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I. INTRODUCTION

For superconductivity both the electronic and the
electron-phonon interactions are important. While for the
BCS sRef. 1d superconductors the electron-phonon contribu-
tions dominate, for novel high-Tc materials the Coulomb in-
teractions play a key role. Eliashberg theory,2 being a gener-
alization of Migdal’s theorem,3 is able to treat the electron-
phonon interaction in both the weak- and strong-coupling
regimes, but the electronic interactions are averaged to a
single parameterm*. This might be insufficient even for
strongly correlated systems.4 In this work, we focus on
purely electronic interactions in the superconducting homo-
geneous gas for which the results obtained in the last
40 years still remain controversial.

The existence of superconductivity at higher-angular-
momentum pairing without phononic contributions was sug-
gested by Kohn and Luttinger5 in 1965. The mechanism pro-
posed there was based on the presence of the long-range
oscillatory potential in ordinary space due to the sharpness of
the Fermi surface and the fact that Cooper pairs6 could form
taking advantage of the attractive regions. Interestingly,
some features of the phonon spectra have been explained due
to Friedel oscillations.7

More than 20 years ago, Takada8 solved the Eliashberg
equations and estimated the transition temperatureTc due to
the plasmon exchange. His solution assumed weak electron-
phonon coupling for which the Kirzhnits-Maksimov-
Khomskii sKMK d approximation9 can be justified. Other au-
thors, Rietschel and Sham10 and Shuh and Sham,11 solved
the strong-coupling Eliashberg equations linearized in the
gap function. For the Coulomb interactions, they also as-
sumed the random phase approximation12 sRPAd and found
unrealistically high critical temperatures. Later papers in-
cluded vertex corrections yielding a counterpart for the plas-
mon exchange which overestimate the Coulomb attraction.
Obtained this way, critical temperatures were much
lower.13–16

Nowadays, we can use a standard solid state method, the
density-functional theory17 sDFTd, generalized to the super-
conducting statesSCDFTd by Oliveira, Gross, and Kohn18 in

1988. The formal framework, which we briefly describe in
the next section, has been developed over more than ten
years19 and extended to relativistic superconductors.20 The
first solutions of the SCDFT scheme for simple metals pre-
dicted the critical temperatures21 quite well, although the
electronic correlations have been taken into account only by
the Thomas-Fermi screening of the Coulomb interaction.
Then, the semiphenomenological correlation functional was
constructed and tested, first for Nb22 and later for YBCO
sRef. 23d using the eight-band model.24 The formulation of
the local density approximationsLDA d for superconductors
was given by Kurthet al.25 in 1999. The attempt to construct
the exchange-correlation functional fromfirst principleswas
made25 using as a starting point the RPAsRef. 12d general-
ized to the superconducting state.26 The condensation energy
of the homogeneous gas has been calculated within that
scheme for the model pairing potential ofs type25 and no
superconductivity has been found up tors=5.

After the discovery of the anisotropic gaps in B2212sRef.
27d and YBCOsRef. 28d by angular-resolved photoemission
experiments, it is interesting to look closer at the higher-
angular-momentum channels within the SCDFT method.
This is a step toward DFT calculations for the superconduct-
ing state of high-Tc compounds. Recently, the condensation
energy for systems with the anisotropic gaps has been stud-
ied by Haslinger and Chubukov within the Eliashberg theory
adapted for the spin-fluctuation mediated pairing29,30 ssee
also references thereind.

The fact that the model calculations based on results ob-
tained for a homogeneous gas have been performed for
strongly correlated layered superconductors by Bill, Moraw-
itz, and Kresin31 and Seibold32 shows that our studies can
contribute to understanding physics of complicated systems.
The data for a homogeneous gas obtained with our code33

can also give a basis for the parametrization of an LDA
functional for inhomogeneous superconductors in a similar
philosophy as an ordinary LDA is a parametrization34 of the
quantum Monte Carlo data35 calculated for a representative
set of rs sWigner radiusd values.

This paper is organized as follows: after a brief descrip-
tion of the theoretical background in the next section, we
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show the results of the condensation energy calculations in
Sec. III and make a comparison with findings of other au-
thors in Sec. IV.

