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We model a Superconducting Single-Electron Transistor operating by repulsive interactions. The device
consists of a ring of Hubbard clusters, placed between electrodes and capacitively coupled to a gate potential.
In each cluster, a pair of electrons at appropriate filling feels a weak effective interaction which leads to pairing
in part of the parameter space. Thus, the system can host many bound pairs, with correlation induced binding.
When the charging energy exceeds the pairing energy, single-electron tunneling prevails; in the opposite
regime, we predict the Coulomb blockade pattern of two-electron tunneling. This suggests that in tunneling
experiments repulsion-induced pairs may behave in a similar way as phonon-induced ones.
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I. INTRODUCTION

In recent years, a variety of transport experiments have
been reported in molecular size systems, such as quantum
dots and nanotubes, as a contribution to the current boost
towards of the progress in nanoscale technology. From the
theoretical side, circuits of several kinds have been
modeled,1 and in applied electronics the Single-Electron
Transistors2 are among the most important devices. These are
realized by connecting a nanoscopic conducting island to
metallic leads and to a gate voltage. The energy gaps existing
between states with a different number of particles allow us
to fix the number of electrons in the island very sharply; as a
consequence single electrons can tunnel to or from the con-
ductor. Even more appealing situations arise when the above
scenario is complicated by electron-electron interactions, as
in the case of a Superconducting-Single Electron Transistor
(S-SET).

A S-SET is a mesoscopic device obtained by linking ca-
pacitively a superconducting grain to two normal leads and
to a gate electrode as well.3 The latter allows one to control
the numberN of electrons on the grain by tuning the gate
voltage Vg. Such a system has been studied both
experimentally4 and theoretically5–7 in great detail during the
past years. In a normal island the parity ofN oscillates be-
tween even and odd values, by varyingVg; conversely in a
superconducting islandN is always even because of the
paired nature of the ground state. Therefore the S-SET trans-
port properties in the linear regime are governed by Andreev
reflection under the critical temperatureTC of the central
island, while aboveTC single electron tunneling prevails.
This leads to well pronounced Coulomb blockade peaks of
the conductanceG= u]I /]VuV=0 as a function of the gate volt-
age. In particular the parity-controlled tunneling produces
2e/Cg periodic peaks in the pair-tunneling regime, in con-
trast with thee/Cg periodicity of the normal system(hereCg
is the capacity of the gate electrode). This behavior is well
reproduced by models5–7 using a gate controlled BCS Hamil-
tonianHBCS; the connection to free electron leads employs a
tunneling Hamiltonian, usually treated by second-order per-
turbation theory.

In the present article we propose a model for a S-SET
with a strongly correlated, repulsive Hubbard-like model in-
stead ofHBCS as the “superconducting” grain Hamiltonian.
That is, we look for a superconducting response entirely
driven by the electronic correlations rather than by the
phonon-mediated effective attraction. The occurrence of two-
electron tunneling in non BCS systems was observed by
Ashoori et al.8 in a 1 mm GaAs tunnel capacitor. Purely
electronic mechanisms were proposed to explain this behav-
ior and the GaAs quantum dot models ranged from a semi-
classical description9 to a Hubbard model framework.10 Un-
like the systems considered by Refs. 9 and 10, in our
gedankenexperiment, like in a S-SET, the tunneling current is
due to many bound pairs hosted by the device in a wide
range of gate potentials.

The plane of the paper is the following. In the next section
we introduce the microscopic model that we are going to
study. Section III is devoted to determine some important
properties of the strongly correlated central island. We show
that the electronic correlations provide a nontrivial character-
istic energy which can be compared with the electrostatic
charging energy in order to distinguish between anormal
regime and asuperconductingone. In particular in these two
regimes the parity of the number of particles in the ground
state oscillates exactly like in a S-SET. In Sec. IV we explic-
itly calculate the conductance as a function of the gate volt-
age by using a master equation approach.11 It is found that
the linear response of our strongly correlated device shows
Coulomb blockade pattern. A normal behavior is observed in
the noncorrelated and in the very strongly correlated re-
gimes; while in the intermediate case, the spacing between
the conductance peaks doubles. Finally the conclusions are
drawn in Sec. V.

