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Power-law spin correlations in pyrochlore antiferromagnets
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The ground state ensemble of the highly frustrated pyrochlore-lattice antiferromagnet can be mapped to a
coarse-grained “polarization” field satisfying a zero-divergence condition. From this it follows that the corre-
lations of this field, as well as the actual spin correlations, decay with separation like a dipole-dipole interaction
(1/|R®). Furthermore, a lattice version of the derivation gives an approximate formula for spin correlations,
with several features that agree well with simulations and neutron-diffraction measurements of diffuse scatter-
ing, in particular the pinch-poinfpseudo-dipolar singularities at reciprocal lattice vectors. This system is
compared to others in which constraints also imply diffraction singularities, and other possible applications of
the coarse-grained polarization are discussed.
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I. INTRODUCTION version of the derivation, which not only gets the long-

Highly frustrated antiferromagnets are characterized by 4/avelength behaviocorresponding to the neighborhoods of
very large number of essentially degenerate states, such thRecial points in the Brillouin zonéut provides an approxi-
in a range of temperatures much smaller than the spin intefhation for the entire zone. | also discuéSec. IV) other
action scale they have strong local correlations, yet fail tcsituations in which local constraints in a ground state pro-
order! diffuse scattering is the obvious probe of such a stateduce diffraction singularities, and speculate on other ques-
In this paper, | make the point that the classical ground-stations that can be addressed using the insight that the polar-
ensemble can entail constraints that ensure a generic poweétation field contains the important long-wavelength degrees
law decay of correlations: a picture of theses state as “liquidef freedom.
like” (i.e., featurelegsis thus incomplete. A parallel papet* contains many of the same results.

We consider specifically the pyrochlore lattice, consisting
of corner-sharing tetrahedra, partly because of its simplicity
as a modelhigh (cubic symmetry and nearest-neighbor in-  The pyrochlore lattice consists of corner-sharing tetrahe-
teractiong, but most importantly because it is the magneticdra arranged in cubitfcc) symmetry. Its key property is that
lattice in many real systems: tisite spinelg;® two fami-  the sites are the bond midpoints of a diamond lattiS=e
lies of pyrochlores represented by CsNigfF and the ox-  Fig. 1; other figures emphasizing the tetrahedra are in Refs.
ides Y,Mn,0,,% and even the transition-metal lattice in 12, 19, and 20.For future use, we define vectors pointing
“frustrated itinerant” antiferro- or ferrimagnetic Laves towards the four corners of a tetrahedron
phases, such as;Y,ScMn,.”2 Ferroelectric degrees of free-

A. Pyrochlore lattice and Hamiltonian

=[i_1_1
dom (water icé?) and charge ordefin magnetité!) are U123= [4' 4 4]
also equivalent to pyrochlore systems. 111 _
Different pyrochlores show a wide variety of magnetic U, = [z,z,z] +cyclic perms.  (1.1)

behaviors at low temperatures: apart from long-range orde
these include lattice distortioRs? “spin-ice” behavior3-1"

paramagnetisntin Tb,Ti,O,) down to low temperatures, The basic results derived in this paper are transferable to

girssfér;rgi?siiI;engr:gglao\\(/\fX/?rOZr)loe's\{eor} ngg rslg\l/JeCt;rg:)- other lattices in which the spins sit on the bonds of a bipartite
4 ) ’ lattice, and with antiferromagnetic interactions among all

operative paramagnet regime at higher temperatures—blﬁ)ins on bonds sharing a common end point, such that their

still quite .Iow compared to the interaction scale— um is constrained to a fixed value. Besides the pyrochlore
demonstrating that they have a large set of nearly degeneraﬁ&tice this class includes the kagomé lattice, the two-

(6;111ea(:seis\;\?g)ils(;algzséx-lt—rge 0?;?;5?; Ess)etre%dirreaijfes tiimensional “checkerboard” lattid€2° the “sandwich” lat-
P ' P P ©tice modeling SrGy,Ga., 09 and consisting of two

In the remainder of this section, | review the lattice andkagomé layers linked by an additional triangular layer of

the ground states of a pyrochlore antiferromagnet, and Surs'pins?z—z“ and the garnet lattic®.

vey three situations in which it can be modeled by the en-""1, ', spin Hamiltonian, having only nearest-neighbor anti-

sembles used in this paper. TMS?C' 1) the mapplng“of the Jerromagnetic exchange, can be cast as a sum of squares
low-temperature states of the Ising model to the “diamon

ice” model is to construct a coarse-grained polarization field Jspi
. : . . =3 .G ——Spin 2
which functions somewnhat like an order parameter for this Hspm“]spm;)s § *const=-, L% (12
model, and this is used to predict some unusual features of v “
the magnetic diffuse scattering. Section Ill presents anothawrhere the total spin of four sites in a tetrahedron is

IfHere | took the fcc lattice constaat=1.) In the diamond
lattice, every even-to-odd bond vector isig.
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(@) (b) The largest scale i§;~zJS wherez is the coordination
number; this is the scale of the mean-fiébthssical part of
* the exchange energy, and of the Curie—-Weiss constant. At
temperature3 < E;, it is reasonable to approximate the spin
: ensemble by a subset of the ground-state ensemble.
* : The spin-wave spectrufw;} depends upon which state
we linearized around. Thus, the total spin-wave zero-point
+ /g* energy (to harmonic order.2; %ﬁw]-) partially breaks the
/% ground-state degeneracy, favoringollinear states?®2°
N {\ This is expressed quantitatively by an effective
Hamiltonian??:27:30.63with coupling constant-Ey, Where
FIG. 1. (Color onling (a) Ising ground state on fragment of the next largest scale E?O"N‘JS< Es. (Even Whe.”.s Is not
pyrochlore lattice; spins are shown on edges of a diamond Iattices.0 large, .9.5=5/2 aswith real spins, the coefficient afS

(b). The corrsponding ice-model arrows between the diamond® (_:ommonly less than 1/10 so the_ inequal_ity_ is Va”'_"h .
vertices. lattices other than pyrochlore, one finds a similar regime in

which a discrete subset of the classical ground st@es,
coplanar state¥,34in the kagomé cagegets selected by the
L,=2>s, (1.3 harmonic zero-point energy.
iea Finer treatment of the spin-wave fluctuations produces an
where « labels each diamond site anide* o” runs over the ~€ven smaller energy scalg;is; for selection among thelis-
surrounding four spins. For simplicity, | will mostly treat the Crete states. In the kagomé ca¥€}’ this is due to anhar-
case with Ising sping. (There is little loss of generality, in Monic terms in the Holstein—Primakoff expansion, so that

view of Sec. | B, below. Egisc* S3<S In the pyrochlore case, besides the anhar-
monic terms Eys. does include contributions @(JS from
H=33>12=0> tit; + const. (1.4  the harmonic term& However, these terms only partly
a (i) break the degeneracy, and the coefficients are small, so we

can still assumé ;. <E.q.