II. THEORETICAL BACKGROUND

The framework of a DFT for superconductors was formu-
lated by Oliveira, Gross, and Kohn.18 It rests on 1-1 mapping
between the density

nsr d = o
s

kĈs
†sr dĈssr dl s1d

and the superconducting order parameter

xsr ,r 8d = kĈ↑sr dĈ↓sr 8dl, s2d

on the one hand, and the electrostatic and pairing potentials
vssr d and Dssr ,r 8d, on the other hand. Here, we assumed
singlet pairing; however, the triplet pairing can be treated
analogously.36 The noninteracting Kohn-Sham potentials are
functionals of both the normal density and the order param-
eter:

vsfn,xgsr d = v0sr d +E d3r8
nsr 8d

ur − r 8u
+ vxcfn,xgsr d, s3d

Dsfn,xgsr ,r 8d = D0sr ,r 8d +E d3r8
xsr ,r 8d
ur − r 8u

+ Dxcfn,xgsr ,r 8d,

s4d
wherev0sr d is the lattice potential andD0sr ,r 8d is an exter-
nal pairing potential of an adjacent superconductor. The sec-
ond term inDssr ,r 8d is the anomalous Hartree potential. The
exchange-correlation potentials are defined as functional de-
rivatives of the exchange-correlationsxcd free energy func-
tional Fxcfn,xg over the normal and anomalous densities:

vxcfn,xgsr d =
dFxcfn,xg

dnsr d
, s5d

Dxcfn,xgsr ,r 8d = −
dFxcfn,xg
dx*sr ,r 8d

. s6d

The corresponding Kohn-Sham equations have the form of
the Bogoliubov–de Gennes equations18,37 sm is a chemical
potential of the superconductord:

uksr d = F−
¹2

2
+ vssr d − mGuksr d +E d3r8Dssr ,r 8dvksr 8d,

s7d

vksr d = − F−
¹2

2
+ vssr d − mGvksr d +E d3r8Dssr ,r 8duksr 8d,

s8d

and result from diagonalization of the noninteracting Hamil-
tonian

Ĥs = o
s
E d3rĈs

†sr dF−
¹2

2
+ vssr d − mGĈssr d

− FE d3r E d3r8Ds
*sr ,r 8dĈ↑sr dĈ↓sr 8d + H.c.G . s9d

The exchange-correlation functional includes in general
the electronic and phononic contributions.19 Here, however,
we are interested in the electronic part only, treated within
the RPAsRef. 12d for the superconducting state.26 The LDA
scheme for superconductors25 has been constructed analo-
gously to the local spin density approximationsLSDAd. In
superconductors, the order parameter plays a similar role to
that of the spin magnetization in the LSDA. The electron gas
is exposed to the external pairing potential of the supercon-
ductor, just as the LSDA gas is under the influence of a
magnetic field.

The exchange energy of the superconducting gas is given
by the expression

fxfms,Dsg = −
1

4
E d3k

s2pd3

d3k8

s2pd3

4p

uk − k8u2

3F1 −
jk

Ek
tanhSb

2
EkDG

3F1 −
jk8

Ek
tanhSb

2
Ek8DG , s10d

where Ek =Îjk
2+ uDsskdu2 is the quasiparticle spectrum and

fjk =sk−kFd2/2g−m. The anomalous Hartree energyfAH is a
functional of the pairing potential only:

fAHfms,Dsg =
1

4
E d3k

s2pd3

d3k8

s2pd3

4p

uk − k8u2
DsskdDs

*sk8d
EkEk8

3tanhSb

2
EkD tanhSb

2
Ek8D . s11d

The RPA energy results from the summation of bubble dia-
grams with the normal and anomalous Green’s functions25,26

G andF ssee Fig. 1d and can be written as

fRPAfms,Dsg =
1

2b
E d3q

s2pd3o
nn

3SlnF1 − Pssq,nnd
4p

q2 G + Pssq,nnd
4p

q2 D ,

s12d

where the Matsubara frequencies, evennn=2np /b and odd
vn=fs2n+1dpg /b, enter the Fourier transform of the irre-
ducible polarization propagatorPssq ,nnd, with q being the
momentum exchange of the interacting electrons, as follows:

