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We study the effect of a single columnar pin on as1+1d-dimensional array of vortex lines in planar type-II
superconductors in the presence of point disorder. In large samples, the pinning is most effective right at the
temperature of the vortex glass transition. In particular, there is a pronounced maximum in the number of
vortices which are prevented from tilting by the columnar defect in a weak transverse magnetic field. Using
renormalization group techniques we show that the columnar pin is irrelevant at long length scales both above
and below the transition, but due to very different mechanisms. This behavior differs from the disorder-free
case, where the pin is relevant in the low-temperature phase. Solutions of the renormalization equations in the
different regimes allow a discussion of the crossover between the pure and disordered cases. We also compute
density oscillations around the columnar pin and the response of these oscillations to a weak transverse
magnetic field.
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I. INTRODUCTION

A key challenge in the physics of vortex line arrays in
high-temperature superconductorssHTSC’sd is understand-
ing the interplay between vortex interactions and various
types of pinning.1,2 The competition between thermal fluc-
tuations and pinning can lead to different phases such as
vortex liquids, Bose and vortex glasses, and a more ordered
Bragg glass.3–7

Considerable theoretical progress can be made in studying
two-dimensional superconductors with an in-plane magnetic
field, where the vortex lines form one dimensional arrays.
Experimentally this situation can be realized using thin plate-
let superconducting samples.8 The statistical mechanics of
such systems is equivalent to the physics of interacting
bosons in one dimension. The low-energy and long wave-
length properties can then be described within a Luttinger-
liquid formalism. For example, one can relate the Bose-glass
to vortex-liquid phase transition in the presence of disor-
dered columnar defects3 to the superfluid-insulator transition
in a system of interacting bosons with quenched disorder.9

One finds that for a given disorder strength the system can be
tuned across the phase transition by changing the tempera-
ture swhich is proportional tog, the Luttinger-liquid param-
eterd. The mapping is different with point disorder, which is
equivalent to time-dependent point impurities in the boson
problem. In this case there is a subtle second order phase
transition between a “supersolid”swith algebraic order both
in boson and translational order parameterd and glassy
phase5,10–13with decreasing temperature.

Another important feature of vortex physics ins1+1d di-
mensions is the remarkable response to a single columnar
defect. As argued, originally in the quantum-mechanical
context14 and later for vortex arrays, even a very weak co-
lumnar pinning potential can grow to infinity under renor-
malization groupsRGd transformations wheng,1. It was
shown that the relevance of a single columnar pin at low
temperatures leads to a strong suppression of a vortex tilt
induced by a weak transverse magnetic field. However, at

high temperaturesssuch thatg.1d the pin is less effective,
regardless of its microscopic strength. Remarkably, the onset
of the relevancesor irrelevanced of a single columnar pin and
point disorder occurs at thesametemperatureT!, such that
gsT!d=1.

If both point disorder and a columnar pin are presentssee
Fig. 1d then at low temperaturessg,1d one expects a com-
petition between the two: a growing columnar pin strength
under renormalization leads to stronger correlated pinning of
vortex lines at long length scales. On the other hand, the
increasing point disorder tends to destroy the effect of the pin
on distant regions. Although it was argued that point disorder
would always render a single columnar defect irrelevant at
long wavelengths in Ref. 15, the precise nature of this com-
petition and the different pinning properties above and below
the vortex glass transition were left unresolved. A detailed
study of this competition is a primary goal of the present
paper. We show that in the thermodynamic limit the pinning
strength is strongest precisely at the transition pointT! where
g=1. In particular, the number of pinned vortex lines is a
nonmonotonic function ofg and strongly peaked atg=1. For
finite systems the position of the maximum is slightly shifted
to lower values ofg ssee Fig. 4d. We emphasize that irrel-

FIG. 1. Schematic view of a planar superconductor with point
disorder and a columnar pin, represented by a notch cut into the
sample. The wiggly lines correspond to vortices, which alterna-
tively can be thought of as imaginary time world lines of bosons in
one spatial dimension.
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evance of a single columnar pin does not imply irrelevance
of an array of pins. In fact, as it was argued in Refs. 3 and 4,
the vortex glass phase formed by point disorder is unstable
toward infinitesimal disorder in columnar pins, which results
in a Bose glass phase.

The paper is organized as follows. In Sec. II we introduce
the model and describe the mapping to a Luttinger liquid. In
Sec. III the renormalization equations describing the long
wavelength physics are derived. Then in Sec. IV we analyze
density oscillations of vortex lines near the columnar pin
above and below the vortex glass transition. At the transition
point g=1, we demonstrate that the problem maps onto free
Fermions in a time-dependent disorder potential. This map-
ping allows computation of density oscillations of vortex
lines near the columnar pin which we then compare with the
renormalization group predictions. In Sec. V we discuss the
response of vortex lines to a weak transverse magnetic field
in the presence of a single columnar pin. Finally in Sec. VI
we summarize our results and present conclusions. Appendix
A estimates the parameter range necessary to see the effects
discussed here, while Appendix B describes details of our
free fermion calculation.