Thus, the second regime in which the Ising theory models
L,=0 (1.5  the correlations i€ < T<Egy,. One expects a symmetry
breaking to long-range collinear order, in which a global axis
Fis spontaneously adopted and each spin is giversby
=t;A, with t;==1, plus small fluctuations. This phase is a
kind of “spin nematic.2” The energy terms distinguishing
different Ising states are unimportant sinte- Eg, hence

B. Temperature regimes and validity of Ising model the Tp_in ecr;semble is roughly the ground states of (Ed),
. .Here | discuss the three diﬁerent.situations in which real-as C(;fa::rSSrs:e, in the real world there is another energy scale
istic models can be treated under this paper's schéfRead- Eper fOr perturbations of the pure Heisenberg Hamiltonian,
ers who are content with a treatment of an Ising toy model;gpresenting the magnitude further-neighbor exchange and
and do not immediately demand any connection to experiginole couplings, as well as lattice distortions, and disorder,
men_t, may _sklp to _Sec. Il Wher_e the _central_ resu!t_|S derived.\yhich cause a transition or freezing into some other state at

First, it is possible that spin anisotropig€additional to sufficiently low temperature, so the regime of the spin
(1.2] r(_adu_ce the gro_und—s;ate manifold to thg Ising states. If,ematic-like phase is really Mg, Eperd < T< Ecol.
the lattice is to remain Cl'.IbIC, the. preferred axis canngt'be the Finally, the third situation is wheE,,<T<E,. This en-
same for each spin, but insteadlig;), wherel,=4un/v3is  gemple is well modeled by the lowF: limit of the classical
the unit vector Of(ll), and m(|) labels the direction of the Heisenberg model. It turns OLSEC. 1D, be|0w that the key
diamond-lattice bond on which spinsits. Assuming the notion of “polarization” does extend to the Heisenberg spin
spins are strongly aligned, one psfst;l; and the Hamil-  case. | have mostly neglected that case in this paper because,
tonian reduces to Eq1.4) with J=-Jg,,/3, sincely Uy at my level of approximation, the results look identical; it
=-1/3 for m#m’, and m(i) # m(j) for nearest neighbors. would merely obscure the notation by adding spin-
This is the spin-ice modép14 component indices everywhere.

The other two situations correspond to isotropic Heisen-
berg models in the largeS semiclassical regimévhereSis
the spin length This is necessary to guarantee that 8gb) Il. COARSE-GRAINING, FOURIER MODE
is a good starting point for specifying the ground states. One FLUCTUATIONS, AND LONG-RANGE CORRELATIONS
can identify a succession of energy scales in the pure nearest-
neighbor Heisenberg antiferromagnet, corresonding to suc- In this section, | present the steps leading to power-law
cessive breakings of the ground state degeneracy as mocerrelations using the framework of a continuum theory, in
effects are consideréeé. the ideas appear more transparently.

From (1.4) it is evident that any state with

is a classical ground state; these are massively degenera
The frustration of the pyrochlore Ising model, and the exten
sive ground-state entropy implied by Ed..5), were recog-
nized very early!
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A. Ice mapping and local polarization V-P(r)=0 (2.3

In fact the pyrochlore(lsing) ground states map 1-to-1 lik - : -

. T e a magnetic field without monopoles. Equatig@<?) and
onto t_hose of the well-known diamond-lattice ice motiet; . (2.3 look, respectively, like the field energy of a magnetic
in which the degrees of freedom are arrows along the lattice electrio field, and its divergence constraint, in the ab-
bonds. In the map, every tet_rahedron center becomes a vertgx o of monopole®r charges These equations, together,
of the diamond lattice, while the spin sites map to bondSignify that the probability distribution of the(long-

centers of thg QIamond lattice. Each spm.+ 1(_;") maps to . wavelength portion of thepolarization field is the(con-
an arrow pointing along the corresponding diamond |att'cestrained Gaussian distribution

edge, in the positivénegative sense from the even to the

odd vertex. This well-known mappit®>36is also used to o a-FAPODIT _

model the spin ice system B¥i,O; (and also HegTi,0;), Prot{P(r}) = l_r[ AV -PO)]. 24

wherein local(111) anisotropy plusferromagnetisnmakes ) . ) .

a highly frustrated Ising modéf'6 The ground-state F?urler tzransformln.g [Eq. (2.2] ?'mP!Y gives Fror

condition—net spin of every tetrahedron is zero—maps tg->kz</P(K)[%>, so a naive use of equipartition would give

the “ice rule” the numbers of incoming and outgoing arrows(P.(-K)P,(k))=(1/x)é,,. But the divergence constraint

are equal at every vertéx. (2.3 imposes
The key object in this paper is the ice polarization field. :

On a diamond-lattice bond a polarizatigo;, can be de- k-P(k)=0 (2.5

fined, aligned from the even to odd diamond-lattice vertex ifin Fourier space. Thus the correct result has the longitudinal
the spin is up, oppositely if it is down; hera(i) is the local  fluctuations projected out

threefold axis of sité. On every diamond vertex, we define
the mean of this polarization over the surrounding tetrahe-

1 Kk,
dron of spins (P(=K)P,(k))= ;(@w —‘“—) (2.6)

G
P(R,) = 2 tilm- (2.1)  Fourier transforming2.6) back to direct space gives

iea

The six possible ground-state configurations of that (PL(O)P,(r)) = Air[5(f) + 13(5;”‘3?#?»)} 2.7
tetrahedron correspond ®(R,)=(+1,0,0, (0,+1,0, or K '

