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Phase diagram of the bosonic double-exchange model
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The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange
model with antiferromagnetiCAFM) superexchange coupling, is fully worked out by means of Monte Carlo
simulations, largeN expansions, and variational mean-field calculations. We find a rich phase diagram, with no
first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low
temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This
is signaled by a maximurta cusp in the specific heat. Below the phase transition, only short-range ordering
would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be
wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling
corrections are present in the reachable lattice sizes.
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I. INTRODUCTION disordered paramagneti®M) phase at very low tempera-
tures for intermediate superexchange coupling. This is very

There are at least two motivations for studying the spinygminiscent of the presence of a quantum critical pdint
only version of the double-exchangBE) models. On the | hich is believed to be of importance for the CMR

one hand, one has its relationship with the colossal MagNeshenomenor® and has been predicted to occur in mangan-
: 1.3 ne ,

toresistanc¢CMR) effe_%t. ~On the other hand, in this pr%b- ites by some model calculatioh$The experimental charac-

lem some puzzles arfSavith the universality hypothestS, igyization of this quantum critical point is a wedge of para-

which deserve a detailed study. Let us start addressing t agnetic phase, maybe glagéythat at zero temperature

first aspect. becomes a single point separating two ordered ph4sese

CMR has renewed the interest in double-exchanggyassy wedge would be created by disortfeand would be
systems. The typical CMR manganites are LaAMn;_,Os, separated from the paramagnetic state at the high-
whereA=Ca, Sr in the range 022x<0.5. It is believed that o mperature scal®’. Maybe the most surprising result of the
the relevant degrees of freedbnare the localizedS — pepe presented analysis is that this glassy wedge could not be

=3/2 Mr* core spins, and the, holes. The MA* ions form  py o1 glassy at all, but ordered in a segmentlike i (as
a single cubic lattice and, besides the DE mechanism, intefy, |iquid crystalg. This ordering will be referred to in the

act through an antiferromagnetidFM) superexchange cou- qiowing as RE (real projective spageAs we shall show,
pling. The relatively high spin of the M core suggests e Rp phase cannot be detected in neutron-scattering ex-
treating them as classical spirg. Although phonons are periments(although a short-range ordering will be pregent
believed to be crucial for the CMR effetimanganites dis- Nevertheless, the phase transition can be studied experimen-
play a very rich magnetic phase diagram which can be adwlly using the specific heat, which should present a maxi-
dressed neglecting lattice effeétin spite of these simplifi-  mum (furthermore, a cugpat the critical temperature. In-
cations, and of the introduction of powerful new tod18}  deed, the thermal critical exponent is prediéted be v

the numerical study of the DE model in large lattices beyond:0,7g2) which impliesa=-0.34, and hence the cusp behav-
the mean-field approximation is out of reach for present dayor follows. Another bonus of our simplified model is that it
computers. Yet, finite-size effects in these systems are unusitiows us to study qualitativelfsee Sec. IV Dthe unusual
ally large? The need to obtain reliable predictions has madenterplay between ferromagnetism, antiferromagnetism, tem-
people further simplify models, replacirgg holes by an ef-  perature, and applied magnetic field in low-doped
fective interaction among the localizes=3/2 Mr?* core Lay_,SrMNn0,.23-26

SpinS. |ndeed, a Simple CalCUlatPOBhOWS that the kinetic Let us now address universa”ty_ A common Wisdom iS
energy of the electrons depends on the relative orientation Ghat the critical properties of a system are given by its dimen-
neighboring Mi* core spins as/1+¢;¢;. This substitution sionality and the local propertigge., near the identity ele-

of a simpler spin-only problem in place of the very difficult men) of the coset spac€/H, whereG is the symmetry
electronic problem lies at the heart of several theoreticagroup of the Hamiltonian(the symmetry of the high-
analyses(see, e.g., de Gennes in Refl &nd numerical temperature phag@nd is the remaining symmetry group
simulationst? In spite of this, to our knowledge there is only of the broken phasdow temperaturg So, systems with lo-
one detailed previous stuthyof the phase diagram of the cally isomorphicG/H belong to the same universality class.
bosonic DE model. That study predicted the existence of &his seems to be true in perturbation theory, where the ob-
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servables are computed by doing series expansions around _ s .y

the identity element ofj/H. In this picture, a phase transi- H % <‘]¢' b+ N1+ ¢J)' (1)

tion of a vector model, with (B) global symmetry and with o ) )

an O2) low-temperature phase symmetry, in three dimenWhere the sum is extended to all pairs of nearest neighbors
sions must belong to the (3)/0(2) scheme of symmetry and we conglder pnly]<0. Notice that we will measure
breaking (classical Heisenberg modelln addition, if 7/  €Mperature in units of the double-exchange constant. The
=0(1)=Z, is the remaining symmetry, the correspondingC”b'C lattice is bipartite; therefore we shall call the lattice site

scheme should B&O(4)/0(3) which is locally isomorphic ' €VENor odd accarding to the parity of the sum of its coor-
dinatesx;+y; +z.
to O(3)/0(1). ) )
O . . . We will consider the system at a temperatiizethe par-
Hence, it is interesting to check if the global properties of.... . .
- tition function being

the coset spacé/H are relevant or not to the phase transi-
tion. The common wisdom has been challenged in the past S
by the so-called chiral modef§.However, the situation is Z= Hd¢e : 2
still hotly debated: some authors believe that the chiral tran- :
sitions are weakly first ordéf, while others clair®’ that the  where the integration measure is the standard measure on the
chiral universality class exists, implying the relevance of theunit sphere.
global properties ofj/ H. On the other hand, we do not have
any doubt abOUt the Second'order nature Of the PMZ‘RP B. Phase diagram at zero temperature
transition. A detailed study of the critical exponents was re-
cently publishetl in letter form. In the present work, we
perform a detailed Monte Carlo, mean field, and lakbe-
study of the phase diagram. The lafgezalculation is actu-

