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Vortex pinning by a columnar defect in planar superconductors with point disorder
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We study the effect of a single columnar pin ofilar 1)-dimensional array of vortex lines in planar type-II
superconductors in the presence of point disorder. In large samples, the pinning is most effective right at the
temperature of the vortex glass transition. In particular, there is a pronounced maximum in the number of
vortices which are prevented from tilting by the columnar defect in a weak transverse magnetic field. Using
renormalization group techniques we show that the columnar pin is irrelevant at long length scales both above
and below the transition, but due to very different mechanisms. This behavior differs from the disorder-free
case, where the pin is relevant in the low-temperature phase. Solutions of the renormalization equations in the
different regimes allow a discussion of the crossover between the pure and disordered cases. We also compute
density oscillations around the columnar pin and the response of these oscillations to a weak transverse
magnetic field.
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I. INTRODUCTION high temperature¢such thatg>1) the pin is less effective,
regardless of its microscopic strength. Remarkably, the onset

A key challenge in the physics of vortex line arrays in of the relevancéor irrelevanceof a single columnar pin and
high-temperature superconductdqisTSC's) is understand- point disorder occurs at theametemperaturel*, such that
ing the interplay between vortex interactions and variousy(T*)=1.
types of pinningt2 The competition between thermal fluc-  If both point disorder and a columnar pin are pregege
tuations and pinning can lead to different phases such asig. 1) then at low temperaturgg < 1) one expects a com-
vortex liquids, Bose and vortex glasses, and a more orderggetition between the two: a growing columnar pin strength
Bragg glass’ under renormalization leads to stronger correlated pinning of

Considerable theoretical progress can be made in studyingprtex lines at long length scales. On the other hand, the
two-dimensional superconductors with an in-plane magnetiincreasing point disorder tends to destroy the effect of the pin
field, where the vortex lines form one dimensional arrayson distant regions. Although it was argued that point disorder
Experimentally this situation can be realized using thin platewould always render a single columnar defect irrelevant at
let superconducting sampl&sThe statistical mechanics of long wavelengths in Ref. 15, the precise nature of this com-
such systems is equivalent to the physics of interactingetition and the different pinning properties above and below
bosons in one dimension. The low-energy and long wavethe vortex glass transition were left unresolved. A detailed
length properties can then be described within a Luttingerstudy of this competition is a primary goal of the present
liquid formalism. For example, one can relate the Bose-glaspaper. We show that in the thermodynamic limit the pinning
to vortex-liquid phase transition in the presence of disor-strength is strongest precisely at the transition pdfnivhere
dered columnar defectso the superfluid-insulator transition g=1. In particular, the number of pinned vortex lines is a
in a system of interacting bosons with quenched disdtder.nonmonotonic function of and strongly peaked at=1. For
One finds that for a given disorder strength the system can bitnite systems the position of the maximum is slightly shifted
tuned across the phase transition by changing the tempere lower values ofg (see Fig. 4 We emphasize that irrel-
ture (which is proportional tay, the Luttinger-liquid param-
ete). The mapping is different with point disorder, which is e / .
equivalent to time-dependent point impurities in the boson o
problem. In this case there is a subtle second order phase .
transition between a “supersoli@vith algebraic order both .
in boson and translational order paramgtand glassy g o ) .
phasé!9-13with decreasing temperature.

Another important feature of vortex physics (ih+1) di- o )
mensions is the remarkable response to a single columnar  |° /] °
defect. As argued, originally in the quantum-mechanical P L
context* and later for vortex arrays, even a very weak co- X
lumnar pinning potential can grow to infinity under renor- i, 1. Schematic view of a planar superconductor with point
malization group(RG) transformations whelg<1. It was  gisorder and a columnar pin, represented by a notch cut into the
shown that the relevance of a single columnar pin at lowsample. The wiggly lines correspond to vortices, which alterna-
temperatures leads to a strong suppression of a vortex tiively can be thought of as imaginary time world lines of bosons in
induced by a weak transverse magnetic field. However, abne spatial dimension.
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evance of a single columnar pin does not imply irrelevance
of an array of pins. In fact, as it was argued in Refs. 3 and 4, Z=f Du(x, 7)€", ©)
the vortex glass phase formed by point disorder is unstable
toward infinitesimal disorder in columnar pins, which resultswith the imaginary time actio®=S,=F,/T given by
in a Bose glass phase.

The paper is organized as follows. In Sec. Il we introduce S = o f dxdd (a,u)% + (9,u)2]. (6)
the model and describe the mapping to a Luttinger liquid. In 29

\/szi:/éllélr\;?r? ;ﬁ;;gi;zagg:;vggu_?ﬂzrr:sindgz(;:r'?\';]gveth:n;cl’;zq:or_S|mpI|C|ty we here set the Planck’s constépﬂ. .Com-
. Y .y : . %arlson of Eqg.(6) with Eqg. (4) allows us to identify the
density oscillations of vortex lines near the columnar meuttinger-quuid parameteg as

above and below the vortex glass transition. At the transition
pointg=1, we demonstrate that the problem maps onto free 7T

Fermions in a time-dependent disorder potential. This map- 9= A

ping allows computation of density oscillations of vortex

lines near the columnar pin which we then compare with thelhe rescalings in E(3) are such that the “sound speed” in
renormalization group predictions. In Sec. V we discuss théhe Luttinger liquid is equal to 1.

response of vortex lines to a weak transverse magnetic field The most relevant contributions to the action from the
in the presence of a single columnar pin. Finally in Sec. Vicolumnar pinS,, and point disordeBy, read-0:13.17

we summarize our results and present conclusions. Appendix

A estimates the parameter range necessary to see the effects Soin=Vo f drcog27u(0,7n], (7)
discussed here, while Appendix B describes details of our

free fermion calculation.

