconducting energy gap was reported for
LuNi2B2C in theab plane. This conclusion was based on the
observation of delocalized quasiparticles in thermal conduc-
tivity at very low temperatures.6 According to this analysis,
the smallest gap differs at least 10 times from the gap in
other directions. Recently, evidence for the presence of nodes
along k100l direction was provided by the field-angle ther-
mal conductivity,7 field-angle heat capacity,8 and ultrasonic
attenuation measurements of YNi2B2C.9

In accordance with the experimental data an anisotropic
superconducting gap function was proposed in Ref. 10fsee,
also, Fig. 52 from the recent reviewsRef. 11dg. In that model
the gap has nodes alongk100l directions and attains the
maximum values alongk110l directions. In the case ofs+g
symmetry, the elastic scattering leads both to a decrease ofTc

and to an “isotropization” of the gap with vanishing nodes.
We do not know any direct measurement of gap aniso-

tropy involving the Andreev reflection.12 The STM tunnel-
ling measurements at 4 K report a gap of 2.2 meV along
the c axis, yielding a too low ratio 2D /kTc=3.2 for
LuNi2B2C.13,14 By contrast, there are point-contact measure-
ments of the gap in theab plane se.g., Refs. 15 and 16d,
which yield 2D /kTc=3.7–3.8. The point-contact spectros-
copy method in the latter measurements cannot, however,
provide angular resolution of the gap anisotropy much better
thanp /2.

In the present investigation we have found that both in the
ab plane and inc direction the experimental point-contact
spectra cannot be fitted satisfactory with the one-gap theoret-
ical curve, even when broadened by an adjustable broaden-
ing parameter. Fitting the experimental spectra both at a
small biasseV,Dd and at a bias larger thanD forces us to
use at least the two-gap fitting curve like the one for the
two-band superconductor.12,17 But even the two-gap fitting
with the two proper broadening parameters was not good
enough to approximate the experimental characteristic at the
middle energy regionseV,Dd. Moreover, for the two-band
model one could expect transitions of Cooper pairs between
the bands to introduce an additional depairing factor, which
is analogous to other depairing factors like magnetic impuri-
ties, strong magnetic fields, etc. In such case the supercon-
ducting order parameter and the energy gap should differ
from each other, which could be accounted for by using Ref.
18. Unfortunately even using the latter theory satisfactory fits
could not be obtained. Therefore we suggest that only a con-
tinuous gap distribution with the two energy gap maxima
around the Fermi surface could satisfactorily approximate
the experimental spectra at low temperaturesT!Tcd. We
have determined tentatively the value of these maxima and
the range of gap distribution which corresponds well to the
recent STM measurements.19
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II. EXPERIMENTAL TECHNIQUE

The point contact measurement was performed on single
crystal LuNi2B2C with Tc.16.9 K grown by Canfield and
Bud’ko using a flux method.20 Geometrically, our crystal was
a thins0.1–0.2 mmd plate with thec axis perpendicular to its
plane. The single crystal surface always contains quite a
thick layer in which superconductivity is either absent or
strongly suppressed. To perform measurement in theab
plane, the crystal is usually cleaved and the point contact is
made between a metallic counterelectrode and the cleaved
surface. It was technically problematic to produce a cleavage
perpendicular to thec direction. In this case the crystal sur-
face was cleaned with a 10% HNO3 solution in ethanol. As
the measurement in theab plane shows, both cleavage and
etching yield identical results.

The point contact in theab plane is fabricated between an
edge of the silver electrode and a freshly cleavedsor etchedd
corresponding facet of the single crystal.21 The deviation
from the perpendicular to thec direction might amount to
about 5° –10°. We do not knowa priori along which of the
in-plane directions the contact is obtained. But since we used
a selection rule to choose the highest observable supercon-
ducting energy gap with the largest nonlinearity at the gap
double-minimum structure, the contact axis is presumably
along the directions, where the in-plane gap is maximum. To
produce contacts in thec direction the traditional “needle-
anvil” geometry is used. The radius of the needle is
about 1–3 micron. The temperature was measured using a
special cryogenic insertsits close analogue is described
elsewhere22d.