Pssq,nnd =
2

b
E d3k

s2pd3o
vn

fGsk,vndGsk + q,vn + nnd

+ Fsk,vndF†sk + q,vn + nndg. s13d

Evaluation of Green’s functions in the polarization propaga-
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tor leads to the explicit functional of the Coulomb and pair-
ing potentials:

Pssq,nnd =E d3k

s2pd3H Ek + Ek+q

nn
2 + sEk + Ek+qd2

3F1 −
jkjk+q

EkEk+q
+

DsskdDs
*sk + qd

EkEk+q
G

3F1

2
tanhSb

2
EkD +

1

2
tanhSb

2
Ek+qDG

+
Ek − Ek+q

nn
2 + sEk − Ek+qd2

3F1 +
jkjk+q

EkEk+q
−

DsskdDs
*sk + qd

EkEk+q
G

3F1

2
tanhSb

2
EkD −

1

2
tanhSb

2
Ek+qDGJ .

We assumed above that the Kohn-Sham orbitals are plane

waves, because we are interested in the condensation energy
of the homogeneous electron gas. The way to obtain the
LDA functional for inhomogeneous superconducting system
is given in Ref. 25. Feynman diagrams for the contributions
to the total energy considered in this work are displayed in
Fig. 1 and compared to those diagrams from earlier papers.

The condensation energy can be obtained from

ES−N = Tkinfms,Dsg − Tkinfms,0g + fahfms,Dsg + fxfms,Dsg

− fxfms,0g + fc
RPAfms,Dsg − fc

RPAfms,0g, s14d

where the kinetic energy difference of the superconducting
and normal states in a homogeneous gas at zero temperature
is

Tkinfms,Dsg − Tkinfms,0g = o
k

k2

2
F1

2
−

1

2

jk

Ek
Gsgnsk − kFd.

III. CONDENSATION ENERGY CALCULATIONS

The first calculations of the condensation energy within
the LDA for superconductors with the RPA functional were
performed for thes-wave pairing only and no superconduc-
tivity was found.25 We calculate the condensation energy of
the homogeneous electron gas at zero temperature, assuming
a model nonspherical gap function of the form

Ds
lmskd = d expS− sk − kFd2

s2 DPl
mskd, s15d

whered ands are parameters in units ofm andkF, respec-
tively, andPl

mskd are associated Legendre polynomials. The
above parametrization of the gap makes it possible to control
the strength, range, and angular shape of the pairing. In this
work, we are mainly interested in the angular part. It will be
clear from the further discussion that variational determina-
tion of d ands in such a way that the condensation energy is
maximally negative would lead to either zero values for
these parameters ifES−N is positive or to infinite values of
these parameters ifES−N is negative. As we will see later, the
condensation energy is also monotonic withl, but we were
not able to predict this result from the analytical form of
expressions14d.

The s-wave calculations appeared smooth ind and m
parameters25 in the ranges 0.01,s,1 and 0.01,d ·100
,1 at rs=0.1 and 1ø rsø5. Therefore, in this work, we
fixed the strength of the potential atd=0.01m and the range
of the pairing interaction ats=0.1kF, and we present results
for this choice of the parameters. Later, we will discuss
changes in the condensation energy when it is calculated
with two other sets of parametersd and s: namely, withd
=0.01m ands=0.05kF and withd=0.001m ands=0.1kF.

Turning to the details of the implementation, the eight-
dimensional integrals of the energy functionals have been
reduced by one dimension in electronic Matsubara frequency
which can be evaluated analytically. Several singularities
present in the formulas need special grids. For the calcula-
tion of fAH and fx and the radial part offRPA, we used a

FIG. 1. Feynman diagrams for the total energy contributions
considered by other authorssRefs. 5, 8, and 10d and in this work.
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modified Gauss-Legendre quadrature. For the angular part of
fRPA, we combined the Lobatto grid38 for the q-momentum
integration and Sobolev’s quasirandom method39 to generate
the mesh used by the Monte Carlo quadrature over the an-
gular part of thek momentum. Details of the singularities
and parallel code are given in Ref. 33.

