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We investigate the zero-temperature phase diagram and spin-wave properties of a double exchange magnet
with on-site Hubbard repulsion. It is shown that even within a simple Hartree-Fock approach this interaction
swhich is often omitted in theoretical treatmentsd leads to qualitatively important effects which are highly
relevant in the context of experimental data for the colossal magnetoresistance compounds. These include the
asymmetry of the doping dependence of spin stiffness, and the zone-boundary “softening” of spin wave
dispersion. Effects of Hubbard repulsion on phase separation are analyzed as well. We also show that in the
ferromagnetic phase, an unusual temperature-dependent effective electron-electron interaction arises at finiteT.
The mean-field scheme, however, does not yield the experimentally observed density of states depletion near
the Fermi level. We speculate that the proper treatment of electron-electron interactions may be necessary for
understanding both this important feature and more generally the physics of colossal magnetoresistance
phenomenon.
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I. INTRODUCTION

The phenomenon of colossal magnetoresistancesCMRd is
known to occur in a broad group of compounds, correspond-
ing to different crystal structures, chemical compositions,
and doping levels.1 In addition to various heavily doped
manganese oxides, the CMR effect is also observed in cer-
tain magnetic semiconductors and spinels;2 it is natural to
expect that in all these cases, the physical origins of the
CMR are similar. Thus, a proper minimal theoretical model
of a CMR system should account for the important common
features shared by all these materials, while leaving out the
peculiarities of crystal environment and atomic structure of
individual compounds. It is universally recognized that one
of these common features is the sizable ferromagnetic
Hund’s rule coupling,JH, between the spins of magnetic ions
and those of conduction electrons, which gives rise to the
double exchange ferromagnetism3 of the CMR compounds.
The purpose of the present article is to draw attention to the
fact that another ubiquitous intra-atomic interaction, namely
the CoulombsHubbardd repulsionU, also affects magnetic,
electronic, and transport properties of the system in a pro-
found way, and may play a crucial role in the basic physics
of the CMR. While some effects of this interaction have been
addressed in the pastssee, e.g., Refs. 4–7d, its potential im-
portance is not yet fully appreciated. We will argue that the
on-site Coulomb repulsion strongly affects the magnetic
properties of the system; some generic experimental facts are
recovered. We also suggest that the effects of Hubbard repul-
sion merit further investigation beyond the mean-field ap-
proach.

We start with the standard double exchange Hamiltonian,
supplemented with a Hubbard repulsion term:

H = −
t

2 o
ki,jl,a

scia
† cja + cja

† ciad −
JH

2S
o
i,a,b

SW isW
abcia

† cib

+
J

S2o
ki,jl

SW iSW j + Uo
i

ci↑
† ci↓

† ci↓ci↑. s1d

Here, the fermionic operatorscja correspond to conduc-
tion electrons, hopping between the atomic sites of magnetic
ions with spinsSW i, and the vectorsW ab is composed of Pauli
matrices. Electron concentration is denoted byx, hence the
hole density is given by 1−x swe note that in the experimen-
tal literature on the CMR manganates, the opposite conven-
tion is often usedd. In order to discuss our results within the
context of experimentally observed magnetic phase diagrams
of the CMR manganates, we also include the antiferromag-
netic superexchange couplingJ between the ionic spins. We
will treat the ionic spins as classical,S@1; quantum correc-
tions are not expected to modify the effects of Hubbard term
in a qualitative way. For the case of CMR manganates,S
=3/2, and theband theory calculations5,8 suggest the typical
values of t,0.3–0.5 eV,JH,2.5 eV, andU,8 eV. The
value ofJ can be roughly estimated from the experimentally
observed Néel temperatures in the fully dopedsno conduc-
tion eg electrons,x=0d case,9–11 TN,100–200 K, yielding
J,5–10 meV. We will consider the case of a squares2Dd or
simple cubics3Dd lattice, assuming that the lattice spacing is
equal to unity. Throughout the paper, chemical potential is
denoted bym−sJH /2d.

While the important and highly nontrivial effects of the
orbital degree of freedom in the CMR manganates are of
great interest to both theorists and experimentalists working
in the field,1 in writing Eq. s1d we assumed that there is only
one atomic orbital available to conduction electrons at each
site. The reasons for this drastic simplification are three-fold:
sid in the CMR manganates, orbital structure is strongly de-
pendent on the crystalline environment and varies for differ-
ent compounds and doping levels;12 sii d yet another situation
takes place for magnetic semiconductors exhibiting CMR,
like EuS or EuSe, where the threet2g conduction bands show
no Jahn-Teller splitting; therefore at present it seems difficult
to conclude that a realistic treatment of orbital effects is cru-
cial for understanding the basic physics of the CMR phe-
nomenon; andsiii d we will see that the effects of Hubbard
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repulsion are rather complex already in the single-orbital
case; we believe that these should be understood before a
more complicated model6 is advanced.

We begin with a brief overview of the low-temperature
properties of the double exchange model, Eq.s1d with U
=0. The carrier spectrum in the ferromagnetic state of a 2D
s3Dd system is given byekW

↑,↓= 7 sJH /2d+ekW with ekW =
−t coskx− t coskys−t coskzd. A sufficiently large value of
Hund’s rule couplingJH then results in a complete spin po-
larizationshalf-metald of conduction electrons within the en-
tire doping range of 0,xø1, in agreement with experimen-
tal data13 ssee, however, Ref. 14d. At JH→` and J=0, any
deviation of ionic spins from ferromagnetic order results, via
the double exchange mechanism,3 in a narrowing of the
spin-up conduction band, and therefore costs positive energy.
The corresponding value of spin stiffnessD is then propor-
tional to conduction band energy,DS= uEu /4d with E
=eekWnkWd

dk/ s2pdd swherenkW is the Fermi distribution function
and d is the dimensionality of the systemd and is therefore
symmetric in electron densityx with respect to the quarter-
filling, x=1/2. In a more general case of finiteJH and J
.0, this double exchange ferromagnetismcompetes against
antiferromagnetic tendencies, which originate from two dis-
tinct physical sources. In addition to the direct superex-
change contributionJ swhich is responsible for the antiferro-
magnetism of the system atx=0 and, roughly, can be
assumed to be doping-independentd, there arises anindirect
antiferromagnetic interaction15 which further lowers the rela-
tive energy of antiferromagnetic phases. This interaction is
due to virtual transitions of conduction electrons between the
two components of the spin-split band,16 and its strength
increases with increasing electron densityx. Indeed, the net
antiferromagnetic contribution to the spin stiffnessDS of a
double exchange ferromagnet atx!1 equals −J
−px2t2/ s2JHd in 2D and −J−s6pd2/3x5/3t2/ s10JHd in 3D, and
grows to −J− t2/ s4JHd at x=1. While the actual destabiliza-
tion of the ferromagnetic phase with increasing strength of
antiferromagnetism proceeds via phase separation,2,17,18

rather than a spin-wave mediated phase transition, this be-
havior of spin stiffness is in line with the overall conclusion
on the phase diagram asymmetry:in the U=0 case, antifer-
romagnetic tendencies are more pronounced at x.1/2 than
at x,1/2.

This expected behavior does not agree4 with the experi-
mentally observed low-temperature magnetic properties of
the CMR manganates.9–11 In broad terms, it is fair to say that
the CMR manganates are ferromagnetic19 at x.1/2 and an-
tiferromagnetic at xø1/2. Although the presence of narrow
ferromagnetic regionssor possibly ferro-antiferromagnetic
phase separationd at x,1/2 has been reported in some cases,
the wide ferromagnetic area is always located at low hole
doping,x.1/2. The investigation of lightly-doped mangan-
ates with 1−x&0.1 is complicated by the sample preparation
issues. So far, only the 3D perovskite materials are available
in this region; these are typically9,10 found to remain ferro-
magnetic down to the very low values of 1−x, with a likely
exception of thex=1 endpoint.20 This is in contrast with
robust Néel antiferromagnetic ordering, characteristic for all
manganates atx!1.

This qualitative discrepancy can be alleviated by taking
into account the on-site Coulomb interaction,U. The latter
does not affect the energy nor the carrier spectrum of the
fully-magnetized half-metallic ferromagnetic state; however,

when the neighboring spinsssay,SW i andSW jd are out of align-
ment, there arises a nonzero hopping matrix element,21 con-
necting the conduction electron state at sitei with the elec-

tron spin directed alongSW i, and the state at sitej with the spin

anti-aligned withSW j. Thus, when two electrons are placed on
sites i and j , there is a nonzero quantum-mechanical prob-
ability of double occupancy on-site, and the associated Cou-
lomb energy: the electrons repel each other. Therefore,Hub-
bard interaction enhances ferromagnetism, and the strength
of this effect increases withx.22 Moreover, at a finite tem-
peratureT, when the ionic spins are misaligned due to ther-
mal fluctuations,an unusual T-dependent electron-electron
repulsion arises in the ferromagnetic phasesin Sec. III we
will see that there also arises another, essentially many-body,
contribution to the effective electron-electron interactiond.
We note that both of these effects, which we will consider in
some detail below, are absent in the widespread simplified
picture of double exchange, when the value of Hund’s rule
coupling is assumed to be infinite, making the double occu-
pancy impossible.

