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The ground state ensemble of the highly frustrated pyrochlore-lattice antiferromagnet can be mapped to a
coarse-grained “polarization” field satisfying a zero-divergence condition. From this it follows that the corre-
lations of this field, as well as the actual spin correlations, decay with separation like a dipole-dipole interaction
s1/uRu3d. Furthermore, a lattice version of the derivation gives an approximate formula for spin correlations,
with several features that agree well with simulations and neutron-diffraction measurements of diffuse scatter-
ing, in particular the pinch-pointspseudo-dipolard singularities at reciprocal lattice vectors. This system is
compared to others in which constraints also imply diffraction singularities, and other possible applications of
the coarse-grained polarization are discussed.
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I. INTRODUCTION

Highly frustrated antiferromagnets are characterized by a
very large number of essentially degenerate states, such that
in a range of temperatures much smaller than the spin inter-
action scale they have strong local correlations, yet fail to
order:1 diffuse scattering is the obvious probe of such a state.
In this paper, I make the point that the classical ground-state
ensemble can entail constraints that ensure a generic power-
law decay of correlations: a picture of theses state as “liquid-
like” si.e., featurelessd is thus incomplete.

We consider specifically the pyrochlore lattice, consisting
of corner-sharing tetrahedra, partly because of its simplicity
as a modelfhigh scubicd symmetry and nearest-neighbor in-
teractionsg, but most importantly because it is the magnetic
lattice in many real systems: theB-site spinels,2,3 two fami-
lies of pyrochlores represented by CsNiCrF6,

4,5 and the ox-
ides Y2Mn2O7,

6 and even the transition-metal lattice in
“frustrated itinerant” antiferro- or ferrimagnetic Laves
phases, such as Y1−xScxMn2.

7,8 Ferroelectric degrees of free-
dom swater ice9,10 d and charge ordersin magnetite11d are
also equivalent to pyrochlore systems.

Different pyrochlores show a wide variety of magnetic
behaviors at low temperatures: apart from long-range order,
these include lattice distortions,2,12 “spin-ice” behavior,13–17

paramagnetismsin Tb2Ti2O7d down to low temperatures,18

or spin glass freezingsin Y2Mo2O7d even when structural
disorder is quite small.6 However, most of these have a co-
operative paramagnet regime at higher temperatures—but
still quite low compared to the interaction scaleJ—
demonstrating that they have a large set of nearly degenerate
sand accessibled states. The present paper addresses this
phase, as it would be extrapolated to zero temperature.

In the remainder of this section, I review the lattice and
the ground states of a pyrochlore antiferromagnet, and sur-
vey three situations in which it can be modeled by the en-
sembles used in this paper. ThensSec. IId the mapping of the
low-temperature states of the Ising model to the “diamond
ice” model is to construct a coarse-grained polarization field,
which functions somewhat like an order parameter for this
model, and this is used to predict some unusual features of
the magnetic diffuse scattering. Section III presents another

version of the derivation, which not only gets the long-
wavelength behaviorscorresponding to the neighborhoods of
special points in the Brillouin zoned but provides an approxi-
mation for the entire zone. I also discusssSec. IVd other
situations in which local constraints in a ground state pro-
duce diffraction singularities, and speculate on other ques-
tions that can be addressed using the insight that the polar-
ization field contains the important long-wavelength degrees
of freedom.

A parallel paper21 contains many of the same results.

A. Pyrochlore lattice and Hamiltonian

The pyrochlore lattice consists of corner-sharing tetrahe-
dra arranged in cubicsfccd symmetry. Its key property is that
the sites are the bond midpoints of a diamond lattice.sSee
Fig. 1; other figures emphasizing the tetrahedra are in Refs.
12, 19, and 20.d For future use, we define vectors pointing
towards the four corners of a tetrahedron

u1,2,3; f 1
4,− 1

4,− 1
4g

u4 ; f 1
4, 1

4, 1
4g + cyclic perms. s1.1d

sHere I took the fcc lattice constanta=1.d In the diamond
lattice, every even-to-odd bond vector is aum.

The basic results derived in this paper are transferable to
other lattices in which the spins sit on the bonds of a bipartite
lattice, and with antiferromagnetic interactions among all
spins on bonds sharing a common end point, such that their
sum is constrained to a fixed value. Besides the pyrochlore
lattice, this class includes the kagomé lattice, the two-
dimensional “checkerboard” lattice,19,20 the “sandwich” lat-
tice modeling SrCr8−xGa4+xO19 and consisting of two
kagomé layers linked by an additional triangular layer of
spins,22–24 and the garnet lattice.25

The spin Hamiltonian, having only nearest-neighbor anti-
ferromagnetic exchange, can be cast as a sum of squares

Hspin= Jspino
ki j l

si ·sj + const =
Jspin

2 o
a

L a
2 , s1.2d

where the total spin of four sites in a tetrahedron is
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L a ; o
iPa

si , s1.3d

wherea labels each diamond site and “i Pa” runs over the
surrounding four spins. For simplicity, I will mostly treat the
case with Ising spinsti. sThere is little loss of generality, in
view of Sec. I B, below.d

H = 1
2Jo

a

La
2 = Jo

ki j l
tit j + const. s1.4d

From s1.4d it is evident that any state with

La = 0 s1.5d

is a classical ground state; these are massively degenerate.
The frustration of the pyrochlore Ising model, and the exten-
sive ground-state entropy implied by Eq.s1.5d, were recog-
nized very early.11

B. Temperature regimes and validity of Ising model

Here I discuss the three different situations in which real-
istic models can be treated under this paper’s scheme.sRead-
ers who are content with a treatment of an Ising toy model,
and do not immediately demand any connection to experi-
ment, may skip to Sec. II where the central result is derived.d

First, it is possible that spin anisotropiesfadditional to
s1.2dg reduce the ground-state manifold to the Ising states. If
the lattice is to remain cubic, the preferred axis cannot be the
same for each spin, but instead isûmsid, whereûm=4um/Î3 is
the unit vector ofs1.1d, andmsid labels the direction of the
diamond-lattice bond on which spini sits. Assuming the
spins are strongly aligned, one putssi = tiûmsid and the Hamil-
tonian reduces to Eq.s1.4d with J=−Jspin/3, sinceûm·ûm8
=−1/3 for mÞm8, and msidÞms jd for nearest neighbors.
This is the spin-ice model.13,14

The other two situations correspond to isotropic Heisen-
berg models in the large-S semiclassical regimeswhereS is
the spin lengthd. This is necessary to guarantee that Eq.s1.5d
is a good starting point for specifying the ground states. One
can identify a succession of energy scales in the pure nearest-
neighbor Heisenberg antiferromagnet, corresonding to suc-
cessive breakings of the ground state degeneracy as more
effects are considered.26

The largest scale isEJ,zJS2 wherez is the coordination
number; this is the scale of the mean-fieldsclassicald part of
the exchange energy, and of the Curie–Weiss constant. At
temperaturesT!EJ, it is reasonable to approximate the spin
ensemble by a subset of the ground-state ensemble.