II. THE MODEL

Let us consider the grand-canonical Hamiltonian,

H − mN̂tot = Hdevice+ Hleads+ HT. s1d

Here Hdevice is an extended Hubbard model of the central
island coupled capacitively to a gate voltageVg; Hleads de-
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scribes the left and right reservoirs, supposed to be identical
free electron gases for simplicity;HT is the tunneling Hamil-
tonian, that connects the central device to the leads;m is the

chemical potential andN̂tot is the total number of particles
operator. The carriers are electrons, of charge −e,e.0. Let
us examine these three terms in detail. As in previous work,12

the central island consists in a ring ofL identical 5-site
centered-square Hubbard clusters, denoted by the indexa;
see Figs. 1(a) and 1(b). Each cluster is described by the
Hamiltonian

Ha = o
s,i=1

4

tspa,0s
† pa,is + h.c.d + Uo

i=0

4

n̂a,i↑n̂a,i↓, s2d

with the creation operators on thea-th clusterpa,0s
† for the

central site, andpa,is
† , i =1, . . . ,4 for the remaining 4 sites;

n̂a,is=pa,is
† pa,is, ands is a spin index.

In the device, each clustera is linked to the two nearest
neighbors ones(denoted bya+1 anda−1) by the hopping
Hamiltonian Ht [see Fig. 1(a)] whereby a particle in the
i-th site of thea-th cluster can hop towards thei-th site of
the b=a±1-th clusters:

Ht = to
a=1

L

o
b=a±1

o
s,i=1

4

spa,is
† pb,is + h.c.d. s3d

Hdevice also contains an electrostatic charging energy term
due to an effective capacitanceC of the central island. Fi-
nally the island is connected capacitively to the gate which is
at a potentialVg [see Fig. 1(b)]. Therefore we have

Hdevice= o
a=1

L

Ha + Ht +
sN̂ed2

2C
− esVg − mdN̂, s4d

whereN̂ is total number of particles operator in the central
device. We remark that the capacitive term is essentially
long-ranged and accounts for the monopole contribution to
the charging energy, while theU terms depend on the way
the charges are distributed in the island. In all electrostatic

termsN̂ should be referred to an average population corre-

sponding to a neutral situation; but, actually, any shiftN̂

→ N̂−kN̂l would produce a constant and a linear term inN̂
that just modifiesm.

Both leads are free electron gases with chemical poten-
tials mg, g= l ,r; hence

Hleads= o
g=l,r

o
k,s

s«k − mgdck,g,s
† ck,g,s, s5d

with m=ml =mr −eV,16 whereV is the bias.
Finally the tunneling Hamiltonian is taken to be

HT = o
h,k,s

fTsldsck,l,s
† f1,hs + h.c.d + Tsrdsck,r,s

† f fL/2g,hs + h.c.dg,

s6d

where the fa,hs
† are eigen-operators of the noninteracting

term of Ha: oistspa,0s
† pa,is+pa,is

† pa,0sd=oh,sehfa,hs
† fa,hs.

We observe that the tunnel junctions connect two opposite
clusters to the leads; namely thea=1 cluster is linked to the
left electrode and thea=fL /2g cluster to the right lead(here
fxg means the integer part ofx); see Fig. 1(a). Note also that
Tsgd is independent ofh; in other terms we are using “white”
wires, that is, leads that do not filter electrons according to
the square symmetry of electronic states in each cluster. This
is a simple way to ensure the 3D nature of the leads, which is
essential to allow Andreev reflection.

In the next section we draw some relevant properties of
Hdevice which mimic the behavior ofHBCS despite the pres-
ence of strong electronic correlations.