Although U is, in fact, the largest energy scale in the
problem, we will use the Hartree-Fock approximation, which
formally becomes accurate only at small values ofU /JH. It
is, however, expected that substituting larger values ofU into
our equations should yield the estimates which are adequate
at the qualitative level. We note that in general, this “stretch-
ing” of the Hartree-Fock scheme requires some caution, as,
for example, the energy of a single spin-down particle in the
ferromagnetic state and in the presence of a partially filled
spin-up band of widthW!U is clearly of the order ofJH
+W.23 This is in contrast to the Hartree-Fock result for the
energy of the spin-down electron,

ẽkW
↓ = ekW

↑ + JS, JS= JH + xU s2d

fhere,JS is the mean-fieldsStonerd band splittingg. However,
the contribution of the Coulomb energy to the properties
studied in the present paper originates from an integral over
many inter-subband contributionssor over many spin-down
electron statesd; it is hoped that the Hartree-Fock mean field-
type approximation is more reliable in such a case.

We will be interested in the experimentally relevant case
when the value ofJS is large in comparison to the Fermi
energy,eF. It should be noted that in this regime, the family
of models with the Hamiltonians1d and different values of
the ratioxU/JH provides a connection between the conven-
tional double exchange systemsU=0d and the large-U Hub-
bard modelsJH→0d. In fact, due to the considerable uncer-
tainty in the values oft andJH quoted in the literature, it is
not clear whetherJH alone could always account for a com-
plete carrier spin-polarization in the ferromagnetic state of
the CMR manganates.14 It is thus possible that in real sys-
tems, the half-metallic stateswhich at the mean-field level is
implied by the conditionJS.eFd would not have been
reached without further enhancement of band splitting by the
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on-site Coulomb repulsionU fcf. Eq. s2dg. If this is indeed
the case, it might lead to potentially important and novel
many-body effects, at both zero and finite temperatures.
These lie beyond the mean-field approach taken in the
present work—within the Hartree-Fock scheme based on Eq.
s2d, it is indeed unimportant whether the perceived half-
metallicity is partly due to the effects of Hubbard repulsion.

The spin wave theory of double exchange ferromagnets in
the presence of on-site Coulomb repulsion is constructed in
Sec. II. We evaluate the spin stiffness,D, and show that the
on-site interactionstrengthens ferromagnetism, while restor-
ing thecorrect asymmetry in the doping dependenceof D. In
addition, we show that this interaction results in asuppres-
sion of magnon energy near the zone boundary, in compari-
son with the nearest-neighbor Heisenberg dispersion law. We
then calculate the strength of the novel temperature-
dependent electron-electron interactionsSec. IIId. While this
interaction appears negligible in the manganates, in case of
lightly doped CMR magnetic semiconductors it does lead to
an appreciable renormalization of nearest-neighbor Coulomb
repulsion andscorrelatedd carrier hopping amplitude.

The effects of Hubbard repulsion on phase separation in
double exchange magnets atT=0 are discussed in Sec. IV. In
the U=0 case, the zero-temperature phase diagramsmuch
like the doping dependence of spin-stiffnessd suggests that
the area of stability of the homogeneous ferromagnetic state
is shifted towards the electron-doped end,x,0.5, which is at
variance with generic experimental observationsssee aboved.
We show that inclusion ofU alleviates this difficulty as well.

The observed suppression of the carrier density of states
near the Fermi level at low temperatures24 is likely to be of
the same origin as the much more pronounced depletion of
the density of states25,26 ssometimes termed “pseudogap”d in
the vicinity of the Curie temperature. It appears, in turn, that
in order to adequately describe the physics of CMR phenom-
enon one has to understand the nature of the pseudogap. It is
therefore important that a proper description of a low-
temperature ferromagnetic state of the CMR manganates
should include the correct energy dependence of the density
of states. In Sec. V we show that standard Altshuler-Aronov
mechanism utilizing a combination of Coulomb repulsionsor
the effective electron-electron interaction derived in Sec. IIId
and impurity scattering cannot account for the measured
depletion of the density of states. This signals the insuffi-
ciency of our mean-field treatment in this case, and the pres-
ence of strong energy-dependent correlation effects even at
low temperatures.

The implications of our findings are further summarized
in Sec. VI, where we also discuss prospective directions for
the future theoretical and experimental work in the field. On
the whole, our results indicate that the effects of the Hubbard
U are indeed crucial for the understanding of magnetic prop-
erties of the CMR compounds. Qualitatively, this suggests
that in addition to the familiar double-exchange band-
narrowing effects, thecorrelated behavior of spin-polarized
large-U Hubbard carriersshould be recognized as an impor-
tant mechanism underlying the physics of CMR compounds.

II. SPIN WAVE THEORY

Low-temperature spin-wave properties of double ex-
change ferromagnets withU=0 are well understoodssee Ref.

27 and references thereind. In parallel with Ref. 27, we begin
our treatment of the Hamiltonian, Eq.s1d with UÞ0, with
the standard Holstein-Primakoff transformation, followed by
a canonical transformation of the form

H → H8 = exps− WdH expsWd,

W=
JH

Î2SN
o
kW,pW

sWkW,pWckW↑
† ckW+pW↓apW

† − H.c.d, s3d

whereapW
† is the magnon creation operator, andN is the total

number of lattice sites. The resulting Hamiltonian,H8, takes
form of a series in powers of 1/ÎS!1, with the leading-
order term,

H08 = o
kW,a

ekW
ackWa

† ckWa + Uo8
1÷4

c1↑
† c2↓

† c3↓c4↑ + dNJ s4d

shere,o8 means that the quasimomentum conservation law is
obeyedd. Since we will be interested in the leading-order
sclassicald spin wave properties, we will need only the two
further terms in this series. Here, in addition to the “usual”
terms occurring already in the noninteracting model,27

H18 =
JH

Î2SN
o
kW,pW

hfWkW,pWsekW
↑ − ekW+pW

↓ d − 1gckW↑
† ckW+pW↓ap

† + H.c.j,

s5d

H28=
eff

−
JH

2

4SNo8
1÷4

HW1,3W2,4se1
↑ − e1+3

↓ + e2
↑ − e2+4

↓ d − 2W1,3

− 2W2,4−
2
JH
Jc1↑

† c2↑a3
†a4 −

2J
S o

kW
Sd +

1
t
ekWDakW

†akW s6d

swhereW1,3 stands forWkW1,kW3
, etc., and the sum in the first

term is over kW1, . . . ,kW4d, we find two interaction-induced
terms,

Hi18 =
eff UJH

Î2SN3/2o8
1÷5

hW1,5c1↑
† c2↑

† c3↓c4↑a5
† + H.c.j, s7d

Hi28 =
eff UJH

2

4SN2o8
1÷6

hW1,5W4,6− W2,5W4,6jc1↑
† c2↑

† c3↑c4↑a5
†a6.

s8d

In writing Eqs. s6d–s8d, we omitted the terms containing
more than one spin-down fermion operatorckW↓ or ckW↓

† shence
the “eff” above the equality signsd. Due to the absence of
spin-down electrons in the half-metallic ferromagnetic
ground state, these terms will not contribute to the quantities
which are of interest to us here.

We find it advantageous to choose the coefficientsWkW,pW in
such a way that the leading-order single-particle electron-
magnon scattering,H18, is cancelled by the average contribu-
tion of Hi18 fsee Fig. 1sadg:

1 − sekW
↑ − ekW+pW

↓ dWkW,pW = − UxWkW,pW +
U

N
o
qW

nqWWqW,pW , s9d
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nkW ; kckW↑
† ckW↑l, x =

1

N
o
kW

nkW . s10d

Within the mean-field picture, conditions9d implies that
the average number of magnons with a given momentumpW ,

NpW = kapW
†apWl, s11d

remains constant.28 In other words, it represents the optimal
choice in separating the two distinct branches of excitations
smagnons and electrons/holesd.

