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Stable magnetization states under a spin-polarized current and a magnetic field
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Stable magnetization states of a nanoscale magnet under torque by a spin-polarized current and one under
torque by an external magnetic field are studied theoretically. We consider six configurations for the combi-
nation of the three directions, that is, the easy axis of the magnet, the spin polarization of the current, and the
magnetic field. For each configuration, all the possible stable magnetization states are revealed by constructing
a phase diagram in the current-field plane on the basis of the Landau-Lifshitz-Gilbert equation. In addition,
analyses on the dynamic behaviors of the magnetization are presented. We find that our system does not exhibit
any chaotic behaviors. Nevertheless, the initial condition has a significant effect on the magnetization motion.
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[. INTRODUCTION dependent LLG equation. This clarifies the details of the

The concept of the “spin-transfer torque” proposed byMagnetization dynamics which is beyond the linearly oscil-
Slonczewski and Berge# offers a new way of controlling ~1ating regime. . .
the magnetization, which replaces the conventional method The present work is organized as follows. In Sec. Il, the
utilizing magnetic fields. The transfer of the spin angularLLG equation which dictates the dynamic behavior of the
momentum between two magnetic layers by the currentmacrospin is introduced. We consider the equilibrium states
perpendicular-to-plane can reverse the magnetization of ongnd their linear stability. In Sec. lll, the phase diagram is
of the magnetic layer&.® The technology utilizing the spin- constructed. In Sec. IV, we pick up some cases and discuss
transfer torque is expected to increase the recording densitihe dynamic behaviors of the magnetization. Section V is
of the magnetoresistive random access mem@h#8AMs)  devoted to conclusions.
and other data storage devices.

One of the attractive topics related to this subject is the
magnetization under coexistence of the spin-transfer torque \We consider a system composed of two ferromagnetic
and the magnetic field. Early theoretical worké® derived  |ayers separated by a nonmagnetic layer. When the current in
an analytical expression for the critical reversal currentthe direction perpendicular to the plane is introduced, the
which includes the effect of a rather small magnetic ﬁe'd,magnetization of the thinnqm'ee) magnetic |a_yer receives
which is typically less than the coercive field. Later, the criti- torques from the current which is polarized in the direction
cal current for a larger magnetic field was also obtaiHéd.  of the magnetization of the thickeépinned layer m,. The
Furthermore, the existence of new equilibrium states and ofiynamic behavior of the magnetization of the free ldykis
the nondecaying precessional states is also pointed-&tit. governed by the following LLG equatioh:

These stable states are characteristic features of the magne-

tization under the spin-polarized current and the magnetic av —_ Y\ x am M X £+ﬂg_|e
field. An experimental confirmation of the precessional mo- dt~ M dt Y M VM2 le]
tion is reported in Ref. 14. .

The aim of the present work is twofold. First, we reveal X (Mpin X M). (1)
all the possible equilibrium states of the magnetization and4ere, the first term in the right-hand side, including the Gil-
their Stab|l|ty conditions in the whole ranges of the Spin- bert constanty, denotes the decaying termal is the satura-
polarized current and the magnetic field. We employ th&jon magnetization. The second term, including the gyromag-
macrospin model and the Landau-Lifshitz-GilbettLG)  netic ratio y, denotes the coupling with the effective
equation, which has been used mostly for the investigation ofnagnetic field 9E/JM. Here, E is the magnetic energy,
fundamental behaviors of the magnetization. The aSSUmptiOWhich is a summation of the anisotropy energy and the cou-
of the coherent rotation of the magnetization, which the macpjing one with the external field
rospin model is based on, is known to be valid with respect
to the properties of the equilibrium magnetization state for a E=EantEext 2
small enough magnét.Furthermore, this model enables an
analytical calculation, and therefore, is suitable for exhaus- Hy
tive studies. We investigate totally six configurations of the Ean= M
combination of the three directions, that is, the easy axis of
the magnet, the spin polarization of the current, and the mag- E. ——M-H (4)
netic field. We construct a phase diagram for each case. ext ext:

Second, we consider dynamic behaviors of the magnetiThe first term inE,, (3) denotes the uniaxial anisotropy
zation for some cases on the basis of the fully time-along the unit vectot. Hy indicates its effective field. The

II. FORMULATION

ext

[M?=(M -&)]-2a{M?= (M -H)?],  (3)
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second term dgrlotes the anisotropy of easy-plane whose unit Fu =3 (’Hg_'_'ﬁjg)égy (8)
normal vector ish. 0.6
The third term in the right-hand side of E@L) denotes
the spin-transfer torque driven by the current injectidy, where
is the unit vector in the direction of the magnetization of the