II. MODEL

A one-dimensional array of vortex lines located at posi-
tionsxjstd can be described by the density profilessee Fig. 1d

nsx,td = o
j

dfx − xjstdg. s1d

Herex andt denote transverse and longitudinal coordinates
with respect to the vortices. It is convenient to change vari-
ables to the phonon displacement fielduj: xjstd=af j +ujstdg,
wherea is the mean distance between the vortex lines. In the
absence of a columnar pin, point disorder, and a transverse
magnetic field, the free energy of a particular vortex line
configuration can then be written as15

F0 =
a2

2
E dxdtfc11s]xud2 + c44s]tud2g, s2d

wherec11 andc44 are the compressional and the tilt moduli,
respectively. After rescalingx andt

x → xSc11

c44
D1/4

, t → tSc44

c11
D1/4

, s3d

the free energy takes the isotropic form

F0 =
A

2
E dxdtfs]xud2 + s]tud2g, s4d

with A=a2Îc11c44. The partition functionZ describing a vor-
tex array at temperatureT is a functional integral over all
possible configurations of vortices weighted by a Boltzmann
factor proportional toe−F0/T. In the limit of large sample
dimension in a “timelike” direction,Z can also be regarded
as the zero temperature partition function of interacting
bosons3,16

Z =E Dusx,tde−S, s5d

with the imaginary time actionS=S0=F0/T given by

S0 =
p

2g
E dxdtfs]xud2 + s]tud2g. s6d

For simplicity we here set the Planck’s constant"=1. Com-
parison of Eq.s6d with Eq. s4d allows us to identify the
Luttinger-liquid parameterg as

g =
pT

A
.

The rescalings in Eq.s3d are such that the “sound speed” in
the Luttinger liquid is equal to 1.

The most relevant contributions to the action from the
columnar pinSpin and point disorderSPD read5,10,13,17

Spin = V0E dt cosf2pus0,tdg, s7d

SPD = 2E dxdtUsx,tdcosf2pusx,td + bsx,tdg, s8d

where positivesnegatived V and U correspond to repulsive
sattractived potentials. WhenV,0, Eq. s7d represents an at-
tractive columnar pin at the origin. For simplicity we take the
phasebsx,td to be uniformly distributed between 0 and 2p
and Usx,td to have a Gaussian distribution with the cor-
relator

Usx1,t1dUsx2,t2d = D0dsx1 − x2ddst1 − t2d, s9d

where the overbar represents an average over realizations of
the disorder. The total actionS entering Eq.s5d is then the
sum of the three contributionss6d, s7d, ands8d:

S= S0 + Spin + SPD. s10d

In the following sections we analyzeS and various observ-
ables using the renormalization group. Before proceeding
with quantitative details we emphasize that although we fo-
cus on the behavior of vortex lines in this paper, the action
s10d can be relevant for many different problems such as
disordered interfaces,12 charge density waves which order
similar to smectic liquid crystals,18,19 and directed polymer
arrays.20

III. RENORMALIZATION GROUP FLOW EQUATIONS

Provided one is alert to potential pathologies,21 an effi-
cient way to analyze disordered problems is to use a replica
trick.22 The noninteracting part of the actions6d then be-
comes

S0 =
p

2g
o
a,b

E E dxdtF ]ua

]t

]ub

]t
+

]ua

]x

]ub

]x
GFdab −

k

g
G ,

s11d

where uasx,td is the replicated phonon field andk is an
off-diagonal coupling which is zero in the bare model but
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generated by the disorder.11 It is equivalent to sx- and
t-dependentd quenched random “chemical potential” coupled
to the first derivatives of the phonon fieldu.13,15 The replica
indices a and b run from 1 to n and we take the limit
n→0 at the end of the calculation.11,12Equations11d leads to
a phonon correlation function in momentum space for
n→0, namely,11

kuask,vdub
!sk8,v8dl =

4p

k2 + v2sgdab + kddk,k8dv,v8. s12d

The other two terms in the action of Eq.s10d corresponding
to a pinning potential and point disorder, become

Spin = V0o
a
E dt cos 2puas0,td s13d

and

SPD = − D0o
a,b

E E dxdt cos 2pfuasx,td − ubsx,tdg.

s14d

To study the statistical physics described by the action
s11d, s13d, ands14d we employ a momentum shell renormal-
ization group scheme,23 where we continuously eliminate de-
grees of freedom depending on frequency and momentum
within the shellL−dL,Îv2+k2,L. HereL,1/Îa0j0 is
the ultraviolet cutoff,a0 is of the order of the lattice spacing,
and j0 is of the order of superconducting coherence length
ssingle vortex widthd. The resulting renormalization group
equations for the running coupling constantsDsld andVsld to
leading order inD andV are

dg

dl
= 0, s15d

dD

dl
= 2eD − 2CD2, s16d

dk

dl
= C2D2, s17d

dV

dl
= Vse − CDd − kV, s18d

wheree=1−g, l is the flow parameterfLsld=Le−lg, andC is
a nonuniversal constant which depends on the cutoffL:
C~1/L2 sin particular, within the shell method we find
C=8pg2/L2d. These equations are subject to the initial con-
ditionsksl =0d=0, Dsl =0d=D0, andVsl =0d=V0, with D0 and
V0 being the bare couplings. Note that the Luttinger-liquid
parameterg does not change under renormalization.11

In the absence of point disorderfDsld;0 and ksld;0g
our results reduce to those obtained by Kane and Fisher.14 In
this case the columnar pin is relevant forg,1 and irrelevant
for g.1. If V;0 then our equations are equivalent to those
first derived by Cardy and Ostlund11 and later extensively
explored for different problems.5,10,12,13Equationss15d–s17d

imply that point disorderalso becomes relevant wheng,1.
Contrary to bosons interacting with many impurities9 swhich
is the analogue of manycolumnardefects for a flux prob-
lemd, there is an intermediate fixed point with a finite value
D!; lim l→`Dsld=Osed which continuously emerges from a
pure Gaussian fixed point forg,1. This makes the RG ap-
proach tractable on both sides ofg=1. Note also that when
g,1, ksld→`, suggesting nontrivial correlations in this
phase. We comment that there are some claims questioning
the applicability of Eqs.s15d–s17d in the glass phasesg,1d.
In Ref. 25 it was argued that a replica symmetric solution
becomes unstable forg,1, resulting in different correlation
functions than predicted by the replica symmetric renormal-
ization group. However, there is still no evidence showing
that this instability actually occurs. Moreover, numerical re-
sults of Ref. 26 confirm one of the crucial predictions of Eqs.
s15d–s17d at g,1; namely, the unusual behavior of the
density-density correlation functionGsxd~exps−A ln2uxud.