As usual, the study of the phase diagram begins with an
understanding of the ordered phases at zero temperature. We
can write in a compact way our original Hamiltonian:

ally split into two different computationfor J<-1/2 and _ —
J>-1/2); therefore, there are two different saddle points for H= <IEJ> Vidi- &), 3)
the paramagnetic phase. A thorough study is performed of '
the RP phase. We shall confirm that the pattern of symmetrywhere
breaking is @3)/0(2), suggesting a violation of universality. [—
g is @3)/0(2), suggesting y V) =dy+\1+y, @)

However, a qualitative argumerisee Sec. IV B suggests
that the universality class could be the one of tH&)dwon-  and clearlyy€[-1,1]. In the limit of zero temperature, the
linear o model. Indeed, the numerical results are compatiblesnly configurations that contribute to the partition function
with this possibility. are those that provide a maximum Bfy). If, as confirmed
The layout of the rest of this paper is as follows. In Sec. liby the Monte Carlo simulations, the spin texture itself is
we define the model, study the phase diagram at zero tenkipartite, the value of will be uniform through the lattice.

perature, and define the order parameters and observablggys, a simple computation yields that the maxima 6f)
measured in the Monte Carlo simulations. The mean-fielgyre at the following values of (denoted byy,.,):

calculation is explained in Sec. Ill, where we also report the
results of the larg®N analysis. In Sec. IV we present our

1
Monte Carlo results. We start determining the global phase liorJ=- ﬁ

A

diagram in Sec. IV A. What is knowf about a generic RP Ymax™= 1 1 (5)
phase is recalled in Sec. IV B. The Rphase, as realized in -1+ ford<-—=
the double-exchange model, is investigated in more detail in 43 2\2

B e\ o i cle iy, = conesponds 0 & feramagnetc sate
y 9 9 and that in the] — — limit we reach an anti-ferromagnetic

are considered in Sec. IV D. We present our conclusions in . ;
P one (Ymax=—21). The intermediate values of,., correspond

Sec. V. We complement the paper with three appendixes, . : P
Appendix A contains the details about the lafgezalcula- Stoha ferrimagnet if Gr](ymfﬁ<.1 ?nq to an anu;‘elrlnmagnﬁt
tion. In Appendix B the reader will find the mean-field phaseW 1en _—1<Ymax<0- The p ysica picture is as follows. The
diagram as obtained from the fourth-order expansion of theP!Ns 1N the, say, even sublattice are all paralle_l al()_‘og
free energy. Finally, in AppenkiC a spin-wave calculation nstancg the Z axis. On the oth_er hand the odd spins lie on
for the low-temperature RRregion is presented. cone forming an apgl@ (cosa—ymax). V\.”th the Z axis.

The corresponding free energy is just

Il. THE MODEL 243 for J=-——
22
A. The Hamiltonian f(J) = K (6)
We define a system of spingp} existing in a three- ‘E‘J for J< ‘ﬁ

dimensional cubic lattice of size (and volumeV=L3) with
periodic boundary conditions. The spins are three-componertience we have the following phase transitions.
real unit vectors. We consider the Hamiltonian (1) Ferromagnetic-ferrimagnetiat J=-1/18. It is easy
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to check thadf/dJis continuous ag=-1/\8 butd?f/dF is - vz
discontinuous. Hence, according to the standard Erhenfest MSZFE (= )iy (10
classification, we have a second-order phase transition. !

(2) Ferrimagnetic-antiferrimagneticat J=-1/2, where |n a finite lattice we must take the modulus before taking the
the free energy i€”. At this special poiny . changes from  mean value. We will study
positive to negative. The fact that,,,=0 implies that one
can reverse every single spin independently of the others MV:<|||\7|||>, (12)
without changing the energynore pedantically, one finds a
dynamically generated Zgauge symmetry. v -

(3) The limiting valuey,,=-1 that corresponds to an ps ={[Md])- (12
antiferromagnetrather than an antiferrimagnet is reachedTthe associated susceptibilities are
only atJ=-co,

The transition 2(ferrimagnet-antiferrimagngineeds fur- X' = |_3<|\7|2>, (13)
ther discussion. We can expand the Hamiltonian around the
minimum y=0, and we obtain V32
1 Xs =L <Ms>- (14)

Vy)=1- éyz +0(y?). (7) In order to explore RRtype phases we introduce a tensor
invariant under the local spin reversal. In this case we use as
Thus, atJ=-0.5 and close t@=0 one has, neglecting con- local field the matrice$r}, constructed as
stant terms, 1
1 - - L T=¢df - 50", ap=123. (15
H=22 (6 4)+ O(4 - )7, ®) 3
i Notice that they are traceless; thus they represent objects of
which corresponds to an antiferromagnetic’RReory’®-21  spin 2. We can now define the associated traceless tensor
The minimum energy configuration satisfgs0. Hence, we magnetizations
obtain that the ferrimagnet-antiferrimagnet transition occurs
at zero temperature via a RBtate at a single point. We shall M = iz - (16)
see that at finite temperature the®RiPase occupies a region L3
close toJ=-0.5 (rather than a single poinbf the phase
diagram. 1

From the previous analysis at zero temperature, one ex- Ms= =52 (- 1)5"itag, (17
pects to find the following phases at finite temperature. L=

PM: the usual disordered state, where all the symmetne(sind the mean values
of the model are preserved.

FM: a standard ferromagnetic ordering, i.e., the spin fluc- wT=(Trm?), (18)
tuates aroundo,0,1).