~0_ . .
pinned layer, and therefore the direction of the spin polariza- hp=—(\ cos 2+ p)sin 6 cos¢ - hsin 6, (9)
tion of the introduced currenjg andV are Bohr magneton
and the volume, respectively. The factgrrepresents the 'F]?ﬁ:)\ sin 2¢ sin 6, (10)
“efficiency.”
We introduce the dimensionless quantities here (0,j sin 6) for (A)
S_M o _2mMp A gl (n, ) =4 (j cos¢,—j cos@sing)  for (B), (11)
M T 1+ 1T 2amv e’ (—jsing,—jcosfcosg) for (C).
1 E Here, we have introduced dimensionless parameters
h=-—""—+jy, X . 5
PvEvRILT ® o =] GO for (), 12
o _ ’ (1+k/2,1-k/2) for (b),
In terms of these symbols, the LLG equatid is rewritten
as k=Hd27M, h=Hed27M. (13)
m=ah, +mxh,, (6)
whereh, =h-(h-f)m, and the overdot denotes the deriva- A. yin =, case
tive with the scaled time-. When m,,=¢&,, two states corresponding tay and mg
Here, we briefly summarize the linear analysis, which isgre always equilibrium. They are stable when

used in the following sections. The unit vectdr can be . S b o
expressed as a function of two variables, symbolically de- jZ2-ahtp), j“+(htpw) >\ (14
noted byx; andx,. We can rewrite the LLG equatioi®) in Here,> and + (< and —) correspond tahy (fg). More-
the form

over, the states corresponding t@,=(sin 6. cosae,,
% =fi(x%) (i=1,2). @ sinf, sin¢,,cosf,) are also in equilibrium when
0, € (0,7) and ¢, € [0, 27) such that
The equilibrium state is defined as the state corresponding to

the solution off;=f,=0. The linear stability of the equilib- cos, = _—h

rium state is given by the condition that all eigenvalues of TR G

the matrixL=(L;;) = (df;/ 9x;) have negative real parts. This

condition is reduced to tt<<0 and det. >0. coS b, = £ 1 -j2IN2, sin 2p,=—j/\. (15)

In the present work, we use the spherical coordinate
(6,¢) to describe the magnetization vector, i.eh  We notice that if a paiXe,¢) satisfies Eq(15), then (6, ¢
=(sin @ cos¢,sin #sin ¢, coséh). As for the linear analysis of +) also satisfies Eq15). We describen, (m_) as if it were
two singular pointshy=(0,0,1) andmg=(0,0,-1), we use One vector, but we must keep in mind that it actually corre-
the Cartesian coordinate instead. sponds to two vectors. The equilibrium state denotedby
is stable when

Ill. PHASE DIAGRAMS BY LINEAR ANALYSIS i<\, |hl-u< VA2 - j2,

In the following, we consider three cases for the direction ohi
of the spin polarization of the current, whef®) my,=¢,, h2 - <nJ > (w+ W= i) (w+3\2= 2 16
(B) Myin=8,, and(C) my,,=&,. In each case, the directions of a (v 3y - (16
the easy axis and of the magnetic field, both of which lie in

the film plane, are assumed to @ parallel or(b) perpen- The equilibrium state denoted by is stable when

dicular to each other. In summary, we considet 3=6 con- (Ih] + )2+ j2 < 2,

figurations of the three directions; the spin polarization of the

current, the easy axis of the free layer, and the magnetic 2hj

field. Here, the coordinate axes are taken so thax @ves is h? = — < (u=\2=j9)(u-3V\?=j?). (17)
perpendicular to the film plane, i.&,=A, and thez axis is a

parallel to the magnetic field, i.eHc.=Hex€, The direction Summarizing the above discussion, we can construct

of the easy axi€ is equal tog, for case(a) and@, for case  phase diagrams which classify the types of stable states. Fig-
(b). Putting all cases together, the effective fieldis written  ure 1 illustrates the phase diagrams where the direction of the
as uniaxial anisotropy are parallel to tHe) z axis and(b) y
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dynamic behaviors in nonlinear regimes. We discuss this
problem in the next section.

Third, the difference betweeta) and (b) is clear when
both h and j are comparably small. The applied magnetic
field is parallel to the easy axis in the former case, while it is
parallel to the hard axis in the latter case. When the field
Hex(<Hk) parallel to the hard axis is applied, it is known
that the magnetization orients to the intermediate direction.
This stable state correspondsin in our notation. We see
that this state is extended to finite current region in the case
(b), while it never appears in the ca&®.