In deriving Eqs.s16d–s18d, we implicitly assumed that the
cutoff is symmetric in thet andx directions. In general this
is not true. The anisotropy in the cutoff will result in differ-
ent initial renormalizations ofkt and kx. However, at large
length scales the flows forkt andkx look the same and the
asymmetry disappears.13

Equationss15d–s18d contain nonuniversal cutoff depen-

dent terms. Upon rescaling the disorder potentialD→ D̃ /C
they simplify to

dg

dl
= 0, s19d

dD̃

dl
= 2D̃se − D̃d, s20d

dV

dl
= Vse − D̃d − kV, s21d

dk

dl
= D̃2. s22d

These are the renormalization equations which we will ex-
ploit throughout the rest of the paper. Note that the cutoffL
enters Eqs.s19d–s22d only through the initial disorder

strengthD̃0.
The quantitative predictions of the renormalization group

equations above are valid ifD̃0 is small compared to one. On
the other hand if the point disorder is too weak, then its
effects will be hard to observe in experiments. In Appendix
A we show that for HTSC superconducting films, typical
values of point disorder strength lie within interval

D̃0P f0.01,0.1g. This, in turn, implies experimental rel-
evance of the subsequent analysis of the physics resulting
from Eqs.s19d–s22d in the different regimes.

High-temperature phase (g.1). If e is large and negative
sueu@D0d then both point disorder and pinning strengths de-
cay exponentially to zero as
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D̃sld , D̃0e
−2ueul → 0, s23d

Vsld , V0e
−ueul → 0. s24d

However, the off-diagonal stiffnessk renormalizes to a finite
nonuniversal value

ksld <
D̃0

2

4ueu
s1 − e−4ueuld → D̃0

2

4ueu
. s25d

As we will see below, the finite value ofksl =`d swhich
arises for anyeø0d results in corrections to the power law
decay of various correlation functions.

Critical phase (g=1). Whene=0 si.e., g=1d, point disor-
der becomes marginally irrelevant, and one finds

D̃sld =
D̃0

1 + 2lD̃0

→ 0, s26d

Vsld =
V0

s1 + 2lD̃0d1/4
e−lD̃0/2 → 0, s27d

ksld =
D̃0 − D̃sld

2
→ D̃0

2
. s28d

Note that even though the point disorderD̃ is marginal at
g=1, the pinning potentialV remains irrelevantfi.e.,

Vsld→0g for any nonzeroD̃0.
Low-temperature phase (g,1). In the casee.0 we find

the following solutions of the flow equations

D̃sld =
eD̃0

D̃0 + se − D̃0de−2el
→ e, s29d

ksld =
e

2
lnF1 +

D̃0

e
se2el − 1dG +

D̃0 − D̃sld
2

→ e2l → `.

s30d

Note thatksld grows without bound. The explicit mathemati-
cal expression for the renormalized columnar pinning poten-
tial is rather complicated. However, one can write the
asymptotic form ofVsld at large and smalll:

Vsld < 5V0 expse − D̃0dl , l ! l0,

V8 expFS e − D̃0

2
−

e

2
ln

e

D̃0

Dl − e2l2G , l @ l0.6
s31d

Therefore asl →`, Vsld→0 faster than exponentially inl.
Here, l0 represents a crossover scale

l0 <
1

2ueu
ln

ue − D̃0u

D̃0

s32d

and

V8 = V0 expF1

4
ln

e

D̃0

−
1

4
Li2S1 −

e

D̃0
DG , s33d

where Li2sxd is the polylog function.24 In the limit e@D̃0 we
can use the asymptotic expansion for Li2sxd and get

V8 < cV0 expS1

4
ln

e

D̃0

+
1

8
ln2 e

D̃0
D , s34d

wherec is a number of the order of 1. Note that even though
a term of the order ofe2 appears in Eq.s31d, its presence is
justified. Indeed, according to Eq.s22d, at largel we have
k~D!2l ,e2l. It is easy to see that higher order corrections in
e to the renormalization group flow equationsfin particular
to Eq. s20dg will result in terms of the order ofOse3d in Eq.
s30d.

The parameterl0 defined in Eq.s32d sets a characteristic
length scaleL−1el0, separating long and short length behavior
of the pinning potential. As we find below, it also determines
the behavior of various observables. Thus, fore.0, at small
l the pinning potential first grows under the RG transforma-

tions to the valueVmax<Vsl0d<V0
Îe / D̃0. Then, for largerl,

Vsld goes to zero faster than exponentially. We comment that
for g.1, l0 sets the characteristic scale beyond whichDsld
becomes negligibly small andksld stops renormalizing.

Note that the columnar pin is asymptotically irrelevant in
the presence of point disorder for all values ofg. The mecha-
nisms, which lead to this are different below and above the
vortex glass transition. Thus in the high-temperature phase
gù1 thermal fluctuations are responsible for the irrelevance
of V at l →`. In contrast, in the low-temperature glass phase
g,1 point disorder is the cause of the flow ofV to zero at
large l. The distance when the columnar pin starts feeling
effects of point disorder and becomes irrelevant grows with

decreasingD̃0. As discussed below, in infinite samples, the
effect of the columnar pin is strongestsleast irrelevantd pre-
cisely atg=1.