We will focus now on the results obtained withd
=0.01m ands=0.1kF. We see in Fig. 2 the angular momen-
tum dependence of the condensation energy and its compo-
nents: the anomalous Hartree energysfAHd and the difference
sS-Nd of the exchange energyfx between the superconduct-
ing and normal states and that differencesS-Nd of the RPA
correlation energyfRPA, calculated atrs=1 and atrs=10. The
condensation energy and all its components decrease mono-
tonically with the angular momentum. The anomalous Har-
tree energy is the biggest positive component, almost com-
pletely balanced by the negative RPA energy which acts in
favor of superconductivity. The exchange energy difference
between the superconducting and the normal state is positive,
and tends to destroy pairing. We show results for all momen-
tum numbersl from 0 to 9. However, for the antisymmetric
fermionic function only the even numbers make sense, be-
cause we assumed singlet spin pairing for the order param-
eter. The condensation energies atrs=1 are positive for 0
ø l ø9. At the densityrs=10, s-wave pairing also does not
allow superconductivity.

In order to show the energetics as a function of the density
of a homogeneous electron gas, we present, in Table I, the
condensation energy and its components for thes-type and
d-type as well asf-type pairing potentials and for thers
parameter in the range of 1–10 a.u. Decreasing the density
from rs=1 to rs=3, all energies decrease by two orders of
magnitude, from a few meV to a few percent of meV. Further
dilution of the electron gas tors=10 lowers the energies by
another two orders of magnitude. This shows how delicate
the balance is between the superconducting phase and the
normal state.

Slightly negative values of the condensation energies at
rs=10 are obtained for f waves and higher-angular-
momentum pairing, but all components are very small and
the most negative value is of order,1.5310−6 meV. Since
the biggest contributions to this negative energy arefRPA and
fAH, which are of order 1310−4 meV while the condensation
energy is of order 1310−6 meV and since we trust to our
numerical results up to the three leading digits, it is plausible
that a change by 1 in the last position in the correlation and
the anomalous Hartree energy may cause a change of sign in
the condensation energy. Actually for the same reason, the
condensation energy atrs=10 for thed-wave pairing could
be negativesbecause it is three orders of magnitude smaller
than the leading contributionsd. But this uncertainty due to
the numerical accuracy will happen neither fors-wave pair-
ing nor for smallerrs parameters, as one can see in Table I.
Later, we will show calculations forrs=10 with another
choice ofd ands.

Finally, we change the parameters in the model pairing
potential. These results are presented in Table II forrs=1 and
for the angular momentum up to 3ssince before we found
the possibility for a phase transition forf wavesd.

First, we changes parameter for 0.05kF sbefore it has
been fixed at 0.1kFd, and we keep the samed as in Table
I—i.e., 0.01m. For this choice ofd and m, all energies are
smaller, and we do not find superconductivity atrs=1 up to
l =3. The typical bandwidths at the Fermi surface are much
more narrow than 0.1kF. The results of calculations fors
waves performed by previous authors25 were smooth ins,
and our results with two values ofs appear smooth with
respect to a variation of the angular momentum. Therefore,
we do not expect any change in conclusions by changing the
s parameter.

Second, we change thed parameter for 0.001m sbefore it
has been fixed at 0.001md and we keep the sames as in
Table I—i.e., 0.1kF. Now, all energies are smaller, and the
decrease of the condensation energy is about one and half
order of magnitude while the change of the pairing amplitude
d is by a factor of 0.1. The BCS behavior of the condensation
energy is proportional to a square of the gap,,D2. We find
in our calculations that the dependence of the condensation
energy on the gap amplitude is a bit weaker than the BCS
one. For the lower-momentum channels a power of that de-
pendence is smaller than for the higher-angular-momentum
channels. This seem to be in contrast with measurements for
ordinary, BCS-like, superconductors which have a gap of the
s type. On the other hand, measurements are not able to split
the purely electronic and the phononic contributions, and we
did not add phonons to our calculations.