The spin-wave spectrumhv jj depends upon which state
we linearized around. Thus, the total spin-wave zero-point
energy sto harmonic order,o j

1
2"v jd partially breaks the

ground-state degeneracy, favoringcollinear states.28,29

This is expressed quantitatively by an effective
Hamiltonian,22,27,30,63with coupling constant,Ecoll, where
the next largest scale isEcoll,JS!EJ. sEven whenS is not
so large, e.g.,S=5/2 aswith real spins, the coefficient ofJS
is commonly less than 1/10 so the inequality is valid.d In
lattices other than pyrochlore, one finds a similar regime in
which a discrete subset of the classical ground statesse.g.,
coplanar states,31,34 in the kagomé cased gets selected by the
harmonic zero-point energy.

Finer treatment of the spin-wave fluctuations produces an
even smaller energy scaleEdisc for selection among thedis-
crete states. In the kagomé case,33,34 this is due to anhar-
monic terms in the Holstein–Primakoff expansion, so that
Edisc~S2/3!S. In the pyrochlore case, besides the anhar-
monic terms,Edisc does include contributions ofOsJSd from
the harmonic terms.32 However, these terms only partly
break the degeneracy, and the coefficients are small, so we
can still assumeEdisc!Ecoll.

Thus, the second regime in which the Ising theory models
the correlations isEdisc,T,Ecoll. One expects a symmetry
breaking to long-range collinear order, in which a global axis
n̂ is spontaneously adopted and each spin is given bysi
= tin̂, with ti = ±1, plus small fluctuations. This phase is a
kind of “spin nematic.”37 The energy terms distinguishing
different Ising states are unimportant sinceT.Edisc, hence
the spin ensemble is roughly the ground states of Eq.s1.4d,
as claimed.

Of course, in the real world there is another energy scale
Epert for perturbations of the pure Heisenberg Hamiltonian,
representing the magnitude further-neighbor exchange and
dipole couplings, as well as lattice distortions, and disorder,
which cause a transition or freezing into some other state at
sufficiently low temperature, so the regime of the spin
nematic-like phase is really maxsEdisc,Epertd,T,Ecoll.

Finally, the third situation is whenEcoll!T!EJ. This en-
semble is well modeled by the low-T limit of the classical
Heisenberg model. It turns outsSec. II D, belowd that the key
notion of “polarization” does extend to the Heisenberg spin
case. I have mostly neglected that case in this paper because,
at my level of approximation, the results look identical; it
would merely obscure the notation by adding spin-
component indices everywhere.

II. COARSE-GRAINING, FOURIER MODE
FLUCTUATIONS, AND LONG-RANGE CORRELATIONS

In this section, I present the steps leading to power-law
correlations using the framework of a continuum theory, in
the ideas appear more transparently.

FIG. 1. sColor onlined sad Ising ground state on fragment of
pyrochlore lattice; spins are shown on edges of a diamond lattice.
sbd. The corrsponding ice-model arrows between the diamond
vertices.
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A. Ice mapping and local polarization

In fact the pyrochloresIsingd ground states map 1-to-1
onto those of the well-known diamond-lattice ice model,11,35

in which the degrees of freedom are arrows along the lattice
bonds. In the map, every tetrahedron center becomes a vertex
of the diamond lattice, while the spin sites map to bond
centers of the diamond lattice. Each spinti = +1s−1d maps to
an arrow pointing along the corresponding diamond lattice
edge, in the positivesnegatived sense from the even to the
odd vertex. This well-known mapping11,35,36 is also used to
model the spin ice system Dy2Ti2O7 sand also Ho2Ti2O7d,
wherein localk111l anisotropy plusferromagnetismmakes
a highly frustrated Ising model.13–16 The ground-state
condition—net spin of every tetrahedron is zero—maps to
the “ice rule” the numbers of incoming and outgoing arrows
are equal at every vertex.9

The key object in this paper is the ice polarization field.
On a diamond-lattice bond a polarizationtiumsid can be de-
fined, aligned from the even to odd diamond-lattice vertex if
the spin is up, oppositely if it is down; heremsid is the local
threefold axis of sitei. On every diamond vertex, we define
the mean of this polarization over the surrounding tetrahe-
dron of spins

PsRad ; o
iPa

tiumsid. s2.1d

The six possible ground-state configurations of that
tetrahedron correspond toPsRad=s±1,0,0d, s0, ±1,0d, or
s0,0, ±1d.

Finally, the coarse-grained polarization fieldPsr d is de-
fined asPsRd averaged over some larger neighborhood and
assumed to vary smoothly.

Note added. As noted at the end of Sec. IV B,Psr d prop-
erly must be multiplied by 2/a2. This does not affect any
formulas in Sec. II, exceptk defined ins2.2d has different
dimensions and a different numerical value.