(0,0,+1). at large separations (wheref =r/|r|.) Correlations have
Finally, the coarse-grained polarization fiekir) is de- the spatial dependence of a dipole-dipole interactiahich
fined asP(R) averaged over some larger neighborhood ands a power law. Models that exhibit such correlations—
assumed to vary smoothly. including the pyrochlore system, so often described as
Note addedAs noted at the end of Sec. IV B(r) prop-  liquid-like—are thus, in a sense, in aitical state®® [The
erly must be multiplied by 242 This does not affect any generalization of Eq.2.7) for d-dimensional real space

formulas in Sec. II, excepk defined in(2.2) has different Would be a 1r¢ decay]

dimensions and a different numerical value. This criticality was first appreciated in the ice model it-
self, being detected originally in a simulati&hA functional

form with a dipolar singularity like Eq(2.6) was produced
by a clever random-walk approximation to a series
The ground-state entropy density is a function of the av-expansior?® The universal explanation, made here, that di-
erage polarization. A subensemble of states in whicls  polar correlations arise from E@2.2) with the divergence
large (which can be forced by boundary conditiphss rela-  condition, was first put forward to explain experiments on
tively little freedom for rearrangements of the spins or ar-two-dimensional ice-like system8.
rows; indeed, for a saturated polarization such Rs Reference 45 has also presented an ansatz equivalent to
=(1,0,0 the ensemble consists of a single microstate. Thu&€q. (2.4), derived the dipolar correlations, and confirmed
it is very plausible that the entropy density has a maximunthem by simulations, for the dimer covering of a simple cu-
for zero polarization. Therefore, to lowest order, the total freebic lattice.[See their Eq(3).] The 1/r | decay has also been
energy (arising entirely from entropy as a function of obtained analytically and numerically in Ref. 59 for the py-
coarse-graine®®(r), has the form rochlore model of this present paper.
Reference 20, Sec. Il D 1, recognized that the ground-
_ 1 state constraint in the Heisenberg pyrochlore antiferromagnet
Fod{P(NHIT= vcé”f d3r§K|P(r)|2, (2.2 [Eg. (1.5)] entails long-range correlations, but in the absegce
of the polarization concept, the argument’s form is diffuse,
wherev o =a%/4 is the volume of a primitive unit cell. The and it was not possible to predict an explicit functional form.
“stiffness” « is dimensionless, as appropriate since it isAn interesting heuristic argument was made there to justify

B. Effective free energy and correlations

purely entropic in origirf? the empirical fact of the “bow tie” shap@ee Fig. 2 taken
Corresponding to the conditiofl.5), i.e., the ice rule, by the diffuse scattering: in other words, that it takes a scal-
P(r) satisfies a divergence constraint ing form in terms ofq,/q .
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components of] parallel and perpendicular to th&11) di-
rection.

The elastic constant must be determined from Monte
Carlo simulations. Yet, without knowing it, we can still make
the nontrivial prediction that the diffuse scattering has quan-
titatively the same strength neldr 1, as it does neak 5qo In
an isotropic Heisenberg model, these pseudo-dipolar singu-
larities can be distinguished from true dipolar singularities in

10

ol

0 > - neutron scattering experiments, since they are independent of
spin direction. They can be seen in only one spatial direction
/ ‘ ' around each reciprocal lattice point.
_5 A ‘ The functional form(2.10 has nodes which we expect
Je——— X (correctly are a consequence of symmetry and therefore ex-
-10

: /\ 4 \
Sl e\ — tend throughout reciprocal space, beyond the soéithit in
which Eq.(2.10 was derived. For example, E@®.10 indi-
' cates that
5 0 5 10 15

([ik, 0,0 =0 (211

for wave vectors anywhere along the entit®0 axis. Simi-

larly the structure factor is zero along tli&l11) axis near
K11 from Eg. (2.10. Sincek=(000 is the intersection of
seven distinct axes, along each of which the structure factor
must vanish, we deduce that the diffuse scattering vanishes
1. Spin structure factor near the origin as

-15 -10 -

FIG. 2. Calculated structure factor in the plane norma{llﬂ_;o].
(The figure is the same slice as shown in Refs. 44 ang 51.

C. Diffraction consequences

There is a linear relationship between the actual Ising (It(k)[?) o (KZKS + 5 permutations— 6kkIkZ. (2.12)
spins and the ice arrows: specifically, the m@pl), from
spins to the the diamond-vertex polarization, is actually in
vertible

Indeed, experiments and all simulations on pyrochlore anti-

ferromagnets find quite small diffraction throughout the first

Brillouin zone.
10 = )

t(R * Zum) 4um-P(R), (28 2. Derivation of nodal lines

where we take the + or - signs for even and odd vertites It is possible to confirm Eq(2.11) without using coarse

respectively. Thus it is not surprising that the pseudo-dipolagraining, by sharpening an argument made in Sec. Il D of

correlations(2.7) of the latter imply similar 1/° correlations  Ref. 20.(1 have written the steps in detail, so it will be clear

for the former. However, the coefficients relating thesewhether they do or do not carry through for other lattiges.