Sp=2 f dxdrU(x, r)cod27u(x,7) + B(x,7)],  (8)
Il. MODEL
A one-dimensional array of vortex lines located at posi-here positive(negativg V and U correspond to repulsive

tionsx;(7) can be described by the density profisee Fig. 1 (attractive potentials. WheV <0, Eq.(7) represents an at-
tractive columnar pin at the origin. For simplicity we take the

n(x,7) = > ox-x(7)]. (1) phaseB(x, 7) to be uniformly distributed between 0 andr2
i : and U(x,7) to have a Gaussian distribution with the cor-

relator
Herex and 7 denote transverse and longitudinal coordinates

with respect to the vortices. It is convenient to change vari- U(Xq, T)U(Xp, 72) = AgS(Xg = Xp) (71 = 72), 9

ables to the phonon displacement field xj(7)=alj+uj(1)], \yhere the overbar represents an average over realizations of

wherea is the mean distance between the vortex lines. In theno yisorder. The total actio® entering Eq.(5) is then the
absence of a columnar pin, point disorder, and a transversg,m of the three contributior(), (7), and (8):
magnetic field, the free energy of a particular vortex line T

configuration can then be written*as S=+ Syin+ Spp- (10
22 In the following sections we analyZe and various observ-
]—"O:Efdxdﬂcn(axu)2+ Cas(9.1)?], (2) ables using the renormalization group. Before proceeding

with quantitative details we emphasize that although we fo-
cus on the behavior of vortex lines in this paper, the action
(10) can be relevant for many different problems such as
disordered interfac€’$, charge density waves which order

similar to smectic liquid crysta$'° and directed polymer

C11 1/4 Cua 1/4
X=X —| , 7—=1—] , (3 arrays®
Cy4 Cu1

wherec,; andc,, are the compressional and the tilt moduli,
respectively. After rescaling and =

. . IIl. RENORMALIZATION GROUP FLOW EQUATIONS
the free energy takes the isotropic form

Provided one is alert to potential pathologiésan effi-

_A cient way to analyze disordered problems is to use a replica
7 0= o f dxdr (4 + (9,u)°], @ trick.22 The noninteracting part of the actioi®) then be-
comes
with A=a?\c;,C44. The partition functiorZ describing a vor-
tex array at temperatur€ is a functional integral over all - EE fjdxm[%% + %@é} {5 - f}
possible configurations of vortices weighted by a Boltzmann 29,5 ar dr  IX X B gl
factor proportional toe™”@T. In the limit of large sample (11)

dimension in a “timelike” directionZ can also be regarded
as the zero temperature partition function of interactingwhere u,(x,7) is the replicated phonon field and is an
bosong16 off-diagonal coupling which is zero in the bare model but
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generated by the disorder.lt is equivalent to(x- and
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imply that point disorderlso becomes relevant whem< 1.

rdependentquenched random “chemical potential” coupled Contrary to bosons interacting with many impurifiéahich

to the first derivatives of the phonon field*®15The replica
indices @ and B run from 1 ton and we take the limit
n— 0 at the end of the calculatid?Equation(11) leads to

is the analogue of mangolumnardefects for a flux prob-
lem), there is an intermediate fixed point with a finite value
A*=lim_.A(l)=0(e) which continuously emerges from a

a phonon correlation function in momentum space forpure Gaussian fixed point fagr< 1. This makes the RG ap-

n—0, namely}!

4ar

(Ug(k ) up(K' @") = 1 o2 9apt 1) Gcs B (12)

The other two terms in the action of E{.0) corresponding
to a pinning potential and point disorder, become

Soin=VoX J dr cos 2ru,(0,7) (13
and
Srp=—A0> J J dxdr cos 2m{u,(X, 7) = ug(x, 7].
" (14)

proach tractable on both sides @£1. Note also that when
g<1, «(I)—w, suggesting nontrivial correlations in this
phase. We comment that there are some claims questioning
the applicability of Eqs(15)—(17) in the glass phas@<1).
In Ref. 25 it was argued that a replica symmetric solution
becomes unstable fay<1, resulting in different correlation
functions than predicted by the replica symmetric renormal-
ization group. However, there is still no evidence showing
that this instability actually occurs. Moreover, numerical re-
sults of Ref. 26 confirm one of the crucial predictions of Egs.
(15—17) at g<1; namely, the unusual behavior of the
density-density correlation functioB(x) « exp(—A In?|x|).