B. Effective free energy and correlations

The ground-state entropy density is a function of the av-
erage polarization. A subensemble of states in whichP is
largeswhich can be forced by boundary conditionsd has rela-
tively little freedom for rearrangements of the spins or ar-
rows; indeed, for a saturated polarization such asP
=s1,0,0d the ensemble consists of a single microstate. Thus
it is very plausible that the entropy density has a maximum
for zero polarization. Therefore, to lowest order, the total free
energy sarising entirely from entropyd, as a function of
coarse-grainedPsr d, has the form

FtotshPsr djd/T = vcell
−1E d3r 1

2kuPsr du2, s2.2d

wherevcell=a3/4 is the volume of a primitive unit cell. The
“stiffness” k is dimensionless, as appropriate since it is
purely entropic in origin.40

Corresponding to the conditions1.5d, i.e., the ice rule,
Psr d satisfies a divergence constraint

¹ ·Psr d = 0 s2.3d

like a magnetic field without monopoles. Equationss2.2d and
s2.3d look, respectively, like the field energy of a magnetic
sor electricd field, and its divergence constraint, in the ab-
sence of monopolessor chargesd. These equations, together,
signify that the probability distribution of theslong-
wavelength portion of thed polarization field is thescon-
strainedd Gaussian distribution

ProbshPsr djd ~ e−FshPsr djd/Tp
r

df¹ ·Psr dg. s2.4d

Fourier transforming fEq. s2.2dg simply gives Ftot

=ok
1
2kuPskdu2, so a naive use of equipartition would give

kPms−kdPnskdl=s1/kddmn. But the divergence constraint
s2.3d imposes

k ·Pskd = 0 s2.5d

in Fourier space. Thus the correct result has the longitudinal
fluctuations projected out

kPms− kdPnskdl =
1

k
Sdmn −

kmkn

uk u2 D . s2.6d

Fourier transformings2.6d back to direct space gives

kPms0dPnsr dl >
4p

k
Fdsr d +

1

r3sdmn − 3r̂mr̂ndG s2.7d

at large separationsr swhere r̂ ; r / ur u.d Correlations have
the spatial dependence of a dipole-dipole interaction, which
is a power law. Models that exhibit such correlations—
including the pyrochlore system, so often described as
liquid-like—are thus, in a sense, in acritical state.40 fThe
generalization of Eq.s2.7d for d-dimensional real space
would be a 1/rd decay.g

This criticality was first appreciated in the ice model it-
self, being detected originally in a simulation.38 A functional
form with a dipolar singularity like Eq.s2.6d was produced
by a clever random-walk approximation to a series
expansion.39 The universal explanation, made here, that di-
polar correlations arise from Eq.s2.2d with the divergence
condition, was first put forward to explain experiments on
two-dimensional ice-like systems.10

Reference 45 has also presented an ansatz equivalent to
Eq. s2.4d, derived the dipolar correlations, and confirmed
them by simulations, for the dimer covering of a simple cu-
bic lattice.fSee their Eq.s3d.g The 1/ur u3 decay has also been
obtained analytically and numerically in Ref. 59 for the py-
rochlore model of this present paper.

Reference 20, Sec. II D 1, recognized that the ground-
state constraint in the Heisenberg pyrochlore antiferromagnet
fEq. s1.5dg entails long-range correlations, but in the absence
of the polarization concept, the argument’s form is diffuse,
and it was not possible to predict an explicit functional form.
An interesting heuristic argument was made there to justify
the empirical fact of the “bow tie” shapessee Fig. 2d taken
by the diffuse scattering: in other words, that it takes a scal-
ing form in terms ofqx/q'.
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C. Diffraction consequences

1. Spin structure factor

There is a linear relationship between the actual Ising
spins and the ice arrows: specifically, the maps2.1d, from
spins to the the diamond-vertex polarization, is actually in-
vertible

tsR ± 1
2umd = 4um ·PsRd, s2.8d

where we take the + or − signs for even and odd verticesR,
respectively. Thus it is not surprising that the pseudo-dipolar
correlationss2.7d of the latter imply similar 1/r3 correlations
for the former. However, the coefficients relating these
snamely, thehumj vectorsd are staggered in sign.

To see this, first Fourier transforms2.8d, using the fact
that

um,x = 1
4e

1
2 iK 200·sum−u4d, s2.9d

where K 200 is a reciprocal lattice vector; similarlyum,y is
defined withK 020, etc. When this is inserted into the formula
for t̃skd fsimilar to Eq.s3.1dg, the staggering contained in the
um factors shifts the argument by the reciprocal space vector
K 200 so thatt̃sK 200+qd~ Pxsqd, etc. Consequently, the singu-
larities of the spin structure factor in reciprocal space are
pseudo-dipolar in form, just like Eq.s2.10d, but occur at
nonzero reciprocal lattice vectorsK rather than atq=0.

Let t̃skd be the Fourier transform of the spins. The struc-
ture factorsi.e., the neutron diffraction intensity, modulo po-
larization factorsd has pseudo-dipolar singularities

kut̃sK 200+ qdu2l ~
q'

2

qi
2 + q'

2 . s2.10d

In this case qi ;qxx̂ and q'
2 ;qy

2+qz
2. Near K 111

;2ps1,1,1d, the same form holds withqi andq' being the

components ofq parallel and perpendicular to thes111d di-
rection.

The elastic constantk must be determined from Monte
Carlo simulations. Yet, without knowing it, we can still make
the nontrivial prediction that the diffuse scattering has quan-
titatively the same strength nearK 111 as it does nearK 200. In
an isotropic Heisenberg model, these pseudo-dipolar singu-
larities can be distinguished from true dipolar singularities in
neutron scattering experiments, since they are independent of
spin direction. They can be seen in only one spatial direction
around each reciprocal lattice point.

The functional forms2.10d has nodes which we expect
scorrectlyd are a consequence of symmetry and therefore ex-
tend throughout reciprocal space, beyond the small-q limit in
which Eq.s2.10d was derived. For example, Eq.s2.10d indi-
cates that

kut̃skx,0,0du2l ; 0 s2.11d

for wave vectors anywhere along the entires100d axis. Simi-
larly the structure factor is zero along thes111d axis near
K 111 from Eq. s2.10d. Sincek =s000d is the intersection of
seven distinct axes, along each of which the structure factor
must vanish, we deduce that the diffuse scattering vanishes
near the origin as

kutskdu2l ~ skx
2ky

4 + 5 permutationsd − 6kx
2ky

2kz
2. s2.12d

Indeed, experiments and all simulations on pyrochlore anti-
ferromagnets find quite small diffraction throughout the first
Brillouin zone.