FIG. 2. The condensation energyfcondensationand its compo-
nents: the difference between the superconducting and the normal
state of the RPA correlation energyfRPA sS-Nd and that of the ex-
change energyfx sS-Nd and of the kinetic energyTkin sS-Nd and the
anomalous Hartree energyfAH sthis is nonzero only in the super-
conducting stated. All energies are shown calculated at two densi-
ties: rs=1 a.u. supper paneld and rs=10 a.u. slower paneld. The
model parameters in the pairing potential were fixed atd=0.01m
ands=0.1kF. Zero temperature was assumed.
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TABLE I. The condensation energyfcond and its componentsfRPA sS-Nd, fx sS-Nd, fAH, andTkin sS-Nd,
calculated fors waves,d waves, andf waves for fixedd=0.01m ands=0.1kF, and at zero temperaturesT
=0 Kd for different electronic densitiesrs. Energies are given in meV, and parametersm, kF, and rs are in
atomic units.

rs fcond −fRPA fx fAH Tkin

s waves

1 4.713100 6.563100 1.483100 7.953100 1.843100

3 2.30310−2 9.37310−2 1.81310−2 9.79310−2 7.59310−2

5 2.82310−3 1.28310−2 2.33310−3 1.27310−2 5.90310−4

7 6.81310−4 3.33310−3 6.05310−4 3.29310−3 1.10310−4

8.5 2.87310−4 1.55310−3 2.78310−4 1.52310−3 4.16310−5

10 1.19310−4 8.35310−4 1.45310−4 7.91310−4 1.84310−5

d waves

1 8.28310−1 1.643100 3.93310−1 1.563100 4.43310−1

3 2.04310−3 2.18310−2 4.80310−3 1.92310−2 1.82310−3

5 4.21310−4 2.82310−3 6.19310−4 2.48310−3 1.42310−4

7 8.40310−5 7.49310−4 1.61310−4 6.46310−4 2.64310−5

8.5 2.16310−5 3.59310−4 7.38310−5 2.97310−4 9.99310−6

10 7.80310−7 1.97310−4 3.85310−5 1.55310−4 4.43310−6

f waves

1 7.24310−1 1.103100 3.02310−1 1.193100 3.32310−1

3 3.07310−3 1.56310−2 3.69310−3 1.36310−2 1.37310−3

5 3.31310−4 2.01310−3 4.75310−4 1.76310−3 1.06310−4

7 5.87310−5 5.41310−4 1.23310−4 4.57310−4 1.97310−5

8.5 1.21310−5 2.62310−4 5.66310−5 2.10310−4 7.48310−6

10 −1.45310−6 1.44310−4 2.95310−5 1.10310−4 3.32310−6

TABLE II. The condensation energy and its componentsfRPA sS-Nd, fx sS-Nd, fAH, and Tkin sS-Nd,
calculated as functions of the angular momentuml for three sets of parameters:rs, d, ands. Energies are
given in meV.

l f cond −fRPA fx fAH Tkin

rs=1, d=0.01kF, s=0.05m

0 3.223100 4.913100 1.093100 5.653100 1.393100

1 9.18310−1 2.033100 4.47310−1 1.973100 5.37310−1

2 5.39310−1 1.343100 3.05310−1 1.233100 3.52310−1

3 3.94310−1 1.003100 2.37310−1 8.90310−1 2.66310−1

rs=1, d=0.001kF, s=0.01m

0 1.07310−1 2.24310−1 3.90310−2 2.58310−1 3.39310−2

1 2.59310−2 8.12310−2 1.44310−2 8.06310−2 1.20310−2

2 1.43310−2 4.97310−2 9.23310−3 4.72310−2 7.53310−3

3 1.02310−2 3.53310−2 6.90310−3 3.31310−2 5.53310−3

rs=10, d=0.1kF, s=0.5m

0 7.85310−3 2.90310−2 5.05310−3 3.04310−2 1.40310−3

1 1.49310−3 1.03310−2 2.23310−3 9.02310−3 5.39310−4

2 1.13310−3 5.91310−3 1.58310−3 5.11310−3 3.53310−4

3 9.17310−4 4.05310−3 1.25310−3 3.45310−3 2.67310−4
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Our result indicates that we should not expect supercon-
ductivity at smallrs. Since all the energy components grow
with d and s, we can say that the maximally negative con-
densation energy would be fors=kF sall states contribute to
pairingd and that there is no upper limit ford. This is due to
the fact that our condensation energy is proportional toDn

