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Stable magnetization states of a nanoscale magnet under torque by a spin-polarized current and one under
torque by an external magnetic field are studied theoretically. We consider six configurations for the combi-
nation of the three directions, that is, the easy axis of the magnet, the spin polarization of the current, and the
magnetic field. For each configuration, all the possible stable magnetization states are revealed by constructing
a phase diagram in the current-field plane on the basis of the Landau-Lifshitz-Gilbert equation. In addition,
analyses on the dynamic behaviors of the magnetization are presented. We find that our system does not exhibit
any chaotic behaviors. Nevertheless, the initial condition has a significant effect on the magnetization motion.
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I. INTRODUCTION

The concept of the “spin-transfer torque” proposed by
Slonczewski1 and Berger2 offers a new way of controlling
the magnetization, which replaces the conventional method
utilizing magnetic fields. The transfer of the spin angular
momentum between two magnetic layers by the current-
perpendicular-to-plane can reverse the magnetization of one
of the magnetic layers.3–9 The technology utilizing the spin-
transfer torque is expected to increase the recording density
of the magnetoresistive random access memoriessMRAMsd
and other data storage devices.

One of the attractive topics related to this subject is the
magnetization under coexistence of the spin-transfer torque
and the magnetic field. Early theoretical works1,5,10 derived
an analytical expression for the critical reversal current,
which includes the effect of a rather small magnetic field,
which is typically less than the coercive field. Later, the criti-
cal current for a larger magnetic field was also obtained.11,12

Furthermore, the existence of new equilibrium states and of
the nondecaying precessional states is also pointed out.11,13

These stable states are characteristic features of the magne-
tization under the spin-polarized current and the magnetic
field. An experimental confirmation of the precessional mo-
tion is reported in Ref. 14.

The aim of the present work is twofold. First, we reveal
all the possible equilibrium states of the magnetization and
their stability conditions in the whole ranges of the spin-
polarized current and the magnetic field. We employ the
macrospin model and the Landau-Lifshitz-GilbertsLLGd
equation, which has been used mostly for the investigation of
fundamental behaviors of the magnetization. The assumption
of the coherent rotation of the magnetization, which the mac-
rospin model is based on, is known to be valid with respect
to the properties of the equilibrium magnetization state for a
small enough magnet.11 Furthermore, this model enables an
analytical calculation, and therefore, is suitable for exhaus-
tive studies. We investigate totally six configurations of the
combination of the three directions, that is, the easy axis of
the magnet, the spin polarization of the current, and the mag-
netic field. We construct a phase diagram for each case.

Second, we consider dynamic behaviors of the magneti-
zation for some cases on the basis of the fully time-

dependent LLG equation. This clarifies the details of the
magnetization dynamics which is beyond the linearly oscil-
lating regime.

The present work is organized as follows. In Sec. II, the
LLG equation which dictates the dynamic behavior of the
macrospin is introduced. We consider the equilibrium states
and their linear stability. In Sec. III, the phase diagram is
constructed. In Sec. IV, we pick up some cases and discuss
the dynamic behaviors of the magnetization. Section V is
devoted to conclusions.

II. FORMULATION

We consider a system composed of two ferromagnetic
layers separated by a nonmagnetic layer. When the current in
the direction perpendicular to the plane is introduced, the
magnetization of the thinnersfreed magnetic layer receives
torques from the current which is polarized in the direction
of the magnetization of the thickerspinnedd layer m̂pin. The
dynamic behavior of the magnetization of the free layerM is
governed by the following LLG equation:1
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Here, the first term in the right-hand side, including the Gil-
bert constanta, denotes the decaying term.M is the satura-
tion magnetization. The second term, including the gyromag-
netic ratio g, denotes the coupling with the effective
magnetic field −]E/]M. Here, E is the magnetic energy,
which is a summation of the anisotropy energy and the cou-
pling one with the external fieldHext:

E = Ean+ Eext, s2d

Ean=
HK

2M
fM2 − sM · ĉd2g − 2pfM2 − sM · n̂d2g, s3d

Eext = − M ·Hext. s4d

The first term inEan s3d denotes the uniaxial anisotropy
along the unit vectorĉ. HK indicates its effective field. The
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second term denotes the anisotropy of easy-plane whose unit
normal vector isn̂.

The third term in the right-hand side of Eq.s1d denotes
the spin-transfer torque driven by the current injection.m̂pin
is the unit vector in the direction of the magnetization of the
pinned layer, and therefore the direction of the spin polariza-
tion of the introduced current.mB andV are Bohr magneton
and the volume, respectively. The factorg represents the
“efficiency.”1

We introduce the dimensionless quantities here

m̂ ;
M

M
, t ;

2pMgt

1 + a2 , j ;
"

2pM2V

gIe
ueu

,

h̃ ; −
1

2pM

]E

]M
+ jm̂pin 3 m̂. s5d

In terms of these symbols, the LLG equations1d is rewritten
as

ṁ̂ = ah̃' + m̂ 3 h̃', s6d

whereh̃'; h̃−sh̃ ·m̂dm̂, and the overdot denotes the deriva-
tive with the scaled timet.