2. Derivation of nodal lines

It is possible to confirm Eq.s2.11d without using coarse
graining, by sharpening an argument made in Sec. II D of
Ref. 20.sI have written the steps in detail, so it will be clear
whether they do or do not carry through for other lattices.d

Partition the pyrochlore lattice sites intos100d planes la-
beled byx, and definetplanesxd;oxi=x ti. Then consider, for
example, the tetrahedra with centers atx=0: each such tet-
rahedron includes a pair of spins withxi =−1

4 and another
pair with xi = + 1

4. By the ground-state constraints1.5d the
sum of one pair is the negative of the sum of the other pair.
Since every spin withxi = ± 1

4 belongs to exactly one such
tetrahedron, this impliestplanes−1

4
d=−tplanes 1

4
d; and by Bravais

lattice periodicity,tplanes 1
4 + 1

2nd=s−1d2tplanes 1
4

d. Since all spins
havexi =

1
4 + 1

2n for somen,

t̃skx,0,0d ~ o
n

e−ikxs1
4

+1
2

nds− 1dntplanes 1
4d s2.13d

which cancels, except for a possible Bragg peak whenkx is a
multiple of 2p. However, in the maximum entropy state that
we assumed in Sec. II B, the average spin in one of these
planes—which is proportional to the mean polarization
Px—is zero, sot̃skx,0 ,0d=0 for all kx.

A similar, but more complicated, argument works for a
h111j direction. Letji ; r i ·1 /Î3s1,1,1d be the projection of
site i on thes111d axis, and redefinetplanesjd as the spin sum
over the spin plane withji =j. Each tetrahedron withj=0

FIG. 2. Calculated structure factor in the plane normal tof11̄0g.
sThe figure is the same slice as shown in Refs. 44 and 51.d
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includes three spins in thej=−1/4Î3 plane and one spin in
the j=Î3/4 plane, and every spin in either plane belongs
to a unique tetrahedron; consequentlytplanes−1/4Î3d
=−tplanes+Î3/4d, even though one plane has three times as
many spins as the other. Furthermore, these unequal planes
are equally spaced, sotplanesÎ3/4+n/Î3d=s−1dntplanesÎ3/4d
and the rest of the argument follows as before.

3. Alternate derivation of nodal lines

There is an alternate way to see that diffuse intensity must

be small near the zone center. LetP̃+skd be the Fourier trans-
form of the discrete polarization onssayd even diamond sites,
defined like Eq.s3.2d. On the one hand, the Fourier trans-
form of the constraints1.5d at odd vertices

4Gs− kd · P̃+skd = 0, s2.14d

where

Gskd = o
m=1

4

eik·umum < 1
4ik s2.15d

at small wave vectors. On the other hand, we can start from
Eq. s2.8d and take its Fourier transform—this time, not tak-
ing advantage of Eq.s2.9d; the result is

t̃skd = 4Gs 1
2kd · P̃+skd. s2.16d

Near k =0, comparing Eqs.s2.16d and s2.14d and recalling
that Gs−1

2kd<−1
2Gskd, we conclude thatt̃skd<0, as I as-

serted earlier. Furthermore, wheneverk is along ah100j or a
h111j symmetry axis,Gskd is parallel to that same axis by
symmetrysfor all kd, hence structure factors2.11d is null all
along those axes.

D. Generalization to Heisenberg spins

In the case of isotropicn=3 component spins, we can
reiterate all the coarse-graining arguments of Sec. II in terms
of the Heisenberg spin components. Polarization components
are defined as in Eq.s2.1d but now for each Cartesian spin
component, so the polarization field is now atensor
carrying not only space but also spin indices:sPadbm

;oiPa ssidbsumsiddm. As in the Ising case, it is easy to con-
vince oneself that the entropy density is maximum whenP
=0. Hence we expect that Eq.s2.2d remains valid, except that
each uPsr du2 is now interpreted as a tensor normssum of
squares of all tensor elementsd. Finally, Eq. s2.3d now be-
comes three equations, one for each spin-space component.

The basis of this paper—and the signatures implied in the
diffuse diffraction—extends even to Heisenberg pyrochlore
antiferromagnets in a magnetic fieldH. The replacementH
→H−H ·oi si is equivalent to substituting

L a → L a − H/2Jspin s2.17d

in Eq. s1.4d. In the case of vector spinssbut not Ising spins!d,
one achieves a ground state by satisfyingL a=H /2Jspin on
every tetrahedron. Simply replacingdsi ;si −H /8 in the
definition of Psr d si.e., subtracting off the mean spin expec-

tationd, provides a polarization appropriate to this ground
state, which should exhibit the same sort of long-range cor-
relationssbut with anuH u dependenced.

III. LATTICE APPROXIMATION

The continuum theory presented in Sec. II can only pre-
dict the shape of singularities at special points in reciprocal
space. For a better comparison to experiments, a theory of
the diffuse scattering throughout reciprocal space is desir-
able. Of course, whereas the results2.7d is universal across a
class of models as enumerated in Sec. II A and IV C 1, the
detailed shape of the scattering calculated here is specific to
the pyrochlore lattice.

The derivation depends on lattice Fourier transforms. This
unfortunately forces the introduction, for this section, of a
new indexingtsR+ 1

2umd andLsRd for the same objectsti and
La defined previously, whereR designates a diamond site;
the even sitesR form a fcc Bravais lattice and we letN be
the number of primitive unit cells. Thus each pyrochlore site
r i is written R+ 1

2um; the surrounding odd diamond vertices
are atR+um

t̃mskd =
1

ÎN
o

R
e−ik·sR+1

2 umdtsR + 1
2umd . s3.1d

The definitions1.3d is rewrittenLsRd=om=1
4 tfR± 1

2umg tak-
ing + and − whenR is an even or odd diamond vertex,
respectively. Thus the Fourier transform of Eq.s1.3d, re-
stricted to even or odd vertices as indicated by the “ ±”, is

L̃±skd =
1

ÎN
o
m=1

4

e± 1
2

ik·umt̃m. s3.2d

A. Derivation of fluctuations

The simplest way to describe the approximation is first to
imagine a distribution of spins

Probshtijd ~ e−oiti
2/2t0

2
exps− beffHd, s3.3d

where H is given by Eq.s1.4d, and beff ought to be the
inverse temperature. The Gaussian factor in Eq.s3.4d may be
viewed, in the Bayesian spirit of the maximum-likelihood
approach, as a triviala priori independent distribution before
we account for any spin interaction. The second factor en-
forces spin correlations; hereHshtijd is the Hamiltonians1.4d
for Ising spins, except that nowti is allowed to take any real
value.