Equations9d is solved by

WkW,pW =
RpW

ekW
↑ − ekW+pW

↓ − Ux
,

1

RpW
= 1 +

U

N
o
qW

nqW

eqW
↑ − eqW+pW

↓ − Ux
,

s12d

which at U→0 reduces to the familiar form,29 used earlier
for the noninteracting case.27,29

These expressions can be further simplified in the experi-
mentally relevant case ofJS@eF, where eF=m+ td is the
Fermi energy, measured from the bottom of the spin-up sub-
band. In particular, we then find

JS

RpW
< JH −

U

NJS
o
qW

nqWseqW − eqW+pWd = JH +
uEuU
JS

S1 +
epW

td
D .

s13d

If we also restrict ourselves to the case of small magnon
momenta,p,p8!1, the second term on the rhs of Eq.s13d
can be omitted, and we obtain

H18 <
Ux

JS
Î2SN

o
kW,pW

hvWkW · pWckW↑
† ckW+pW↓apW

† + H.c.j, s14d

Hi18 <
U

2Î2SN3/2JS
o

1÷4,pW

8 hsvW1 − vW2d · pWc1↑
† c2↑

† c3↓c4↑apW
† + H.c.j,

s15d

Hi28 <
U

8SN2JS
2 o

1÷4,pW ,pW8

8 hsvW2 − vW1d · pWjhsvW3 − vW4d · pW8j

3 c1↑
† c2↑

† c3↑c4↑apW
†apW8, s16d

wherevWkW ;]ekW /]kW is the electron velocity.
The spin-wave energy,vpW, is equal to magnon

self-energy,30 which in turn can be evaluated perturbatively
sin 1/ÎSd. In addition to the first-order contributions fromH28
andHi28 , there is a number of second-order corrections from
H18 andHi18 . Owing to the conditions9d, these second-order
terms cancel each other, with the sole exception shown dia-
grammatically in Fig. 1sbd. In drawing and evaluating this
diagram, we make a drastic simplification of a mean-field
type, corresponding to the Hartree decoupling of the interac-
tion term in Eq.s4d. Namely, we do not include any spin-up–
spin-down electron vertices and use the expression

G↓sv,kWd = 1/sv − ekW − JS+ m + i0 · signvd, s17d

for the spin-down electron Green’s function. The Green’s
function for a spin-up electron in the half-metallic case is
given by the usual formula, G↑sv ,kWd=1/sv−ekW +m
+ i0·signvd.

The resultant expression for long-wavelength magnon dis-
persion takes the usual form,vpW =Dp2, where the spin-
stiffnessD is given by

DS=
uEu
4d

− J −
U2xs1 − xd + JS

2

2dJS
3 E nkWvkW

2 ddk

s2pdd . s18d

The doping dependence of the spin-stiffnessD for a two-
dimensional system is illustrated in Fig. 2sad. Here, the solid
line shows our result, Eq.s18d, for J=0 and experimentally
relevant valuesJH / t=5, U / t=16. The effect of Hubbard re-
pulsion becomes clear from a comparison with the dashed
line, corresponding to theJH / t=5, U=0 case.31 We see that
in the presence of the on-site repulsion, the magnitude of
Dsxd increases, and the maximum is shifted towardsx.0.5.
The dashed-dotted line corresponds to theJH / t=14.6,U=0
case, which is characterized by the same value of mean-field
band-splittingJS as JH / t=5, U / t=16 system at the experi-
mentally important value of electron density,x=0.6. While
numerically the two results at 0.5,x,0.8 are relatively
close, the dashed-dotted line possesses a larger slope, and
still reaches a maximum below quarter-filling,x=0.5. For
completeness, we note that the classicalJH→` resultsdotted
lined is symmetric and corresponds to the largest magnitude
of Dsxd. We conclude that at a finiteJH, in addition to an
overall increase inD, the inclusion of Hubbard repulsion
leads to a relative increase of spin stiffness at x.1/2, which

FIG. 1. sad Schematic representation of Eq.s9d, with the two
vertices corresponding toH18 andHi18 fsee Eqs.s5d ands7dg, respec-
tively. sbd Second-order interaction correction to the magnon energy
fcf. Eq. s18dg. scd Second-order contribution to the temperature-
dependent interactionG↑↑ between two spin-up electrons; see Eq.
s21d. In all cases, solid and dashed lines correspond to electron and
magnon Green’s functions, respectively. Up- and down-arrows de-
note spin of the electrons. When evaluating these diagrams, one
should ensure the proper antisymmetrization of the spin-up elec-
tronic “legs” of each vertex, taking into account the appropriate
momentum dependence. Momentum integration is greatly simpli-
fied in the large-JS case considered here.
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is consistent with the experimental observation that the fer-
romagnetic tendencies in the CMR manganates are more
pronounced in this doping region. We note that an earlier
mean field study7 of the effects of the Hubbard repulsion on
the Curie temperature,TCsxd, suggested somewhat similar
trends.

The overall increase of spin stiffness originates from the
mean-field effects discussed in Sec. I and corresponds to
substitutionJH→JS in the last term of Eq.s18d. Since JS
.JH, the snegatived pre-factor in front of thespositived inte-
gral decreases in comparison with theU=0 case, resulting in
the increase ofD. At sufficiently low values ofx, however,
this tendency is counter-balanced byeffects of the Hubbard
correlations, which contribute the quantityU2xs1−xd to the
numerator of this pre-factor. The underlying physics will be
discussed in Sec. III; here we merely note that as a result, the
spin stiffness well below the quarter-filling,x,0.2, may ac-
tually be somewhat suppressed in comparison with theU
=0 value. For the case ofJH=5t, U=16t, this takes place for
x,0.19 fsee Fig. 2sadg.

As for a quantitative comparison of our results forDsxd at
x.0.5 with the experimental data for the CMR manganates,
this appears problematic due to a number of reasons:sid
available experimental results on the doping dependence of
spin-stiffness32 are still incomplete;sii d it is known27 that
quantum corrections, not included in Eq.s18d, lead to an
appreciable renormalization of spin stiffness magnitude; and

siii d the values of bandsand orbitald structure parameters and
direct exchange integrals for particular compounds are
known with a large degree of uncertainty. Nevertheless, it is
adequate to say that qualitatively, both the overall profile and
the magnitude of spin-stiffness, as given by Eq.s18d, are
consistent with the experimental results forDsxd within the
metallic ferromagnetic region, 0.2,1−x,0.5.

When spin stiffnessfas shown in Fig. 2sad for J=0g turns
negative, the ferromagnetic ground state can only be stabi-
lized by including a sufficiently strong direct ferromagnetic
exchange coupling,J,0. On the contrary, a positive value
of spin stiffness doesnot guarantee the stability of a uniform
ferromagnetic ground state, since the latter might still be
unstable with respect to phase separationssee Sec. IVd.

Within the mean-field approach taken here, expression
s18d is expected to hold atJS@eF for all values of the ratio
U /JH, except for theJH→0 case of a pure Hubbard model.
In this case, the ionic spins are fully decoupled from the
itinerant ones, and the leading-ordersin 1/Sd term in the
magnon energy vanishes. Formally, atJH→0 the second
term on the rhs of Eq.s13d cannot be omitted even for small
p, and Eqs.s14d–s18d become invalid. We note that if the
value ofU is sufficiently large, the conduction electrons may
still be in the fully spin-polarized ferromagnetic state as ex-
pected for a partially-filled Hubbard model below half-
filling, x,1. While this is always the case within the present
mean-field treatment, the actual identification of the stability
region for a ferromagnetic state of a large-U Hubbard model
remains an open problem.33,34 Although this subject is well
beyond the scope of the present work, it is important to note
that sid it is likely that over a broad range of doping values,
the instability of the fully spin-polarized state of the Hubbard
model sJH=0d results only in a partial reduction of
magnetization,33 and sii d it is possible that allowing for a
small but finite value ofJH greatly enhances stability of the
fully spin-polarized statescf. Ref. 34d.

In view of relatively small values ofJH, reported in the
bandstructure calculations, it is important to study the cross-
over to the free-spinsJH→0d case in some detail. The
leading-ordersin both eF /JS and 1/Sd term in the magnon
energy originates fromH28 and in the absence of a direct
couplingJ has the form

vpW
s0d =

uEu

2S
S1 +

epW

td
DJH

2 + xJH

uEuU2

JS
2 S1 +

epW

td
D

FJH +
uEuU

JS
S1 +

epW

td
DG2

. s19d

Here, momentumpW is allowed to take any value within the
Brillouin zone. WhenJH is sufficiently small, the second
term in the denominator dominates,35 provided that p2

* sJSJHd / sUuEud. The magnon energy then saturates at a con-
stant value,vpW =xJH / s2Sd, which is consistent with a physi-

cal picture of independent ionic spinsSW i subject to an effec-
tive magnetic field of the magnitudexJH /2. The latter is
created by the rigid ferromagnetic Fermi sea of the large-U
Hubbard carriers.36 This situation is illustrated by a dashed-
dotted line in Fig. 2sbd, corresponding toJH / t=0.2, U / t

FIG. 2. sad Doping dependence of spin stiffness for a two-
dimensional system withJ=0, JH / t=5 ssolid and dashed lines, cor-
responding toU / t=16 andU=0 cases, respectivelyd. The dashed-
dotted line corresponds toJH / t=14.6 andU=0, and the dotted
line—to JH→`. sbd The leading-order magnon energy in a 2D
system withU / t=16, J=0, andx=0.6. The solid, dashed and the
upper dotted lines are plotted using Eq.s19d and correspond to
JH / t=5, JH / t=0.2 andJH→`, respectively. The dashed line is the
result43 for JH / t=5, U=0, and the lower dotted line is the corre-
sponding Heisenberg fit.
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=16 andx=0.6. While for the experimentally relevant value
of JH / t=5 ssolid lined spin-wave energy does not reach satu-
ration, the effects of suppression of the magnon energysin
comparison with the pure cosine Heisenberg law—see the
upper dotted line, corresponding toJH→`d are still felt near
the zone boundary.37 These become more pronouncedspos-
sibly leading even to a local minimum of spin-wave disper-
sion at the pointpW =hp ,pjd, if a direct antiferromagnetic cou-
pling J.0 between the ionic spins is taken into account. The
latter gives rise to an extra term, −2JsepW + tdd / stSd, which
should be added to the rhs of Eq.s19d. Thus,at the moderate
values of JH within the experimentally relevant range, the
spin-wave dispersion in a double exchange ferromagnet with
a large on-site repulsion U shows zone-boundary “soften-
ing” in comparison with the nearest-neighbor Heisenberg
dispersion law. There has been an extensive theoretical
effort38,39 directed at understanding this property, which is
observed experimentally40 in manysbut not all41d CMR com-
pounds. It is important that this generic feature is recovered
within the present model, as suggested by earlier variational
studies39 of the effects ofU on the magnon dispersion.