Here, we briefly summarize the linear analysis, which is
used in the following sections. The unit vectorm̂ can be
expressed as a function of two variables, symbolically de-
noted byx1 andx2. We can rewrite the LLG equations6d in
the form

ẋi = f isx1,x2d si = 1,2d. s7d

The equilibrium state is defined as the state corresponding to
the solution off1= f2=0. The linear stability of the equilib-
rium state is given by the condition that all eigenvalues of
the matrixL=sLijd;s]f i /]xjd have negative real parts. This
condition is reduced to trL,0 and detL.0.

In the present work, we use the spherical coordinate
su ,fd to describe the magnetization vector, i.e.,m̂
=ssinu cosf ,sinu sinf ,cosud. As for the linear analysis of
two singular pointsm̂N=s0,0,1d andm̂S=s0,0,−1d, we use
the Cartesian coordinate instead.

III. PHASE DIAGRAMS BY LINEAR ANALYSIS

In the following, we consider three cases for the direction
of the spin polarization of the current, wheresAd m̂pin= êz,
sBd m̂pin= êy, andsCd m̂pin= êx. In each case, the directions of
the easy axis and of the magnetic field, both of which lie in
the film plane, are assumed to besad parallel orsbd perpen-
dicular to each other. In summary, we consider 332=6 con-
figurations of the three directions; the spin polarization of the
current, the easy axis of the free layer, and the magnetic
field. Here, the coordinate axes are taken so that thex axis is
perpendicular to the film plane, i.e.,êx= n̂, and thez axis is
parallel to the magnetic field, i.e.,Hext=Hextêz. The direction
of the easy axisĉ is equal toêz for casesad and êy for case

sbd. Putting all cases together, the effective fieldh̃' is written
as

h̃' = o
j=u,f

sh̃j
0 + h̃j

j dêj, s8d

where

h̃u
0 = − sl cos 2f + mdsinu cosu − h sinu, s9d

h̃f
0 = l sin 2f sinu, s10d

sh̃u
j ,h̃f

j d = 5s0,j sinud for sAd,

s j cosf,− j cosu sinfd for sBd,

s− j sinf,− j cosu cosfd for sCd.
6 s11d

Here, we have introduced dimensionless parameters

sl,md ; Hs1,1 +kd for sad,

s1 + k/2,1 −k/2d for sbd,
J s12d

k ; HK/2pM, h ; Hext/2pM . s13d

A. m̂pin = êz case

When m̂pin= êz, two states corresponding tom̂N and m̂S
are always equilibrium. They are stable when

j _ − ash ± md, j2 + sh ± md2 . l2. s14d

Here, . and 1 s, and 2d correspond tom̂N sm̂Sd. More-
over, the states corresponding tom̂±=ssinu± cosf± ,
sinu± sinf± ,cosu±d are also in equilibrium when
u± P s0,pd andf± P f0,2pd such that

cosu± =
− h

m ± Îl2 − j2
,

cos 2f± = ± Î1 − j2/l2, sin 2f± = − j /l. s15d

We notice that if a pairsu ,fd satisfies Eq.s15d, then su ,f
+pd also satisfies Eq.s15d. We describem̂+ sm̂−d as if it were
one vector, but we must keep in mind that it actually corre-
sponds to two vectors. The equilibrium state denoted bym̂+
is stable when

u j u ø l, uhu − m , Îl2 − j2,

h2 −
2hj

a
. sm + Îl2 − j2dsm + 3Îl2 − j2d. s16d

The equilibrium state denoted bym̂− is stable when

suhu + md2 + j2 , l2,

h2 −
2hj

a
, sm − Îl2 − j2dsm − 3Îl2 − j2d. s17d

Summarizing the above discussion, we can construct
phase diagrams which classify the types of stable states. Fig-
ure 1 illustrates the phase diagrams where the direction of the
uniaxial anisotropy are parallel to thesad z axis andsbd y
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axis, respectively. The label of each regions in the phase
diagram identifies the type of the stable states for the region.
“NS,” for instance, means thatm̂N and m̂S are stable while
m̂+ andm̂− are unstablesor nonexistentd. In the region “P,”
there are no stable states. We can see from the figure that any
point in the wholesh, jd plane can be identified with one of
seven types, namely, “N,” “ S,” “NS,” “ 1,” “ N+,” “ S+,” “ 2,”
or “P.”