III. PROPERTIES OF THE CENTRAL ISLAND

In order to understand the physics of the device that we
propose, it is useful to focus first on properties ofHa, re-
ferred to as a single 5-site cluster. The HamiltonianHa is a
prototype example of electronic pairing from repulsion; this
is signaled by the propertyD,0, where D=«s4d+«s2d
−2«s3d and«smd is the ground state energy withm electrons.
There is pairing atm=4 for U / t,34, the minimum value is
D;−50 meV att=1 eV andU,5 eV and the binding en-
ergy isuDu (see Fig. 2). The mechanism has been investigated
elsewhere,13,14, and need not concern us here; we just say
that broadly speaking it is a lattice counterpart of the Kohn-
Luttinger mechanism.15

When a negativeD occurs, its competition withe2/C de-
termines the parity of the numberNgs of electrons in the

FIG. 1. (a): Scheme of the strongly correlated S-SET. The de-
vice consists ofL Hubbard clusters arranged in a ring and linked
symmetrically to one another.(b) A pictorial representation ofHa

andHt.

FIG. 2. D (in eV) as a function ofU / t. The maximum binding
occurs atU,5t whereD<−0.042t. For U.34t, D becomes posi-
tive and pairing disappears.
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ground state ofHdevice for small values of the inter-cluster hoppingt.
Here we are interested in the behavior of the device at low temperatureskT! uDu. Up to ostd and ost2d corrections, the

ground state energyEsNd of the central device with a fixed even or odd number of particlesN is

EN =5 L«s2d + sN − 2LdIP + SN

2
− LDD +

sNed2

2C
− esVg − mdN, for evenN;

L«s2d + sN − 2LdIP + SN

2
− L −

1

2
DD +

sNed2

2C
− esVg − mdN, for odd N, 6 s7d

where IP=«s3d−«s2d. Since one bound pair exists atm=4
electrons in the 5-site cluster, the first bound pair in the
L-cluster system appears atN=2L+2 electrons. From Eq.
(7), it follows that in the range 2LøNø4L, Ngs is always
even if the pair binding energy overcomes the charging en-
ergy. We call the situation whenuDu.e2/C the supercon-
ductingregime. Otherwise the system isnormaland anyN is
lowest in a range ofVg. In Fig. 3 we plot the ground state
energy ofHdevice as a function ofVg in both regimes, fort
=0. It also relevant to focus on the critical values ofVg
where ground states of differentNgs cross. We definesDVgdn

as the spacing between the critical values in the normal re-
gime andsDVgdsc such a spacing in the superconducting re-
gime; it holds that

sDVgdn =
e

C
+

D

e
,

sDVgdsc=
2e

C
. s8d

The charge fluctuations in the superconducting regime as a
function of the gate voltage are about double spaced with
respect to the normal regime, that is the typical condition
experimentally realized in a S-SET.4

We can also visualize the previous results by plotting the
gran-canonical average of the number of particles in the iso-
lated central device as a function ofVg. We use the standard
definition

kNl =
1

Z
TrfN̂e−sHdevice−mN̂d/kTg, s9d

whereZ=Trfe−sHdevice−mN̂d/kTg; Tr is dominated by the low en-
ergy states ofHdevice with t=0. In Fig. 4(a) one can observe
the so called Cooper staircase, characteristic of the supercon-
ducting regime.

Below, for computational convenience, we assume that
t! uDu and deal withHt perturbatively.12 So, the critical val-
ues ofVg where level crossing occurs are spread into inter-
vals of width ostd in the normal regime andost 2d in the
superconducting regime. Anyway the qualitative behavior is
still close to Figs. 3 and 4.