We note that this zone-boundary softening effect occurs in
both two and three dimensions, and is entirely due to the
Hubbard repulsion,U. Indeed, for any dimensionalityd it
can be shown42 that atU=0 andx.0.5, the magnon disper-
sion at sufficiently largeJH*eF hardenstowards the zone
boundary. This is illustrated by the dashed line in Fig. 2sbd,
representing theJH=5t, U=0 case.43 One can see that at
large momenta, the corresponding Heisenberg dispersion
law, vpW =2Dstd+epWd / t with the appropriate value of spin-
stiffnessD, indeed yields lower magnon energiesslower dot-
ted lined.

III. EFFECTIVE ELECTRON-ELECTRON INTERACTION

The original on-site Coulomb repulsion, as represented by
the last term in Eq.s1d, acts between electrons with anti-
aligned spins. As the average number of spin-down electrons
in a half-metallic double exchange ferromagnet at low tem-
peratures is negligible, it might seem that the spin-up elec-
trons remain noninteracting even in the presence of the Hub-
bard U. However, as already discussed in Sec. I, at finite
temperatures the on-site repulsion also gives rise to an inter-
action between electrons with the same sign of spin projec-
tion. The presence of this novel interaction,Vef f, is clear,
e.g., from the form of the operatorHi28 fsee Eq.s8dg, which at
finite T can be averaged over the equilibrium magnon distri-
bution. Another contribution44 to Vef f originates from the
second-order processes, involving various combinations of
terms fromH18 and Hi18 , Eqs.s5d and s7d. As in Sec. II, the
condition s9d leads to a massive cancellation among these
second-order diagramsfcf. Fig. 1sadg, with the only two sur-
viving terms shown in Fig. 1scd.

In Fig. 1scd, vertices correspond to the magnon-electron
interaction,Hi18 , and the solid lines are finite-temperature
electron Green’s functions,

G↑
−1sz,pWd = iz − epW + m, G↓

−1sz,pWd = iz − epW − JS+ m,

s20d

where we again used the Hartree mean-field form forG↓ fcf.
Eq. s17dg. At low temperatures,T!D, only the long-

wavelength magnons are present, and the magnon Green’s
function can be written asGm

−1< iz−Dp2. Here, the spin stiff-
nessD can be evaluated with the help of Eq.s18d or taken
directly from the low-temperature neutron scattering mea-
surements. Furthermore, at low temperatures Eqs.s15d and
s16d may be used in place of Eqs.s7d and s8d.

To leading order ineF /JS and 1/S, the net result for the
vertex function,G12,43

↑↑ , of two spin-up electrons scattering is
given by the expression

2

SJS
2 E ddp

s2pddNpWFUsvW1 · pWdsvW4 · pWd −
U2sx − 1d

isz1 + z2d − JS

3svW1 · pWdsvW4 · pWd −
U2

isz1 − z3d − JS

3E nkWd
dk

s2pddhsvW1 − vWkWd · pWjhsvW4 − vWkWd · pWjG , s21d

which should be anti-symmetrized45 with respect to the ve-
locities and frequencies of the outgoingsincomingd elec-
trons,vW1,2;]epW1,2

/]pW1,2 and z1,2 svW3,4 and z3,4d. In Eq. s21d,
the first term in brackets represents the first-order contribu-
tion of the operatorHi28 , Eq. s16d, whereas the other two
terms come from the two diagrams shown in Fig. 1scd; NpW

=fexpsDp2/Td−1g−1 is the average magnon occupation num-
ber, Eq.s11d.

The retardationsfrequency-dependenced effects inG↑↑ be-
come noticeable only on a very large electron energysfre-
quencyd scale46 of uziu,JS, and can be omitted whenever
only electrons with energies near the Fermi level are consid-
ered. In this case, the effect of electron-electron scattering as
described by the vertexG↑↑ is equivalent to that ofan effec-
tive electron-electron interactionof the form

Vef f = −
UfJS+ Us2x − 1dg

8dSJS
3N

E p2NpW
ddp

s2pdd

3o8
1÷4

svW1 − vW2d · svW3 − vW4dc1↑
† c2↑

† c3↑c4↑, s22d

where we also used the fact that the long-wavelength mag-
non dispersion is isotropic. In the case of smallU!JH, eF,
our mean-field results, Eqs.s21d ands22d, can be re-derived
within the perturbation theory inU. As expected on physical
grounds,Vef f vanishes also in theU→` limit, when the
double occupancy on-site is forbidden. The momentum inte-
gral occurring on the rhs of Eq.s22d can be easily evaluated,

IsTd ; E p2NpW
ddp

s2pdd

=5
3zs5/2d
16p3/2 S T

D
D5/2

in three dimensions,

p

24
S T

D
D2

in two dimensions,6 s23d

wherezs5/2d<1.34 is the Riemann’szeta-function. We note
that the quantitys23d can also be expressed macroscopically
as the thermal average of

D. I. GOLOSOV PHYSICAL REVIEW B71, 014428s2005d

014428-6



1

2S
o
a=1

3

h¹W Ma ·¹W Maj, s24d

whereMa are the three components of local magnetization,47

MW . This shows that the appearance ofVef f is indeed a direct
consequence of the misalignment of neighboring spins
swhich in turn is due to the thermal fluctuations; cf. Sec. Id.

Although the precise form ofVef f in Eq. s22d obviously
has only a mean-field validity, we emphasize that qualita-
tively this effect, which has a clear physical origin, will sur-
vive in an exact treatment. If anything, the mean-field ap-
proach yields a smaller magnitude ofVef f: indeed, Eqs.s20d
overestimate the energy of a spin-down electron, which en-
ters into the denominators of diagrammatic expressions in
Fig. 1scd.

Thus, we conclude thatwith increasing temperature T,
there arises an effective interaction between the spin-
polarized carriers in a double exchange ferromagnetwith
U.0. For the purposes of order-of-magnitude estimates, one
can assume that electron dispersion is isotropic,vW <pW /m* ,
where m* is an effective mass of electronsor holed. The
interaction, Eq.s22d, then takes form of a simplep-wave
scattering,

Vef f =
2

Nm*
2 o

sW,qW,qW8

VsTdsqW ·qW8dcsW+qW8↑
† csW−qW8↑

† csW−qW↑csW+qW↑, s25d

with

VsTd =
UfJS+ Us2x − 1dg

4dSJS
3 IsTd. s26d

In real space, the effective interaction, Eq.s22d, takes
form

Vef f =
1

2
t2VsTdo

i,D
hci↑

† ci+D↑
† ci+D↑ci↑ − ci+D↑

† ci↑
† ci↑ci−D↑j.

s27d

Here, for each lattice sitei a summation over its 2d nearest
neighborsslabeledi +Dd is performed. The first term in Eq.
s27d contains a product of carrier densities; it renormalizes
the “bare” repulsion between electrons on the neighboring
sites, which is present in reality but not included in our
model, Eq.s1d. In the case of the CMR manganates, this bare
repulsion is expected48 to be of the order ofVnn*0.05 eV;
on the other hand, the value ofVsTd as found from Eq.s26d
with U=8 eV, t=0.5 eV, JH=2.5 eV andx=0.6 is t2VsTd
,10−4sT/TCd5/2 sin units of eV, for the 3D case; we also
assumed that the Curie temperatureTC is of the order of the
zero-temperature spin-stiffness,Dd. We thus see that in the
manganates, the contribution ofVef f, Eq. s27d, to the nearest-
neighbor repulsion remains negligible even forT,TC.