The point contact resistances varied typically from several
Ohms to tens of Ohms. For detailed investigations we chose
the point contacts with the highest permissible tunneling
which was controlled against the differential resistance maxi-
mum at zero bias and by the maximum nonlinearity in the
dV/dI-double-minimum region, corresponding to the intact
superconducting surface under the contact. Unfortunately, a
complete set of curves in the wholeTmin–Tc interval was
obtained only for a few contacts. Because of their rather high
resistance and the long-durationsover 10–12 hoursd of
the measurements, many of the contacts were broken down.
The temperature interval ranges from the minimal available
T s,1.5 Kd to Tc.

III. RESULTS AND DISCUSSION

Some curves of the first derivativesdV/dI measured at
different temperatures on LuNi2B2C-Ag point contacts along
c axis and in theab plane are shown in Figs. 1 and 2.

The measured curves were symmetrizeddV/dIsym
=1/2fdV/dIsVd+dV/dIs−Vdg and normalized to the normal
state atT.Tc, except in Figs. 1 and 2, where the raw data
are shown. Each curve contains several hundred of experi-
mental dots and at the scale shown in the presented figures,
all the curves have negligible noise. In other figures experi-
mental curves are shown by dots whose number is decreased
in order to be discerned. Statisticallysseveral tens of contacts
were examined for each directiond, the distance between the

minima in the first derivativedV/dI characterizing the aver-
age value of the gap was 12–15% larger in theab plane
compared to that in thec direction. This is a very crude
estimation of thec↔ab anisotropy.

The theoretical predictions and the experimental results
were compared using two approaches. First, a model
was applied, which describes electrical conductivity of pure
S-c-N point contacts in the presence of an arbitrarily trans-
parent potential barrier at the boundary between the metals.
This model allows for the finite lifetime of the Cooper
pairs.18 The I-V characteristics of the point contact are de-
scribed as follows:
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whereD is the BCS order parameter obtained from

FIG. 1. Differential resistance of LuNi2B2C-Ag point contact at
different temperatures. The contact axis is parallel toc. Not to over-
load the figure, we give only several representative curves.

FIG. 2. Differential resistance of LuNi2B2C-Ag point contact at
different temperatures. The contact axis is along theab plane. See
the last sentence in the previous caption.
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andg=1/tSD is the pair breaking parameterstS is the mean
free time during, e.g., spin-flip scattering at impuritiesd.
When magnetic impurities are absent,tS tends to infinity and
Eq. s1d coincides with the equation for current in Ref. 24.
The energy gapD0 and the order parameterD are related as
follows:

D0 = Ds1 − g2/3d3/2. s4d

The other approach was based on the generalized
Blonder-Tinkham-KlapwijksBTKd model25 commonly used
to describeS-c-N point contacts. The model allows for the
finite lifetime of quasiparticlest=" /G determined by inelas-
tic scattering, which leads to the broadening of the density of
states in the superconductor. Formally, according to the
theory18 the BTK-based results are obtained under the con-
dition of strong pair breakingsuuu @1d. Therefore, in the
strict sense, the generalized BTK model contains no gap. For
any infinitesimal broadening parameterG, atT=0 the density
of states near the Fermi surface is nonzero. In theory,18 the
order parameter is a quantity analogous to the pseudogap in
the generalized BTK model. In the following we use terms
“order parameter” andg for the model of Ref. 18, while the
“gap” and G for the commonly used BTK model,25 except
special cases, where we refer toD0 related to the model.18

Now we consider more closely the methods of fitting the
theoretical curves to the experimental results. The iteration
method commonly used in this case is quite good for small
broadening. However, when the broadeningG is comparable
with the gapsor g.0.3d, the results thus obtained are am-
biguous and often dependent on the startingD ,G sor gd and
Z values. In our calculation, we therefore used the technique
of coordinate descent with a postponed solution.