B. Myin =&, case

Whenmy,;,=8,, the stable equilibrium states are classified
into one of three types

(N):(\ + w)sin@cosf+hsing-|j| =0, cose=sgnj),

FIG. 1. Phase diagram of stable magnetization states for cases . . . .
where iy, =&, and (a) &=8&, (b) &=&,. The dimensionless magni- ~ (S):(\ + )sin#cosf+hsin o+ il =0, cos¢=-sgnj),
tude of the magnetizatioh and the currenf are defined in Egs.

(13) and(5), respectively. The stable states vary continuously along h i h

paths inside a region surrounded by the boundary line, while they(J):€0S8=—————, COS¢= o > > -
vary discontinuously along paths across the boundary line. The ar- —HN—u \/<J_ )\ - M) -n
rows denote the direction of the stable states for givandj. They 2\ 2\

are depicted as projections to a plane which is slightly inclined (18)

against thexz) plane. The dark arrow indicates that the magnetiza-

tion points in the in-plane direction, while the light arrow indicates The solution (N)[(9)] is a state which is a extension of

it points in the perpendicular-to-plane direction. my(fg) for nonzeroj. Namely, it is a state where the torque
by the field is dominant over that by the current. On the other

axis, respectively. The label of each regions in the phasband, the torque by the current is dominant over that by the

diagram identifies the type of the stable states for the regiorfield in the state(J). The direction approachesty;, ash

“NS,” for instance, means thaty and mg are stable while — 0 for the state.

m, andm_ are unstabléor nonexistent In the region P,” The results of the linear stability analysis are summarized

there are no stable states. We can see from the figure that aag phase diagrams in Fig. 2 for the case wtiey€==¢,, (b)

point in the whole(h, j) plane can be identified with one of C=&,. We find that stat¢N) [or (S)] and the statéJ) never

seven types, namelyN‘” “S” “NS,” “ +," “N+,” “S+,”“—"  become stable simultaneously. We also notice that the non-

or “P.” existence of the regiof?, which means that at least one

The previously obtained phase diagrams in Refs. 12 angtable equilibrium state always exists for this case.

14 are limited regions of our phase diagram in Figa)1l

What we have obtained covers the whole ranges of the cur- o

rent and the magnetic field. In our notation, the coercive C. Mpin=8 case

force corresponds th.=k. The critical currerit*®*° needed Whenm,,,,=&, the stable equilibrium states are classified

for the magnetization reversal by the spin-transfer torque isnto one of the three states

jc=a(ht ). Our new findings are summarized as follows.

First, the regions+, N+, and S+, where the equilibrium ~ (N): (=X + w)sin § cosé+hsin 6-|j| = 0, sing = - sgr(j),

state denoted bgn, is stable, are revealed. A necessary con-

dition isAthatj andh have opposite signs. The magnetization (S):(=\ + u)sin # cosf+hsind+|j| =0, sing =sgr(j),

prefersmy in the case wherg>0 andh=0, while it prefers

Mgin the case wherg=0 andh<0. Thus, the opposite signs -h -j h

of j andh implies the competition of the two torques. It is (J):c0s#=—5———, COS¢p= PN > -
worth noting that the directiorn, is almost perpendicular to —H Nt \/(J_ S+ M) —h?
the plane, which is noncollinear to both the spin-polarization 2\ 2\

of the current and the magnetic field. (19)

Second, the regioR, where stable equilibrium states are
nonexistent, is also revealed. The magnetization never stopgain, the torque by the field is dominant for the stad$
rotating in this region. Such a nonrelaxing phenomenon i€nd(S), while the torque by the current is dominant for the
characteristic to systems where energy is fed from the outstate(J).
side. The linear analysis cannot predict the details of this The results of the linear stability analysis is summarized
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FIG. 3. Phase diagram of stable states for the case whgge
J =&, and(a) £=8, (b) &=8,
sl I S R S
* | Bendixson theorem in the dynamical systems thébry.

Namely, the system we are dealing with does not have
enough freedoms to cause chaotic dynamic behaviors. The
- closed-path is so-called “limit cycle.” This periodic motion is
observed as the precessional motion of the magnetization.
At point B, lying in the regiorS, there is one stable equi-
librium state,mg. However, it does not necessarily mean that
®) the magnetization eventually orient fos. The trajectory in
Fig. 4(c) illustrates such an example. In this case, the motion
of the magnetization exhibit precessional motion if an appro-
priate initial condition is chosen. In other words, the preces-
sional motion is possible outside the regiBnin the phase
diagram. The regiorP indicates only a sufficient condition

FIG. 2. Phase diagram of stable equilibrium states for the cas
wherem,=&, and(a) ¢=&, (b) c=8&,.