with 1.5,n,2. The value ofd, which we set to 0.01m, is
much bigger than typical gaps. For instance, for Nb, we have
s-wave pairing,rs=0.87,m=33.13 eV, while the experimen-
tal gap is 1.55 meV. We have chosen a larged—i.e., 0.01m
,330 meV—for most of our calculations for the sake of
accuracy, since the conclusions about the angular depen-
dence of the condensation energy do not change with this
parameter.

For lower density—i.e.,rs=10—we calculated again the
condensation energy but for a new choice of the gap param-
eters:d=0.1m and s=0.5kF, which are unrealistically high
but the numerical accuracy is much better in this case. The
result of above calculations is negative for superconductivity,
which makes also a situation that the phase transition occurs
for a small gap less probabilistic.

If we wanted to include the electron-phonon or electron-
paramagnon interaction, the expression for the total energy
would be frequency independent because the frequency is
integrated out in the SCDFT schemessee, for instance, Refs.
18 and 19d. Similar to the total energy, also the gap function
would be static, as it is now. This is in contrast to the Eliash-
berg formalism where inclusion of strong coupling changes
the gap function to a dynamic parameter.30 As for the feed-
back effect of phonons or spin fluctuations for the electronic
energy and vice versa, this effect would exist if one solved
the SCDFT equations in the Bogoliubov–de Gennes form
sfor this formulation of SCDFT see, for example, Ref. 23d. In
the way we calculate the condensation energy in this work,
the aforementioned feedback would not exist since all energy
components contribute to the total energy independently
through a single equation. This is another difference from the
Eliashberg scheme, where three coupled equations have to be
solved for the self-energyS, pairing-vertexF, and polariza-
tion sRefs. 29 and 30d.

Summarizing the results, the condensation energy is posi-
tive for all angular momentums, which indicates that we are
unlikely to obtain superconductivity from the electronic cor-
relations only. For the very dilute gas atrs=10, we obtained
slightly negative values of the condensation energy when the
gap is small. These results should be, however, viewed with
care, because all the energy components are very small and
at the limit of numerical accuracy for the multidimensional
quadrature. We trust to three leading digits in Tables I and II,
while the condensation energy atrs=10 is three orders of
magnitude smaller than the biggest contributions. Also the
random phase approximation12 for the correlation energy is
exact only in the limit of high density40—i.e., rs,1. This
treatment of the Coulomb interaction might be insufficient
for the density atrs=10. Whether it is an appropriate ap-
proach it depends also on the angular momentum of the pair-
ing potential and on the physical property one is
interested.16,41

IV. DISCUSSION AND CONCLUSIONS

Whether the superconductivity can exist without phonons
or not is a very old problem. In 1965, Kohn and Luttinger5

suggested a mechanism of the Cooper pair6 formation in the
homogeneous gas due to Friedel oscillations.7 These authors
did not assume any particular form of the interaction, which
could even be purely repulsive, since the attractive regions
could form in real space because of a sharpness of the Fermi
surface in the reciprocal space. It has been discussed that, for
the pairing potential at higher angular momentum, the super-
conducting state was more favorable than fors waves. The
above conclusions were based on the mathematical analysis
of irreducible vertexes with the particle-particle interaction
up to the second orderssee Fig. 1d. The criterion used for the
superconductivity was the occurrence of a pole atTc in the
scattering amplitude for pairs of quasiparticles of equal and
opposite momenta and in the total energy corresponding to
two particles on the Fermi surface.

Later work on the superconducting homogeneous gas
within the Eliashberg theory, treating the Coulomb interac-
tions on the RPA level and beyond, can be compared to the
results presented in this paper.