In the weak disorder limit one can compute various cor-
relation functions using the renormalization group analysis
sketched above. In what follows we will discuss several
quantities of interest.

IV. DENSITY OSCILLATIONS AND THE FREE FERMION
LIMIT

A. Density oscillations near a columnar pin

Since the columnar pinning potential is always irrelevant
when point disorder is present, it can be treated perturba-
tively at sufficiently large length scales. The leading contri-
bution to the “Friedel oscillations” of the density of vortex
lines in linear response inV0 is given by

kdnsxdl < V0 cos 2pn0xE
−`

`

fsx,tddt, s35d

where the angular brackets represent the thermal average and
the overbar signifies an average over different configurations
of point disorder. The quantity
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dnsxd = nsxd − n0 s36d

is the deviation of the vortex lines density from the mean
n0=1/a fsee Eq.s1dg. The functionfsx,td is defined as

fsx,td = ke2pifusx,td−us0,0dgl. s37d

We note thatfsx,td is proportional to the density correlation
function without the columnar pin:kdnsx,tddns0,0dl
~cosf2pn0sxdgfsx,td. Explicitly, one finds

fsx,td < e−2e0
`dlfg+ksldgf1−J0sre−ldg, s38d

where r =Îx2+t2L is the distance between the two points
measured in the units of the original cutoffL. The Bessel
function J0sxd appearing in Eq.s38d and in other formulas
below is nonuniversal and depends on the actual details of
the cutoff procedure. Instead ofJ0sxd one can use another

cutoff function J̃sxd, e.g., a Gaussian, as long as it satisfies

general requirementsJ̃sx→0d→1 and J̃sx→`d→0. If the
disorder is absent in Eq.s38d, i.e., k;0, we recover the
well-known result for the Luttinger liquidfsx,td~ r−2g. If
gù1 then at long distancesf is given more generally by
fsx,td~ r−h,12 where

h = 2fg + ks`dg. s39d

Thus, when point disorder is irrelevant, the exponent of the
correlation decay becomes nonuniversal. Forg,1 the
asymptotic expression forf becomes11,12 fsx,td~e−e2 ln2 x.

Upon using Eqs.s35d and s38d we find that the behavior
of kdnsxdl at large distances forgù1 is

kdnsxdl ~ V0
cos 2pn0x

xh−1 . s40d

This equation is valid only forx*expsl0d, wherel0 is given
by Eq. s32d. For smallerx the exponenth changes withx.
For g,1 the crossover is now from power law decaying
correlations of the forms40d with h<2g for 1!x!expsl0d
to a faster decay

kdnsxdl ~ V0e
−e2 lnsxd2 s41d

in the opposite limitx@expsl0d.

B. Free fermions

If g=1 it is well known that using the Jordan-Wigner
transformation bosons can be exactly mapped to spinless free
fermions.27 The transformation also holds in the presence of
a columnar pin and point disorder. The columnar pin and the
point disorder correspond to static and random time-
dependent potentials, respectively. The time-dependent
Hamiltonian which describes the fermions then reads

H fsx,td = −
1

2m

d2

dx2 + Usx,td + V0sxd, s42d

whereUsx,td is a random potential satisfying

Usx1,t1dUsx2,t2d = D0dsx1 − x2ddst1 − t2d. s43d

The massm scorresponding to the tilt modulus in the original
flux line problemd sets the Fermi velocityv f =kf /m swherekf
is the Fermi momentumd, which represents the sound veloc-
ity in the original boson/vortex problem.

If the sample lengthLt in the timelike direction is large,
then the partition function of the vortex array is proportional
to an appropriate matrix element of the corresponding quan-
tum problem28

Z = kGuTte
−e0

`dtedxHfsx,tduGl, s44d

whereTt is the usualsimaginaryd time-ordering symbol. This
expression is the quantum-mechanical expectation value of
the evolution operator calculated in its many-fermion ground
state uGl, for a given realization of point disorder. If the
HamiltonianH f is time independent, then Eq.s44d reduces to
the zero-temperature quantum partition function. ForN non-
interacting fermions the ground state can be written as a
Slater determinant of the single particle states. However, be-
cause the HamiltonianH f is time dependent, the states form-
ing the Slater determinant will not be the eigenstates ofH f.
Instead, they will consist of theN largest eigenvalues of the
evolution operatorssee Appendix B for further detailsd. Once
uG8l is known one can easily calculate various observables.
Here we consider the vortex line density

knsxdl =
1

Z
kGuc†sxdcsxduGl, s45d

wherecsxd is a fermionic annihilation operator. Sufficiently
far from the boundaries att=0,Lt, the density profilensxd
clearly does not depend ont.