The situation is likely to be very different for nonmanga-
nate magnetic semiconductors exhibiting CMR. It is
expected49,50 that in the lightly dopedsx,10−4d EuSe, EuTe,
EuO or undopedssemimetallicd EuB6 the parameters of the
Hamiltonian, Eq.s1d can be roughly estimated asU=7 eV,
JH=0.4 eV andt=0.5 eV. Taking also into account the mag-

nitude of Eu spins7/2d, we find t2VsTd,−0.2sT/TCd5/2 in
units of eV. Thus, the effects of temperature-dependent
renormalization ofVnn in these compounds may be appre-
ciable.

We note that in the latter example, the sign ofVsTd is
negative, corresponding to an effectiveattraction between
electrons on the neighboring sites. This clearly contradicts
the simple physical picture outlined in Sec. Isbased on the
small-U perturbative considerationsd. Indeed, as can be seen
from Eq. s26d, at sufficiently large values ofU the effective
interaction can in fact become attractive. This occurs when
the second term in the numerator,Us2x−1d, which is nega-
tive for x,0.5, dominates over the first one. We suggest that
this second term, which originates from the two diagrams
shown in Fig. 1scd, is due to the many-body effects.

Indeed, the large-U partially-filled Hubbard conduction
band hassat least within the mean-field picture—see the dis-
cussion in Sec. IId the ferromagnetic tendencies of its own,
which are unrelated to the ionic spins and double exchange.
In the JH=0 case, the ferromagnetic, fully spin-polarized
state of the carrierssuncoupled to the ionic spinsd corre-
sponds to the largest bandwidth and hence to the lowest ki-
netic energy. Let us now assume that the value ofJH is finite
and the ionic spins are fixed in a certain configuration which
is not perfectly ferromagneticsin the present context, the
deviation of the ionic spin configuration from the ferromag-
netic ground state is due to the thermal fluctuationsd. The
electron bandstructure is then determined by a competition
between the Hubbard band ferromagnetismswhich favors a
uniform ferromagnetic alignment of the carrier spins and
hence decoupling from the ionic spin backgroundd and the
Hund’s rule couplingswhich tends to align the carrier spins
locally with the ionic ones, leading to the double exchange
band narrowingd.51 Not surprisingly for an interacting many-
body system, the resulting bandstructuresalong with the lo-
cal carrier spin direction and the overall strength of band
ferromagnetismd therefore depends on the bandfillingx. As a
result of electron-electron interaction, the mean-field band-
width of spin-polarized carriersssomewhat suppressed due to
the double exchange mechanismd then increases whenever
the bandfilling of electronssor holesd is increased, reaching
the maximum atx=0.5 swhere the effects of Hubbard band
ferromagnetism are most pronouncedd. The kinetic energy of
an electron at a sufficiently small value ofx may thus be
lowered if another electron is present nearbysa local increase
of the carrier densityd, leading to the effective attraction.

This effect is likely to have important physical conse-
quences in the case of Eu-based magnetic semiconductors, as
the effective attraction will further improve the stability of
microscopic droplet-like areas with increased carrier density
and enhanced ferromagnetic ordersferrons2d, which were
argued2,52 to play a key role in these compounds. If the bare
nearest-neighbor Coulomb repulsion is not too strongswhich
is expectedd, taking the effective interaction into account
may in fact lead to the total nearest neighbor interaction be-
ing attractive above a certain temperature. This in turn might
signal an instability of the homogeneous ferromagnetic state
and possibly the formation of ferrons. This question obvi-
ously calls for further investigation.

The second term in Eq.s27d is a variant ofcorrelated
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electron hopping. While the effects of this term in the present
context are not immediately clear, we note that correlated
hopping represents a much-studied extension of the Hubbard
model. In fact, an effective interaction somewhat similar to
s27d salthough involving fermions with antiparallel spinsd
has been obtained in the past53 within a mean-field approach
to a large-U Hubbard model. In the case of CMR mangan-
ates, where the quantityVsTd is very small, the effects of the
correlated hopping term in Eq.s27d are expected to be neg-
ligible. Again, the situation can be very different for the
CMR magnetic semiconductors with small carrier densities.

We note that while the results27d applies only for degen-
erate magnetic semiconductors with finite carrier densities at
T→0, we expect a similar magnon-mediated effective
electron-electron interaction to arise in the nondegenerate
sundopedd case as well.

IV. PHASE SEPARATION AND PHASE DIAGRAM AT T=0

Although spin stiffnessDsxd and spin-wave energy,vpW,
discussed in Sec. II, are important and much-studied quanti-
ties characterizing magnetic properties of double exchange
ferromagnets, their behavior is not expected to yield any
conclusive information on the stability of the ferromagnetic
state at low temperatures. Indeed, for largeJH andU=0 it is
possible to verifyssee, e.g., Ref. 18 and references thereind
that, in a marked difference from conventional isotropic in-
sulating magnets with competing interactions, the zero-
temperature magnon spectrum of a double exchange magnet
in the homogeneous ferromagnetic state does not soften
when the latter is rendered unstable due to a change in the
balance between ferro- and antiferromagnetic tendencies in
the system. This is because phase separation, which is a ge-
neric phenomenon found in both experimental and theoreti-
cal studies of the CMR manganates and doped magnetic
semiconductors2,17 always preempts a second-order, spin
wave-mediated phase transition. On the theory side, there is
little doubt that this situation persists in the finite-JH, U.0
case in two and three dimensionssin particular, this is known
to be true in theJH→0, large-U case of the pure Hubbard
model54d. In the present section, we will see how the pres-
ence of on-site Coulomb repulsionU affects the physics of
phase separation and, in particular, the low-temperature
phase diagram. We note that the effects of Coulomb repul-
sion on phase separation in this model were studied in Ref. 4
within a somewhat different mean-field approach.

At a given value of electron band fillingx fand the corre-
sponding chemical potential,msxdg, the homogeneous ferro-
magnetic phase of a double exchange magnet is unstable
with respect to phase separation whenever its thermody-
namic potential,

VFMfmsxd,Jg = E − mx + dJ, E =E ekWnkW
ddk

s2pdd , s28d

is larger than the thermodynamic potentialVP of another
homogeneous phaseP, calculated at the same value ofm.
The total energy of the system can then be lowered if areas
of this new phase are formed within the bulk of the

ferromagnet.55 Therefore in order to find the stability region
of the homogeneous ferromagnetic phase, one has to identify
the relevant phases and evaluate the dependence of their re-
spective thermodynamic potentials on the parameters of the
Hamiltonian, Eq.s1d.

For any given values ofJH and U, it is convenient to
characterize the stability of the homogeneous ferromagnetic
state by the critical value of direct antiferromagnetic ex-
change coupling,Jcrsxd, above which the system becomes
phase-separated. The calculation thus proceeds as follows:
the equation,

VFMfmsxd,JPg = VPfmsxd,JPg, s29d

is solved for several possible phasesP, yielding the corre-
sponding values ofJ=JPsx,U ,JHd. At a fixedx, the value of
Jcr is then given by the lowestJP. Such a procedure clearly
has a variational validity as it does not imply an existence of
a rigorous proof thatJcr cannot be lowered further by broad-
ening our selection of phasesP. On the other hand, the con-
dition J.Jcr is obviouslysufficientfor the phase separation
to occur. We shall now turn to the two possible antiferromag-
netic phases considered in the present paper.

Based on the numerous results for theU=0 case,2,18,17one
expects that a phase separation into ferromagnetic and the
usual Néel antiferromagnetic (G-type antiferromagnetic)
phase, corresponding to the wave vector ofhp ,p ,pj sin two
dimensions,hp ,pjd takes place in the vicinity of endpoints,
x=0 and x=1. To leading order in 1/S, one can use the
classical formalismhsee, e.g., Eqs.s9d ands10d of Ref. 15j to
re-write the Hamiltonian in terms of the new fermionsdi↑
sanddi↓d, whose spins are alignedsantialignedd with the local

ionic spinsSW i in the G-type antiferromagnet:

HG = −
t

2o
ki,jl

sdi↓
† dj↑ + di↑

† dj↓ + H.c.d +
JH

2 o
i

sdi↓
† di↓ − di↑

† di↑d

− dJN+ Uo
i

sdi↑
† di↑x↓ + di↓

† di↓x↑ − x↑x↓d. s30d

Here, a standard Hartree mean-field decoupling has been car-
ried out in the last term, withxa;kdia

† dial denoting the av-
erage spin-up and spin-down fermion densities. Upon Fou-
rier transformation and diagonalizationssee the Appendixd,
Eq. s30d takes the form

H = o
kW,a

eG
askWdfkW,a

† fkW,a − dNJ− UNx↓x↑. s31d

Here, fkW,a
† are the new fermion creation operators, the mo-

mentum summation is performed over the fullsferromag-
neticd Brillouin zone, and the carrier spectrum is given by

eG
↑,↓skWd = d 7Î1

4
sJS

sGdd2 + sekWd2, s32d

JS
sGd = JH + Usx↑ − x↓d, d = 1

2Usx↑ + x↓d. s33d

These equations are valid also atU=0, in which caseJS
sGd

=JH and d=0. For general values ofU, the quantityJS
sGd

represents the Stoner-type mean-field band splitting in the
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G-antiferromagnetic phase, whereasd merely renormalizes
the chemical potential,m− 1

2JH. The closed system of mean
field equations for these parameters of the
G-antiferromagnetic phase at a given band filling,xG=x↑
+x↓, is presented and discussed in the Appendix. As we are
interested only in finding the phase-separation instability of
the homogeneous ferromagnetic state, we do not need to
solve these mean-field equations for general values ofxG.
The latter will rather be determined bym, which in turn is
related in a usual way to the band fillingx of the homoge-
neous double exchange ferromagnet.