First, we specified an interval in whichD is searched at a
given temperature. The interval was then subdivided into
equidistant parts,D1,D2, . . . ,Dn. g andZ were fitted for each
Di. The procedure was as follows: after each step of
g-fitting, a completeZ-fitting was performed and then the
next step ofg-fitting was considered. Before each calculation
of the average rms deviationFsDid, the amplitudes of the
fitting and the experimental curves were made equal by mul-
tiplying they-coordinate of the fitting curve by a scale-factor
S and then shifting it along they-axis by an amountB. The
values ofB and S were chosen to minimize the deviation
FsDid. The standard algorithm for determination ofB andS
is considered, for instance, in Ref. 26. As a result, for eachDi
we found gi and Zi at which the difference between the
shapes of the theoretical and experimental curves character-
ized by the rms deviationFsDid was the smallest one. The
same holds forG in the BTK fitting model.25 The calculation
for some temperatures is shown in Fig. 3. It is evident that at
Tc the technique cannot ensure unambiguous results. At
14.5 K, the curveFsDid is practically horizontal. The deter-
mination of theD-value should take into account other fac-
tors as well. For example, it is important that the tunneling
parameterZ and the scale factorS should be invariant. The

dependencesSsDd andFsDd at T=7.5 K are shown in Fig. 4.
It is seen that the minimumF corresponds to a certainS
value. The BTK calculation of the corresponding depen-
dences at the same temperature yields broaderFsDd curves.
Nevertheless, the minima positions in these curves are quite
definite.

At low temperatures the shapes of the theoretical and the
experimental curves were in rather poor agreement for all of
the borocarbides investigatedsRe=Er, Dy, Tm, Lud irrespec-
tive of the point contact orientation. The temperature depen-
dence of the rms deviation in shape in thec direction is
shown in Fig. 5 for both models.18,25 It is seen that the best
agreement is achieved above 7 K. AtT,7 K, the largest
discrepancy between the shapes is observed in the region of
extrema. The central maximum of the differential resistance
in the experimental curve is considerably narrower than that
in the best fit,29 whereas the minima are shifted to higher bias
sFig. 6d.

Some experimental curves have a kink marked with an
arrow in Fig. 6. This shape is typical of a superconductor
with two gaps of close energies. The temperature dependence
of the broadeningspair breakingd parameter also supports the
existence of two gaps. Since Lu is a nonmagnetic material, it
is natural to expect a negligible broadeningspair breakingd
parameter for the Lu-based borocarbide point contacts. How-
ever, that is not the case, as is evident from the temperature
dependencessFig. 7d of the broadeningspair breakingd
parameters obtained within the two modelssRef. 18 and
BTK25d.

FIG. 3. Averaged rms deviationF characterizing the extent of
shape discrepancy between the theoretical and experimental curve
as a function ofD. The minima in the curves correspond to the best
agreement of theory and experiment. The data shown are for
LuNi2B2C-Ag point contacts in thec direction at different tempera-
tures. Calculation based on Ref. 18.

FIG. 4. D-dependences of the averaged rms deviationF ssee
Fig. 3d and the scale factorS at T=7.5 K. Calculation by equations
from Ref. 18.S is a factor used to divide they-coordinate of the
theoretical curve to match its amplitude with that of the experimen-
tal curve.
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Note thatg andG are different quantities. In the general-
ized BTK model25 G is independent of the gap and has the
gap dimensions; whereas, in the model of Ref. 18,g is de-
scribed asg=1/tSD, and, forg,1, g is related to the gapD0
and the order parameterD as g=f1−sD0/Dd2/3g3/2. As the
temperature is increased, bothG andg decrease, and, at tem-
peratures.7.5 K for the ab-plane and .11 K for the
c-direction, tend to zero. Meanwhile, the one-gap fit starts to
approximate the experimental curve more and more accu-
rately. In this case the one gap fit with the broadeningspair
breakingd parameter is a tool of describing a certain average
gap sorder parameterd.

The largest and smallest gaps can be estimated by fitting
different portions of the experimental curve. In this case, to
match the amplitudes of the fitting and the experimental
curves, we used another method. Namely, they-coordinates
at the central maximum and near the minima are scaled to
coincide sFig. 8d. The best agreement in the central maxi-
mum region can give us an estimate of the smallest gap
scurve 1d, while the best agreement in the “wing” region
yields the largest gapscurve 2d. By “wings” we imply the
portion of the experimental curve at biases higher than the
energy gap double-minimum structure in thedV/dI charac-
teristic, namely ateV*3 meV. The estimates however are
rather rough.