Adopting the limitbeff→`, Eq. s3.3d reduces to

Probshtijd ~ e−oiti
2/2t0

2p
a

dsLad. s3.4d

The second factor in Eq.s3.4d imposes the ground-state con-
straintss1.5d around every tetrahedron, both even and odd.

1. Ising spin correlations

Our goal is to evaluatektit jl, and this is not hard to do
using the Fourier transforms3.1d. We must first rewrite
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padsLad~pkdfL+skdgdfL−skdg in Eq. s3.4d, and re-express
this in terms ofht̃mskdj.

Since different wave vectors decouple, it will be conve-
nient to view t̃mskd as a complex 4-component vector. Then
the even and odd vertex constraints take the form of orthogo-
nality conditions

L̃±skd ; o
m=1

4

e± 1
2 ik·umt̃mskd ; sE±sk, t̃skdd = 0. s3.5d

The coefficients are

Em
± skd ; e7

1
2 ik·um s3.6d

so Em
− ;sEm

+ d* . The 4-vector inner product in Eq.s3.5d is
defined by

sA,Bd ; o
m=1

4

Am
* Bm. s3.7d

So, the distributions3.4d can be rewritten in Fourier space
as

p
k

fe−1
2 t0

2omut̃mskdu2dssE+skd, t̃ddssE−skd, t̃dg. s3.8d

Thus, for eachk in Eq. s3.8d, we now have a Gaussian dis-
tribution over a four-dimensional space, with two constraints
reducing it to a two-dimensional subspace.

Our object is to obtain correlations of the form
kt̃ls−kdt̃mskdl. The result will essentially be the projectorP

into the subspace satisfying Eq.s3.5d. If we define the 4
32 matrix E, the columns of which areE+ and E−, then 4
34 projection matrix for thesdesiredd space orthogonal to
E+ andE− is P; I −EsE†Ed−1E†. In fact

sE†Ed = 4S 1 H

H* 1
D , s3.9d

sE†Ed−1 = 1
4s1 − uHu2d−1S 1 − H*

− H 1
D , s3.10d

where thek argument inE andH was suppressed; here

Hskd ; 1
4o

m

eik·um = cos
kx

4
cos

ky

4
cos

kz

4
− i sin

kx

4
sin

ky

4
sin

kz

4
.

s3.11d

fHs−kd;Hskd* , uHskdu2= 1
4s1+cosky/2 coskz/2+coskx/

2 coskz/2+coskx/2 cosky/2d. The final result is

kt̃ls− kdt̃mskdl = t0
2hdlm − fEsE†Ed−1E†glmj, s3.12d

whereE and sE†Ed−1 are implicitly functions ofk and are
defined by Eqs.s3.6d and s3.10d.

Since TrP=2, we must havet0
2=2 to satisfy the normal-

ization conditionkti
2l=1.

2. Spin structure factor

The structure factor, as measured in neutron
diffraction, combines the four sublattice contributions. Write

the Fourier transform of all the spins ast̃skd
; 1

ÎNomoRe−ik·sR+1/2umdtsR+ 1
2umd=fM , t̃skdg, where we used

the 4-vector inner product and

M ; s1,1,1,1d. s3.13d

The structure factor is then a projection of Eq.s3.12d onto
the M vector, thus

kut̃skdu2l = t0
2MTfI − EsE†Ed−1E†gM . s3.14d

In the case of spin ice, the mapping of the Ising spinshtij
to the real spins is differentsit is staggeredd. In this case,
Mbm=sûmdb. The pinch-point singularities will appear, but at
different placessincluding the origind, because in this case
the spinsare the local polarizations. In this case, the scatter-
ing around the origin is no longer suppressed.

In either the antiferromagnet or the spin-ice case, there
will be extinctions of the expected singularity at points
wheresE± ,Md happens to cancel.

Considering the form of Eq.s3.12d, singularities in the
spin fluctuations maysbut do not necessarilyd occur when the
232 matrix sE†Ed is singular. In view of Eq.s3.10d, this
occurs whenuHskdu2=1. But that is precisely the defining
condition for the fcc reciprocal lattice vectorsK . fThis was
derived by a different route in Sec. II C 1.g

Indeed, E+sK 200d= is−1,−1,1,1d and E+sK 111d=fs1+id /
Î2gs−1,1,1,1d. We seeE+sK d is proportional to areal 4
vector. fThat generically happens at a point in three-
dimensionalk space, since there are three independent phase
relationships to be satisfied among the componentshEm

+ j.g
Then E+ is proportional toE−, and the rank ofEsK d is re-
duced from two to one at these points, confirming thatEsK d
is singular.

The special lines in reciprocal space on which diffraction
is zero, are those where the 4 vector of coefficientss3.13d,
relating the physical spin to the four sublattice spinst̃mskd,
happens to be orthogonal to both of the vectors in the null
space of the 434 matrix s3.12d.

B. Finite temperature

In the approximations of Sec. II and III A, where the tet-
rahedron constraint was imposed rigorously, we were forced
to project out the corresponding fluctuation modes. It is pos-
sible to extend the approximation so as to permit small fluc-
tuations of the tetrahedron magnetizations, as must be ex-
cited atT.0, starting from Eq.s3.3d. Now, no projection is
required, since a large coefficientbeff tends to suppress those
fluctuations, and so thisbeff,` case is actually more
straightforward.sThis subsection is essentially a streamlining
of Ref. 50, as converted to my notations.d

The Hamiltonian in Eq.s3.3d is a quadratic form in the
ti’s. Fourier transforming Eq.s1.4d, and putting it into the
4-vector notation with Eq.s3.5d, we get

H = 1
2Jo

k
fuL+skdu2 + uL−skdu2g = 1

2Jst̃,E†Et̃d. s3.15d

Thus, Eq.s3.3d becomes Probsht̃mjd~exps−1
2st̃ ,lt̃dd, where
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L ;
1

t0
2I + beffE

†E s3.16d

and Eq.s3.12d gets replaced by

ktls− kdtmskdl = sL−1d,m. s3.17d

The matrix E†E has rank two. It can be seen that, asbeff
→`, Eq. s3.17d indeed reduces to the projectors3.12d.