Since we are dealing with noninteracting particles, one
can find the eigenstates of the evolution operator numerically
even in the presence of point disorder. We describe details of
this calculation in Appendix B. Here we just mention that we
discretize both space and time and write the evolution opera-
tor as a product of transfer matrices. We take a periodic array
of M =201 sites in the space direction and of sizeL=50 in
the timelike direction. The particle filling factor is taken to
be approximately 0.1, so that the ground state eigenfunction
uGl is the Slater determinant of the 21 highest eigenstates.
We took an odd number of sites to have an exact inversion
symmetry around the columnar pin in the finite size system
and we took the odd number of eigenstates to avoid compli-
cations arising from the double degeneracy of the energy
spectrum in the absence of point disorder. A columnar defect
of strengthV0=0.1 is placed in the central site,x0=101.
Point disorder is modeled by a uniformly distributed uncor-
related random potential on each site of the space-time lat-
tice: Usx,rdP f−U0,U0g, so thatD0=U0

2/3. For the effective
mass in Eq.s42d we choosem=5 corresponding to a hopping
amplitudeJ=0.1 in the discretized modelssee Appendix Bd.
For each configuration of disorder we numerically find the
ground stateuGl and the fermion density and finally average
over different realizations of point disorder. In this way we
obtain “Friedel oscillations” of density for different values of
D0. In Fig. 2 we plot a calculated density profile of vortex
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lines for U0=10−3/2 corresponding toD0=3310−4 for a par-
ticular realization of point disorderstop graphd and after av-
eraging over about 130 000 disorder realizationssbottom

graphd. In terms ofD̃0 s23d the chosen strength of point dis-
order corresponds to

D̃0 <
8pD0

L2 < 0.3,

where we used the fact that the cutoff isL<0.1 for the
filling factor 0.1.

Upon fitting the decay of the envelope of oscillations
sdashed line in Fig. 2d to a power lawfsee Eq.s40dg for
different strengths of point disorder, we extract the exponent
h /2. The results are plotted in Fig. 3. Within the error bars
the dependence ofh on D0 is linear as predicted by the
renormalization group analysis forg=1 fsee Eqs.s28d and
s39dg.

C. Boson phase correlations

Despite the fact that dislocations cannot be present in vor-
tex arrayssas they are equivalent to magnetic monopolesd,

they can be relevant for other problems, for example directed
polymer arrays in two dimensions. The correlation function,
which gives the energy of a dislocation pair29 sor in the
quantum-mechanical language the boson-boson correlation
function17d can be calculated similarly to the density-density
correlation function

Gsxd = keiffsx,td−fs0,tdgl, s46d

where the boson phase anglef is conjugate todu/dx. Upon
integrating outf in the standard way, it is easy to show that
Eq. s46d can be rewritten as

Gsxd = KexpS−E
0

x

]tusx8,0ddx8DL . s47d

The expression above has to be properly regularized to be
cutoff independent. In the absence of a columnar defect, the
function Gsxd can be straightforwardly calculated as in Eq.
s38d, yielding

Gsxd ~ e−s1/2g2de0
`dlfg+ksldgf1−J0sre−ldg. s48d

For gù1 at largex this gives

Gsxd ~ x−h/4g2
, s49d

whereh is defined in Eq.s39d. This reduces to the result in
the absence of point disorder whenksld;0:zsxd~x−1/2g. For
g,1 asx→` we derive

Gsxd ~ e−e2 lnsxd2/4g2
. s50d

Since the columnar pin is always irrelevant in the presence of
point disorder, it will give only a perturbative correction in
V0 to Eqs.s49d and s50d.

Note that the asymptotic behavior ofGsxd fEqs.s49d and
s50dg is valid only for an isolated pair of bosonssdislocations
in the original problemd. It can be shown11 that under the

FIG. 2. Density profile of vortex line array near a columnar pin.
The top graphsad shows the result for a single configuration of
point disorder. The bottom graphsbd gives the profile after averag-
ing over many disorder realization. The dashed line in the bottom
graph shows the envelope of the decay os oscillations, which is
used to extract the exponenth fsee Eq.s40dg.

FIG. 3. Extracted exponenth /2 characterizing decay of density
oscillations of vortex lines near a columnar pinfsee Eq.s40dg versus
the point disorder strengthD0. The dashed line represents a linear
fit, which agrees with the renormalization group prediction for
g=1 fsee Eqs.s26d, s28d, ands39dg.
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renormalization group bosons are relevant on both sides of
the transitiong=1. Thus, if isolated bosonssdislocationsd are
permitted, they destroy the supersolid-vortex glass transition.

V. RESPONSE TO A TRANSVERSE MAGNETIC
FIELD

Another way to determine the effect of a single columnar
pin on the flux array is to study the response of the vortices
to a weak transverse magnetic fieldh. In Refs. 17 and 15 it
was argued that in the absence of point disorder in the ther-
modynamic limit an infinite number of vortices can be
pinned by a single columnar defect in the limith→0. While
for g.1 the fraction of pinned vortex lines goes to zero with
the sample size, forg,1 almost all lines get pinned. In the
presence of point disorder, because the columnar pin is al-
ways irrelevant, the situation is quite different. In fact, as we
show below, the number of pinned vorticesNpsgd has a
maximumaroundg=1.

The presence of a transverse magnetic field is manifested
through an additional term to the action in Eq.s10d sRefs. 10,
15, and 28d

Sm = −
ph

2g
E dxdt]tusx,td. s51d

It is easy to see thath is formally a relevant variable under
renormalization group transformation—in fact its recursion
relation is10 dh/dl<h. However, when the columnar pin is
absent the effect of the transverse magnetic field can be
eliminated by a shift of the vortex displacement field
usx,td→usx,td−ht. Clearly, the contribution to the action
safter performing the replica trickd coming from point disor-
der in Eq.s14d is invariant under this transformation. Thus,
the only effect of the shift on the action arises from the
pinning terms13d.