In deriving Egs(16)—(18), we implicitly assumed that the
cutoff is symmetric in ther andx directions. In general this
is not true. The anisotropy in the cutoff will result in differ-
ent initial renormalizations ok, and x,. However, at large

To study the statistical physics described by the actiodength scales the flows fot, and «, look the same and the
(11), (13), and(14) we employ a momentum shell renormal- asymmetry disappeats.

ization group schem& where we continuously eliminate de-  Equations(15)—(18) contain nonuniversal cutoff depen-
grees of freedom depending on frequency and momenturent terms. Upon rescaling the disorder potentiakA/C
within the shellA - SA <\w?+k?*<A. Here A ~1/\ay&, is they simplify to

the ultraviolet cutoffag is of the order of the lattice spacing,

and &, is of the order of superconducting coherence length dg _
(single vortex width. The resulting renormalization group a‘o' (19
equations for the running coupling constaat$) andV(l) to
leading order iPA andV are ~
dA  ~ ~
dg — =2A(e— A7), (20)
—==0, (15) dl
dl
dv ~
dA g ~A) -
§ = 2eh-2ea?, (16) ar - Vem Ay 21
de ~
d 2K _Re

These are the renormalization equations which we will ex-
dv _ ploit throughout the rest of the paper. Note that the cutoff
dl =V{e=CA) -V, (18) enters Egs.(19—22) only through the initial disorder

=1-q. i - . strengthA,.
ghr?(;iflni%/eialll ls(:(t)k;]t-:;:;c:/tv svirii?eéz[?e(:dsAgn]i;:dcigﬁ The quantitative predictions of the renormalization group
Coc1/A? (in particular, within the shell method we find equations above are valid A, is small compared to one. On
C=8mg?/A?). These equations are subject to the initial con-the other hand if the point disorder is too weak, then its
ditions x(1=0)=0, A(I=0)=A,, andV(1=0)=V,, with A, and effects will be hard to observe in experiments. In Appendix
V, being the bare couplings. Note that the Luttinger-liquid” We show that for HTSC superconducting films, typical

parametely does not change under renormalization.
In the absence of point disordgA(l)=0 and «(I)=0]
our results reduce to those obtained by Kane and Figher.

this case the columnar pin is relevant §p<1 and irrelevant

values of point disorder strength lie within interval
Age[0.01,0.1. This, in turn, implies experimental rel-
evance of the subsequent analysis of the physics resulting
from Eqgs.(19—22) in the different regimes.

for g>1. If V=0 then our equations are equivalent to those High-temperature phase (g1). If € is large and negative
first derived by Cardy and OstluHdand later extensively (|€[>Ao) then both point disorder and pinning strengths de-

explored for different problens!91213Equations(15)—(17)

cay exponentially to zero as
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A(l) ~ Agg2d - 0, (23

V(I) ~ Vel = 0. (24)

However, the off-diagonal stiffnessrenormalizes to a finite
nonuniversal value

2

k() = ﬁ(l —e““f“) —

A3

ad (25)

As we will see below, the finite value of(l=«) (which
arises for anye<0) results in corrections to the power law
decay of various correlation functions.

Critical phase (g=1) Whene=0 (i.e.,g=1), point disor-
der becomes marginally irrelevant, and one finds

A = A‘L -0, (26)
1+2A,
V() = #e"&ﬁ% 0, (27)
(1 + 2A0)1/4
_Bo-A) B
k()= 5 X (28)

Note that even though the point disord&ris marginal at
g=1, the pinning potentialV remains irrelevantli.e.,

V(l) — 0] for any nonzer\,,.
Low-temperature phase (g1). In the casee>0 we find
the following solutions of the flow equations

EZO

Al) == g —
Ao)e—Zel

Ao+(€_

(29)

61

— &l — oo,

k()= g Inll +A—€°(e25| _ l)] N AO—TA(I)

(30)
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1 e 1 . €
V/:VOeXplZIn'“__ZLb(l_‘“_)}’ (33
Ao Ao
where Li(x) is the polylog functior?® In the limit e> ZO we
can use the asymptotic expansion fop(k) and get

1 e 1 . €
V' =cVpexp - In—+=In"—|,
4 A Ao

wherec is a number of the order of 1. Note that even though
a term of the order o&? appears in Eq(31), its presence is
justified. Indeed, according to EqR2), at largel we have
k< A*? ~ €. Itis easy to see that higher order corrections in
€ to the renormalization group flow equatiofis particular

to Eq.(20)] will result in terms of the order o®(€) in Eq.
(30).

The parametel, defined in Eq(32) sets a characteristic
length scale\~1€o, separating long and short length behavior
of the pinning potential. As we find below, it also determines
the behavior of various observables. Thus,dor0, at small
| the pinning potential first grows under the RG transforma-

tions to the value/,,,=V(lg) = VoV el Aq. Then, for larget,

V(I) goes to zero faster than exponentially. We comment that
for g>1, |, sets the characteristic scale beyond whigh)
becomes negligibly small an(l) stops renormalizing.

Note that the columnar pin is asymptotically irrelevant in
the presence of point disorder for all valueggofThe mecha-
nisms, which lead to this are different below and above the
vortex glass transition. Thus in the high-temperature phase
g=1 thermal fluctuations are responsible for the irrelevance
of V atl — . In contrast, in the low-temperature glass phase
g<1 point disorder is the cause of the flow éfto zero at
large |. The distance when the columnar pin starts feeling
effects of point disorder and becomes irrelevant grows with

decreasing),. As discussed below, in infinite samples, the
effect of the columnar pin is stronged¢ast irrelevantpre-
cisely atg=1.

In the weak disorder limit one can compute various cor-
relation functions using the renormalization group analysis
sketched above. In what follows we will discuss several

(34)

Note thatk(l) grows without bound. The explicit mathemati- quantities of interest.
cal expression for the renormalized columnar pinning poten-

tial is rather complicated. However, one can write the

asymptotic form ofV(l) at large and small:

VoeXFXE_ZO)I, | <|O!