The consequence ofbeff,` for correlations is that, in
reciprocal space, the pseudo-dipolar singularitiess2.10d get
rounded by the substitution

q2 → q2 + j−2 s3.18d

in the denominator, wherej,beff
1/2 is a a correlation length.

In real space, the power-law decayss2.7d acquire an
exps−r /jd factor that cuts them off, as noted in Ref. 47.

C. Other analytic approximations

Three prior treatments of the diffuse scattering in the py-
rochlore arrived at a mathematical form more or less identi-
cal to Eq. s3.3d, but with different formulas for the coeffi-
cients in these equations as a function of temperature. Thus,
of course, their result is Eq.s3.17d; however, they did not
note the pseudo-dipolarsor, in the spin-ice case, literally di-
polard correlations which are implicit in these formulas at the
T=0 limit.

The diffuse scattering problem was first addressed by
Reimers49 for Heisenberg, or in generaln-component vector
spins.d That derivation is based on mean field theory
sOrnstein–Zernike correlationsd, which ought to be valid in
the critical regimeT→Tc

MF, whereTc
MF=J/n. However, that

is invalid in the pyrochlore case, since the real critical tem-
perature is driven to zero. Even so, thek dependence of the
resultf Eq. s15d of Ref. 49g, for the limit T→Tc

MF, is exactly
of the form s3.3d, with 1/t0

2=3sT/Tc
MF−1d andbeff=1/T.

Canals and Garanin47,48 considered the classical pyro-
chlore antiferromagnet withn-component unit spins, in the
large-n limit which is tractable analytically. This is, in effect,
like the “spherical model” approximation for finiten, in that
a constraintusiu=1 on every spin is replaced by one on allN
spins,oiusiu2=N. As they noted in Ref. 47, Sec. III, then
=` limit is completely described by Gaussian approxima-
tions. Their result for small temperatures can be reduced to
Eq. s3.3d with 1/t0

2=n/3 andbeff=1/T; this reduces to Eq.
s3.4d asT→0.

Finally, Yoshida, Nemoto, and Wada50 use an elaborate
cluster-variational method to derive a sensible formula for
the temperature-dependent diffuse scattering for theIsing
sn=1d pyrochlore antiferromagnetsspecifically, spin iced.
Their result, taking the lowest-order finite temperature cor-
rection, amounts to Eq.s3.3d with t0

2=2 andbeffJ= 3
16e2J/T,

which in the zero-temperature limit reduces to Eq.s3.4d.
fNote thatJeff /3 of Ref. 50 is myJ. My Em

± are essentially
linear combinations of the four-vectorsc and s of their Eq.
sB-3d.g

Until now, I have only mentioned approximations which
involve the connectivity of the sites and which can incorpo-
rate the long-range nature of the constraint. Some other ap-

proximations, intended mainly to model the bulk susceptibil-
ity, are based on a single isolated tetrahedron.51–53 Apart
from the restriction that this tetrahedron has zero net spin,
these approaches necessarily miss the long-range constraint
and hence give a poor picture of the long-range correlations.

D. Comparison to diffraction in experiment
and simulation

Several pyrochlore systems show the same characteristic
diffuse scattering features:sid the entire first Brillouin zone
has a very low intensity;sii d intensity is zero alongh100j and
h111j axes; siii d there is a pinch-point singularity of form
s2.10d at K 200 and alsoK 111 reciprocal lattice vectors. It
should be noted that, since there are four spin sites per unit
cell, the diffuse scattering is not periodic with the Brillouin
zone.

Experimentally, such features were seen in an itinerant
Laves phasesRef. 8, Fig. 3d; in the pyrochlore CsNiCrF6
sRef. 5, Fig. 4d; and most recently in the spinel ZnCrO4 fRef.
3, Figs. 3sad and 3sbdg, in the higher-temperature regime
above a structural transition. In simulations, such patterns
appeared in Fig. 2 of Ref. 44, Fig. 4 of Ref. 5, and in Ref. 20.
For comparison, spin-1/2 results from exact diaagonalization
are shown in Ref. 54, Fig. 4; they are qualitatively similar,
but less sharp.

Images of analytic large-n calculations of Garanin and
Canals can also be compared: Ref. 48, Fig. 4swhich is the
kagomé systemd and Ref. 55, Fig. 6.

Reference 41, in their Fig. 5, plots diffuse scattering from
simulation of a two-dimensional spin problem equivalent to
the honeycomb dimer covering.sThis is a plane of spins in
the “kagomé-ice” phase, whereby an external field applied to
a spin-ice pyrochlore system causesh111j planes to de-
couple.d The pinch pointsscalled bow-ties by those authorsd
are prominently visible, which are diagnostic of pseudo-
dipolar correlations on real space.

The structure factors2.10d has a local maximum atqx
=0, if we varyqx along a lineq'=const, offset slightly from
the qx axis. The same behavior is found aroundK 111 and, of
course, all other symmetry-equivalent reciprocal lattice vec-
tors: the structure factor has maxima in the plane perpendicu-
lar to the radial direction in reciprocal space. The union of
these planar facets forms the same shapesa cuboctahedrond
as the boundary of the fcc lattice’s first Brillouin boundary,
but doubled in all three directions. Indeed, in a plane of
reciprocal space from a single crystal of Y1−xScxMn2, the
diffuse scattering is concentrated near thelines where this
plane cuts the Brillouin zone faces.8

Powder diffraction data from pyrochlores showed a char-
acteristic maximum49 which was seen experimentally,4 and
in simulation.46 This is consistent with the fact that the
sdoubledd Brillouin zone boundaryswhere diffraction is
maximum along any ray in reciprocal spaced is roughly a
sphere.sNote that powder averaging, in the vicinity ofK 200,
amounts to integrating Eq.s2.10d over qy and qz, which
yields a weakly cusped function Const−2pqx

2ln qx.d

IV. DISCUSSION

In summary, it was found that a polarization can be de-
fined in pyrochlore antiferromagnets which—in a ground
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state—exactly satisfies a divergence condition. The coarse-
grained version of this is analogous to an order parameter, in
being the natural variable to describe large-scale properties.
The correlations were foundsSec. IId to have a pseudo-
dipolar form which—since this is a pure power law—implies
an infinite correlation length. These behaviors were repeated
in a lattice-based derivationsSec. IIId. In the rest of this
section, I discuss other problems to which these findings or
approaches could be extended or related.