A. Friedel oscillations

The presence ofh modifies the decay of the Friedel den-
sity oscillations around the pin.15 It is easy to see that within
linear response theory inV0 the expressions35d transforms to

kdnsxdl < V0 coss2pn0xdE
−`

`

fsx,tdcoss2phtddt. s52d

In particular, forgù1 the density modulation at large dis-
tances and weak magnetic fields is readily obtained using Eq.
s38d:

kdnsxdl ~ V0
cos 2pn0x

xh−1 shxdsh−1d/2Ksh−1d/2s2phxd, s53d

whereKnsxd is the modified Bessel function of the second
kind. One can analyze the asymptotic behavior of Eq.s53d at
small and largex. Thus, if hx!1 sbut x@1d

kdnsxdl ~ V0
cos 2pn0x

xh−1 31 +

ÎpGSh

2
Ds2phxdh−1

cosSph

2
DGshdGSh − 1

2
D4 .

s54d

The second term in the expression above gives a negative
correction to the result obtained in the absence ofh. In the
opposite limit hx@1, density fluctuations decay exponen-
tially with x:

kdnsxdl ~ V0 cos 2pn0x
hh/2−1

xh/2 e−2phx. s55d

These findings are consistent with the results of Refs. 15 and
17, where in the pure case whenh=2g. For g,1 the situa-
tion is more involved. Thus, forx!el0 one can still use Eqs.
s54d and s55d with h,2g. On the other hand ifx@el0 the
asymptotic behavior ofkdnsxdl is

kdnsxdl ~ e−e2 ln2sxd s56d

for a weak magnetic field,hx!1. In the opposite limit
hx@1 we get Eq. s55d with a running exponenth:
hsxd<e2 ln x.

B. Number of pinned vortex lines

A much more striking effect of point disorder on the pin-
ning properties of a columnar defect can be observed in the
number of vortex lines prevented from tilting by the defect.
This “pinning number” is defined as15,17

Npshd = n0

KE dxSh − U ]usx,td
]t

U
t=0

DL
h

, s57d

where as beforen0 is the mean vortex density. This definition
can be understood as follows: The numerator is proportional
to the difference between the total imaginary currents carried
by the vortices in the absence and in the presence of a co-
lumnar pin, respectively. Dividing this current difference by
the average slopeh of the vortex lines in the absence of the
pin gives the effective number of vortices which do not par-
ticipate in the current flow due to the columnar defect. We
identify this as the pinning number. It is easy to see that the
lowest order correction to the current due to the pinning po-
tential appears in second order perturbation theory. Upon us-
ing the simple identity

U ]usx,td
]t

U
t=0

= lim
dt→0

e2pifusx,0d−usx,dtdg − 1

2pidt
, s58d

we can adopt our previous calculational technique to find
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Np <
n0V0

2

4ph
E E E dtdt8dxfs0,t − t8dS tRsx,td

Îx2 + t2

−
t8Rsx,t8d
Îx2 + t82 Dsinf2phst − t8dg, s59d

where

Rsx,td =E dlfg + ksldge−lJ1sÎx2 + t2e−ld. s60d

Note that ifueu!1 andD̃0!1 we can neglectksld relative to
g in the integral to obtain

Rsx,td <
1 − J0sÎx2 + t2d

Îx2 + t2
. s61d

After integrating overx we find

Np <
gV0

2n0

4ph
E E dtdt8fsgnstd − sgnst8dg

3fs0,t − t8dsin 2phst − t8d. s62d

The above integral needs to be handled carefully since it is
sensitive to the order of limits. One way to deal with this is
to recall that in physical systems the integral over the imagi-
nary time is limited by the sample sizetP f−Lt /2 ,Lt /2g.
Then, in Eq. s62d we can make substitutionst→t+j /2,
t8→t−j /2 and use the identity

lim
Lt→`

E
−Lt/2

Lt/2

dtfsgnst + j/2d − sgnst − j/2dg = j. s63d

In this way our final expression for the number of pinned
vortices becomes

Np <
gV0

2n0

4ph
E djjfs0,jdsin 2phj. s64d

Case I, gù1. In the high-temperature phase we can use
the asymptotic behaviorfs0,jd~j−h to obtain

Np ~
V0

2

h3−h . s65d

In the absence of disorder,h=2g and the expression above
agrees with the one obtained in Ref. 15 in the limitV0!h. If
the sample size in either the timelike directionLt or in the
spacelike directionLx is finite, then at small magnetic fields
s64d saturates at

Np ~ V0
2L3−h, s66d

where L=minhLx,Ltj. To see this we observe that ifLt is
finite, then the integral overj in Eq. s65d is taken within a
finite intervalujuøLt. If Lx is bounded then it is easy to show
that the correlation functionfs0,jd decays exponentially
fs0,jd~e−j/Lx for j.Lx and the integral in Eq.s65d is again
cutoff atj<Lx. Note that since with point disorderh.2, the
fraction of pinned vortices always vanishes in the thermody-
namic limit sL→`d.

Case II, g,1. In the low-temperature vortex glass phase,

because of the faster decay of correlations with distance

fs0,jd ~ e−e2 ln2 j, s67d

the number of pinned vortices does not diverge ash→0.
Instead it saturates at

Np ~ S e

D̃0
D1/2e

+ expS 1

4e2D . s68d

The first term here comes from relatively short distances
j&expsl0d and the second one originates fromj*expsl0d,
wherel0 is defined in Eq.s32d. AlthoughNpshd remains finite
as h→0 for g,1, note that it becomes very large for

D̃0!e and diverges exponentially ate→0 at fixedD̃0.
An important consequence of saturation ofNp at zero tilt

with the system sizeL for g,1 is that asL→`, the pinning
number will have a maximum as a function of the Luttinger-
liquid parameter atg<1. If L is not too largesor tilt is finited
then at a given disorder strength the maximum ofNpsh=0d
will occur at someg* ,1. Indeed, ifg approaches 1 from
below, thenNpsh=0d diverges exponentiallyfsee Eq.s68dg.
In turn, this implies that ifL is finite then the system will be
insensitive to the saturating effect of point disorder ifg is
very close to 1 and the pinning will be quite effective for
g&1 as in the case without point disorder.17 These simple
considerations agree with numerical evaluation ofNp accord-
ing to Eq.s64d, which are plotted in Fig. 4. The position of
the maximumsg* d versus the system size is also shown in
this figure. It clearly approachesg* =1 as L increases. In
practice the parameterg can be changed varying vortex line
density or temperature.15,17 Therefore measuring the depen-
dence of the pinning numberNp on g should be experimen-
tally feasible.