V() = -
0 v'exp[<62A°—§|nZi>|—ez|2], I>1,.
0

(31)

Therefore ad — <, V(I)— 0 fasterthan exponentially in.
Here, |, represents a crossover scale

(32)

and

IV. DENSITY OSCILLATIONS AND THE FREE FERMION
LIMIT

A. Density oscillations near a columnar pin

Since the columnar pinning potential is always irrelevant
when point disorder is present, it can be treated perturba-
tively at sufficiently large length scales. The leading contri-
bution to the “Friedel oscillations” of the density of vortex
lines in linear response M is given by

©

(on(x)) = V, cos ernoxf f(x,dr, (35)

where the angular brackets represent the thermal average and
the overbar signifies an average over different configurations
of point disorder. The quantity
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an(x) =n(x) - ng (36) U(Xq, T)U (X, 72) = Ag8(Xq = Xp) 871 — 7). (43
is the deviation of the vortex lines density from the meanThe massn (corresponding to the tilt modulus in the original
no=1/a [see Eq(1)]. The functionf(x, 7) is defined as flux line problen) sets the Fermi velocity;=k¢/m (wherek;
is the Fermi momentujmwhich represents the sound veloc-
f(x,7) = (2700l (37) ity in the original boson/vortex problem.

Wi te that . tional to the densit lati If the sample lengtiL, in the timelike direction is large,
e note that(x, 7) is proportional to the density correlation then the partition function of the vortex array is proportional

function without  the - columnar pin:{én(x,7n(0,0)) {4 an appropriate matrix element of the corresponding quan-
o cog 27ng(X)1f(x, 7). Explicitly, one finds tum problem®

f(x,7) = e‘2f§d|[g+'<(|)][1—30(”3_')]' (38) 7= <G|TTe_f§ded)(]'ff(X,’T)|G>’ (44)

wherer=\x?+7?A is the distance between the two points whereT, is the usualimaginary time-ordering symbol. This
measured in the units of the original cutaff The Bessel expression is the quantum-mechanical expectation value of
function Jo(x) appearing in Eq(38) and in other formulas the evolution operator calculated in its many-fermion ground
below is nonuniversal and depends on the actual details dftate|G), for a given realization of point disorder. If the
the cutoff procedure. Instead Jdf(x) one can use another Hamiltonian™; is time independent, then E@4) reduces to

cutoff functionJ(x), e.g., a Gaussian, as long as it satisfiedn® Zero-temperature quantum partition function. Raron-

| . ~ 1 and3 if th interacting fermions the ground state can be written as a
general requirementd(x —0)—1 andJ(x—=)—0. If the  gj5ter determinant of the single particle states. However, be-

disorder is absent in Eq38), i.e., k=0, we rec0\_/2egr the  cause the Hamiltoniaf; is time dependent, the states form-
well-known result for the Luttinger liquid(x, 7)r™. If g the Slater determinant will not be the eigenstatestaf
g=1 then at long distancet is given more generally by |nstead, they will consist of thd largest eigenvalues of the

f(x,7)<r=7,*? where evolution operatofsee Appendix B for further detaj)lsOnce
o el 39 |G’) is known one can easily calculate various observables.
7=2g+ k(=)]. (39 Here we consider the vortex line density
Thus, when point disorder is irrelevant, the exponent of the
. . — 1
correlation decay becomes nonuniversal. Fprl the (n(x)) = =(Glc"(x)c(x)|G) (45)
Z )

i i 12 -€2 In? x
asymptotic expression fdr become¥-1? f(x, 7) = € .
Upon using Eqs(35) and(38) we find that the behavior \yherec(x) is a fermionic annihilation operator. Sufficiently

of (dn(x)) at large distances fay=1 is far from the boundaries at=0,L, the density profilen(x)
o clearly does not depend an
(on(x)) ocvocoiTnOX, (40) Since we are dealing with noninteracting particles, one

can find the eigenstates of the evolution operator numerically
even in the presence of point disorder. We describe details of
: this calculation in Appendix B. Here we just mention that we
by Eq. (32). For smallerx.the exponent; changes withx. __discretize both space and time and write the evolution opera-
For g<1 the crossover is now from power law decaying o, g 4 product of transfer matrices. We take a periodic array
correlations of the forni40) with »=~2g for 1<x<explo)  f \=201 sites in the space direction and of size50 in
to a faster decay the timelike direction. The particle filling factor is taken to
— _ 2 be approximately 0.1, so that the ground state eigenfunction
(an(x)) o Ve~ " (4D |G) is the Slater determinant of the 21 highest eigenstates.
We took an odd number of sites to have an exact inversion
symmetry around the columnar pin in the finite size system
_ and we took the odd number of eigenstates to avoid compli-
B. Free fermions cations arising from the double degeneracy of the energy
If g=1 it is well known that using the Jordan-Wigner SPectrum in the absence of point disorder. A columnar defect

transformation bosons can be exactly mapped to spinless fréd strengthV,=0.1 is placed in the central sitep=101.
fermions?” The transformation also holds in the presence ofP0int disorder is modeled by a uniformly distributed uncor-
a columnar pin and point disorder. The columnar pin and théelated random potential on each site of the space-time lat-
point disorder correspond to static and random timedice: U(x,r) e [-Ug,Ug], so thatA,=UG/3. For the effective
dependent potentials, respectively. The time-dependerifass in Eq(42) we choosen=5 corresponding to a hopping

Hamiltonian which describes the fermions then reads amplitudeJ=0.1 in the discretized modésee Appendix B
For each configuration of disorder we numerically find the

This equation is valid only for=exp(ly), wherely is given

in the opposite limix>exp(lg).