Further, we follow the method of approximation ofI-V
characteristics, which was calculated for theS-I-N contacts
of MgB2 within a two-band model in Ref. 17. There, the

total conductivity of the tunnel contact is a sum of thep- and
s- band conductivities analyzed by applying the BTK model.
To describe the resulting curve, we also used a model of two
independent parallel-connected point contacts with different
gaps whose conductivities are additive. The contributions of
these conductivities account for the part of the Fermi surface
containing a particular gap. Thus, for the two-gap model an
experimental curve is fitted by the following expression:

dV

dI
=

S

dI

dV
sD1,g1,ZdK +

dI

dV
sD2,g2,Zds1 − Kd

, s5d

with a proper choice of the coefficientB. Here, the coeffi-
cient K reflects the contribution of the part of the Fermi
surface having the gapD1, S is the scaling factor discussed
for the one-gap approximation. To obtain the best agreement
with the experiment, the parameters used in this expression
are allowed to differ from those found for fitting of the sepa-
rate portions of the experimental curve. It appears that when

FIG. 5. Temperature dependence of the shape discrepancy be-
tween theoretical and experimental curves calculated according to
Ref. 18 and within the generalized BTK modelsRef. 25d for
LuNi2B2C-Ag point contacts in thec direction.

FIG. 6. Approximation of the experimental curve with one- and
two-gap models for the LuNi2B2C-Ag point contact in theab plane.
The crossing straight lines marked with an arrow indicate the kink
in the experimental curve which is exaggerated by the two-gap
theoretical fit.

FIG. 7. Temperature dependences of the broadening and pair
breaking parameters for the LuNi2B2C-Ag point contacts in theab
plane sad, and along thec axis sbd. The index “max” marks the
“wings” fitting ssee textd. “Wings” fit for ab-plane givesg=0.

FIG. 8. The estimates of the smallest and largest gaps for the
LuNi2B2C-Ag point contact in thec direction atT=1.47 K. Curve
1, D=1.82 meVsD0=1.65 meVd, g=0.016,Z=0.558; curve 2,D
=2.97 meV sD0=2.693 meVd, g=0.016, Z=0.553; curve 3,D
=3.2 meV sD0=2.9 meVd, g=0.016, Z=0.558. The best two-gap
approximationscurve 4d is achieved with the parameters of curves 1
and 3. The relative contribution to the total conductivity is 60%
from the smaller gap and 40% from the larger gapssee Table Id. The
experimental curve is shown with solid dots.
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the contribution of the smaller gap prevails, the “wings” fit
gives smaller values. In this case, the best result is achieved
with the two-gap fitsFig. 8, curve 4d using the parameters for
curves 1 and 3, the latter is marked with dots. Correspond-
ingly, if the larger gap prevails, the central-maximum fit
gives higher values. In Fig. 6sdotted curved an example of
the two-gap fit for theab-plane is shown.

Although the two-gap fit shows much better agreement in
the regions both of the central maximum and the “wings”
ssee Figs. 6 and 8d, it cannot provide a complete description
of the experimental curves, especially at the double-minima
structure ofdV/dI, and in thec direction sFig. 8d. Most
likely, this is because of a continuous distribution of the gaps
over the Fermi surface.

Our estimation of point-contact parameters in theab
plane and in thec direction was made within one-gap and
two-gap models using the equations of Ref. 18 and BTK.25

The results are presented in Table I.D1, D2 are the highest
and lowest order parameterssthe same as BTK gaps25d from
the two-gap fit;D01 andD02 are the energy gaps correspond-
ing to D1, D2; g1, g2 are the pair breaking parameters of the
model18 for the largest and smallest gaps. The same holds for
the widening parametersG1, G2 in the BTK model.25 Inde-
pendently determinedZ’s are the tunneling parameters,
which are the same for the largest and smallest gaps and are
thus quite self-consistent. In Table I the order parameters
sgapsd based on the two-gap fit appear along with the contri-
butions to the total conductivity from the Fermi surface re-
gion with the corresponding gap. For example, for thec di-
rection contact, the contribution to the conductivity is 40%
from the region with an order parameter of 3.2 mV and 60%
from the region with 1.82 mV.

It is seen that within both the models,18,25 the dominant
contribution to the total conductivity in thec direction is
made by the Fermi surface region where the order parameter

is lower. The higher order parameter makes the dominant
contribution in theab plane. On the average this correlates
with gaps in ab and c directions predicted by thess+gd
model.11

Although the part-by-part fitting is rather rough, we tried
this procedure for tracing the temperature dependences of the
smallest and largest gaps. However, more or less definite
values were obtained only at the lowest temperatures because
the smallest gap is estimated within a relatively small part of
the experimental curvesnear zero biasd. As for the largest
gap, its temperature dependence was traced up to the mo-
ment when the calculations over the entire curve and over
the “wings” start to give similar results.