(namely, the{u,,} vectors are staggered in sign. Partition the pyrochlore lattice sites int@00) planes la-
To see this, first Fourier transforif2.8), using the fact beled byx, and deﬁnaplane(x)EEXi:x t;. Then consider, for
that example, the tetrahedra with centersxatO: each such tet-
11 rahedron includes a pair of spins with:—‘—l1 and another

— 1 Z1K0p(UnUy) N .
Upy = z€2 " 2000m™0e), (2.9 pair with x,=+1. By the ground-state constraifi.5) the

sum of one pair is the negative of the sum of the other pair.
Since every spin With(i:il belongs to exactly one such
tetrahedron, this implieg,anz !

where K5 is a reciprocal lattice vector; similarly,, is
deﬁned withK o, etc. When this is inserted into the formula =t (1) and by B .
for t(k) [similar to Eq.(3.1)], the staggering contained in the , S L planer 47 oplan 41)' and by bravais
up, factors shifts the argument by the reciprocal space vectdpttice pelno?lcny,tp,anéﬂ§n)—(—1) toand 5)- Since all spins
K 500 50 thaff(K 500+ q)  P,(q), etc. Consequently, the singu- NaveXi=j3+3n for somen,
larities of the spin structure factor in reciprocal space are ~ ik (141
pseudo-dipolar [i)n form, just like Eq.2.10),pbut ochLr at i(ke0,0 = 2 e Ikx(4+2n)(_ 1)ntp'a”e(%1) (2.13
nonzero reciprocal lattice vectoks rather than atj=0. ¥

LetT(k) be the Fourier transform of the spins. The struc-which cancels, except for a possible Bragg peak whés a
ture factor(i.e., the neutron diffraction intensity, modulo po- multiple of 2. However, in the maximum entropy state that

larization factors has pseudo-dipolar singularities we assumed in Sec. Il B, the average spin in one of these
planes—which is proportional to the mean polarization
2 . ~
2 q P,—is zero, sai(k,,0,0=0 for all k,.
([E(K 200+ @)I*) ¢ qf+q2l' (2.10 A similar, but more complicated, argument works for a

{111} direction. Let&=r;-1/y3(1,1,1) be the projection of
In this case g,=qx and qizq§+q§. Near Kiy;  sitei onthe(11]) axis, and redefing,,,d ) as the spin sum
=2m(1,1,1), the same form holds with, andq, being the over the spin plane witlf;=¢. Each tetrahedron witlg=0
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includes three spins in thé&=-1/4y3 plane and one spin in tation), provides a polarization appropriate to this ground
the £=3/4 plane, and every spin in either plane belongsstate, which should exhibit the same sort of long-range cor-
to a unigue tetrahedron; consequently,,{-1/4y3)  relations(but with an|H| dependence

=—tyand+V3/4), even though one plane has three times as

many spins as the other. Flirtherque, these unequal planes lll. LATTICE APPROXIMATION

are equally spaced, $9i5,d V3/4+n/\3)=(=1)"tpjand V3/4)

and the rest of the argument follows as before. The continuum theory presented in Sec. Il can only pre-

dict the shape of singularities at special points in reciprocal

space. For a better comparison to experiments, a theory of

the diffuse scattering throughout reciprocal space is desir-
There is an alternate way to see that diffuse intensity muséble. Of course, whereas the req@l7) is universal across a

be small near the zone center. Ifé(k) be the Fourier trans- class of models as enumerated in Sec. Il A and IV C 1, the

form of the discrete polarization dsay) even diamond sites, detailed shape of the scattering calculated here is specific to

defined like Eq.(3.2. On the one hand, the Fourier trans- the pyrochlore lattice.

3. Alternate derivation of nodal lines

form of the constraint1.5) at odd vertices The derivation depends on lattice Fourier transforms. This
5 unfortunately forces the introduction, for this section, of a
4G(-k) -P*(k)=0, (2.19 new indexingt(R+%um) andL(R) for the same objects and

L, defined previously, wher® designates a diamond site;

where the even siteR form a fcc Bravais lattice and we |&t be
4 the number of primitive unit cells. Thus each pyrochlore site
G(k) = X, ékumy, ~ 2ik (2.19  r; is written R+3u,; the surrounding odd diamond vertices
m=1 are atR+u,,
at small wave vectors. On the other hand, we can start from 1 _ 1
Eq. (2.8 and take its Fourier transform—this time, not tak- Tn(k) == e_'k'(R+5“m)t(R +5Un). (3.9
ing advantage of E(2.9); the result is VN'R

i 1) S+ The definition(1.3) is rewrittenL(R)==_, t[Ri%um] tak-
t(k)_4G(2k) PK). (2.16 ing + and — whenR is an even or odd diamond vertex,
Near k=0, comparing Eqs(2.16 and (2.14 and recalling respectively. Thus the Fourier transform of Hd.3), re-

that G(_%k)z_%e(k), we conclude that(k)=~0, as | as- Stricted to even or odd vertices as indicated by the * +”, is

serted earlier. Furthermore, whenekeis along a{100 or a 1 4
{111 symmetry axisG(k) is parallel to that same axis by LK) = —= ei%ik'un?fm_ (3.2)
symmetry(for all k), hence structure factd@.11) is null all VNm=1

along those axes.

o ] ] A. Derivation of fluctuations
D. Generalization to Heisenberg spins . . . o
_ ) _ The simplest way to describe the approximation is first to
In the case of isotropi=3 component spins, we can imagine a distribution of spins

reiterate all the coarse-graining arguments of Sec. Il in terms

of the Heisenberg spin components. Polarization components Prok({t;}) o g =it exp(— BeirH), (3.3

are defined as in Eq2.1) but now for each Cartesian spin

component, so the polarization field is now tansor ~Where X is given by Eq.(1.4), and B ought to be the
carrying not only space but also spin indicd@a)ﬁﬂ myerse tgmperature. The Ga'u.SS|an factor m(Bql) may'be
=3 (3)5(Umi) .- As in the Ising case, it is easy to con- viewed, in the Bayesian spirit of the ma_txmum-hkellhood
vince oneself that the entropy density is maximum wien approach, as a trivia priori mdepe_ndent distribution before
=0. Hence we expect that E@.2) remains valid, except that we accoqnt for any spin mteractlpn. The se_conq factor en-
each|P(r)[2 is now interpreted as a tensor norgsum of force_s spm_correlatlons; he?é({ti_}) is the Hamiltonian(1.4)
squares of all tensor elementginally, Eq. (2.3 now be- for Ising spins, except that notyis allowed to take any real

comes three equations, one for each spin-space componeﬁ{alue'

The basis of this paper—and the signatures implied in the AdOPting the limit Bo— <, Eq. (3.3) reduces to
diffuse diffraction—extends even to Heisenberg pyrochlore -3,t%/22
antiferromagnets in a magnetic fiettl The replacemerit{ Proti{ti}) = Ol_a[ o). 34