AFM: a standard antiferromagnetic ordering. Evedd N v

i Je— To— _ s =(NTr M%), (19
spins fluctuate aroung®=(0,0,1) [#°=(0,0,-1]. s s

FI: The ordering consists on even spins fluctuating aroundrhe corresponding susceptibilities are
the Z axis and odd spins fluctuating around the cone of angle

< /2 with axisZ. X" =L¥TrM?), (20)
AFI: This ordering is similar to the previous one, with
>7/2. Xe = LX(Tr M2). (21)

RP*: Here the ordering is the finit€-version of the one
found analytically inJ=—0.5,T=0, i.e., even spins fluctuat- Let us close this subsection by recalling the value’s of the
ing around theZ axis with random sense, and odd spinsorder parameter§n the infinite-volume limi} in each of the
fluctuating around the cone with random sense. ordered phases found in the previous subsection:

C. Order parameters FM: xV>0, wd=0(0u">0,ul=0),

In models with antiferromagnetic couplings, one might
expect an even-odd structure of the ordered phases. There-  AFM: /.L\S/ >0, pw'=0(0u">0, Ml =0),

fore, from the local field &}, we define the standard mag-

netization as the Fourier transform at momentum 0, and the FI: w/'>ud>0 (Ou', x>0,
staggered magnetization as the Fourier transform at momen-
tum (7, 7, 7): AR @Y>uV>0 (04T, ul>0),
-l -
M=— - 9
L3$ i © RP: ul>wp">0, wl=p'=0. (22
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D. Correlation length Ill. MEAN-FIELD CALCULATION

In the most general case, for models with antiferromag- \When several phases compete, it is quite tricky to calcu-
netic interactions, both the usual susceptibility and also theate the phase diagram in the mean-field approximatibe
staggered susceptibility diverge. Thus, in the Brillouin zone,;T=0 calculation has shown that we should face this prob-
one needs to monitor the behavior of the Green functlon$em) Since one can find different ordered phages at low tem-
close to the origin as well as close (ar,m,m). Since i peratures within different mean-field schemes, it is necessary
critical-phenomena studies one usually considers only théy decide which phase will be the most stable one. We con-
behavior around zero momentum, it is more intuitive—sjder that the cleanest way of performing such a calculation
although redundant—to define four Green functions in termgs to use the variational formulation of the mean-field ap-

of four fields in momentum space: proximation (see, for example, Ref. 32with a variational
- o family large enough to take into account all the phases found
H(p) =D, P, (23 in the phase diagram. In this way, all the phases compete on

the same grounds and one has an objective criterion to de-
cide which phase is to be found in a given region of the

S . — phase diagram.
¢s(p) = 2 S A (24) One needs to compare the actual system with a simplified
model where all degrees of freedom are statistically indepen-
R _ dent. The method is derived from the inequafity
T(p) = 2 Pz, (25
1

F< F0+ <H - H0>0. (33)

Here, Hy is a trial Hamiltonian depending on some param-
S(p) E e PTi(— 1)itar (26)  eters(the mean fields and the averagé...), means the av-
erage with the Boltzmann weight correspondingHg The
the Fourier transforms of the correlation functions being ~ "ght-hand side of the inequalit{83) is minimized with re-
spect to the free parametershiy and then used as our best
VN >, estimate of the free energy. Thus the task is to generalize the
GH(p) = (8P - & (), (27) " standard Curie-Weiss ansatg=hX, ¢? (¢ is the component
of the local spin¢; along theZ axis), to cover all the ex-
. 1 =~ - pected orderings.
Ge(p) = F’<¢S(p) - ds(P)), (28) In our case, we must use the simplest possible variational
family that permits us to have different orderings in the even
and odd sublattices:

A 1 .
Gl =T TET P, (29 Ho=— X Ve(#) - X Vo). (34

ieven iodd

A1 Ly Notice that, as far as the calculation of the), averages is
Gs(p) = F(Tr TP T()). (30 concerned, all spins can be considered as statistically inde-
R R pendent. Thus, the mean value of an arbitrary function of a
Notice thatGY'"(p)=G""T(p+ (r, ,m)), so that one could  spin placed insay the odd sublattice is simply
consider only nonstaggered correlation functions that would

271' 1
be studied close to bottd, 0, O and (w7, 7, 7). f ¢Zf($ V(AT
Near a(continuoug phase transition where the corre- (odd) _

sponding correlation length diverges, the correlation func- <f(¢)> - 27 ' (39
tions in the thermodynamic limit behave for smpf?, as f dgof dgp?e Vol

~ 7

&ip) = =, 31 S .

prre $=(1-(¢9%cose, \1-(¢)?sing,¢?). (36)

Here¢ diverges ast| ™, t being the reduced temperature. The  \We now need to parametrize the local potentials with the
anomalous dimension will depend on the considered field. help of the mean fields, which will be our minimizing pa-
In a finite lattice, to estimate the correlation Iength ONn€rameters. One eas||y sees that keepmg on|y the linear term
uses the propagator at zero momentum and at the mlnlmuw o(d)z) he O¢Z] will not reproduce the ferr|magnet|c or an-
nonzero momentum compatible with boundary Cond't'onsﬂfemmagnetlc phases, since at very low temperatures and
Defining F=G(27/L,0,0) and noting thaty=G(0), one  nonvanishing mean fieldp, ,, the spins would always be

has? (antialigned with theZ axis. If one keeps also the quadratic
1 term Ve (@9 =he o¢*+\e #9?, the situation improves sig-
= (ﬂ) (32) nificantly. The minimum ofV, , can now be - ¢%;,<1
4 sirf(m/L) which implies that at low temperature spins would lie on the
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cone of angled, cosé=¢%,;,. Therefore, we will choose as FM: h>0, hs=A=\=0,
our variational family

Ho=— X [het?+ (D] = 2 [hod? + No(D?].

i even i odd

AFM: hg>0, h=\A=\¢=0,

FI. hAs>0, hg=\=0,

(37)
As an extra bonus, we find that the Rphase can be repre- AFl: hgA >0, h=)\s=0,
sented by this ansatz if the mean fields that minimize the
right-hand sidgRHS) of inequality (33)—at those particular RP: \>0, h=hs=A=0. (43)