1 d? ground statéG) and the fermion density and finally average

Hilxm) == 212+ U 7) + Vo(x), (42 over different realizations of point disorder. In this way we

obtain “Friedel oscillations” of density for different values of

whereU(x, 7) is a random potential satisfying Ao. In Fig. 2 we plot a calculated density profile of vortex
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0.40 - . .
FIG. 3. Extracted exponenj/2 characterizing decay of density

0.38 - I oscillations of vortex lines near a columnar paee Eq(40)] versus
§ the point disorder strength,. The dashed line represents a linear
5 fit, which agrees with the renormalization group prediction for
& g=1[see Eqs(26), (28), and(39)].
5
ks they can be relevant for other problems, for example directed
.%‘ polymer arrays in two dimensions. The correlation function,
S which gives the energy of a dislocation Fdifor in the
e guantum-mechanical language the boson-boson correlation

function'’) can be calculated similarly to the density-density
0.06 . : . : . : . correlation function
0 50 100 150 200
i it = (X, )= (0,7

(b) Site Position G(x) = (L 7=#0l), (46)

where the boson phase anghds conjugate tadu/dx. Upon
integrating oute in the standard way, it is easy to show that
Eq. (46) can be rewritten as

FIG. 2. Density profile of vortex line array near a columnar pin.
The top graph(a) shows the result for a single configuration of
point disorder. The bottom graph) gives the profile after averag-
ing over many disorder realization. The dashed line in the bottom

raph shows the envelope of the decay os oscillations, which is X
grap P Y G(x) = <exp<—f a,u(x’,O)dx’>>. (47
0

used to extract the exponent[see Eq.(40)].

lines for Uy=10"%2 corresponding ta\,=3x 107* for a par-  The expression above has to be properly regularized to be
ticular realization of point disorddtop graph and after av-  cutoff independent. In the absence of a columnar defect, the
eraging over about 130000 disorder realizatidhsttom  function G(x) can be straightforwardly calculated as in Eq.

graph. In terms ofA, (23) the chosen strength of point dis- (38), yielding
order corresponds to

G(x) o e (1209 gdlg+<(N[1-Jo(re™)]. (48)
~ 87TAO
0~z ~03, Forg=1 at largex this gives
_ 2
where we used the fact that the cutoff As~0.1 for the G(x) o X7, (49

filling factor 0.1.

Upon fitting the decay of the envelope of oscillations
(dashed line in Fig. Rto a power law[see EQq.(40)] for
different strengths of point disorder, we extract the exponen
nl2. The results are plotted in Fig. 3. Within the error bars G(x) o € IN0%49”, (50)
the dependence ofy on A, is linear as predicted by the

renormalization group analysis fg=1 [see Eqs(28) and  Since the columnar pin is always irrelevant in the presence of
(39)]. point disorder, it will give only a perturbative correction in

V, to Egs.(49) and(50).
C. Boson phase correlations Note that the asymptotic behavior G{x) [Egs.(49) and
Despite the fact that dislocations cannot be present in vor50)] is valid only for an isolated pair of bosofdislocations
tex arrays(as they are equivalent to magnetic monopples in the original problem It can be showh that under the

where 7 is defined in Eq(39). This reduces to the result in
the absence of point disorder whefl) =0:(x) «x /%, For
9<1 asx— o we derive
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renormalization group bosons are relevant on both sides of — (7 1
the transitiong=1. Thus, if isolated bosor{glislocation$ are COS 27X Nl 2 (2mhx) ™
permitted, they destroy the supersolid-vortex glass transition. {(n(x)) e« V, - 1+
X7 mn n-1
co ? F(?])F T
V. RESPONSE TO A TRANSVERSE MAGNETIC
FIELD (54)

Another way to determine the effect of a single columnarThe second term in the expression above gives a negative
pin on the flux array is to study the response of the vorticegorrection to the result obtained in the absencé.ain the
to a weak transverse magnetic fidldin Refs. 17 and 15 it opposite limithx>1, density fluctuations decay exponen-
was argued that in the absence of point disorder in the thetially with x:
modynamic limit aninfinite number of vortices can be
pinned by a single columnar defect in the lirhits 0. While - n2-1
for g>1 the fraction of pinned vortex lines goes to zero with (on(x)) = Vg cos 2mnpx 72 g2, (55)
the sample size, fog<1 almost all lines get pinned. In the

presence of point disorder, because the columnar pin is al- . . .
ways irrelevant, the situation is quite different. In fact, as wz‘lrhese fmdllngs are consistent with the results of Ref;. 15 and
17, where in the pure case whemr2g. For g<1 the situa-

show below, the number of pinned vortic has a ''° . .
P 85(9) tion is more involved. Thus, fax<€o one can still use Egs.

maximumaroundg=1. . )
The presence of a transverse magnetic field is manifeste(dr’él) and (.55) W|th_7;~gg._0n_the other hand ik> € the
asymptotic behavior ofon(x)) is

through an additional term to the action in Efj0) (Refs. 10,

15, and 28 — 2
(an(x)) o @< "0 (56)
_@h
Sm——z—g dxdrd.u(x, 7). (51 for a weak magnetic fieldhx<1. In the opposite limit
hx>1 we get Eq. (55 with a running exponentz:

It is easy to see thdt is formally a relevant variable under 7() =€ Inx

renormalization group transformation—in fact its recursion

relation i$° dh/dl~=h. However, when the columnar pin is B. Number of pinned vortex lines

absent the effect of the transverse magnetic field can be o . . )
eliminated by a shift of the vortex displacement field A much more striking effect of point disorder on the pin-
u(x, ) — u(x, ) —hr. Clearly, the contribution to the action NNg properties of a columnar defect can _be observed in the
(after performing the replica trigkcoming from point disor- number of vortex lines prevented from tilting by the defect.