—H—-H-Z; s is equivalent to substituting
The second factor in Eq43.4) imposes the ground-state con-
Lo— Lo—H2Jg0n (2.17 straints(1.5) around every tetrahedron, both even and odd.

in Eq.(1.4). In the case of vector spirgbut not Ising sping!
one achieves a ground state by satisfylng=H/2J, on
every tetrahedron. Simply replacings=s-H/8 in the Our goal is to evaluatét;t;), and this is not hard to do
definition of P(r) (i.e., subtracting off the mean spin expec- using the Fourier transforn3.1). We must first rewrite

1. Ising spin correlations
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I,8(L,) I, L (k)] L™(k)] in Eg. (3.4), and re-express
this in terms of{t,(k)}.
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the Fourier transform of all the spins ad(k)
= 13, Spe K RI2mt(R+2u,)=[M T(k)], where we used

Since different wave vectors decouple, it will be conve-the 4-vector inner product and

nient to viewt (k) as a complex 4-component vector. Then
the even and odd vertex constraints take the form of orthogo-

nality conditions
4
Lok = 3 ek ui (k) = (B*(kT(K) =0. (3.5
m=1
The coefficients are
E:(k) = e 71K Um (3.6

so E,=(E;)". The 4-vector inner product in Ed3.5) is
defined by

4
(AB)= > A.Bn. (3.7)
m=1

So, the distributior{3.4) can be rewritten in Fourier space

as

[T [e 7P s(E ) D(E (D] (3.9
k

M=(1,1,1,1. (3.13

The structure factor is then a projection of E§.12 onto
the M vector, thus

(i) =M1 - EE'E)ETM. (3.19

In the case of spin ice, the mapping of the Ising sgii}s
to the real spins is differentt is staggeref In this case,

M gm=(Ur) g. The pinch-point singularities will appear, but at
different places(including the origin, because in this case
the spinsare the local polarizations. In this case, the scatter-
ing around the origin is no longer suppressed.

In either the antiferromagnet or the spin-ice case, there
will be extinctions of the expected singularity at points
where(E*,M) happens to cancel.

Considering the form of Eq(3.12), singularities in the
spin fluctuations maybut do not necessarilypccur when the
2x 2 matrix (E'E) is singular. In view of Eq.(3.10, this
occurs when|H(k)[?=1. But that is precisely the defining
condition for the fcc reciprocal lattice vectoks. [This was

Thus, for eactk in Eq. (3.8), we now have a Gaussian dis- derived by a+differen.t route in Sec. Il C]{- _
tribution over a four-dimensional space, with two constraints rlndeed, E*(K209=i(=1,-1,1,2 and E"(Ky19)=[(1+i)/

reducing it to a two-dimensional subspace.

Our object is to obtain correlations of the form

{&(-k)i,(k)). The result will essentially be the projectbir
into the subspace satisfying E(B.5. If we define the 4
X 2 matrix E, the columns of which ar&" andE", then 4
X 4 projection matrix for thegdesired space orthogonal to
E* andE™ is [I=1-E(E'E)"1E". In fact

(ETE)=4<:* T) (3.9
<ETE)-1=%<1—|H|2>-1(_1H ": ) (3.10

where thek argument inE andH was suppressed; here

. k. k k k. k k
H(k) = L3, éktn=cos *cosYcos % - i sin-“sin-Ysin-2.
~ 4°°°4 4> 4>

(3.11)

[H-k)=H(K)",  [H(K)|?=Z(1+cosk,/2 cosk,/2+cosk,/
2 cosk,/ 2 +cosk,/2 cosk,/2). The final result is

{(-knk) = t5{ 8 - [EEE)'EN}t, (312

where E and (E'E)™ are implicitly functions ofk and are
defined by Eqgs(3.6) and(3.10.

Since TrI1=2, we must havéZ=2 to satisfy the normal-
ization condition(t?)=1.

2. Spin structure factor

The structure factor, as measured in

Vv2](-1,1,1,2. We seeE*(K) is proportional to areal 4
vector. [That generically happens at a point in three-
dimensionak space, since there are three independent phase
relationships to be satisfied among the componéiis.]
ThenE" is proportional toE~, and the rank ofE(K) is re-
duced from two to one at these points, confirming tdf)

is singular.

The special lines in reciprocal space on which diffraction
is zero, are those where the 4 vector of coeffici€Btd3),
relating the physical spin to the four sublattice sping),
happens to be orthogonal to both of the vectors in the null
space of the X4 matrix (3.12.

B. Finite temperature

In the approximations of Sec. Il and Il A, where the tet-
rahedron constraint was imposed rigorously, we were forced
to project out the corresponding fluctuation modes. It is pos-
sible to extend the approximation so as to permit small fluc-
tuations of the tetrahedron magnetizations, as must be ex-
cited atT>0, starting from Eq(3.3). Now, no projection is
required, since a large coefficieff; tends to suppress those
fluctuations, and so thigB.s<< case is actually more
straightforward(This subsection is essentially a streamlining
of Ref. 50, as converted to my notations.

The Hamiltonian in Eq(3.3) is a quadratic form in the
t;'s. Fourier transforming Eq(1.4), and putting it into the
4-vector notation with Eq(3.5), we get

H =23 LK)+l (k)2 = 2IEEED. (3.1
k

neutron

diffraction, combines the four sublattice contributions. Write Thus, Eq.(3.3) becomes Prdlﬁm})ocexp(—%(f,)&)), where
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proximations, intended mainly to model the bulk susceptibil-

1
A= t_2| + BerE'E (3.16  ity, are based on a single isolated tetrahedfoP? Apart

0 from the restriction that this tetrahedron has zero net spin,

and Eq.(3.12 gets replaced by these approaches necessarily miss the long-range constraint
, and hence give a poor picture of the long-range correlations.
G Ktn(K) = (A™) . (3.17) _ e :
) D. Comparison to diffraction in experiment

The matrix E'E has rank two. It can be seen that, Bs and simulation

— oo, EQ.(3.17 indeed reduces to the project@.12.