T and J values—happen to bbB,=h,=0, Ag=—\,>0. This

can be explicitly checked by calculating the order parameterket us now describe the actual calculation. As previously

as a function of the mean fields. Due to the symmetry besaid, we introduce the function

tween the even and odd sublattices, the expressions simpli _

in terms of the natural linear combinations oﬁ‘) the mean fie?d;y PN A Ao = Fo+ (H=Hoo, (44)

he, Doy Aev Ao which, at its minimum as a function df,hg,\, and\g, we

shall identify (in mean-field approximatiorwith the equilib-

h=(he+ho)/2, rium free energy. The partition function can be factorized to

the contribution of the//2 points of the even sublattice and

hs= (he—hy)/2, the V/2 points of the odd sublattice:
Z,= ZZ’ZZXIZ = e Fo, (45)

N=(\e+)Np)/2,
where
Ns=(Ne=Np)/2. (38 27 1 [ ’)
= ZaB he, o*he,d 49
In terms of these variables, by means of a series expansion in Zeo fo d(Pf_l dee” ' (46)
h, hg, \, and\, one gets for the order parameters
1 __v
e E(<¢z>§)ever1 + (D) Fo= 23(“’1 Z,+InZy). (47
2 8 The average of the mean-field Hamiltonian is
=380+ e +hog) + O(h%hZ\2\2), (39

V
(Hoo= - E[he< PIEE + N ((FHDFYE

1
us = (5" = (#75) +ha(¢95 + \(¢9967]. (48)

As for the average of the true Hamiltonian, one finds

2 8
= =Bhg+ —(h + h\g + O(h2,hZ,\2\2),  (40) —
37" 45 (Hyo= - VX999 — 3V (V1 + e - o).

49
T [+ (6% - 5 ; -
k=5 0 0 3 In the above expressionke . is a generic spin belonging to
4 2 4 the even(odd) sublattice. The problem is that, evenif and
= Z_-)/”\ + E)ﬁz(hz +hd) + %ﬁz(hz +1\2) ¢, are statistically independent, the calculation of the mean
value of the square root in E@49) cannot be straightfor-
+ o(h2,h§,)\2,)\§), (41 wardly factorized in to even and odd contributions. In order

to achieve this factorization, we shall use the series expan-
sions introduced by de Genn&¥ne first uses an expansion

1
e 5[(((;52)2)39"6” —((¢?)?)9d] in Legendre polynomials:
4 1 8 /T_ ” 5> >
ey L LA V1+de- do= 2 API(de- o), 50
JePNt 2Bt BN e do % \Pi(de o) (50)
+0(h?,h2,\%\2). (42) o3
R v
With this information in hand one can identify the different A=(-1) 1(2| “D@+3) (51)

phases that we found &=0 in terms of the nonvanishing
mean fieldgof course the high-temperature PM phase corre\We can now factorize the Legendre polynomials using their
sponds to the vanishing of all four mean figtds expression in terms of spherical harmonics:
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0.20— _]
i AFM PM FM 1
N ] FIG. 1. Phase diagram as obtained from the
0.15 — \\ // — second-order series expansion of the free energy
r N J 7 (55). The paramagnetic phase is unstable for tem-
g [ ] peratures below the full lineghe instability be-
- \\ > // . ing toward the FM, AFM, or RPphase, as indi-
0.101— \ RP J ] cated in the plot The dashed lines indicate the
L ] places where some of the eigenvalues of the qua-
S K v . dratic form in Eq.(55) vanish, but they do not
0.05 [ N / B correspond to phase transitions.
0.00L L. L 1 . ]
-0.7 -0.6 -0.5 -0.4
J
o A ' ) corresponding to\? is always positive. Thus, even if there
Pi(¢e - gbo):mz Y™ (0 Y[ (b2, 00) . (52) are four eigenvalues, we obtain three lines of continuous
m=- phase transitions, where the eigenvalues vanish:
Thus, the mean values are factorized into even and odd con- PM-EM line: T=2J+42/5,
tributions. Due to the rotational symmetry along thexis,
ggltéiahe m=0 terms in Eq(52) are nonvanishing. Thus we PM-AFM line: T=- 2\]_4\@5,

PM-RP2 line: T=412/35. (55)

Therefore the PM phase, stable at high temperature, meets
two transition lines of opposite slope, and a horizontal line

(Pi(de - bo))o = (PUSNEEUP ()M, (53)

Fortunately, if one wants to calculate the free enefggs a
series expansion in the mean fields,, A, and\ at a given . .
order only a finite number of terms in E¢G0) contribute, that separates it from the RP2 phdsee Fig. 1

. : For temperatures below the full lines in Fig. 1, one needs
due to the orthogonality properties of the Legendre polyno- . o . .
. ; ; . . to discuss the stability of a minimum of the free energy dif-
mials. This expansion allows as to discuss the continuou

phase transitions from the PM phaéghere h=h;=A=\4 ?grent frth:hs_;)\:)\szo. To locate that minimum, and io .
o . discuss its stability, one needs to extend the series expansion
=0 is the absolute minimum of the free energy ordered

phases. Indeed, calculating (per unit volume to second in (55) at least to fourth order ih, hg, \, and\. This can be
order oﬁe gets k done(see Appendix B but it is not particularly illuminating

since the series expansion fdr is slowly convergent. We

1 ([3 IR 2\5,82) have rather turned to a numerical method. Given a particular
=®(hhg M) = | = - — - ——— |h? value of the mean fields, hg, \, A\, we have calculate® by
v 6 3 15 means of a Gauss-Legendre integration of all the terms in
8 IR 2\5,32 ) _Eq. (44). To_ do this, we have divided the interviah-1, 1]
6 + 3 + 15 ) into 12 subintervals and we have done a 12th-order Gauss-
_ Legendre integration in each of them. The series of (B@)
8V2B% 2B 5 has been evaluated to order 50. Being able to calcdiatae
+ 1575 + 45 minimization has been done using a conjugate gradient