VI. CONCLUSIONS

In this paper we studied the effect of point disorder on one
dimensional arrays of vortex lines in the presence of a single
columnar pin. We obtained the renormalization group flow
equations for the pinning strength in the presence of point
disorder and found that the columnar pin is irrelevant at the
largest length scalessby different mechanismsd both for
g.1 and g,1, which is in contrast to the pure system
where it is relevant atg,1. Because the onset of relevance
of point disorder also occurs atg=1 we were able to quan-
titatively solve the RG equations forg close to 1. In particu-
lar we found that if disorder strength is weak, then atg,1
the renormalized pinning potentialV first grows with the

increasing length scale toVmax<V0
Îs1−gd / D̃0 and then

goes to zero faster than exponentially.
Using renormalization group analysis we calculated “Frie-

del oscillations” of the vortex line density near the columnar
pin. In particular we showed that atgù1 density fluctuations
decay as a power lawdnsxd~1/xh−1, where the exponent
h is shifted upwards fromh=2g due to point disorder. If

D̃0!g−1, then the exponenth becomesx independent only
at extremelysexponentiallyd large x. At intermediatex one
would observe a power law decay ofdnsxd with an effective
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exponent smoothly varying withx. In the caseg=1 swhich
corresponds to dilute vortices with a hard core repulsiond we
mapped the problem to that of free fermions, which we ex-
actly solved by direct diagonalization. We found that the de-
cay of dnsxd in this case agrees with the predictions of our
renormalization group analysis. Forg,1 we showed that the
density oscillations at large distances decay faster than a
power lawdnsxd~1/xs1−gd2 ln x.

We found that the strongest manifestation of point disor-
der on properties of a single columnar pin is the nonmono-
tonic dependence of the number of vortex lines prevented by
the pin from tiltingsNpd on g in a weak transverse magnetic
field. In particular, forgù1, this number diverges ath→0 as
a power lawNp~hh−3, providedh,3. In finite systems this
divergence is cut off by the system size andNp saturates
Npsh=0d~Lh−3, whereL is the smallest ofLx and Lt. The
only difference with the pure case is thath gets renormalized
by point disorderh.2g. On the other hand ifg,1 then
arbitrarily weak point disorder leads to saturation ofNp at
h→0. As a result in large samplesL→`, Npsgd has a maxi-
mum atg* =1, while if L is finite then the maximum occurs
at someg* &1.
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APPENDIX A: ESTIMATES FOR HIGH TEMPERATURE
SUPERCONDUCTORS

In this appendix we estimate effects of point disorder dis-
cussed above in realistic high-temperature superconductors.
The point disorder correlatorD introduced in Eq.s9d can be
estimated as1,15

D < S F0

4pl
D4 j3

T2wa2S jc
j0
D3/2

, sA1d

whereF0<2.07310−7 G cm2 is the flux quantum,l is the
magnetic penetration length,j is the superconducting coher-
ence length,w is the sample thickness, anda=1/n0 is the
one-dimensional density of vortex lines. Alsojc is the critical
current in the presence of point disorder andj0 is the pair-
breaking currentsjc< j0j2nimp

2/3, wherenimp is the density of
point defectsd. The factor of 1/w in Eq. sA1d appears after
averaging over the sample thickness. We are interested at the

parameter regime whereg<1. Then usingD̃<D /L2 ssee
Sec. IIId we get

D̃ < S F0

4pl
D4 j4

T2wa
S jc

j0
D3/2

. sA2d

Let us take the following estimates valid for typical HTSC’s:
l=150 nm, T=50 K, j=2 nm, and jc/ j0=0.01. Following
Ref. 8 we also assume thatw<l. Then Eq.sA2d becomes

D̃ < 10j/a. sA3d

Quantitative predictions made throughout this paper require

that point disorder is relatively weak:D̃!1. Although we
expect that arbitrarily large disorder strength renormalizes to

zero for g.1 and to small valuesD̃!<1−g for g&1 fsee
Eq. s29dg, it might be necessary to go to large length scales in
order to see this effect. From Eq.sA3d we see that the con-

dition D̃!1 is easily satisfied for magnetic fields below
Hc2 swe recall that in superconducting films with vortices
the in-plane magnetic fieldH is related to the interline
spacinga and the film widthw through H<F0/awd. On

the other hand, to be observable,D̃0 should at least be
comparable tou1−gu fsee, for example, Eq.s20dg. If the sys-
tem is tuned within 10% of the vortex glass transition, i.e.,
u1−gu=0.1, then effects of point disorder become relevant for
a&100j<200 nm. Such a separation between vortex lines
is comparable with the magnetic penetration lengthl and
thus should be readily accessible at magnetic fields slightly
aboveHc1.