The consequence @B.s<<co for correlations is that, in
reciprocal space, the pseudo-dipolar singularit@40 get
rounded by the substitution

Several pyrochlore systems show the same characteristic
diffuse scattering featuresi) the entire first Brillouin zone
has a very low intensityi) intensity is zero along100 and
{111} axes;(iii) there is a pinch-point singularity of form

Q2 — 2+ £2 (3.18 (2.10 at Kygg and alsoKy; reciprocal lattice vectors. It

should be noted that, since there are four spin sites per unit

in the denominator, wherg~ B2 is a a correlation length.  cell, the diffuse scattering is not periodic with the Brillouin
In real space, the power-law decay8.7) acquire an zone.
exp(-r/ ) factor that cuts them off, as noted in Ref. 47. Experimentally, such features were seen in an itinerant
Laves phasdRef. 8, Fig. 3; in the pyrochlore CsNiCrf
(Ref. 5, Fig. 4; and most recently in the spinel ZnCy{Ref.
] . o 3, Figs. 3a) and 3b)], in the higher-temperature regime

Three prior treatments of the diffuse scattering in the py-apove a structural transition. In simulations, such patterns
rochlore arrived at a mathematical form more or less identiappeared in Fig. 2 of Ref. 44, Fig. 4 of Ref. 5, and in Ref. 20.
cal to Eq.(3.3), but with different formulas for the coeffi- For comparison, spin-1/2 results from exact diaagonalization
cients in these equations as a function of temperature. Thuare shown in Ref. 54, Fig. 4; they are qualitatively similar,
of course, their result is Eq3.17); however, they did not but less sharp.

C. Other analytic approximations

note the pseudo-dipoldor, in the spin-ice case, literally di-  Images of analytic largen calculations of Garanin and
polan correlations which are implicit in these formulas at the Canals can also be compared: Ref. 48, Figwhich is the
T=0 limit. kagomé systepnand Ref. 55, Fig. 6.

The diffuse scattering problem was first addressed by Reference 41, in their Fig. 5, plots diffuse scattering from
Reimeré® for Heisenberg, or in generatcomponent vector simulation of a two-dimensional spin problem equivalent to
spins) That derivation is based on mean field theorythe honeycomb dimer coveringThis is a plane of spins in
(Ornstein—Zernike correlationswhich ought to be valid in  the “kagomé-ice” phase, whereby an external field applied to
the critical regimeT —Ty", whereTy" =J/n. However, that  a spin-ice pyrochlore system causfkll} planes to de-
is invalid in the pyrochlore case, since the real critical tem-couple) The pinch pointdcalled bow-ties by those authors
perature is driven to zero. Even so, thelependence of the are prominently visible, which are diagnostic of pseudo-
result[ Eq. (15) of Ref. 49], for the limit T— Tg/”:, is exactly dipolar correlations on real space.
of the form(3.3), with 1/t3=3(T/T¥F - 1) and Be=1/T. The structure factof2.10 has a local maximum af,

Canals and Gararfth®® considered the classical pyro- =0, if we varyq, along a lineq, =const, offset slightly from
chlore antiferromagnet withh-component unit spins, in the the g, axis. The same behavior is found aroufg,; and, of
large-n limit which is tractable analytically. This is, in effect, course, all other symmetry-equivalent reciprocal lattice vec-
like the “spherical model” approximation for finitg in that  tors: the structure factor has maxima in the plane perpendicu-
a constrain{s|=1 on every spin is replaced by one onMll |ar to the radial direction in reciprocal space. The union of
spins, 3i|s|?=N. As they noted in Ref. 47, Sec. Ill, the  these planar facets forms the same sh@peuboctahedron
=o limit is completely described by Gaussian approxima-as the boundary of the fcc lattice’s first Brillouin boundary,
tions. Their result for small temperatures can be reduced thut doubled in all three directions. Indeed, in a plane of
Eq. (3.3 with 1/t3=n/3 and B,=1/T; this reduces to Eq. reciprocal space from a single crystal of_YScMn,, the
(3.4) asT—0. diffuse scattering is concentrated near times where this

Finally, Yoshida, Nemoto, and Watfause an elaborate plane cuts the Brillouin zone facés.
cluster-variational method to derive a sensible formula for Powder diffraction data from pyrochlores showed a char-
the temperature-dependent diffuse scattering for Ifileg  acteristic maximurt® which was seen experimentafiyand
(n=1) pyrochlore antiferromagnetspecifically, spin icg in simulation?® This is consistent with the fact that the
Their result, taking the lowest-order finite temperature cor{doubled Brillouin zone boundary(where diffraction is
rection, amounts to Eq3.3) with t§:2 andﬂeﬁ‘]zl%eZJ/T, maximum along any ray in reciprocal spads roughly a
which in the zero-temperature limit reduces to Eg§.4). sphere(Note that powder averaging, in the vicinity Kf,q,
[Note thatJes/3 of Ref. 50 is myJ. My E;, are essentially amounts to integrating Eq2.10 over g, and g,, which
linear combinations of the four-vectocsands of their Eq.  yields a weakly cusped function Const=@In g,.)

(B-3).]

Until now, | have only mentioned approximations which
involve the connectivity of the sites and which can incorpo- In summary, it was found that a polarization can be de-
rate the long-range nature of the constraint. Some other apined in pyrochlore antiferromagnets which—in a ground

IV. DISCUSSION

014424-7



C. L. HENLEY PHYSICAL REVIEW B 71, 014424(2005

state—exactly satisfies a divergence condition. The coarse- Apart from these defects, the tot@lassical spin is con-
grained version of this is analogous to an order parameter, istrained to be exactly zerd.The total magnetization is
being the natural variable to describe large-scale propertie%.Ea L,=0 by Eg.(1.5.] Hence, the defects are central to
The correlations were foun@Sec. 1) to have a pseudo- any theory of the magnetic relaxation, as observed by
dipolar form which—since this is a pure power law—implies inelastic neutron diffraction, or in ac susceptibility
an infinite correlation length. These behaviors were repeategheasurementy:>8

in a lattice-based derivatiofSec. Ill). In the rest of this To sharpen this point, note that within the ground states,
section, | discuss other problems to which these findings othere isno local move that produces another valid state: an
approaches could be extended or related. entire loop must be updated at or€But the movement of