A. Implications for diffraction experiments

The argument of this paper suggests that the analytis of
diffraction experiments ought to focus more on the charac-
teristic features, such as pinch points, identified in Sec. II C 1
and III A 2. Deviations from the predictions at those places
are sensitive measures of the extent to which the tetrahedron
constraint is violated in the actual ensemble. Thus, it is sug-
gested to analyze these experiments so as to extract the cor-
relation lengthj, and to check how well the diffraction is
suppressed along the predicted nodal lines.sA correlation
length was extracted in Ref. 44 from simulations, however in
this case it was actually the finite size cutoff.d

Deviations in the overall pattern from the shape predicted
in Sec. III A 2 swhich shape is consistent with simulations21d
are likely to reflect additional terms in the Hamiltonian, as in
Ref. 3.

Reference 3 has fitted the diffuse intensity as the Fourier
transform, not of a single tetrahedron, but a single loop of six
spins. However, contrary to the speculation in that paper, this
does not necessarily indicate a physical state built from such
hexagons. To explain this, I will outline an alternative,
equally systematic way of fitting the diffuse diffraction data.

The constraints1.4d implies a similar constraint on the
matrix of correlation functions. Then one can express any
valid correlation function using a basis of linearly indepen-
dent, orthogonal functions in real space satisfying this con-
straint, in the spirit of, e.g., spherical harmonics. The first of
these terms is the same correlation that derives from the ring
of six. The form observed3 is, from this viewpoint, the sim-
plest possible shape, as one might expect at higher tempera-
tures when all the other terms are damped out. To produce a
pinch point, an infinite number of such terms would be re-
quired, corresponding to basis functions with a large spatial
extent.

B. Dynamics

It is well known that violations of the tetrahedron con-
straintsdue to disorder, or thermal excitationd map to electric
chargessin the language wherePsr d is an “electric field”d. A
defect in which three arrows point outwards has a “charge”
of Q= +1, or Q=−1 if three point inwards;56 in general,Q
=La /2. These charges can only be created in opposite pairs;
such a pair feels ansentropicd effective interaction which
behavessat coarse-grained distancesd exactly like a Coulomb
interaction. AtT.0, the interaction would be screened in the
usual fashion, and the screening length is the correlation
length mentioned in Subsec. IV A.

Apart from these defects, the totalsclassicald spin is con-
strained to be exactly zero.fThe total magnetization is
1
2oa L a=0 by Eq. s1.5d.g Hence, the defects are central to
any theory of the magnetic relaxation, as observed by
inelastic neutron diffraction, or in ac susceptibility
measurements.57,58

To sharpen this point, note that within the ground states,
there isno local move that produces another valid state: an
entire loop must be updated at once.38 But the movement of
a charge along a loop leaves behind the same change and
thus implements this nonlocal “flip” operation.66

The interpretation of relaxation experiments ought to be
cast in terms of the diffusion and recombination of pseudo
“electric charges.” The relaxation rate of the real magnetiza-
tion is proportional to the drift mobility of the “charges.” The
theory of their behavior is isomorphic to an intrinsic semi-
conductor; the cost of aQ= ±1 defectsin an Ising modeld is
2J, so 4J plays the role of the band gap.

Nonmagnetic impurity sites58 act like impurity levels in a
semiconductorsexactly at midgapd. In the Ising model, a
tetrahedron with one missing site has a ground state with
La= ±1, corresponding toQ= ±1/2: it is as if aquenched
charge of −1/2 has been placed there, with the possibility of
binding a +1 charge to it. In a Heisenberg model, such a
tetrahedron often still satisfiesL a=0 and the behavior is
more subtle.22

We could also make predictions for the dynamic neutron
structure factor. The polarizationPsr d is a conserved quan-
tity, so sin a classical modeld it must diffuse. Thus

]P

]t
= − ¹ ·JP = G¹2P. s4.1d

Hence, near a pinch pointK , this sclassicald dynamics im-
plies vanishing widths in the dynamic structure factorSsK
+q ,vd,Gq2. Dynamical conclusions were derived by
Moessner and Chalker directly from an equation of motion in
terms ofL a. sThe consequence in a quantum model appears
to be a gapless excitation with linear dispersion.59d

Note added in proof.To fulfill the analog of Gauss’s law,
each arrow along a diamond-lattice edge carries a flux of ±1

2
and the surface integral ofPsr d enclosing a chargeQ ought
to be equal to it. However, withPsr d normalized as I defined
it in Sec. II A, the surface integral is actuallysa2/2dQ, where
a is the fcc lattice constant.

C. Other models

1. Other three-dimensional lattices

The polarization construction can be generalized to any
model in which sid “spins” sit on the edges of a bipartite
graph, andsii d around every vertex, the sum of the spins is
the same; here spin degree might be structural as well as
magnetic.

In three dimensions, the best examplessapart from the
pyrochlore latticed are antiferromagnets on the garnet
lattice25 or dimer coverings on the simple cubic, bcc, and
diamond lattices. Dimer coverings of the diamond lattice
might be realized by the ice model in which ions of differ-
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ence valences sit on the even and odd diamond sites; they
also correspond to the ground states of an Ising pyrochlore in
an external field.63 This last system is most plausibly realized
by a 1/4-occupancy lattice gas, with nearest-neighbor repul-
sion, representing a charge order problem. Alongside the
dimer models are vertex models on the simple cubic or tri-
angular lattice, in which each site has three inwards and three
outwards arrows.59,60

2. Two-dimensional models

In two dimensions, constraints such as Eq.s1.5d are en-
countered in several models, notably in two-dimensional ice
s = six-vertex modeld, the triangular Ising antiferromagnet
ground state, the square lattice dimer covering, and espe-
cially the kagomé Heisenberg antiferromagnet.64,65,67 To
compare the last of these to the pyrochlore Ising ground
states, it is fairest to consider the ground states of the three-
state Potts model antiferromagnet on the kagomé lattice. In
that system, as in the pyrochlore, one can predict the struc-
ture factorkut̃skdu2l=0 along the lines through the origin and
its first star of reciprocal lattice vectors; and here too the
scattering tends to concentrate along a surface which is the
Brillouin zone boundary, scaled up by a factor of 2.