The temperature dependences of the scale factorS in thec
direction are shown in Fig. 9. They were found for the largest
gap s“wing” fitting is marked with “max” throughoutd and
for the average gapsentire-curve fittingd by the equations of
Ref. 18 and BTK.25 The temperature dependences of the tun-
neling parameterZ are shown for both models. To avoid
crowding in the figure, only theZ-values obtained from the

TABLE I. The fitting results for superconducting parameters along two mutually perpendicular directions, using Ref. 18 and the BTK
theorysRef. 25d. D1, D2 are the order parameters in the two-gap fitting; whereas, the subindex 0 corresponds to the energy gaps in the model
of Ref. 18. The pair breaking parametersg1,2 and the broadening parameterG1,2 correspond to Refs. 18 and 25, respectively.Z is the
tunneling parameter. The temperature corresponds to that of the experiment. The relative contributions of each superconducting order
parameter and gap are given in percent.D andG are given in meV,g andZ are dimensionless.

Two-gap fit One-gap fit

Reference 18 BTKsRef. 25d Reference 18 BTKsRef. 25d

c ab c ab c ab c ab

D1 3.2 3.03 2.66 2.74

40% 60% 2.65 50% 3 62% 2.25 2.55

D01 2.9 2.92 1.88 2.34

D2 1.82 2

60% 40% 1.7 50% 2.2 38%

D02 1.65 1.82

g1,G1 0.016 0.004 0.4 0.1

0.094 0.031 0.655 0.434

g2,G2 0.016 0.012 0.4 0.14

Z 0.558 0.765 0.59 0.77 0.55 0.745 0.6 0.804

TsKd 1.47 1.48 1.47 1.48 1.47 1.48 1.47 1.48

FIG. 9. Temperature dependences of the tunneling parameterZ
and the scale factorS for the LuNi2B2C-Ag point contact in thec
direction obtained with models from Refs. 18 and 25. The scale
factor was found from fitting over the entire curve and over the
“wings” sscaling maxd.
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entire-curve fitting are shownsthe “wing”-fitting results are
much the samed. Although the fitting was focused on the
coincidence of theoretical and experimentaldV/dIsVd curves
and no parameters were specially fixed, we can state thatZ
vary very little in the whole temperature interval as one
could expect. The divergence ofSsTd curves at low tempera-
tures depends upon the model pointing that none of them
correctly accounts for the gap anisotropy. AtTù11 K the
“wing” and entire-curve fits start to yield similar results.

The temperature dependences of the order parameter and
the gap in thec direction, obtained both by the entire-curve
and the “wing” one-gap fittings,18,25 are shown in Fig. 10
along with the BCS curve. As in the case of the scaling factor
S sFig. 9d, deviation starts atT&11 K, while at higher tem-
perature all the fitting procedures result in the same BCS-like
dependence.

The temperature dependences of the order parameter18,25

and the gap18 for the ab plane contact are shown in Fig. 11.
The calculation was made both over the entire curve and the
“wings” as in Fig. 10 by means of one-gap fitting according
to Refs. 18 and 25. It is seen that the curves coincide in a
wider temperature interval compared to thec direction and
follow the BCS-dependence down to about 8 K. Thus, the
gaps in theab plane andc direction differ not only in mag-
nitude but in temperature dependence as well. In theab
plane different one-gap fitting models lie closer to the BCS
standard curve compared to those in thec direction. We in-

terpret this feature that in theab direction the point-contact
average gap anisotropy is less than in thec orientation. One
can see that the “wings” fittingDsTd goes above BCS low-
temperature limit while the entire-curve fitting falls below
the BCS standard dependence. We emphasize that the differ-
ence between the BCS and experimental dependencies is due
to a poor fitting by any of the one-gap models at low tem-
peratures.