_ method. The resulting phase diagram is shown in Fig. 2. It
8V28% 2B\, can be compared with the Monte Carlo désee Fig. 1 of
T\ 1575 * 45 As: 54 Ref, 4. The mean-field calculation overestimates the critical
temperatures byroughly) a factor 2.3. Once this factor is
This is a quadratic form irh, hy, N, and \s. If the above corrected the agreement between Monte Carlo and mean-
guadratic form is positive definite, the PM phase idogal)  field critical lines is remarkable.
minimum of the free energy. The other way around, when The mean-field calculation predicts that all the transitions
one of the eigenvalues of the quadratic form is negative, thare second order except the ferromagnetic-RP2 which is first
PM phase is unstable with respect to some ordered phaserder (nevertheless, this transition line is an artifact of the
depending on the mean-field that should grow in order tanean-field solution; in the Monte Carlo phase diagram it
minimize the free energy. Notice also that the eigenvalugseems to collapse to a tetracritical point, as shown in Fig. 1
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L ] the congruentiak- Parisi-Rapuandsee, e.g., Ref. 34

- 8 To extract critical exponents and critical temperatures, we

03— PM = have used the quotient methods?-35for a pair of lattices of

sizesL and 2 we choose the temperature where the corre-

| AFM 1 lation lengths in units of the lattice size coincitt, =¢&,,).

- . Up to scaling corrections, the matching temperature is the
0.2~ 7] critical point. Let nowO be a generic observable diverging at

& the critical point like|t|™0. Then, one hagup to scaling

. FM 41  correction&®1939

0.1— RPZ — <O>2L

=20, (57)
I AFI ] (O gy 1,2

L _ where v is the critical exponent for the correlation length
P I I IR [ . | i ; ia-
0.0 itself. For extractingr we have used the temperature deriva
-0.8 0.7 -0.6 -0.5 -0.4 . . .
7 tive of the correlation Iengthx&T§=1+v. To satisfy the
_ . matching condition g =&, one often needs to extrapolate
FIG. 2. Phase diagram of the model, as predicted by the Mearg, ) he simulation temperature to a nearby one. This has

Field approximation. The critical lines are obtained minimizing nu- b : .
een done using a reweighting methsee, e.g., Ref. 36
merically the free-energi44) (see text for detai)s 9 ghting h 9 3

of Ref. 4. The second-order nature of the transitions found A. Phase diagram
in the numerical minimization can be checked by computing

i , In previous work} we studied in great detail the critical
the appropriate order parameter at a given valug ahdJ,

Y . : o ' properties of the RPPM phase transition al=-0.5. The

then noticing that it vanlshszs atthe trarl/smon line with meanyocation of the critical lines was also reported. These critical

fleld_exponents{Moc|T_—Tc| or °<|‘J._‘JC| 9: ) .. temperatures were obtained via hysteresis cycles. We here
Since the mean-field calculation overestimates criticalo o 4 finite-size scaling study of selected critical points in

temperatures, it is interesting to compare the previous resul{she phase diagram. Those points will be referred tat,as
with the ones of another approximatidargeN) that usually FM-PM transition ' t, (RP-AFI), t, (FM-FI), t3 (AFM-
underestimates them. We have calculated the position of thRFI) andt, (RPZ—FI,) ! P Pl

PM-FM and PM-AFM phase transitions in the lartjeap- In all the five pointst,—t,, we have simulated latticds

proximation(see Appendix A =6, 8, 12, 16, 24, 32, 48, and 64, producing200° MC
PM-FM line: T= +1.2578+0.5578, full-lattice sweeps for the largest lattices in each transition.
We have discarded%10° MC steps for thermalization. In
PM-AFM line: T=-1.257g - 0.793. (56) all cases this has been checked to be much larger than the
integrated autocorrelation time. In addition, at the lowest
The critical temperature is underestimated by roughly th&éemperatures, we have compared different starting configu-
same factor that the mean-field approximation overestimategtions (random, FM, etg, concluding that the results are
it (see Fig. 1 of Ref. # To extend further this calculation start independent.
would require a study of non-translationally-invariant saddle Before discussing the results let us briefly comment on
points, which is rather complex. what can be expected on universality grounds. Transitjon
connects the paramagnetic phase, where the f(8) Gym-
metry group is preserved, to a FM phase where the symmetry
group is just the @) group corresponding to the global
The model(1) can be investigated using a standard Monterotations around the global magnetization. Thus it is ex-
Carlo method. We shall here describe some technical pointgected(and confirmegito be in the universality class of the
the results being discussed in the following subsections. O(3) nonlinears model (see Table Il beloyw For all the
A single Monte CarloMC) step consists of a full-lattice other transitions the scheme of symmetry breaking is not so
Metropolis lattice sweep. Some of the simulations have beenlear. The only obvious symmetry breakiffgr transitionst,
done at extremely low temperatures; thus the method oandty) is the symmetry between the even and odd sublat-
choice would have been a heat-bath algorithm, but its impletices. This is a Z symmetry; thus one might expect the tran-
mentation in this model is rather complex. Fortunately, onesition to be in the Ising universality class. The symmetries of
can effectively falsify a heat-bath algorithm by means of athe RF phase are intriguing and will be investigated in the
multihit Metropolis method, proposing per each hit as spinfollowing subsection. Let us only recall that the transition
update a random spin on the unit sphere. Luckily enough, thetween the PM and the RPhase at’l=-0.5 has been re-
achieve a 50% acceptance the number of needed hits is quitently studied in great detail in Ref. 4. The critical exponent
modest except for the lowest temperatures which represent:aappears in Table lll. Perhaps not unexpectedly, the critical
negligible fraction(below 1% of the total CPU time devoted exponents were found to be compatible within errors with
to the problem. The pseudo-random-number generator wakat of the antiferromagnetic RPnodel18:1°

IV. MONTE CARLO SIMULATION

014420-7
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TABLE I. J; or T, determined by the intersection of the correlation lengths measured in two lattices bfamed . t\(X,A) indicates
the transitionty, with X a fixed parameter andl the order parameter associated with the correlation length considered.