A e i 17
der in Eq.(14) is invariant under this transformation. Thus, 1S “Pinning number” is defined &3
the only effect of the shift on the action arises from the
pinning term(13).

au(x, 7)

dxi h-
Jr  1=0
h L

A. Friedel oscillations No(h) = ng (57

The presence df modifies the decay of the Friedel den-

sity oscillations around the pit?.It is easy to see that within where as beforg, is the mean vortex density. This definition
linear response theory M, the expressiof35) transforms to  can be understood as follows: The numerator is proportional
to the difference between the total imaginary currents carried
o0 by the vortices in the absence and in the presence of a co-

(on(x)) = Vo COS{ZWnoX)J f(x,7)cog27hn)dr. (52)  lumnar pin, respectively. Dividing this current difference by

e the average slopk of the vortex lines in the absence of the

pin gives the effective number of vortices which do not par-

In particular, forg=1 the density modulation at large dis- ticipate in the current flow due to the columnar defect. We
tances and weak magnetic fields is readily obtained using Eddentify this as the pinning number. It is easy to see that the

(38): lowest order correction to the current due to the pinning po-
tential appears in second order perturbation theory. Upon us-
- COS 27NX ing the simple identity
(an(x)) o« Vo () TY2K ,yyp(27h), - (53)
X &U(X, 7_) eZWi[u(x,O)—u(x,ér)] -1
— = lim - , (58

where K, (x) is the modified Bessel function of the second T | =0 &m0 2mi 6t
kind. One can analyze the asymptotic behavior of &8) at
small and largex. Thus, ifhx<1 (butx>1) we can adopt our previous calculational technique to find
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noV3 R(X,7)
N, =~ 4(;Thffjdrdrdxf(07- 7)<\’X —
%)sm[zwh(r - (59
Vxe+ 7
where
R(X,7) = f difg+ «(1)]e™3,(Vx* + 7e™). (60)

Note that if|€| <1 andA,<1 we can negleck(]) relative to
g in the integral to obtain

1-Jo(Vx2 + 72)

X2+ 7
After integrating overx we find

gVénOfJ ’ _ ’
“arh drdr'[sgr(7) - sgr(7’)]

Xf(0,7= 7' )sin 2rh(7— 7).

R(x,7) = (61)

p=
(62)

The above integral needs to be handled carefully since it i
sensitive to the order of limits. One way to deal with this is

PHYSICAL REVIEW B 71, 014511(2005

because of the faster decay of correlations with distance

£(0,8) o eI €, (67)

the number of pinned vortices does not divergehasO.
Instead it saturates at

N € l/25+ GX% 1 )
o | = —
" \3, 4¢%)

The first term here comes from relatively short distances
é=<exply) and the second one originates frafe exp(ly),
wherely is defined in Eq(32). AlthoughN,(h) remains finite

as h—0 for g<1, note that it becomes very large for

A0< € and diverges exponentially at—0 at flxedAo

An important consequence of saturationNyf at zero tilt
with the system sizé for g<<1 is that ad — o, the pinning
number will have a maximum as a function of the Luttinger-
liquid parameter agg= 1. If L is not too larggor tilt is finite)
then at a given disorder strength the maximuniNgth=0)
will occur at someg* <1. Indeed, ifg approaches 1 from
below, thenN,(h=0) diverges exponentiallysee Eq.(68)].
In turn, this implies that il is finite then the system will be
fnsensitive to the saturating effect of point disordegifs
very close to 1 and the pinning will be quite effective for

(68)

to recall that in physical systems the integral over the imagig<1 as in the case without point disordéThese simple

nary time is limited by the sample sizee [-L,/2,L./2].
Then, in Eq.(62) we can make substitutions— 7+¢&/2,
7 — 7—¢/2 and use the identity

J‘L,jz

In this way our final expression for the number of pinned
vortices becomes

gVono
47h

lim (63)

LT~>oo

dalsgrir+ &2) —sgrir— &2)] = &.

L2

N. ~

p (64)

f dé&f(0,&)sin 2mhé.

considerations agree with numerical evaluatioNgfccord-
ing to Eq.(64), which are plotted in Fig. 4. The position of
the maximum(g* ) versus the system size is also shown in
this figure. It clearly approacheg*=1 as L increases. In
practice the parametegrcan be changed varying vortex line
density or temperaturé:'’ Therefore measuring the depen-
dence of the pinning numbé#, on g should be experimen-
tally feasible.