Superconductivity obtained due to the plasmon exchange
alone seemed to be overestimated. Several papers solving the
Eliashberg equations with the RPA model for the Coulomb
interaction predicted superconductivity fors-wave pairing at
quite high densities. Within the weak-coupling limit of the
electron-phonon interaction the Eliashberg equations could
be considered ask dependent only due to the KMK
approximation.9 In the limit of strong coupling to phonons,
the k- andv-dependent equations have to be solved. While
first approximation led to superconductivity8 at a density
lower thanrs=6, solving the strong-coupling regime equa-
tions yields a change in a sign of the Coulomb parameter10

sm* ,0d at the densityrs,2.5. The total energy diagrams
included in both approaches are shown in Fig. 1. The com-
mon assumption in the aforementioned two approaches is
that the polarization function, which enters the RPA screened
interaction, contains only normal Green’s function loops, ne-
glecting the anomalous ones which are also included in our
scheme. In addition, the normal Green’s function used by
Sham and co-workers was obtained self-consistently in con-
trast to all the other papers discussed here. The correctness of
such an approach was discussed by several authors16,42 also
by occasion of the GW approximation.43,44 The criterion for
superconductivity used by Takada8 was a nonzero critical
temperature. Sham and co-workers10,13,14,42 considered the
electron gas to be superconducting when the Coulomb
pseudopotentialm* was positive.

A number of papers that included vertex corrections on
different level approximations predicted decreased tempera-
tures of phase transition. Grabowski and Sham13 studied the
v-dependent-only Eliashberg equations with vertex correc-
tions up to second order. Within that simplified model, the
signum of m* changed atrs=7. More extensive studies of
vertex corrections were done within the KMK,k-dependent
scheme extended to the strongly correlated systems by
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Takada,15 who included more than 50 diagrams systemati-
cally using the effective-potential expansion. As a conclusion
of that work the phase transition occurred atrs.3.9, the
maximum of the critical temperature was obtained atrs
=7.2, and Tc decreased for lower densities. Büche and
Rietschel14 added the vertex corrections, within the phenom-
enological model by Kukkonen and Overhauser45 sKOd, to
the earlier work by Rietschel and Sham,10 and did not obtain
superconductivity up tors=5. The parameterm* for gas in
the range of 1ø rsø5 was positive and varied between 0.05
and 0.1. Then, Takada16 performedk- andv-dependent cal-
culations with the local-field correction of the KO model and
showed a significant effect of corrections beyond RPA
around rs=5. Another observation made in his work was
that, although the compressibilityk and the spin susceptibil-
ity x were strongly dependent on the vertex corrections,Tc
of gas at the densityrs.20 was similar to the temperature
obtained from RPA. Forrs.40 the critical temperature has
been approximated byTc<0.04EF.

All the aforementioned papers on the superconducting ho-
mogeneous gas, within the RPA and beyond, dealt with the
pairing potential of thes type. Thes-, p-, andd-type pairing
potentials examined in Ref. 41 led to the conclusion that the
vertex corrections tos waves are much more important than
to the higher-momentum channels.

In this work, we calculated the condensation energy
at zero temperature, instead of solving the gap equation
for finite temperatures. This way we are not able to deter-
mine the critical temperature for the densities at which
we find superconductivity. On the other hand, negative val-
ues of the condensation energy are very small, of order
,1.5310−6 meV, at the densitiesrsù10 for f waves and the
higher-l channels. Ford waves, the condensation energy is
positive but very small.

We concluded that this effect might be due to an accuracy
of the multidimensional numerical quadrature of objects with
many singularities. On this point we want to comment that
most of standard quantum chemistry programs which calcu-
late two-electron integrals do not accede an accuracy higher
than six important digits. Our task is even more difficult
because in addition to calculating thek- and q-momentum
vectors, we have to perform the quadrature over the bosonic
Matsubara frequency, and singularities in the superconduct-
ing state have much more complicated shape33 than those of
the two-electron integrals calculated for the normal state.