Transition L=6 L=8 L=12 L=16 L=24 L=32
to (T=0.05 1Y) —0.45356115)  —0.45329832)  —0.45313119)  —0.45309015  —0.45309129)

t, (T=0.05 1Y) ~0.598288) —0.599394) —0.60015%2) —0.600381) —0.600432) —0.600442)
t; (T=0.05uY) —0.600834) —0.600843) —0.600782) —0.600671) —0.600522) —0.600482)
t, (3=-0.43 1Y) 0.01766812) 0.0173435) 0.0171634) 0.0171292) 0.0171122) 0.0171014)
ty (J=-0.8,1Y) 0.075284) 0.073872) 0.073042) 0.072831) 0.072671) 0.072601)
t, (T=0.01 1Y) —0.471993) —0.471982) —0.471962) —0.471951) —0.4719196)  —0.4719163)
ty (T=0.01 uY) —0.472413) —0.472193) —0.472012) —0.471961) —0.4719146)  —0.4719123)

As for transitionst;—t,, we have located quite accurately picture, but we shall see in Sec. IV C that this seems not to
the critical parameterisee Table)l We have focused in each happen. To lighten the forthcoming discussion, we shall
case on the largest order paramétsme Eq(22)]. The PM-  briefly recall here what it is known about the pure antiferro-
AFM transition should have the same critical behavior andnagnetic RP model!® whose Hamiltonian is
we have not invested computer time in this study. We are

reasonably confident in the continuous nature of all five tran- HRP = TS <Z>j)2- (58
sitions. This stems from two facts. First, the energy histo- (.
grams are not double peakéske an example in Fig).3Yet, The most striking feature of Eq58) is that it remains

a much more refined test comes from tledependent invariant under the transformation

value of the effectiver exponents shown in Table II. With

the exception of transitioty, which as expected belongs to (j,i - (j,i_ (59)

the universality class of the Heisenberg model in three di-

mensions, scaling corrections are not even monotonic in thelf other words, every spin can be reversed independently of

evolution with the lattice size. Although an asymptotic valuethe others. This symmetry is a local one, and the Elitzur

cannot be guessed with reachable lattice sizes, at least offéeoremi® tell us that it cannot be spontaneously broken.

sees that, for the |argest lattices, the expone'gtreasonamy Therefore the spin-spin correlation function for the model

far from the value 1/2 to be expected in weak first-order(58) is

transitions. .

(b dy) = 5. (60)

This means that the propagat@) will be precisely 1¥ for
As we have seen in E@8), the effective Hamiltonian for everyp in the Brillouin zone. Of course the local symmetry

the RP phase is that of an RRnodel. The neglected terms (59) is at most approximated for the original Hamiltonidn

in Eqg. (8) have lower symmetries and they could change thisf we are away fromT=0 andJ=-0.5. Yet we shall show

B. The RP? phase beyond mean field

T T T T | T T T T | T T T T | T T
1250 — all ]
B I‘ .'1 ]
§ T L ]
N o 3
1000 — r LL=64, T=0.0726 —
L A H 4
i i 5 -
L " v i
: :
L ; 3 i
750 — ! ¢ —
] by h
i i :
L . ' 4 ) - -
2 L "- i 4 FIG. 3. Histogram forE,=(¢;- ;) (for near-
500 - i % | L=48, T=0.0728 1 est neighbors andj), in transitionts.
- | —
L 1l L=32, T=0.0728 i
L i it .
= Ly T
= _-'_l : o -1
250 — - i B _]
L - T L=24, T=0.0731 ". [ J
— ] - L=
E==" o W -0 _
L J“- () l_l'l
0 L -"I'-“ 1 | 1 1 1 1 | 1 I‘T'--A. L L
-0.562 —-0.561 —0.560
E (J=-0.8)
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TABLE II. Apparent v exponent obtained from the quotient method applie@Lt®L) pairs.

Transition L=6 L=8 L=12 L=16 L=24 L=32
to (T=0.05uY) 0.7074) 0.7027) 0.71212) 0.71Q10 0.62995)

t; (T=0.05uY) 0.59420) 0.5567) 0.5558) 0.5408) 0.54417) 0.59625)
t; (T=0.05 ,,u;’) 0.5925) 0.561(6) 0.5385) 0.5197) 0.517113) 0.561(22)
t, (J=-0.43 ,,U,\S/) 0.5918) 0.5695) 0.53713) 0.5485) 0.5888) 0.60417)
ty (J=-0.8 1Y) 0.58310) 0.5574) 0.5623) 0.5826) 0.6057) 0.65120)
t, (T=0.01uY) 0.5344) 0.53610) 0.56Q10) 0.59715) 0.63017) 0.65624)
ta (T:0.0l,,u;’ 0.5457) 0.56413) 0.581(13) 0.611(16) 0.62917) 0.65025)

that the propagator is still of order ¥/in the full Brillouin group to an @2) subgroupand a breaking of the even-odd
zone, at a finite distance fromm=0 and J=-0.5, for our  symmetry. The translational invariance is reduced to the dis-
model (see Fig. 5 beloyv Hence, if one considers the spins placements that do not change the parity of the site.

asarrows there is no hint of any ordering in this region. (2) One may consider spins in the even sublattice aligned
On the other hand, we shall show that the tensor correlator antialigned with the (say Z axis, while the spins on the
tion function (see also Ref. 19 odd sublattice are alignddntialigned with the (say X axis.