The previously obtained phase diagrams in Refs. 12 and
14 are limited regions of our phase diagram in Fig. 1sad.
What we have obtained covers the whole ranges of the cur-
rent and the magnetic field. In our notation, the coercive
force corresponds tohc=k. The critical current5,10,15 needed
for the magnetization reversal by the spin-transfer torque is
j c=ash±md. Our new findings are summarized as follows.

First, the regions1, N+, andS+, where the equilibrium
state denoted bym̂+ is stable, are revealed. A necessary con-
dition is that j andh have opposite signs. The magnetization
prefersm̂N in the case wherej .0 andh=0, while it prefers
m̂S in the case wherej =0 andh,0. Thus, the opposite signs
of j and h implies the competition of the two torques. It is
worth noting that the directionm̂+ is almost perpendicular to
the plane, which is noncollinear to both the spin-polarization
of the current and the magnetic field.

Second, the regionP, where stable equilibrium states are
nonexistent, is also revealed. The magnetization never stop
rotating in this region. Such a nonrelaxing phenomenon is
characteristic to systems where energy is fed from the out-
side. The linear analysis cannot predict the details of this

dynamic behaviors in nonlinear regimes. We discuss this
problem in the next section.

Third, the difference betweensad and sbd is clear when
both h and j are comparably small. The applied magnetic
field is parallel to the easy axis in the former case, while it is
parallel to the hard axis in the latter case. When the field
Hexts,HKd parallel to the hard axis is applied, it is known
that the magnetization orients to the intermediate direction.
This stable state corresponds tom̂− in our notation. We see
that this state is extended to finite current region in the case
sbd, while it never appears in the casesad.

B. m̂pin = êy case

Whenm̂pin= êy, the stable equilibrium states are classified
into one of three types

sNd: sl + mdsinu cosu + h sinu − u j u = 0, cosf = sgns jd,

sSd: sl + mdsinu cosu + h sinu + u j u = 0, cosf = − sgns jd,

sJd: cosu =
h

j2

2l
+ l − m

, cosf =
j

2l

h

ÎS j2

2l
+ l − mD2

− h2

.

s18d

The solution sNdfsSdg is a state which is a extension of
m̂Nsm̂Sd for nonzeroj . Namely, it is a state where the torque
by the field is dominant over that by the current. On the other
hand, the torque by the current is dominant over that by the
field in the statesJd. The direction approaches ±m̂pin as h
→0 for the state.

The results of the linear stability analysis are summarized
as phase diagrams in Fig. 2 for the case wheresad ĉ= êz, sbd
ĉ= êy. We find that statesNd for sSdg and the statesJd never
become stable simultaneously. We also notice that the non-
existence of the regionP, which means that at least one
stable equilibrium state always exists for this case.

C. m̂pin = êx case

Whenm̂pin= êx, the stable equilibrium states are classified
into one of the three states

sNd: s− l + mdsinu cosu + h sinu − u j u = 0, sinf = − sgns jd,

sSd: s− l + mdsinu cosu + h sinu + u j u = 0, sinf = sgns jd,

sJd: cosu =
− h

j2

2l
+ l + m

, cosf =
− j

2l

h

ÎS j2

2l
+ l + mD2

− h2

.

s19d

Again, the torque by the field is dominant for the statessNd
and sSd, while the torque by the current is dominant for the
statesJd.

The results of the linear stability analysis is summarized

FIG. 1. Phase diagram of stable magnetization states for cases
wherem̂pin= êz and sad ĉ= êz, sbd ĉ= êy. The dimensionless magni-
tude of the magnetizationh and the currentj are defined in Eqs.
s13d ands5d, respectively. The stable states vary continuously along
paths inside a region surrounded by the boundary line, while they
vary discontinuously along paths across the boundary line. The ar-
rows denote the direction of the stable states for givenh and j . They
are depicted as projections to a plane which is slightly inclined
against thesxzd plane. The dark arrow indicates that the magnetiza-
tion points in the in-plane direction, while the light arrow indicates
it points in the perpendicular-to-plane direction.
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as phase diagrams in Fig. 3 for the case wheresad ĉ= êz and
sbd ĉ= êy. The regionP appears ifk/2,as2+k/2d.

IV. DYNAMIC BEHAVIORS

In this section, we focus on the system where both the
spin-polarization of the current and the magnetic field are
parallel to the easy axis of the free layer, i.e.,ĉ=m̂pin= êz. We
consider Co/Cu/Co system as an example. The Gilbert con-
stant, the saturation magnetization, and the axial anisotropy
field are taken asa=0.014, 4pM =10 kOe, and HK
=500 Oe, respectively.14 The phase diagram in Fig. 1sad is
redrawn in Fig. 4sad, which is an extended phase diagram
compared with the figure in Ref. 14. We pick up the three
points A, B, and C in the phase diagram to elucidate relevant
properties of the magnetization dynamics, which are ignored
in the previous works. Among the three points, the points B
and C lie outside the diagram in Ref. 14.