The positive aspect of the method employed here is the
absence of any approximation except the RPA. The DFT is
exact for the ground state studied here. We do not make any
assumption about phononic interactions, which we neglect.
But if we wanted to include the electron-phonon interactions,
then the way of treating the weak and the strong coupling
would be the same.21 We do not drop either the momentum
dependence or the frequency dependence of the Coulomb
interaction. The vertex corrections, especially important for
the moderate densities for the properties like the critical
temperature,16 are not taken into account in this work. How-
ever, we believe that the inclusion of vertex corrections
would not change the conclusions, because forf waves the
strength of the Coulomb attraction is not as much overesti-
mated by the polaron exchange as fors waves.41

Another interesting question would be whether it is pos-
sible that at some densitiess waves are favorable for the
superconducting state and at other densities the higher-l pair-
ing would lead to lower energy. Such ans-wave top-wave
transition has been reported by Takada41 at rs=4.7 while for
higher densities the energy ofp waves was lower. Küchen-
hoff and Wölfle,46 by solving two coupled Bethe-Salpeter
equations for the two-particle vertex functions in the
particle-hole channels, found thep-wave superconduct-
ivity for 10, rs,35 and thes-wave superconductivity for
rs.35. From our results, which are monotonic with the an-
gular momentum number, such anl-wave–to–l8-wave transi-
tion seems not to be the case.54

We assumed singlet pairing. Thus, only the even numbers
l slike s waves,d waves, etc.d are relevant, and it would be
incorrect from the symmetry point of view to compare the
total energy ofs waves with the total energy ofp waves. On
the other hand, if there is not much energy gain by the Coo-
per pair formation, then the spin pairing in the superconduct-
ing phase probably is the same as the magnetic phase of the
normal state. Within quantum Monte Carlo methods,47 it has
been widely examined theoretically that the ground state of
the homogeneous electron gas is paramagnetic for high and
intermediate densities and the transition to the ferromagnetic
phase occurs at aboutrs.25. There is experimental
evidence48 for the ferromagnetic phase in Ca1−xLaxB6 at the
densityrs=28 a.u., where the saturation moment of 0.07mB
per electron resists below the temperature 600 K, which is of
the order of the Fermi temperature of the electron gas. How-
ever, for this experiment the iron substrate was chosen. An-
other experimental group49 could not find any evidence for
the intrinsic ferromagnetism in any ofA1−xLaxB6 sA
=Ca,Srd samples. As for the novel superconducting materi-
als with triplet pairing, they cannot be described within a
model based on the local spin density approximation, where
the parametrization on a homogeneous gas results works
well. In order to describe those superconductors, like
Sr2RuO4 or sTMTSFd2X, it has been shown by Shimahara in
Ref. 50 that one should add strong short-range correlations to
weaken the Coulomb interaction and then the electron-
phonon mechanism could cause pairing. Moreover, the
model assumed in our work is three dimensionals3Dd, while
Sr2RuO4 should be described in 2D andsTMTSFd2X in 1D.

There is also a question about an effect of the fluctuations
which could mediate the pairing interactionsfor such a
model see the work of Abanov and Chubukov in Ref. 51d.
Such calculations for the condensation energy in strongly
correlated systems, where both effects of the electron-
phonon and electron-paramagnon interactions are taken into
account, have been performed by Haslinger and Chubukov in
Ref. 30. The essential difference between those calculations
and ours, if we included phonons and paramagnons, would
be in the frequency dependence of the gap function, which in
our case is static due to different formulation of the problem
from the very beginning. For the inclusion of the dynamical
effect to the gap, one needs to go beyond the Born-
Oppenheimer approximation. In fact, such formulation exists
within the multicomponent DFT scheme proposed by
Kreibich and Gross52 and developed by van Leeuwen.53

In conclusion we have calculated the condensation energy
of the homogeneous electron gas at zero temperature within
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the density-functional theory for superconductors. The ran-
dom phase approximation was assumed for the Coulomb in-
teraction and no phononic contributions have been added.
We did not consider pairing mechanism mediated by fluctua-
tions. Within this approach, there is no superconductivity for
any momentum of the pairing potential for the densities up to
rs.9. We found very weak superconductivity forf waves
and higher-l pairing atrs=10, but this effect is so small that
could be due to the neglecting of the vertex correction or due
to the accuracy of the numerical quadrature.
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