IV. CALCULATION OF THE LINEAR CONDUCTANCE

Next, we consider the effects of small bias voltageV ap-
plied between leads, i.e., the linear conductanceG;]I /]V
for V→0, versus the gate voltageVg. In the present article,
we follow the approach proposed by Beenakker11 and get the
formula for the conductance from a master equation. We take
Tsld ,Tsrd!kT, uDu in order to provide that(i) the parity of the
ground state is stable with respect to thermal effects,(ii ) the
elementary tunnel processes between the leads and the cen-
tral devices involve a few particles at a time and the broad-
ening of the levels ofHdevicedue to the presence of the leads
is smaller than the thermal one. As discussed by Beenakker,11

these limitations characterize the Coulomb blockade regime.
In the normal regime single-electron tunneling dominates.

The theory works very much like in Ref. 11 and we calculate
the first-order transmission rates,

FIG. 3. EN−E8, whereEN is the ground state energy ofHdevice,
versusVg, for several numbersN of particles.(a) In the supercon-
ducting regime;(b) in the normal regime. Solid lines are used for
evenN and dotted lines for oddN. In the insets we plot the grand-

canonical averages ofN̂ in Hdevice. We usedL=4, t=1 eV, t=0,
kT=0.001 eV,C=50 e/V; with this choicee2/C=0.02 eV. In(a)
U=5 eV sD=−0.043 eVd and in (b) U=0.2 eVsD=−0.0008 eVd.
Vg is in V, EN is in eV.
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GqN−1,iN
sgd =

2p

"
Tsgd2Uo

h,s
kqN−1ufa,hsuiNlU2

, s10d

from the iN−1-th state of the central device withN particles
(denoteduiNl) to theqN−1-th state of the central device with
N−1 particlessuqN−1ld via tunneling to the leftsld or right srd
lead. Remember thata=1 for g= l anda=fL /2g for g=r. In
the actual calculations below, we obtainuiNl in second-order
perturbation theory inHt; we mix the degenerate ground-
state multiplets of energyEN of Hdevice, which determine the
low-energy properties of the system. By first-order perturba-
tion theory inHT, one gets the familiar formula

GsId =
re2

KT
o

N=2L+1

4L

o
iN,qN−1

GqN−1,iN
srd GqN−1,iN

sld

GqN−1,iN
srd + GqN−1,iN

sld

3Ps0dsiNdf1 − fsEiN
− EqN−1

dg. s11d

Here, Ps0dsiNd is the Boltzmann equilibrium probability for
occupying the eigenstateuiNl with energyEiN

; f is the Fermi
distribution function, andr is the density of states at the
Fermi level in both leads. Each term in Eq.(11) depends on
Vg through the statistical factorPs0dsiNdf1− fsEiN

−EqN−1
dg and

produces the well known Coulomb blockade behavior.11,17

The linear conductance is highly suppressed unless the gate
voltage is fine tuned atEiN

,EqN−1
−m, where sharp peaks of

GsId occur. The second-order contribution inHT depends on
osfTgg4d rates which are negligible with respect to the
osfTgg2d G coefficients; therefore we can safely avoid work-
ing out the second-order current in this regime.

When uDu.e2/C, only evenN have an important weight
in the appropriate range ofVg [see Fig. 3(a)]; therefore the
resonance conditionEiN

=EjN−1
−m never holds and the first-

order conductanceGsId is highly suppressed for any value of
Vg. In thispair tunneling regime, accordingly, we must go on
calculating the conductance up to second-order inHT.5–7

Three-body, four-body transitions and so on can be disre-
garded, however, asTsld andTsrd are both small compared to
the charging energy. Since electrons can get paired in the
device but not in the leads, we may think of the second-order
processes in terms of Andreev reflections. First, one of the
two electrons tunnels from one lead to the device(which is
in the umN−2l state) and forms a virtual excited state. Then the
second one tunnels into the device and form a bound pair
(uiNl state).