Following the analogy to the pyrochlore, one would guess
the scattering has a smooth maximum at the zone cornerQ
;h 2

3 , 2
3
j-type points, but in this respective the behavior dif-

fers fromd=3. To understand that, consider that Eq.s2.3d is
satisfied formally by writing

Psr d = ¹ 3 hsr d, s4.2d

wherehsr d is a “vector potential.” Ind=2, there is no gauge
freedom: for a given configurationhPsr dj, hsr d is uniquely
determinedsapart from a constantd, and can be visualized as
parametrizing asroughd interface in a 2+1 dimensional
space.66 Following standard “Kosterlitz–Thouless”salso
known as “Coulomb-gas”d prescriptions, spin operators have
a component which is a periodic function of the localhsr d.
This implies correlations with a power-law proportional to
1/k, and the structure factor must have a power-law cusp at
Q swhich I will call a “zone corner singularity”d reflecting
this quasi-long-range order.64 Reference 41 has noted these
zone-corner singularities in simulations; they also appear
when one directly measures the fluctuationskuhsqdu2l of a
discretely defined height field.42,43

In such “height models” it is also possible that the free
energy favors a state with bounded fluctuations ofhsr d, cor-
responding to long-range order of the spins.42,64 In the rare
cases of a height model ind=3 se.g., three-state Potts anti-
ferromagnet on the simple cubic latticed, or in the ground
state of ad=2 quantum system, this “locking” behavior is
always expected, except in some quantum models which
contain nontrivial Berry phases.

Reference 41 has calculated the asymptotic correlation
function for the dimer coverings of a triangular lattice, a
system which is realized in the spin-ice class of pyrochlore in
a magnetic field oriented alongk111l: see their Eqs.s4.3d and
s4.4d. It should be noted that two-dimensional dimer models
swhich are solvable by the methods used for the Ising model,

i.e., free fermionsd, have the peculiarity that the correlations
arising from the height fieldhsr d have exactly the same de-
cay s1/r2d as the pseudo-dipolar terms; the contributions can
be distinguished because the first kind of correlation does not
depend on the orientation of the vectorr between sites, while
the pseudo-dipolar kind does.

3. Quantum models

For the S=1/2 case on the pyrochlore lattice, there is
believed to be no spin order.54 The theory of this paper is not
literally applicable to small-S quantum systems, since no
wave function is possible in which every tetrahedron is si-
multaneously a singlet. Nevertheless, it is claimed48 that the
diffraction from exact diagonalizations of the spin-1/2 case
agrees well with formulas such as Eq.s3.14d.

A pyrochlore Ising antiferromagnet, made into a quantum
model by a small transverse ring exchange, has also defined
the same coarse-grained fieldPsr d, which in their theory is
called an “electric field.”59 Out of their quantum-mechanical
variables conjugate toPsr d they construct a “magnetic field;”
the resultingUs1d gauge theory has gapless modes withuk u
dispersion analogous to light waves, and correspondingly
there are power-law correlationssthough with a different
power lawd. Reference 45 also studied a model with a polar-
ization sthey call Psr d the “magnetic” fieldd as a means to
constructing quantum models with no long-range order and
fractionalized excitations.

Recently, interesting phenomena have been observed in
certain selectrond conductors containing a pyrochlore
sublattice,68 which are speculated to be related to the frustra-
tion of this lattice. In particular, heavy fermion behavior is
seen68 in the spinel LiV2O4, and unsual ferromagnetic behav-
ior in pyrochlore Nd2Mo2O7 is ascribed to a Berry phase
acquired by the fermions in a spin background.70 Perhaps the
coarse-grained polarization field can help in modeling the
long-wavelength behavior of these systems.

There is also a speculation69 that the low-temperature
state of ice itselfsneglecting the dipole couplings beyond the
nearest neighbor!d is dominated by proton tunneling with
nontrivial Berry phases. Even though this model issprob-
ablyd not relevant to real ice, its exotic ground state is of
interest in its own right and thePsr d field is likely to enter its
decription.

D. Diffraction singularities due to constraints

Local constraints produce diffraction singularities in other
systems, specifically in the so-called “transition state” of cer-
tain metal alloys.61 In an fcc lattice, letsRd= ±1 represent
two different chemical species. To model a state which has
strong short-range order, assume a constraint resembling Eq.
s1.5d

o
m

ssR + umd = 0, s4.3d

wherehR+umj are the 12 nearest-neighbor sites. After Fou-
rier transforming, we obtain
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Fskds̃skd = 0, s4.4d

whereFskd;omexpsik ·umd. It follows from Eq. s4.4d that
the diffuse scatteringkus̃skdu2l is zero everywherein recipro-
cal space, except that itdiverges61 along the two-dimensional
surfaces defined byFskd=0. When these surfaces intersect
the Ewald plane of an electron diffraction experiment, they
produce well-known arcs observed in fcc metal alloys near
ordering transitions.61 Similar behavior is seen in the
Na22Ba14CaN6 structure, a triangular arrangement of rods
each having an Ising degree of freedom with “antiferromag-
netic” correlations.71 Arcs are also seen in quasicrystals,
where they are ascribed to the constraints of tiling space.62

Equations4.4d is a sharper singularity than is found for
the pyrochlore lattice in this paper. The fundamental reason
is that the “spins” in Eq.s4.3d are on a primitive Bravais
sfccd lattice, so in a lattice ofN cells there areN constraints
and the same number of variables. In contrast, in the pyro-
chlore problem analyzed in the present paper, there are four
sites per primitive cell and only two constraints. Conse-
quently Eq.s4.4d gets replaced bys3.5d, a pair of equations
in terms of the 432 matrix E±. Just asFskd in s4.4d has its
singular surfaces atk values where the one constraint be-

comes a null equation, sos3.5d has its pseudo-dipolar singu-
larities at the pointssreciprocal lattice vectorsd at which the
two equations are linearly dependent and reduce to one equa-
tion.

The above constraint-counting arguments have been
phrased so as to make clear how they might be adapted to
other systems. For example, the triangular Ising antiferro-
magnetsin zero fieldd is a highly frustrated system on a Bra-
vais lattice, so one might naively expect stronger kinds of
singularity in its diffuse scattering. However, in that case
there is no equality constraint but insteadoiPa ti = ±1, so the
whole approach breaks down.
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