a charge along a loop leaves behind the same change and
thus implements this nonlocal “flip” operatiéh.
The interpretation of relaxation experiments ought to be
The argument of this paper suggests that the analytis afast in terms of the diffusion and recombination of pseudo
diffraction experiments ought to focus more on the charac*electric charges.” The relaxation rate of the real magnetiza-
teristic features, such as pinch points, identified in Sec. Il C %ion is proportional to the drift mobility of the “charges.” The
and Il A 2. Deviations from the predictions at those placestheory of their behavior is isomorphic to an intrinsic semi-
are sensitive measures of the extent to which the tetrahedraonductor; the cost of =+1 defect(in an Ising modelis
constraint is violated in the actual ensemble. Thus, it is sug2J, so 4] plays the role of the band gap.
gested to analyze these experiments so as to extract the cor-Nonmagnetic impurity sité8 act like impurity levels in a
relation lengthé, and to check how well the diffraction is semiconductoriexactly at midgap In the Ising model, a
suppressed along the predicted nodal lings.correlation tetrahedron with one missing site has a ground state with
length was extracted in Ref. 44 from simulations, however inL,=+1, corresponding t®@Q=+1/2: it is as if agquenched
this case it was actually the finite size cutpff. charge of —1/2 has been placed there, with the possibility of
Deviations in the overall pattern from the shape predictedinding a +1 charge to it. In a Heisenberg model, such a
in Sec. Il A 2 (which shape is consistent with simulatiéhs tetrahedron often still satisfiels,=0 and the behavior is
are likely to reflect additional terms in the Hamiltonian, as inmore subtle??
Ref. 3. We could also make predictions for the dynamic neutron
Reference 3 has fitted the diffuse intensity as the Fouriestructure factor. The polarizatidA(r) is a conserved quan-
transform, not of a single tetrahedron, but a single loop of sixity, so (in a classical modeglit must diffuse. Thus
spins. However, contrary to the speculation in that paper, this
does not necessarily indicate a physical state built from such P __ V -Jp=TV?P. (4.1)

A. Implications for diffraction experiments

hexagons. To explain this, | will outline an alternative, ot
equally systematic way of fitting the diffuse diffraction data.
The constraint(1.4) implies a similar constraint on the
matrix of correlation functions. Then one can express an
valid correlation function using a basis of linearly indepen-
dent, orthogonal functions in real space satisfying this con
straint, in the spirit of, e.g., spherical harmonics. The first oft Lo A ;
these terms is the same correlation that derives from the rinﬁ) be a gapless excitation with linear dispersign. ,
of six. The form observetds, from this viewpoint, the sim- Note added in proofTo fulfill the analog of Gauss’s law,
plest possible shape, as one might expect at higher temper%‘laCh arrow along a diamond-lattice e_dge carries a flux;of +
tures when all the other terms are damped out. To produce 3'd the surface integral 6#(r) enclosing a charg® ought
pinch point, an infinite number of such terms would be re-t© be equal to it. However, wnﬁ(r)_normallzed as | defined
quired, corresponding to basis functions with a large spatial in Sec. Il A, the surface integral is actuallg®/2)Q, where
extent. a is the fcc lattice constant.

Hence, near a pinch poi€, this (classical dynamics im-
lies vanishing widths in the dynamic structure facfK
+(,0)~TI'g% Dynamical conclusions were derived by
Moessner and Chalker directly from an equation of motion in
erms ofL ,. (The consequence in a quantum model appears

B. Dynamics C. Other models

It is well known that violations of the tetrahedron con- 1. Other three-dimensional lattices

straint(due to disorder, or thermal excitatiomap to electric The polarization construction can be generalized to any
chargeqin the language wher(r) is an “electric field). A model in which (i) “spins” sit on the edges of a bipartite
defect in which three arrows point outwards has a “charge'graph, and(ii) around every vertex, the sum of the spins is
of Q=+1, orQ=-1 if three point inward$® in general,Q  the same; here spin degree might be structural as well as
=L,/2. These charges can only be created in opposite pairspagnetic.

such a pair feels arfentropig effective interaction which In three dimensions, the best examplepart from the
behavegat coarse-grained distangexactly like a Coulomb  pyrochlore lattice are antiferromagnets on the garnet
interaction. AtT> 0, the interaction would be screened in the lattice?> or dimer coverings on the simple cubic, bcc, and
usual fashion, and the screening length is the correlatiodiamond lattices. Dimer coverings of the diamond lattice
length mentioned in Subsec. IV A. might be realized by the ice model in which ions of differ-
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ence valences sit on the even and odd diamond sites; theé., free fermions have the peculiarity that the correlations
also correspond to the ground states of an Ising pyrochlore iarising from the height fielth(r) have exactly the same de-
an external fiel@2 This last system is most plausibly realized cay (1/r?) as the pseudo-dipolar terms; the contributions can
by a 1/4-occupancy lattice gas, with nearest-neighbor repube distinguished because the first kind of correlation does not
sion, representing a charge order problem. Alongside th@epend on the orientation of the vectdoetween sites, while
dimer models are vertex models on the simple cubic or trithe pseudo-dipolar kind does.

angular lattice, in which each site has three inwards and three

outwards arrows?€° 3. Quantum models

2. Two-dimensional models For the S=1/2 case on the pyrochlore lattice, there is
. . . believed to be no spin ordetThe theory of this paper is not
In two (:{|men5|ons, constraints suc_h as Ebts) are en- literally applicable to small-S quantum systems, since no
countered in several models, notably in two-dimensional ic&,,e function is possible in which every tetrahedron is si-
( = six-vertex mode| the triangular Ising antiferromagnet \, ,ianequsly a singlet. Nevertheless, it is claififetiat the

ground state, the square lattice dimer covering, gnd €SP&iffraction from exact diagonalizations of the spin-1/2 case
cially the kagomé Heisenberg antiferromagtfét®’ To grees well with formulas such as H8.14).