When the value ofx is small, the chemical potential in the
ferromagnetic phase lies below the bottom of the lower band
of G-antiferromagnetfgiven by Eq.s32d with x↑=x↓=0g,

msxd , m0 =
1

2
JH −Î1

4
JH

2 + t2d2, s34d

and the thermodynamic potential of the Néel phase,VG,
equals −dJ. As the value ofx increases, the inequalitys34d is
eventually violated, giving rise to a nonzero carrier density
xG swith x↑.x↓d in the antiferromagnetic phase.

For the realistic values of parameters in the 2D case, we
find that theG-antiferromagnetic phase with partially-filled
band, 0.xG.1, is not relevant in the context of phase sepa-
ration. This is because within the corresponding range of
values ofx fand msxdg, the critical value of superexchange
coupling,JGsxd, is larger than the one which corresponds to
the second-order spin-wave transition,Jswsxd=D0sxdS swhere
D0 is the spin stiffness evaluated atJ=0d. The peculiar prop-
erties of the partially-filled case, as discussed in the Appen-
dix, are interesting on their own, and may also prove relevant
in another context. Here, we will turn to the case when the
chemical potentialmsxd lies above the top of the filled
G-antiferromagnetic band,

msxd .
t2dU

2sJH + Ud2 , s35d

resulting inxG=1. Given the realisticslarged magnitude ofU,
the value ofJS

sGd<JH+U is then also large, and the mean-
field equations are readily solved with the help of the
t /JS

sGd-expansionfwhich was used also in writing Eq.s35dg.
We find an expression

VG = −
t2d

2sJH + Ud
− msxd − dJ, s36d

which can be used to determine the critical value of super-
exchangeJGsxd whenever the phase separation into the par-
tially filled ferromagnetic and filledsxG=1d Néel states be-
comes possible. As we will see below, this happens only well
above the quarter-filling of the ferromagnetic band,x.0.5,
where the inequalitys35d is clearly satisfied.

Another phase which seems to be ubiquitous in the 2D
case is theA-type antiferromagneticone, characterized by
the wave vectorhp ,0j. The mean-field theory of the
A-antiferromagnetic phase is formulated along the same lines
as for the Néel antiferromagnet above, where Eq.s32d is now
replaced with

eA
↑,↓skWd = d − t coskx 7Î1

4
sJS

sAdd2 + t2 cos2 ky, s37d

and thesnegatived superexchange term in the Hamiltonian is
cancelled. In spite of the higher superexchange energy, the
A-type phase becomes more profitable than the Néel one
because it allows for a larger gain in the kinetic energy of
carriers. Thus, it is clear that theA-phase becomes relevant
only when the carrier density in theA-type ferromagnet
xAfmsxdg sand similarly, the hole density, 1−xAd is not too
small. In case of largeU, this means that the value of Stoner
bandsplitting,JS

sAd, is much larger than the hopping matrix
element,t.

Therefore while for moderate values ofU the full system
of mean field equations forJS

sAd andxA must be solved, and
then the thermodynamic potential,

VA =E HeA
↑skWd +

1

2
JH − msxdJnkW

sAd d2k

4p2 −
1

4
UxA

2

+
1

4U
sJS

sAd − JHd2 s38d

fwheren
kW
sAd

is the Fermi distribution function, corresponding
to the dispersion laws37d and chemical potentialmsxd
−JH /2g, must be evaluated numerically, in the large-U case it
is sufficient to retain the leading-order terms int /JS

sAd. In this
way we obtain forU@ t,

JS
sAd < JH + UxA < JH +

U

p
Fp − arccos

msxd
t
G , s39d

VA < −
1

p
Ît2 − m2 −

1

p
Sm +

t2

2JS
sAdDSp − arccos

m

t
D .

s40d

Equationss39d ands40d hold for umsxdu, t, which at largeU
corresponds to partial filling of theA-antiferromagnetic
band.

The zero-temperature phase diagram for a 2D system with
JH / t=5 andU=0 is shown in Fig. 3sad. Here, thesupperd
dotted line corresponds to the long-wavelength spin-wave
softening,Jswsxd=D0sxdS; at x,0.31, it is preempted by spin
wave instability atpW =hp ,pj slower dotted lined. Phase sepa-
ration instabilities involving Néel andA-type antiferromag-
netic phases are represented by solid and dashed lines, re-
spectively. We see that the stability region of the uniform
ferromagnetic phase is heavily shifted towards the electron-
doped end,x,0.5; at the experimentally relevant values of
J/ t,0.015 sJ/ t,0.02d, the homogeneous ferromagnetic
state is unstable everywhere at 1−x,0.34 s1−x,0.55d. As
explained in the Introduction, it is atx.0.5 that the broad
low-temperature ferromagnetic region is found for the CMR
manganates, and such an instability clearly contradicts this
experimental observation.

The situation changes in the presence ofU=16t, as shown
in Fig. 3sbd. Here, the dotted line represents our result for
spin stiffness, Eq.s18d; due to the zone-boundary softening
effect discussed in Sec. II it is expected that for all carrier
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concentrations, the spin-wave instability atpW =hp ,pj corre-
sponds to a slightly lower value of superexchange. The latter
is not shown in Fig. 3sbd because our result for the magnon
spectrum, Eq.s19d, does not include the subleadingsin t /JSd
term and therefore should not be compared with other quan-
tities plotted here. The Néel phase separation instability
ssolid lined is plotted using Eqs.s34d, sA12d, and s36d. In
order to improve accuracy formsxd,−1 scorresponding to
x,0.19d, we solved the full system of mean-field equations
for the A-type phase. Nevertheless, we note that Eq.s40d
yields accurate results in the region where the phase separa-
tion into ferromagnetic andA-type antiferromagnetic phases
is possible.

We see that forU / t=16 andJ/ t=0.015 sJ/ t=0.02d, the
region where ferromagnetic phase is unstable is shifted to
1−x,0.21 s1−x,0.23d, so that asubstantial stability re-
gion is now left for the ferromagnetic phase at x.0.5, in
agreement with experimental results. Admittedly, the pres-
ence of broad stability region of ferromagnetic phase atx
,0.5 is at variance with experiments and indicates a defi-
ciency of either our variational proceduresi.e., our choice of
possible phases is too narrowd, or our simplified model, Eq.
s1d.56 Indeed, in the 3D case the experimental data10,57 show
that the phase diagrams for different perovskite compounds
differ in the electron-dopedsx,0.5d region, suggesting the
sensitivity to details of crystalline surrounding and perhaps
the importance of orbital structure.

The inclusion of Hubbard interaction in principle could
have brought about new charge-ordered antiferromagnetic
sor ferrimagneticd phases, which would not occur atU=0.
While we tried to look into this possibility, we could not
identify any such phases that would be stable within the
experimentally relevant region of parameter values. This dif-
ficulty was encountered also by other workers in the field,4

who could stabilize charge ordering only upon including a
large intersite Coulomb repulsion.

It is however worth mentioning that some of the more
complicated phases which are relevant for phase separation
at U=0 do show charge ordering owing to inequivalence of
different lattice sites. This is exemplified by thechain
phase,18 shown schematically in Fig. 4. In Fig. 3, the critical
value of superexchange, corresponding to phase separation
into ferromagnetic and chain phases, is shown by the dashed-

dotted line; for theU=0 case it was calculated exactly,
whereas forU=16t we used the large Stoner bandsplitting
expansion similar to the one described above for the
A-antiferromagnetic phase. We see that whenU is included,
the phase separation into ferromagnetic and chain phases in
the hole-doped region,x.0.5, becomes impossible. This is
in line with the general expectation thatHubbard repulsion
disfavors charge ordering at x.0.5, when there is less space
between electrons.

The present mean-field treatment allowed us to arrive at
important conclusions regarding the effects of Hubbard re-
pulsion on the possible instabilities of the homogeneous fer-
romagnetic phase. Nevertheless, we stress that the full zero-
temperature phase diagrams for the models1d both in the 2D
and in a much more cumbersome 3D case are still lacking,
and should only come from numerical experiments. This is a
challenging problem, as some of the phases involved can be
expected to have relatively large unit cells.