Let us consider in more detail the recent investigation of
the superconducting gap anisotropy in Lu and Y compounds
by means of STM.19 The tunneling spectra obtained in this
work appeared to be impossible to fit in terms of the tradi-
tional BCS theory. For the curve shown in Fig. 2sRef. 19d,
the zero value of the differential conductivity is observed
only below 0.8 mV and the maximum ofdI /dV, which cor-
responds approximately to the energy gap, is located at
2.3 meV. At the same time, the shape of the curve is perma-
nent along the surface area much greater than the coherence
length. In Fig. 2sbd, at energies slightly less than 2 meV,
there is a shoulder, which could be ascribed to a two-gap
spectrum. Unfortunately, this feature is not discussed in Ref.
19. The authors also notice that the use of the model, where
the broadening of the BCS density of states is caused by the
finite lifetime of quasiparticles, implies a nonzero density of
states sor differential conductivityd at infinitesimal bias
which is at odds with the experimental result. Because of
that, the authors of Ref. 19 use a modified density of state
modeled by the energy gap with the Gauss distribution cen-
tered atD with the width e. By investigation of different
parts of the crystal surface, the authors of Ref. 19 observe the
correlation between the supposed anisotropy of the gap ex-
pressed ine /D units and the local transitionscriticald tem-
perature at the given spot on the crystal surface. With in-
crease of the critical temperature under the contact, both the
absolute value of the gap and its anisotropy increase. Such a
behavior corresponds to thes-wave pairing, since in terms of
that model the elastic scattering leads to a decrease ofTc and
isotropy of the gap.

In our experiment the critical temperature coincides for
both directions with the bulk value, as one could expect in a
crystal with undisturbed surface. Our parameterG allows one
to estimate quantitatively the gap anisotropy and is similar to
the parametere /D in Ref. 19. Namely,G is about 1.5 times
greater in thec direction compared with that in theab plane.
The temperature interval where our gap dependences deviate
from BCS curve is also about 1.5 times larger in thec direc-
tion compared with that in theab plane. Hence, we may
conclude that the anisotropy of the superconducting gap in
the c direction is greater than in theab plane.

Note that neither of the techniques18,25 can describe ad-
equately the presumed situation because in both cases the
discrepancy is determined by the distribution of the gap over
the Fermi surface. Taking into account the poor efficiency of
the one-gap fit at low temperaturessFig. 5d and the deviation
of the fitting curve at the minima ofdV/dI for the two-gap fit
ssee Figs. 6 and 8 which give approximately the same dis-
crepancy factorF as for the lowest temperature in Fig. 5d, we
can assert that the superconducting gap variescontinuously
over the Fermi surface. It is therefore most reasonable to
describe such curves in terms of a number of parallel-

FIG. 10. Temperature dependence of the order parameterD and
energy gapD0 for the one-gap fitting modelssRefs. 18 and 25d in
the c direction. TheT-dependence of the largest order parameter,
indicated by max, was estimated from fitting over the “wings.”

FIG. 11. Temperature dependence of the order parameterD and
energy gapD0 scalculation by Ref. 18d and the BTK energy gap
scalculation by Ref. 25d for the one-gap fitting models in theab
plane. TheT-dependence of the largest gapsorder parameterd was
estimated from fitting over the “wings.” The scatter of the points on
the same curve atT=1.5–4.2 K is caused by the contact instability.
The contact resistance becomes stable above 4.5 K.
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connected point contacts having different gaps. Their contri-
bution to the total conductivity can qualitatively account for
the region of the Fermi surface containing a particular gap,
as was considered in Ref. 27.

Let us illustrate this approach by fitting the experimental
curves for thec- and ab-directions at the lowest tempera-
tures, where the discrepancy is the highestsFigs. 6 and 8d.
Just as the two-gap fits5d, the multigap fit is expressed by

dV

dI
=

S

dI

dV
sD1,ZdK1 + ¯ +

dI

dV
sDn,ZdKn

, s6d

whereK1+K2+¯ +Kn=1, Ki is proportional to the part of
the Fermi surface with the gapDi, andS is the scaling factor.
The broadening parametersg or Gd was taken to be zero, and
the barrier factorZ was the same for all the contributions. In
this approximation the approaches of Refs. 18 and 25 are the
same, and the order parameter coincides with the energy gap.
As a first approximation, it is supposed that the coefficients
Ki are located in the curve which is a superposition of two
peakssFig. 12d. The maxima of these peaks are at energies
Dk and Dp, and their slopes are described by asymmetrical
Gaussian distributions with a width at half-height ofs1, s2,
s3, ands4. The heights of each peak areh1 andh2, respec-
tively. By varying all the fitting parameterssDi ,hi ,sk for i
=1,2 andk=1–4d we minimized the average rms deviation.
This procedure includes manually offsetting dots of theKsDd
fitting curve in the intermediate steps of the adjustment.