compar_e_the_last of thes.e to the pyrochlore Ising groun(? A pyrochlore Ising antiferromagnet, made into a quantum
states, it is fairest to consider the ground states of the threes J 4q by a small transverse ring exchange, has also defined
state Potts model antiferromagnet on the kagomeé lattice. If}o same coarse-grained fighdr), which in their theory is
that system, aszln the pyrochlore, one can predlct_the SUUGalled an “electric field® Out of their guantum-mechanical
ture factor([t(k)|?)=0 along the lines through the origin and variables conjugate tB(r) they construct a “magnetic field:”
its first star of reciprocal lattice vectors; and here too thepe resultingU(1) gauge theory has gapless modes th
scattering tends to concentrate along a surface which is t spersion analogous to light waves, and correspondingly
Brillouin zone boundary, scaled up by a factor of 2. there are power-law correlationghough with a different
Following the analogy to the pyrochlore, one would guess,qer |ay. Reference 45 also studied a model with a polar-
the scattering has a smooth maximum at the zone cdner ;54 (they call P(r) the “magnetic” field as a means to

=13, 5)-type points, but in this respective the behavior dif- ;onsirycting quantum models with no long-range order and
ferg fromd:3. To under_s.tand that, consider that B43) is ¢ -actionalized excitations.
satisfied formally by writing Recently, interesting phenomena have been observed in
P(r)=V X h(r), (4.2) certain. (electrprj conductors containing a pyrochlore
sublattice?® which are speculated to be related to the frustra-
whereh(r) is a “vector potential.” Ind=2, there is no gauge tion of this lattice. In particular, heavy fermion behavior is
freedom: for a given configuratiofP(r)}, h(r) is uniquely  seeff®in the spinel Li\,O,, and unsual ferromagnetic behav-
determinedapart from a constajptand can be visualized as ior in pyrochlore NdMo,O, is ascribed to a Berry phase
parametrizing a(rough interface in a 2+1 dimensional acquired by the fermions in a spin backgrodR&erhaps the
space® Following standard “Kosterlitz—Thoulessfalso  coarse-grained polarization field can help in modeling the
known as “Coulomb-gag’prescriptions, spin operators have long-wavelength behavior of these systems.
a component which is a periodic function of the lobat). There is also a speculati$hthat the low-temperature
This implies correlations with a power-law proportional to state of ice itselfneglecting the dipole couplings beyond the
1/k, and the structure factor must have a power-law cusp atearest neighbor!is dominated by proton tunneling with
Q (which I will call a “zone corner singularity’reflecting  nontrivial Berry phases. Even though this model(psob-
this quasi-long-range ordé&tr.Reference 41 has noted these ably) not relevant to real ice, its exotic ground state is of
zone-corner singularities in simulations; they also appeaimnterest in its own right and thié(r) field is likely to enter its
when one directly measures the fluctuatigit®q)|?) of a  decription.
discretely defined height fiefd:*3
In such “height models” it is also possible that the free
energy favors a state with bounded fluctuationf@f, cor-
responding to long-range order of the spih8? In the rare Local constraints produce diffraction singularities in other
cases of a height model =3 (e.g., three-state Potts anti- systems, specifically in the so-called “transition state” of cer-
ferromagnet on the simple cubic lattjceor in the ground tain metal alloy$? In an fcc lattice, let(R)=+1 represent
state of ad=2 quantum system, this “locking” behavior is two different chemical species. To model a state which has
always expected, except in some quantum models whicktrong short-range order, assume a constraint resembling Eq.

D. Diffraction singularities due to constraints

contain nontrivial Berry phases. (1.5

Reference 41 has calculated the asymptotic correlation
function for the dimer coverings of a triangular lattice, a S s(R+u,)=0, (4.3
system which is realized in the spin-ice class of pyrochlore in m

a magnetic field oriented aloqd@11): see their Eq94.3) and
(4.4). It should be noted that two-dimensional dimer modelswhere{R+u,,} are the 12 nearest-neighbor sites. After Fou-
(which are solvable by the methods used for the Ising modelkjer transforming, we obtain
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F(k)8(kk)=0, (4.4)  comes a null equation, 8.5 has its pseudo-dipolar singu-

) larities at the pointgreciprocal lattice vectojsat which the
where F(k) =Znexp(ik -up). It follows from Eq.(4.4) that g equations are linearly dependent and reduce to one equa-
the diffuse scattering[S(k)|?) is zero everywherén recipro-  tjon.
cal space, except thatdiverge$§* along the two-dimensional ~ The above constraint-counting arguments have been
surfaces defined bff(k)=0. When these surfaces intersect phrased so as to make clear how they might be adapted to
the Ewald plane of an electron diffraction experiment, theyother systems. For example, the triangular Ising antiferro-
produce well-known arcs observed in fcc metal alloys neamagnet(in zero field is a highly frustrated system on a Bra-
ordering transition§! Similar behavior is seen in the vais lattice, so one might naively expect stronger kinds of
Nay,Ba;,CaN; structure, a triangular arrangement of rodssingularity in its diffuse scattering. However, in that case
each having an Ising degree of freedom with “antiferromag+there is no equality constraint but insted , t;=+1, so the
netic” correlations! Arcs are also seen in quasicrystals, whole approach breaks down.
where they are ascribed to the constraints of tiling sf§ace.

Equation(4.4) is a sharper singularity than is found for
the pyrochlore lattice in this paper. The fundamental reason
is that the “spins” in Eq.(4.3 are on a primitive Bravais | thank R. Ballou and C. Broholm for sharing data before
(fco) lattice, so in a lattice oN cells there aréN constraints  publication, J. F. Nagle and F. Stillinger for information on
and the same number of variables. In contrast, in the pyrothe ice model, as well as O. Tchernyshyov, R. Moessner, and
chlore problem analyzed in the present paper, there are foi®. Sondhi for discussions. This work was supported by the
sites per primitive cell and only two constraints. Conse-National Science FoundatiofNSF) Grant No. DMR-
quently Eq.(4.4) gets replaced by3.5), a pair of equations 0240953. Part of it was completed at the Kavli Institute for
in terms of the 4 2 matrix E*. Just as=(k) in (4.4) has its  Theoretical Physics, supported by NSF Grant No. PHY99-
singular surfaces &t values where the one constraint be- 0794.
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