V. CARRIER DENSITY OF STATES
NEAR THE FERMI LEVEL

While the physical nature of carrier transport and magne-
totransport in the CMR compounds near the Curie tempera-
ture remains largely unknown, it may be possible to single
out an equilibrium property which is most closely related to

FIG. 3. Values of superexchangeJ corresponding to the instabilities of the ferromagnetic order atT=0 in a 2D system withJH / t=5, U=0
sad, andU / t=16 sbd. Dotted lines correspond to spin-wave instabilities, solidsdashedd lines—to the phase separation intoG-type sA-typed
antiferromagnetic and ferromagnetic phases, and the dashed-dotted line—to the phase separation into chainssee Fig. 4d and ferromagnetic
phases.

FIG. 4. Spin ordering in the chain phase.
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the CMR phenomenon. It appears that such a property is a
broaddepletion of carrier density of states near the Fermi
level as observed in photoemission/absorption in the CMR
manganates.25 This decrease of the density of states, visible
already deep in the ferromagnetic phase, becomes progres-
sively more pronounced as the temperature approachesTC,
around which there is no spectral weight left at the Fermi
level within the accuracy of the experiments. These results
were subsequently confirmed by the tunneling
measurements;26 it was suggested that the hard gap opening
at T<TC is responsible for the peak of the resistivity. The
relevance of these gap or pseudogap phenomena for transport
is underlined by the fact26 that the “transport gap” seen in the
activated temperature dependence of resistivity atT.TC is
roughly of the same order of magnitudestenths of eVd as the
width of the density of states depletion. Furthermore, it
seems possible that in the case of the nonmanganate lightly
doped or nondegenerate magnetic semiconductors, the well-
known giant red shift of the optical absorption edge58 swith
optical gap decreasing as the temperature is lowered through
TC; see the discussion in Ref. 2d may act as a counterpart of
the temperature-dependent pseudogap observed in the man-
ganates.

For the case of the CMR manganates, high-resolution tun-
neling measurements have recently been extended24 down to
liquid helium temperatures, revealing a noticeable, albeit
narrow, depletion of the density of states near the Fermi level
at T=4.2 K. Although the conclusive evidence is still lack-
ing, it is most reasonable to expect that it is this feature
which with increasing temperature evolves into the broad
pseudogap observed nearT=TC. It is therefore important that
a proper description of the low-temperature ferromagnetic
state of the CMR compounds should include this anomaly.

Within the mean-field picture advanced in the present pa-
per, at low temperatures and within the relevant doping range
of 1−x<0.3, the system is assumed to be in a homogeneous,
half-metallic ferromagnetic state; deviations from ferromag-
netic orderingsspin wavesd freeze out atT!TC. The resis-
tivity of the sample is then determined by impurity scatter-
ing, and it is only a combination of the latter with the usual
Coulomb repulsionsincluding the long-range componentd,
which could result in any density of states feature near the
Fermi level. Indeed, it is known from the work of Altshuler
and Aronov59,60 that electron-electron interactions in a diffu-
sive conductor generate an anomaly in the tunnelling density
of states, centered on the Fermi energy. We note that since
the magnitude of effective interactionVef fsTd in the manga-
nates is much smaller than the correspondingsnearest-
neighbord term Vnn in the Coulomb repulsionssee Sec. IIId,
the effects ofVef fsTd on the density of states can be omitted
altogether.

We use the standard expression for the change in the den-
sity of states near the Fermi level,59,60

dn =
1

Î2p2
·

ue − mu1/2

s"Ded3/2 , s41d

where the overall pre-factor has been multiplied by two in
order to account for half-metallicity of the system.61 Assum-

ing t,0.5 eV and using the valuesr,161 mV cm for the
resistivity of La0.7Ca0.3MnO3

24 anda,4 Å for intersite dis-
tance, we estimate the diffusion constantDe as De
,fre2nseFdg−1,6a3t / sre2d,7 cm2/s. The resulting esti-
mate,

dnsed
n

, 0.03Îue − mu
t

, s42d

is an order of magnitude smaller than the experimental re-
sults of Ref. 24, which show a 15% change indn /n for
ue−mu,0.075 eV. Furthermore, based on Eq.s41d one ex-
pects that the relative change in the density of states for
La0.75Sr0.25MnO3 scharacterized by smaller values of resis-
tivity and by a larger bandwidthd should be about 10 times
less than in the case of La0.7Ca0.3MnO3, whereas experimen-
tally the two curves differ by a factor of the order of 2. In
addition, the experiments24 yield dn /n~ se−md2 within a
relatively broad energy range ofue−mu,0.02 eV; this is in
contrast with the standard theory,59,60which predicts a cross-
over to the square root lawfcf. Eq. s41dg at ue−mu,T. Thus,
we find thatthe Altshuler-Aronov mechanism cannot possibly
account for the Fermi-level density of states depletion in the
CMR manganateseven at low temperatures.

We therefore conclude that the low-temperature ferromag-
netic state of the CMR manganates is characterized by strong
electron correlation effects. Since these are certainly not cap-
tured within the present mean-field approach this does not
necessarily signify the deficiency of our simplified model,
Eq. s1d. While we plan to investigate this question in more
detail in the future, we emphasize that our conclusion on the
correlated nature of the low-temperature ferromagnetic
phase of the CMR manganates is likely to be model-
independent. In other words, an adequate generic model of
the manganates, whether or not it involves orbital, lattice,
etc. degrees of freedom, must necessarily take proper non-
perturbative account of electron-electron interactions.

VI. CONCLUSION

In the present paper, we were concerned with the effects
of the strong on-site Coulomb repulsion which is present in
the CMR compounds but often overlooked in the theoretical
treatments. By treating the model within the mean-field ap-
proach, we were able to resolve some apparent discrepancies
between the generically observed low-temperature properties
of these compounds and theoretical results for thesnoninter-
actingd double exchange model at the appropriate values of
Hund’s rule coupling strength. These properties include the
doping dependence of spin stiffness, and the “zone-boundary
softening” of magnon spectrumsSec. IId which has attracted
much attention from both theorists and experimentalists. The
underlying physical mechanisms are two-fold and include
both the interaction-induced increase in the effective band
splitting sSec. Id and the correlated physics of the strongly
interacting Hubbard carrierssSec. IIId. In addition, we
showed that a novel, magnon-mediated effective electron-
electron interaction arises in these systems at finite tempera-
turessSec. IIId. While for the CMR manganates the strength
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of this interaction remains negligible, it is expected that it is
much more important in the case of Eu-based magnetic semi-
conductors exhibiting CMR.

By considering the stability of the ferromagnetic state
against phase separation, we were able to showsSec. IVd that
inclusion of the Hubbard repulsion alleviates another dis-
agreement between the theory and experiment, resulting in a
sizable stability region of the ferromagnetic state above half
electron filling, x.0.5. Regarding the phase diagram, the
question of identification of the relevant phases and finding
the precise domain of the ferromagnetic phasesespecially in
the electron-doped region,x,0.5d remains open and calls
for further theoretical investigations, in particular numerical
ones. At the same time we note that the underlying physics
consists in a competition between many phases with very
close values of thermodynamic potential, and the outcome is
guaranteed to be strongly dependent on the details of band
structure, lattice/orbital properties and interactions in a par-
ticular compound. Therefore, while understanding the details
and implications of phase separation in the CMR compounds
sincluding both thermodynamic and transport propertiesd
presents a broad and fascinating problem, it is not obvious
that these details are directly related to the generic features of
the CMR phenomenon itself.

The satisfactory results of our mean-field approach, as
sketched above, all have to do with the integral quantities,
involving summation over the entire Fermi sea. It is pre-
cisely this effective averaging that makes our Hartree-Fock
decoupling scheme a relatively reliable tool in this case. The
situation changes drastically when this approach is used to
address other issues, such as the behavior of the carrier den-
sity of states near the Fermi levelsSec. Vd. In this case, the
usage of the Hartree-Fock approximationswhich yields the
effective Stoner band splittingJS much larger than the Fermi
energy, leading to an assumption that the system is half-
metallic with no minority-spin carriersd is the probable cause
of our inability to reproduce the experimentally measured24

depletion of the density of states. Assuming that the results
reported in Ref. 24 are sufficiently generic, this failure may
have far-reaching conceptual consequences.

As mentioned in Sec. V, it is expected that the low-
temperature depletion of the density of states at the Fermi
level is a temperature-dependent feature, which with increas-
ing temperature evolves into the pseudogap; this temperature
dependence is in turn expected to crucially affect transport
properties of the system both nearTC and at low tempera-
tures. The failure to recover the low-T Fermi-level feature in
the density of states within a theoretical treatment based on
the picture of a half-metallic homogeneous ferromagnetic
phasesSec. Vd should lead toquestioning the experimental
relevance of the many available calculations of the low-
temperature resistivity in double exchange ferromagnets,
which are based on similar assumptions.