as phase diagrams in Fig. 3 for the case whar€=¢&, and

(b) C=&,. The regionP appears ik/2<a(2+k/2). for the precessional motion.
At the point C, lying in the regiorS+, there are three
IV. DYNAMIC BEHAVIORS stable equilibrium statedg and tworn,’s. The equilibrium

state which the magnetization finally obtains depends on the

.In this _sec.t|on, we focus on the system Whefe t.)OIh th‘?nitial condition. Figure 4d) illustrates an example where the
spin-polarization of the current and the magnetic field are

parallel to the easy axis of the free layer, ii= iy, =&, We magnetization finally orients to,, which is nearly perpen-

. : dicular to the plane.
consider Co/Cu/Co system as an example. The Gilbert con- Applying the values of the known critical current

stant, the saturation magnetization, and the axial aniSOtmpéfensitW J.=3% 107 Alcm? and the anisotropy fielcH

1 - — c— K
f_'eSlgo gr: rteaskeencti\?:gi‘_Toh'g14ﬁa$|\gi;1?alr(noi% F?n(d a)Hi*é =500 Oe, we notice that the point C corresponds to the case
- » Fesp : b 9 9 where J~10° A/cm? and Ho,~5 kOe. To observe a non-

redrawn in Fig. 4a), which is an extended phase diagram._. . e N
compared with the figure in Ref. 14. We pick up the threetr|V|aI equilibrium state such ag,, a rather larger current

points A, B, and C in the phase diagram to elucidate relevanqensny is required than that used in current experiments.
properties of the magnetization dynamics, which are ignored
in the previous works. Among the three points, the points B
and C lie outside the diagram in Ref. 14.

Point A lies in the regiorP, where no stable equilibrium The magnetization receives torques from a spin-polarized
states exist. Figure(d) illustrates a typical trajectory of the current and a magnetic field independently. We have studied
magnetization vector for this case. We find that the trajectorygexhaustively the stable states of the magnetization under
of the motion of the vector forms a closed path. This fact issuch circumstances, employing the macrospin model with
not an accident but a logical consequence of Poincaréhe LLG equation. We have revealed all the possible stable

V. CONCLUSIONS
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FIG. 4. (a) The phase diagram for the case whiérg,=€=8&,. The units of the currerjtand the magnetic fieltl,; are taken ag,= « (the
critical curreny andHy, respectively(b)—(d) Typical trajectories of the magnetization motion for the points A-C in the phase didgram
The darkness of the point on the trajectory gradually increases with time. The black line or point indicates the final state.

states in the whole current-field plane including the regionsors. Nevertheless, the initial condition has a significant ef-
which have not been investigated previously. We constructetect on the motion of the magnetization. The magnetization
six phase diagrams corresponding to different configurationmotion converges to a fixed direction for an initial condition,
for the combination of the three directions, that is, the easyvhile it converges to a precessional motion for another con-
axis of the magnet, the spin polarization of the current, andlition. Namely, the condition that no stable equilibrium
the magnetic field. states exist yields only a sufficient condition for such a pre-
When either a spin-polarized current or a magnetic field isessional motion.
introduced, the orientations of the magnetization must be To observe nontrivial stable magnetization states in ex-
collinear to the spin polarization of the current or the mag-periments, a comparably large current is necessary. When
netic field, respectively. On the other hand, other possibilitie®one uses cobalt as the magnetic layers, a current density of at
arise when both of them are introduced simultaneously. Ineast the order of 8-1 A/cm? is required. However, this
some cases, a noncollinear equilibrium state becomes stablequired current density will be reduced if the efficiency of
In other cases, the magnetization does not stop rotation andthe spin-transfer torque is improved by use of highly spin-
converges to a stable precessional motion. Such a nonequuelarized magnetic materials, such as half metals.
librium state is owing to the continuous energy injection fed Finally, it is possible to extend the present work based on
by the current. Moreover, the motion of the magnetization ighe macrospin model to the micromagnetic simulation. In
proved to be periodic if it does not converge to a fixed di-particular, it is worth investigating the dynamic behavior of
rection. In other words, the system we are dealing with doethe microscopic structure of the magnetization under the
not have enough freedoms to cause chaotic dynamic behagempetitive torques by a spin-polarized current and a mag-
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netic field. In Ref. 17, the chaotic magnetization motion in- ACKNOWLEDGMENT

duced by the spin transfer torque is studied. It indicates to us

that the nontrivial dynamic behavior of the magnetization is  The authors wish to thank Dr. S. Haneda for stimulating
remarkable when the inhomogeneity of the magnetization igjis;ssions.

taken into consideration.
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