Point A lies in the regionP, where no stable equilibrium
states exist. Figure 4sbd illustrates a typical trajectory of the
magnetization vector for this case. We find that the trajectory
of the motion of the vector forms a closed path. This fact is
not an accident but a logical consequence of Poincaré-

Bendixson theorem in the dynamical systems theory.16

Namely, the system we are dealing with does not have
enough freedoms to cause chaotic dynamic behaviors. The
closed-path is so-called “limit cycle.” This periodic motion is
observed as the precessional motion of the magnetization.

At point B, lying in the regionS, there is one stable equi-
librium state,m̂S. However, it does not necessarily mean that
the magnetization eventually orient tom̂S. The trajectory in
Fig. 4scd illustrates such an example. In this case, the motion
of the magnetization exhibit precessional motion if an appro-
priate initial condition is chosen. In other words, the preces-
sional motion is possible outside the regionP in the phase
diagram. The regionP indicates only a sufficient condition
for the precessional motion.

At the point C, lying in the regionS+, there are three
stable equilibrium statesm̂S and twom̂+’s. The equilibrium
state which the magnetization finally obtains depends on the
initial condition. Figure 4sdd illustrates an example where the
magnetization finally orients tom̂+, which is nearly perpen-
dicular to the plane.

Applying the values of the known critical current
density14 Jc=33107 A/cm2 and the anisotropy fieldHK
=500 Oe, we notice that the point C corresponds to the case
where J,109 A/cm2 and Hext,5 kOe. To observe a non-
trivial equilibrium state such asm̂+, a rather larger current
density is required than that used in current experiments.

V. CONCLUSIONS

The magnetization receives torques from a spin-polarized
current and a magnetic field independently. We have studied
exhaustively the stable states of the magnetization under
such circumstances, employing the macrospin model with
the LLG equation. We have revealed all the possible stable

FIG. 2. Phase diagram of stable equilibrium states for the case
wherem̂pin= êy and sad ĉ= êz, sbd ĉ= êy.

FIG. 3. Phase diagram of stable states for the case wherem̂pin

= êx and sad ĉ= êz, sbd ĉ= êy.
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states in the whole current-field plane including the regions
which have not been investigated previously. We constructed
six phase diagrams corresponding to different configurations
for the combination of the three directions, that is, the easy
axis of the magnet, the spin polarization of the current, and
the magnetic field.

When either a spin-polarized current or a magnetic field is
introduced, the orientations of the magnetization must be
collinear to the spin polarization of the current or the mag-
netic field, respectively. On the other hand, other possibilities
arise when both of them are introduced simultaneously. In
some cases, a noncollinear equilibrium state becomes stable.
In other cases, the magnetization does not stop rotation and it
converges to a stable precessional motion. Such a nonequi-
librium state is owing to the continuous energy injection fed
by the current. Moreover, the motion of the magnetization is
proved to be periodic if it does not converge to a fixed di-
rection. In other words, the system we are dealing with does
not have enough freedoms to cause chaotic dynamic behav-

iors. Nevertheless, the initial condition has a significant ef-
fect on the motion of the magnetization. The magnetization
motion converges to a fixed direction for an initial condition,
while it converges to a precessional motion for another con-
dition. Namely, the condition that no stable equilibrium
states exist yields only a sufficient condition for such a pre-
cessional motion.

To observe nontrivial stable magnetization states in ex-
periments, a comparably large current is necessary. When
one uses cobalt as the magnetic layers, a current density of at
least the order of 108–109 A/cm2 is required. However, this
required current density will be reduced if the efficiency of
the spin-transfer torque is improved by use of highly spin-
polarized magnetic materials, such as half metals.

Finally, it is possible to extend the present work based on
the macrospin model to the micromagnetic simulation. In
particular, it is worth investigating the dynamic behavior of
the microscopic structure of the magnetization under the
competitive torques by a spin-polarized current and a mag-

FIG. 4. sad The phase diagram for the case wherem̂pin= ĉ= êz. The units of the currentj and the magnetic fieldHext are taken asjc=a sthe
critical currentd andHK, respectively.sbd–sdd Typical trajectories of the magnetization motion for the points A–C in the phase diagramsad.
The darkness of the point on the trajectory gradually increases with time. The black line or point indicates the final state.
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netic field. In Ref. 17, the chaotic magnetization motion in-
duced by the spin transfer torque is studied. It indicates to us
that the nontrivial dynamic behavior of the magnetization is
remarkable when the inhomogeneity of the magnetization is
taken into consideration.
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