On the other hand, one should not overlook the evidence,
coming both from band structure calculations14 and the ex-
perimental observations,62 which points to thepresence of
carriers in the minority spin subbandin the CMR mangan-
ates even at low temperatures. Theoretically, this may be
possible due to relatively small values of Hund’s rule cou-
pling; the spin-downsminorityd electrons,63 if present, will

form polaron-like localized states, accompanied by a reduc-
tion in the spin-up electron density within the area of the
polaron sthis reduction will in turn reduce the Coulomb/
Hubbard interaction energyd. These localized spin-down car-
riers will clearly lead to an enhanced spin-up electron scat-
tering and will also affect the density of states at the Fermi
level.64 As explained in the Introduction, these correlated ef-
fects are beyond the mean-field approach used in the present
paper; in our view, this scenario definitely merits further at-
tention, especially as there is now some recognition65 that
other avenues of theoretical investigation of the CMR and
related phenomena may have proved unpromising.

On the experimental side, we suggest that some key mea-
surements still have to be performed in order to clarify the
issues under discussion here. These fall into three categories.

sid Detailed investigations of the energy dependence of
the density of states as a function of temperature and mag-
netic field. This includes tunneling and optical measurements
for various chemical composition and doping levels, within
the entire temperature range, and would help to clarify the
relationship between the low-temperature density of state
depletion of the Fermi level24 and the pseudogap observed in
the near-critical region,25,26 as well as confirm the relevance
of these phenomena for transport and magnetotransport.

sii d A systematic investigation of the interplay between
pseudogap and other phenomena, in particular those related
to the unusual spin correlations found in the CMR mangan-
ates, such as the central peak observed in the inelastic neu-
tron scattering66 and critical behavior of spin-stiffness.67 In
particular, it can be expected that understanding the nature of
spin dynamics at elevated temperatures would shed light on
the structure of electron states involved in the pseudogap
formation. The relationship between pseudogap and phase
separation should be clarified as well.

siii d Lastly, what appears an important theoretical and ex-
perimental problem is to identify the “common denominator”
between the structure and properties of the CMR
manganates1 and those of the CMR magnetic semiconductors
sEu-basedd and spinels.2 Understanding what these CMR
compounds have in common may be of much help in con-
structing a minimal theoretical model for the CMR com-
pounds. In connection to this, we recall that the familiar
argument concerning the relative unimportance ofU in sys-
tems with low carrier densities rests upon an assumption that
carrier distribution throughout the sample is uniform on the
microscopic scale. The latter is not expected to be true, both
for the CMR manganates and for ferromagnetic semiconduc-
tors at elevated temperatures,T&TC. It is therefore possible
that the effects ofU, discussed in this paper, are important in
both systems.
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APPENDIX: MEAN-FIELD EQUATIONS FOR THE
G-TYPE ANTIFERROMAGNETIC PHASE AT T=0

Here we outline the necessary details of the Hartree
mean-field scheme, as applied in Sec. IV to the
G-antiferromagnetic phase. Throughout this appendix, we
use units in which the hopping constant,t, is equal to unity.
Eq. s30d is diagonalized by

dkW↑ =
ekW

Î2VkW
2 − JS

sGdVkW

fkW↑ +
ekW

Î2VkW
2 + JS

sGdVkW

fkW↓,

dkW↓ =
1
2JS

sGd − VkW

Î2VkW
2 − JS

sGdVkW

fkW↑ +
1
2JS

sGd + VkW

Î2VkW
2 + JS

sGdVkW

fkW↓, sA1d

with VkW
2= 1

4sJS
sGdd2+ekW

2. Assuming that the system is still half-
metallic, i.e., that the chemical potential lies below the bot-
tom of the spin-downantiferromagneticbandfcf. Eq. s32dg,
we find

x↑,↓ = 1
2xG ± 1

2I, I =
1

2N
JS

sGdo
kW

nkW
sGd

VkW
, sA2d

where n
kW
sGd;kfkW↑

† fkW↑l is the appropriate Fermi distribution
function. Together with Eqs.s32d ands33d, Eq. sA2d forms a
closed system of mean-field equations for a homogeneous
G-antiferromagnetic phase at fixedxG.

We note that the Fermi surface in a partially-filled spin-up
band has two sheets, corresponding to different signs ofekW.
Thus, the quantity

kdi↑
† di↓l = −

1

2N
o
kW

ekWnkW
sGd

VkW

is always equal to zero, showing the consistency of mean-
field decoupling used in Eq.s30d.

When the carrier density in the ferromagnetic phase be-
comes sufficiently large for the inequalitys34d to be violated,
there arises a nonzero carrier density,xG=x↓+x↑ in the Néel
phase. This in turn leads to an increase of quantitiesd and
JS

sGd in Eq. s32d, resulting in the upward shift and narrowing
of the antiferromagnetic band. This effect is more pro-
nounced when the value ofU is sufficiently large, in which
case the energy difference between chemical potential and
the bottom ofG-antiferromagnetic band,

z = msxd −
1

2
JH − d +Î1

4
sJS

sGdd2 + d2, sA3d

and the band-filling,

xG =5
s2zd3/2

35/2p2F1

4
sJS

sGdd2 + 9G3/4

in three dimensions,

z

2p
Î1

4
sJS

sGdd2 + 4 in two dimensions,6
sA4d

remain small within an extended range of values ofx. In this
large-U limit, it is possible to solve the mean-field equations
analytically.

When the band filling is small,xG!1, Eqs.sA2d ands33d
yield

JS
sGd = JH + UJS

sGd xG

ÎsJS
sGdd2 + 4d2

, sA5d

or

JS
sGd =

JH

1 − Uj/2
, j ;

2xG

ÎsJS
sGdd2 + 4d2

. sA6d

Substituting this into Eq.sA3d fand also using Eq.s33d for
dg, we obtain

z +
1

2
JH − msxd =Î1

4
JH

2 + d2S1 −
1

2
UjD2

. sA7d

We are interested in the large-U situation whenz is small and
can be omitted on the lhsfsee below, Eq.sA13dg, in which
case we find, to leading order,

j <
2

U
H1 −

1

d
Îmsxdfmsxd − JHgJ . sA8d

With the help of Eqs.sA6d this in turn yields

JH
sGd = dJH/Îmsxdfmsxd − JHg. sA9d

While at msxd=m0, Eq. sA9d yields JS
sGd=JH, with a further

increase ofx fand hencemsxdg towards the quarter-filling,
msxd=0, the value ofJS

sGd increases, and the bandwidthfof
the order ofd2/ sJS

sGdd2, see Eq.s32dg decreases, with the ef-
fect that the bottom of spin-up band in the
G-antiferromagnetic phase remains pinned immediately be-
low the chemical potentialmsxd− 1

2JH. As a result, band-
filling in the antiferromagnet,

xG =
2

UH d
Îmsxdfmsxd − JHg

− 1J ·H1

2
JH − msxdJ ,

sA10d

remains small as long asumsxdu@JH /U2. When the latter
inequality is violated, Eqs.sA9d and sA10d become invalid.
Using Eqs.s31d, s32d, andsA3d, we write for the thermody-
namic potential in the case of smallxG,
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VG = − Ux↑x↓ − dJ+
1

N
o
kW

nkW
sGd

3HÎ1

4
sJS

sGdd2 + d2 −Î1

4
sJS

sGdd2 + ekW
2 − zJ .

sA11d

The sum on the rhsfwhich can be evaluated using the small-
k expansion and Eq.sA4dg is found to be of the order ofxGz
and can be omitted. EquationssA2d andsA10d then yield the
final expression,

VG = −
1

U
hd − Îmsxdfmsxd − JHgj2 − dJ. sA12d

It is easy to see that our neglecting the first term on the lhs
of Eq. sA7d is appropriate as long as

z
JH − 2msxd

dÎmsxdfmsxd − JHg
! 1 −

1

d
Îmsxdfmsxd − JHg.

sA13d

At small absolute values ofmsxd,0, this is satisfied as long
asxG,JH

1/2umu−1/2/U is small fsee Eqs.sA10d andsA4dg. On
the other hand, whenmsxd is close tom0 swhen Eq.sA10d
yields xG<fmsxd−m0gsJH

2 +4d2d / sUdd d, Eq. sA13d takes
form U@psJH

2 +16d1/2 in two dimensions andUfmsxd
−m0g1/2@p2s 1

4JH
2 +9d1/4 in three dimensions.68 Since the ac-

tual value ofU / t for the CMR manganates is about 16, our
results in the latter region can be viewed as an order of
magnitude estimate only.

As the value ofx is increased towards half-filling, and the
chemical potential reaches smallsnegatived values ofmsxd
*−JH /U2, the value ofxG starts increasing rapidly. The
spin-up G-antiferromagnetic band is filled,xG=1, for msxd
.dU/ f2sJH+Ud2g fcf. Eq. s32dg. In principle, the mean-field
equations can also be analyzed within this narrow area near
msxd=0, assuming thatJH+UxG is large.
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