In principle in second-order, one should also take into
account thecotunnelingprocesses,18 which leave the popu-
lation of the central island unchanged. Such processes pro-
vide a current away from the resonances. Anyway, as long as
our device is in the small bias and low temperature regime,
the cotunneling current is found to be negligible, as in the
case of Ref. 6. Therefore thesequential tunneling mN−2
→ iN is the major transport mechanism, and it is possible
only at the two-electron degeneracy points. The full deriva-
tion of the solution of the detailed balance equations11 will
be presented elsewhere. Setting

G0
sII d =

128pe2r2

D2"

Tsld4Tsrd4

Tsld4 + Tsrd4
, s12d

one gets for the conductance

GsII d

G0
sII d = o

N=2L+2

4L,even

o
iN,mN−2

JiN,mN−2
esEiN

−EmN−2
−2md/2kT

3Ps0dsiNd
sEiN

− EmN−2
− 2md/2kT

sinhfsEiN
− EmN−2

− 2md/2kTg
. s13d

The two-electron transition probability

JiN,mN−2
= Uo

lN−1

o
a,b,h,n

kiNufa,h
† ulN−1lklN−1ufb,n

† umN−2lU2

takes into account the second-order process governing the
Andreev reflection. Equation(13) predicts Coulomb block-
ade peaks for everyVg such thatEiN

=EmN−2
+2m, while the

conductance is strongly suppressed elsewhere. Each peak has
a correlation weight due to the coefficientJiN,mN−2

, contain-
ing all the microscopic information on the correlated ground
states of the central device.

For illustration, we numerically computed the conduc-
tance for a central device withL=4. In the superconducting
regime,GsII d as a function of the gate voltage is shown in
Fig. 5 for t=1 eV, U=5 eV, t=0.0005 eV,kT=0.001 eV,
C=50 e/. Note that t! uDu=0.043 eV, and uDu.e2/C
=0.02 eV. GsII d shows neat peaks, with spacingsDVgdsc

=2e/C=0.04 V.
This superconductor-like behavior depends on the exis-

tence of pairing. As a countercheck, we calculate the linear
conductanceGsId in the normal regime, whenD=0. We can

FIG. 4. kNl versusVg. (a) In thesuperconductingregime;(b) in
the normal regime. The parameters are the same as in Fig. 3.Vg is
in V.
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obtain this condition in two ways: namely in the noninteract-
ing case whenU=0 and in the very strongly correlated re-
gime, whenU.34 eV, the other parameters remaining the
same as in Fig. 5.GsId is plotted in Fig. 6; since we are
mainly interested in the period of the resonances, we use
constantG’s and plot the results in arbitrary units. Indeed, for
D=0 the period of the resonant peaks ise/C.0.02 eV, i.e.,
a half of the period in the superconducting case.

V. SUMMARY AND CONCLUSIONS

We have shown that the HamiltonianH models a S-SET
in the linear regime. We pointed out that the repulsion-
induced pairing occurring inHdevicefixes a characteristic en-
ergy uDu which competes with the electrostatic charging en-
ergye2/C. As in any S-SET, there is anormal regime, where
uDu,e2/C and asuperconducting regime, whereuDu.e2/C.
In the first case the parity of the electron number in the
ground state oscillates between even and odd values and the
transport properties are governed by single-electron tunnel-
ing. Conversely in the superconducting regime the parity is
always even and the major transport mechanism is the se-

quential tunneling of pairs. The explicit calculations have
been performed for a ring of four 5-site clusters, but a gen-
eral expression for the linear conductance is also derived.

Our results suggest a systematic way to produce a well
controlled periodic two-electron pattern, even without any
conventional superconductivity; an array of quantum dots
similar to the one in Ref. 8 could be designed to this purpose.

Finally we underline that the model we propose is very
flexible with respect(i) to the size and the shape of the Hub-
bard clusters;(ii ) to the topology of the cluster array forming
the central device. Indeed a wide variety of Hubbard clusters
show theD,0 property at proper fillings, which is actually
the key feature at the basis of our device; we could construct
many alternative devices, based on graphs with different to-
pologies, also in view of possible single-electronics applica-
tions to more complex circuits than a transistor.
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