VI. CONCLUSIONS

In this paper we studied the effect of point disorder on one

Case | g=1. In the high-temperature phase we can useaiimensional arrays of vortex lines in the presence of a single

the asymptotic behavidi(0,£) « &7 to obtain

Vo

NOCF].

p (65

In the absence of disorden=2g and the expression above
agrees with the one obtained in Ref. 15 in the liKj&h. If
the sample size in either the timelike directibnor in the
spacelike directior, is finite, then at small magnetic fields
(64) saturates at

N, o VAL37, (66)

where L=min{L,,L,}. To see this we observe that lif. is
finite, then the integral ovef in Eq. (65) is taken within a
finite interval| ¢ <L.. If L, is bounded then it is easy to show
that the correlation functiorf(0,¢) decays exponentially
f(0,&) xe ¥ for £>L, and the integral in Eq65) is again
cutoff até=L,. Note that since with point disorder> 2, the

columnar pin. We obtained the renormalization group flow
equations for the pinning strength in the presence of point
disorder and found that the columnar pin is irrelevant at the
largest length scalegby different mechanismsboth for
g>1 and g<1, which is in contrast to the pure system
where it is relevant aj<1. Because the onset of relevance
of point disorder also occurs g=1 we were able to quan-
titatively solve the RG equations fgrclose to 1. In particu-
lar we found that if disorder strength is weak, thergat1

the renormalized pinning potentid first grows with the
increasing length scale t&W.,~Vo\(1-0)/A, and then
goes to zero faster than exponentially.

Using renormalization group analysis we calculated “Frie-
del oscillations” of the vortex line density near the columnar
pin. In particular we showed that g&= 1 density fluctuations
decay as a power lawn(x)<1/x7, where the exponent
7 is shifted upwards fromy=2g due to point disorder. If

fraction of pinned vortices always vanishes in the thermodyA,<g-1, then the exponeny becomes independent only

namic limit (L — o).

Case Il g<1. In the low-temperature vortex glass phase,

at extremely(exponentially large x. At intermediatex one
would observe a power law decay &fi(x) with an effective

014511-8
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2001 - RN APPENDIX A: ESTIMATES FOR HIGH TEMPERATURE
0] == SUPERCONDUCTORS
(@) In this appendix we estimate effects of point disorder dis-
cussed above in realistic high-temperature superconductors.
0.90 The point disorder correlatak introduced in Eq(9) can be
0.88 estimated &s'®
4 3 i\ 3/2
. ~ (&> £ 2(1.—‘3) , (A1)
0.844 4N/ Twa\ o
5 0.824 where®,~2.07x 1077 G cn? is the flux quantum) is the
magnetic penetration lengtl,is the superconducting coher-
0-80 ence lengthw is the sample thickness, arE1/n, is the
0.78 4 one-dimensional density of vortex lines. Algds the critical
current in the presence of point disorder ggds the pair-
0-761 breaking currentj,= jo&?n? ,mp, WherenImp is the density of
0744 * point defects The factor of 1¥ in Eq. (Al) appears after
- T T - averaging over the sample thickness. We are interested at the
0 1000 2000 3000 4000 ) L~
(b) L parameter regime wherg=1. Then usingA=A/A? (see

FIG. 4. (Color onling (a) Number of pinned vortices versus the
Luttinger-liquid parameterg at a fixed point disorder strength
(ZO:O.Z) for different sample sizek and (b) the position of the
as a function ofL. The value ofg* approaches 1

maximum (g*)
with increasingL.

Sec. Il) we get

Z~(¢0)4 §4 (j_C)S/Z
47N Twal j,
Let us take the following estimates valid for typical HTSC's:

A=150 nm, T=50 K, ¢=2 nm, andj./j,=0.01. Following
Ref. 8 we also assume that=\. Then Eq.(A2) becomes

(A2)

exponent smoothly varying witk. In the caseg=1 (which
corresponds to dilute vortices with a hard core repulsioa -
mapped the problem to that of free fermions, which we ex- A = 10¢/a. (A3)

actly solved by direct diagonalization. We found that the de- Quantitative predictions made throughout this paper require

cay of dn(x) in this case agrees with the predictions of our
renormalization group analysis. Fgr 1 we showed that the that point disorder is relatively weald <1. Although we

density oscillations at Iarge distances decay faster than expect that arbitrarily large disorder strength renormalizes to
power law én(x) o 1/x- 9?Inx zero forg>1 and to small valued*~1- —-g for g=1 [see _
We found that the strongest manifestation of point disor-Ed: (291, it might be necessary to go to large length scales in
der on properties of a single columnar pin is the nonmono®Fder to see this effect. From E(A3) we see that the con-
tonic dependence of the number of vortex lines prevented blition A<1 is easily satisfied for magnetic fields below
the pin from tilting (N,)) on g in a weak transverse magnetic He, (we recall that in superconducting films with vortices
field. In particular, forg>_‘]_ this number diverges at~0as  the in-plane magnetic field is related to the interline
a power lawN,=h73, provided»< 3. In finite systems this Spacinga and the film widthw through H=~ do/aw). On
divergence |s cut off by the system size aNg saturates the other hand, to be observablé, should at least be
Ny(h=0)cL73, wherel is the smallest ot andL,. The  comparable td1-g| [see, for example, Eq20)]. If the sys-
only difference with the pure case is thagets renormahzed tem is tuned within 10% of the vortex glass transition, i.e.,
by point disorders>2g. On the other hand i§<1 then |1-g|=0.1, then effects of point disorder become relevant for
arbitrarily weak point disorder leads to saturationMyf at ~ a=<100¢~200 nm. Such a separation between vortex lines
h— 0. As a result in large samplés— =, Ny(g) has a maxi- is comparable with the magnetic penetration lengtiand
mum atg* =1, while if L is finite then the maximum occurs thus should be readily accessible at magnetic fields slightly
at someg* < 1. aboveH,;.
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The other quantity crucial to our analysis is the Luttinger
parameteq. Interesting and nontrivial effects due to delicate
competition between thermal fluctuations and point disorder
occur near the vortex glass transition corresponding=a
(see, for example, Fig.)4In Ref. 15 it was argued tha
may have a nonmonotonic dependence on the vortex line
densityny=1/a. In particular, ata<<\ the Luttinger-liquid
parameter is very smalj<1 and in the opposite limit
a>\ we haveg— 1. It was also argued in Ref. 15 that at
least for some parameter values, increasing the vortex line
density causeg to first increase and then decrease to zero.
So one might expect that crosses unity at some intermedi-
ate value ofa of the order of), i.e., around a few hundred ..
nanometers in typical HTSC's. As we showed above, this is 02 0 100 200 200 400 500
precisely what we need to achieve point disorder strength of L
the order of a few percent. Any necessary fine-tuningy of