FIG. 4. sColor onlined sad Number of pinned vortices versus the
Luttinger-liquid parameterg at a fixed point disorder strength

sD̃0=0.2d for different sample sizesL and sbd the position of the
maximumsg* d as a function ofL. The value ofg* approaches 1
with increasingL.
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The other quantity crucial to our analysis is the Luttinger
parameterg. Interesting and nontrivial effects due to delicate
competition between thermal fluctuations and point disorder
occur near the vortex glass transition corresponding tog=1
ssee, for example, Fig. 4d. In Ref. 15 it was argued thatg
may have a nonmonotonic dependence on the vortex line
density n0=1/a. In particular, ata!l the Luttinger-liquid
parameter is very smallg!1 and in the opposite limit
a@l we haveg→1. It was also argued in Ref. 15 that at
least for some parameter values, increasing the vortex line
density causesg to first increase and then decrease to zero.
So one might expect thatg crosses unity at some intermedi-
ate value ofa of the order ofl, i.e., around a few hundred
nanometers in typical HTSC’s. As we showed above, this is
precisely what we need to achieve point disorder strength of
the order of a few percent. Any necessary fine-tuning ofg

and D̃ can be achieved slightly varying temperature and the
in-plane magnetic field, which determinesa.

APPENDIX B: DENSITY OSCILLATIONS OF FREE
FERMIONS IN THE PRESENCE OF POINT DISORDER

The partition function of free fermions in a potential with
point disordersassuming for simplicity periodic boundary
conditions in the timelike directiond is given by

Z = TrkCuTte
−e0

LtdtedxHfsx,tduCl, sB1d

where Tr denotes the trace over all possible Slatter determi-
nantsuCl andH f is the Hamiltonians42d of the noninteract-
ing fermions. A slightly different matrix element is required
for vortices with free boundary conditions and finiteLt.
However, in the limitLt→`, this detail is irrelevant.28

If the Hamiltonian were time independent, then in the
zero temperature limitswhere in the quantum language tem-
perature is equivalent to 1/Ltd the only contribution to the
N-particle partition function comes from the Slatter determi-
nant of N eigenstates ofH f with lowest eigenenergiess« jd.
Alternatively these are the states, which form theN highest
eigenstates of the evolution operator

T = Tte
−e0

LtdtedxHfsx,td. sB2d

Note that, in a time-independent problem, nondegenerate ei-
genvaluesl j of T become exponentially separated from each
other with increasingLt:

l j

l j+1
~ eLts« j+1−« jd. sB3d

Therefore, only the largest eigenvalues of the evolution op-
erator need to be considered. We are interested here, how-
ever, in the case where the Hamiltonian explicitly depends
on time due to point disorder. In this case one can not use
eigenstates ofH f, because they also depend on time. How-
ever, it is still possible to define the spectrum of the evolu-
tion operator for a givenLt. It seems reasonable to assume
that even in the presence of point disorder the separation
between the eigenvalues ofT grows exponentially withLt.

30

This statement can be checked numericallyssee Fig. 5d.

Therefore, in the limitLt→` the partition functions44d is
dominated the “ground state”uCl= uGl of the evolution op-
erator, i.e., by the Slatter determinant of theN highest eigen-
statesgisxd of T:

uGl = detgisxjd. sB4d

Here i , j =1, . . . ,N enumerate different single particle levels
and coordinates. Figure 5 corresponds to relatively strong
point disorder and it is necessary to have large sample sizes
to assure the ground-state dominance. For weaker disorder it
will suffice to have smallerLt to find the exponential sepa-
ration of l j.

In order to obtainuGl numerically we discretize the sys-
tem both in space and time directions. In particular, instead
of the Hamiltonian given by Eq.s42d we use

H fstd = o
j=0

M−1

f− Jscj+1
† cj + cj

†cj+1d + Ujstdcj
†cjg + V0c0

†c0.

sB5d

Herecj
† andcj are fermion particle creation and annihilation

operators, respectively, andM is the number of the sites in
the spacelike direction.

We use periodic boundary conditions so thatcj+M ;cj.
The random potentialUjstkd is taken to be uniformly distrib-
uted on each space time point in the intervalf−s ,sg:

UjstkdUistpd = D0d jidkp, sB6d

whereD=s2/3. We write the evolution operator as the prod-
uct

FIG. 5. sColor onlined Seven largest eigenvalues of the evolu-
tion operatorT as a function of the sample sizeLt. The parameters
used in this figure areLx=101, D0<0.008, V0=0.02, J=0.1 fsee
Eq. sB5dg. For a pure systemsD0=0d, the largest eigenvalue corre-
sponding to a bound state is followed by three degenerate pairs of
smaller ones. Point disorder slightly lifts degeneracy between the
states, but clearly does not affect exponential growth of the separa-
tion between the pairs of eigenvalues withLt.
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T = p
k

e−Hfstkddt. sB7d

In order to reproduce the continuum limitsB2d, we have to
take the time stepdt small enough to ensure that the effects
due tofH fstd ,H fst+dtdgÞ0 can be neglected. However, we
do not expect any qualitative changes in the results even if
this condition is violated. Of course, the time stepdt can
ultimately be taken to be 1 by an appropriate scaling of the
couplingsJ, U, and V. In a single particle space both the
HamiltonianH f and the evolution operatorT areM 3M ma-

trices. For a given realization of disorder, it is straightfor-
ward to diagonalizeT and find its eigenvectorsgisxd using
standard numerical methods. Then the density profile is
given by

kdndsxjdl = o
i=1

N

ugisxjdu2. sB8d

The indexd emphasizes that this is the result for a given
realization of point disorder. After averagingndsxjd over dis-
order realizations we obtainknsxdl, which is used in Fig. 3.
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