The result is shown in Figs. 13 and 14 for thec- and
ab-directions, respectively. One can see that the multigap fit
with eight fitting parameters and a continuous distribution of
the gaps matches the experimental curve very well. One
should not trust this fitting literally, but it shows that the
width of the gap distribution can be quite appreciable, down
to small values, which agrees with the tunneling results19 and
theoretical ss+gd model of the gap nodes inf100g
directions.11

IV. CONCLUSION

In this study the anisotropy of the superconducting energy
gap was measured for the first time on LuNi2B2C in theab
plane andc directions. It is found that at low temperatures
the experimental curves should be described assuming a gap
distribution over the Fermi surface. Within the two-gap
model, the largest contribution to the total conductivity is
made by the Fermi region with a smaller gap in thec direc-
tion and by the Fermi region with a greater gap in theab
plane. AtT.1.5 K the largest and the smallest order param-
eters in thec direction areDmax=3.2 meV,Dmin=1.82 meV;
in the ab plane these areDmax=3.03 meV,Dmin=2.0 meV.
An attempt to fit the low temperature experimental curves

FIG. 12. Modeling of the anisotropic superconducting energy
gap distribution over the Fermi surface with multiple parallel junc-
tions of different gaps. The contribution of a particular energy gap
correlates with its part over the Fermi surface. The distribution of a
particular contribution to the total conductivity is described by the
KisDid dependence. The shape of the distributionKisDid is simulated
by superposition of two peaks. Each peak is described by the fol-
lowing parameters: the energy of the central maximumDk or Dp,
half-width of the right and left slopess1, s2 or s3, s4, and the
heightsh1 andh2, correspondingly. By variation of these eight pa-
rameters we attempt to reach the best coincidence between the ex-
perimental and theoretical curves.

FIG. 13. Approximation of the experimental curve by the use of
the multigap model for thec direction.T=1.47 K, Z=0.559. Inset,
the contribution to the total conductance from different parts of the
Fermi surface with different gaps. The distribution is modeled by 31
equidistant points,Dmin=0.7 meV, Dmax=4 meV. The resulting
curve exibits two peaks with maxima at 1.8–2 meV and 2.5 meV.

FIG. 14. Approximation of the experimental curve by the use of
the multigap model for theab plane.T=1.48 K,Z=0.755. Inset, the
contribution to the total conductance from different parts of Fermi
surface with different gaps. The distribution is modeled by 31 equi-
distant points, Dmin=1.0 meV, Dmax=3.35 meV. The resulting
curve exibits two peaks with maxima at 2 meV and 3.1 meV.
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shows that the gap is distributed starting from 0.8 meV. This
corresponds well to the recent STM observations in Ref. 19
discussed above. We have found the deviation of the tem-
perature dependent gap from the BCS theory for both tested
directions. This deviation is connected with the impossibility
to describe the gap distribution in terms of the one-gap
model, at least at low temperatures. The temperature range
where the described deviation is observed for thec direction,
is about 1.5 times greaters1.5–11.5 Kd than that in theab
plane s1.5–7.5 Kd. The broadening parameterG, allowing
quantitative estimation of the degree of anisotropy, is also
bigger in thec direction.

The experimental results are described on the basis of the
generalized BTK model25 and the Beloborod’ko theory,18

considering the electrical conductivity of ballisticS-c-N
point contacts in the presence of an arbitrarily penetratable
potential barrier and allowing for the finite lifetime of Coo-
per pairs. For superconductors with a multiband electronic
structure, the interband transitions of Cooper pairs may lead
to their finite lifetime. Previously, a two-band model was
suggested for nickel borocarbide superconductors.28 The
theory,18 which accounts more accurately for the force of

pair breaking, may explain the difference between the order
parameter and the gap.

Our next publication will concern the compound
ErNi2B2C which exhibits a magnetic transition nearT=6 K.
In this context a detailed analysis and comparison of the two
theoretical approaches18,25 are of paramount importance for
understanding the results that can be obtained on magnetic
ErNi2B2C.
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