This ground state fully breaks the(8 symmetry. Yet, the
- 2, 1 61 two sublattice play a symmetrical role. If one considers ro-
(- 4)7) - 3 (61) tationally invariant correlation functionsuch as((¢;- ;)%
for anyi andj], the translation group is not broken.
does not tend to zero at infinite distance. Hence, if one think At first sight one could say that the first ground state has
of the spins asegmentgthat is, if one forgets about their a much larger entropy. However, for the the second ground
sign), a global magnetic ordering exists. state, fluctuations for the even sublattice can be much larger
As the reader can see, the ground state for the Hamitthan for the first ground state. To decide which ground state
tonian(58) is very peculiar. The only constraint is that every is realized, one may try a “spin-wave” calculation for each
spin must be orthogonal to its nearest neighbors. One magase(see Appendix € At the leading order in the tempera-

think about two extremal situations. ture one finds that their contribution to the partition function
(1) One may put every singlevenspin aligned(or anti-  has the same power dfand consequently it is not straight-

aligned with the (say Z axis, while the spins on the odd forward to conclude analytically which is the stable phase.

sublattice are placed on théY plane atrandom On the A detailed numerical study showed that at very low tem-

whole, this ground-state is(@) symmetric, as one can make Perature the @)-symmetric ground state prevails. Yet, upon
a global rotation around th& axis without changing the increasing the temperature, the correlations for the spins on
correlation functions. Notice, however, that the even and théhe planar sublattice grow. The increased fluctuations of the
odd sublattices play a very asymmetrical role. Yet, in thecollinear sublattice induce a ferromagnetic effective short-
Hamiltonian(1), the two sublattices are equivalent. Hence, infange coupling for the planar sublatti¢erder from disor-

this ground state we have a breaking of the@Qsymmetry ~ den. One may wonder if this effective couplingvhich
grows with temperatupewill be enough to break the remain-

ing O(2) symmetry, before reaching the paramagnetic phase.
The answer is negative. In Sec. IV C, we shall show that in
the present model there is only a low-temperature phase,

TABLE lIlI. Critical exponenty for some three-dimensional uni-
versality classes.

Model » with a remaining @2) symmetry, and where the even-odd
symmetry is fully brokensee Fig. 7 beloyw
0(1) (Ising) (Ref. 379 0.629410) In the Introduction, we recalled the nonlinear model
0O(2) (Ref. 39 0.6715%27) (NLoM) argument¥’ suggesting that this symmetry-
0(3) (Ref. 39 0.7102) breaking pattern implies that the universality class is the one
0(4) (Ref. 39 0.7492) of the O3) NLoM. The numerical result—see Table Ill—
O(5) (Ref. 40 0.766 seem hardly compatible with t_his possibility. Yet, one can
RP2-AFM (Ref. 19 0.78311) produce an argument, suggesting a different conclusion.
) ' If one wants to construct the Landau free-energy func-
RP-PM (double exchange(Ref. 4 0.78418) tional, in principle the two order parameterst and M
Chiral (Heisenberg (Ref. 30 0.5713) would appear. Yet the mean-field calculatitsee also the
Chiral (XY) (Ref. 30 0.553) Appendix in Ref. 19 has taught us that is just the square
Tricritical (Ref. 5 1/2 of M. Thus, onlyMg appears in the functional. Notice(
Weak first order(Ref. 41) 1/2 transforms under the even-odd symmetry Jat— - Mg,
First order 1/3 hence only even powers o¥1; are present. Then, the more

general form for the Landau potentialp to fourth ordey,
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compatible with the rotational symmetry of the Hamiltonian phase truly segmentlikegl?ecall that the Hamiltoniail) is

(1) is
UMy = f dr[g,Tr M2+ gy(Tr M3+ g, Tr M2]. (62)

Now, the only constraint om\Mg is that it is a symmetric
traceless matrix:

ac d
Mg=[c b e (63
d e —a-b
If one introduces a five-component vector field
a+b a-b
=|—=,—=,cde]|, (64)
V2 V2
it is easy to show that
TrM2=2(d - D), (65)
TrMi=2(d - ®)2. (66)

not invariant under individual spin rever$a(2) Is the even-

odd symmetry broken up to the temperature separating the
RP’ phase from the paramagnetic statg? Is the low-
temperature (@)-symmetric RP phase preserved up to the
temperature separating the RFhase from the paramagnetic
state? We shall address them separately, in the stated order.

1. Tensor versus vector ordering

We have called RPthe phase in which the vector mag-
netization vanishegfor any momentum in the Brillouin
zone, and the tensor magnetization is nonvanishing, both at
momentum(0,0,0 (x") and at momenturur, , ) (,ul). In
Fig. 4 (top and middle parjswe show, fixingJ=-0.5, that,
for temperatures ranging from 0.001 to 0.05, there is a non-
vanishing thermodynamic limit for both quantities. For com-
parison, we show in the bottom part the vector magnetization
at momentum(s, m, ) (,u\s/), which goes to zero as 3.

We have also measured the correlation length in the vector
channel. Although some short-range ordering is present, the
correlation length is not larger than 0.3 lattice spacing.

To confirm the absence of any other vectorial magnetiza-

Thus, the Landau free-energy functional is identical to thdéion we have measured at=-0.55, T=0.5 (just in the

one of an @5) NLoM. And the numerical result€Table 111)

middle of the RP phasg all Fourier components of the vec-

are in much better agreement with this possibility than withtor field ¢ for 90 statistically independent configurations for

that of the @3) NLoM.