andA can be achieved slightly varying temperature and the FIG. 5. (Color onling Seven largest eigenvalues of the evolu-
in-plane magnetic field, which determinas tion operator7 as a function of the sample site. The parameters
used in this figure aré, =101, Aj=0.008,V,=0.02,J=0.1[see
Eq. (B5)]. For a pure systerfly=0), the largest eigenvalue corre-
APPENDIX B: DENSITY OSCILLATIONS OF FREE sponding to a bound state is followed by three degenerate pairs of
FERMIONS IN THE PRESENCE OF POINT DISORDER smaller ones. Point disorder slightly lifts degeneracy between the

.. . . ) . . states, but clearly does not affect exponential growth of the separa-
The partition function of free fermions in a potential with {on petween the pairs of eigenvalues with

point disorder(assuming for simplicity periodic boundary
conditions in the timelike directignis given by

T

Therefore, in the limitL,— « the partition function(44) is
- ~ - drfdxH (%, 7) dominated the “ground statg¥)=|G) of the evolution op-

Z=TrW[T.e%0 ¥, (BD erator, i.e., by the Slatter de?ermii]ant of thdnighest eigen-

where Tr denotes the trace over all possible Slatter determatatesg;(x) of 7:

nants|¥) and; is the Hamiltonian(42) of the noninteract-

ing fermions. A slightly different matrix element is required |G) = detgj(x)). (B4)

for vortices with free boundary conditions and finite.

However, in the limitL,— , this detail is irrelevant®

N . , . Herei,j=1,... N enumerate different single particle levels
If the Hamiltonian were time independent, then in the

L : and coordinates. Figure 5 corresponds to relatively strong
zero temperature limitwhere in the quantum language tem- nint disorder and it is necessary to have large sample sizes

perature is equivalent to L) the only contribution to the , 45qure the ground-state dominance. For weaker disorder it
N-particle partition function comes from the Slatter determi-,, suffice to have smallet... to find the exponential sepa-

nant of N eigenstates ot{; with lowest eigenenergie&;).  ation of A,

. . ! i-
A_Iternanvely these are th_e states, which form thdighest In order to obtainG) numerically we discretize the sys-
eigenstates of the evolution operator tem both in space and time directions. In particular, instead

T= TTe‘chJ’ded’(Hf(X’T). (B2) of the Hamiltonian given by Eq42) we use

Note that, in a time-independent problem, nondegenerate ei- M1

genvalues\; of 7 become exponentially separated from each ~ H(7) = 2 [=3(cli¢i + ¢fej) + Uj(Def ] + Vochco.

other with increasing. j=0
\ (B5)
2o @dlejeare (B3)
Aj+1 Herech andc; are fermion particle creation and annihilation

Therefore, only the largest eigenvalues of the evolution Oppperators,.resp_ectlv.ely, ard is the number of the sites in
he spacelike direction.

erator need to be considered. We are interested here, how? . .

ever, in the case where the Hamiltonian explicitly depend We use perlodlq bound_ary conditions SO t@'tM.ECJ:

on time due to point disorder. In this case one can not us he random pOtent'a”_i(Tk) |s.tak_en to pe uniformly distrib-
eigenstates of{;, because they also depend on time. How-Uted on each space time point in the interivedr, o:

ever, it is still possible to define the spectrum of the evolu-

tion operator for a giver.. It seems reasonable to assume Uj(ndVi(7p) = Ao3ji &ps (B6)
that even in the presence of point disorder the separation

between the eigenvalues Bfgrows exponentially with.3°  whereA =¢?/3. We write the evolution operator as the prod-
This statement can be checked numericdbge Fig. 5. uct
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7=[] eMinor, (B7) trices. For a given realization of disorder, it is straightfor-
K ward to diagonalizeZ and find its eigenvectorg;(x) using

standard numerical methods. Then the density profile is

In order to reproduce the continuum lin{B2), we have to  given by

take the time ste@r small enough to ensure that the effects N

due to[H;(7), H¢(7+ 67)] # 0 can be neglected. However, we B 5

do not expect any qualitative changes in the results even if (ong(x)) = % ol

this condition is violated. Of course, the time stép can =

ultimately be taken to be 1 by an appropriate scaling of theThe indexd emphasizes that this is the result for a given

couplingsJ, U, andV. In a single particle space both the realization of point disorder. After averagimg(x;) over dis-

Hamiltonian; and the evolution operat@frareM X M ma-  order realizations we obtaifm(x)), which is used in Fig. 3.

(B8)
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