C. Detailed study of the RF® phase

The RF phase of mode{1)—we donot refer to the ideal
case of Eq.(58—poses several questionét) Is the RP

each lattice size, and plotted in Fig. 5 the corresponding
momentum versus the maximum value of the Fourier com-
ponent squared. In other words, we are searching for the
maximum (over the Brillouin zong of the static structure
factor (divided byL3). We have chosen as lattice sides6,

8, 12, 30, 60 to allow for different periodicities of the
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FIG. 6. Difference of the tensor second neighbors energies be-
FIG. 5. Scatter plot for 90 statistically independent configura-tween sublattices, fof=0.05.
tions for each lattice siz€.=6, 8, 12, 30, 6Pat J=—0.55,T=0.5.
On the horizontal axis we plot the maximum over the Brillouin even-odd symmetry breaking. Notice tthat 96 is the largest
zone of the squared Fourier transform of the spin field, and on théattice used, which makes it impossible to study the thermo-
vertical axis the corresponding associated momenpip|. The  dynamic limit of that quantity fofl larger than 0.05 and less
hqrizontal position of the Iegen.ds. scalesladlog L in agreement thanT,=0.0559. We can conclude that, within the computa-
with the absence-of-order prediction. tional resources employed, no evidence exists for a thermo-
dynamic limit with unbroken even-odd symmetry.

would-be vector-ordered states. If no vectorial ordering is Although no thermodynamic limit can be reached beyond
present, the last quantity should go to zero ak3®llUp to  T=0.05, more information can be obtained through a finite-
logarithmic corrections that arise from the fact that we aresize analysis. The closer we get 16=0.05, the harder it
computing the maximum of a set @(L% elements. The becomes to find a two-peak structure in the histogram. A
absence of ordering is clear from Fig. 5. correlation length could be defined in the even-odd symme-
try breaking channel which grows as the possible critical
point between the RPphase with broken even-odd symme-
try and a hypothetical RPphase with restored even-odd

To analyze the even-odd symmetry, we measure the tensQymmetry is approached. The functional form of the growth
correlation difference at second neighbors between even angt the correlation length might give an indication of the ex-

2. Even-odd symmetry

figuration can be written as that study is to define the correlation length as the lattice size
2 itself, when the histogram has a central valley at half the
Ag= —3<E (¢ -qu)z—z (¢ -¢j)2), (67) peak hight. The result shows a growth of the correlation

3L\ even odd length asT increases compatible with a divergence just at

where the sums extend over evémdd) second-neighbor

pairs. The nonvanishing of the difference in the thermody-
namic limit signals even-odd symmetry breaking. Notice that

the sublattice energy difference can be defined locally, and it 4,
plays the role of a local field. Another interesting observable

is the dimensionless quantity associated with the energy dif-
ference,

40

(Ap)*

Figure 6 shows the tensor energy difference as a functior
of temperature for several lattice sizes. A clear nonvanishing
thermodynamic limit forAg is observed foiT <0.05; there-
fore, the even-odd symmetry is broken up to this tempera-
ture. At T=0.05 the asymptotic behavior can be elucidated
by a direct study of the tensor energy difference histograms.
A L=96 lattice is necessary to clearly resolve the two-peak
structure of the histogrartsee Fig. 7, corresponding to an FIG. 7. Histogram ofAg for J=0.5, T=0.05.

(68)

Ke

20
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| with a divergence just &k.. The figures show a fit to a power
—— 0.05590-0.064(6) L™ law (fixing the critical point to the valud.=0.055 89%5)
obtained in Ref. % It is worth remarking that the effective
exponent obtained with a power law fit is very lar@e or
largen, which might point to a logarithmic divergence. Thus,
all our results point to a single RPhase with broken even-
odd symmetries at all temperatures.

0.056 —

0.04 —
3. O(2) symmetry
The chosen tool to study whether thé2D symmetry of
the T=0 state is preserved at higher temperatures has been
the eigenvalue structure of the tensbt,. The latter being
traceless implies that the vectdr=(\;,\5,\3) must lie on
thex+y+z=0 plane. The whole information reduces, then, to
a modulus(which is nothing but the observabje), and an
0.00 0.05 o, 010 0.15 angle, which contains all the information of the eigenvalues
r on the symmetry @). As any result must be symmetric
FIG. 8. Displacement of the critical temperature, defined as thainder eigenvalue permutations and global inversion, we can
point wherexg takes a fixed value, as a function of size. Fits sug-restrict the angle to the interval between O amtb. More
gest that there is no even-odd symmetry restoration at a temperatupgecisely, we consider the orthonormal b&sig, u,} for the
less than the RPPM one. plane given by

T (k.=1.36)

0.03 — —

though with rather peculiar exponents. But the measurement U= é(_ 1,1,0, (69)
of that correlation length is very noisy. A much more precise V2

way to study the possible presence of a transition previous to

T, is to define as apparent critical point thievalue at which 1

«g takes a fixed value. Figure 8 shows the results. Although Uy = \e“'_f—S(_ 1,-12. (70)
the possibility of an even-odd symmetry recovery transition

previous toT, cannot be discarded, results are compatibleand define the anglé from the relation

[T T T T | T T 1 | | L | T T T ’ T 7]
5 L=64 —
af— 7=0.04 .
3—
2
==
- . FIG. 9. Histograms of the
Y | L J__|_=F_*,.,,- ) T angle of the eigenvalue vector
Q a L | 1 LI | L 1 1 | 11 I | 4 on the (1’1’]) plane for two
C . temperatures al=-0.5. The dots
5— —] correspond to  paramagnetic
C . configurations.
afF— T=0.045 —]
83— —
2f— —
1 —
0
0.0 0.1 0.2 0.3 0.4 0.5
7]
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AU tion at T=0.03 to a phase with broken(® symmetry. Yet,
tang = N (71) asL increases, the apparent transition moves back, approach-
X

ing T, ever more closely.

with the proviso that we choose a permutation and a global To check the consistency of the results with respect to the
sign such tha# lies between 0 ane/6. existence of a transition within the RPhase we can per-

Another interesting quantity can be defined as follows. Inform a fi?/ite—size scaling study fitting,L*'* as a function of
the thermodynamic limit an @)-symmetric phase corre- (T=To)L™". Only To=T, yields a reasonable fisee Fig. 11

sponds ta\,=\z. We thus define Notice_: that forT close toT, the definitio_n ofA, ceases to be
meaningful, as a large eigenvalue exists no longer since the
Ay =[N =N, (72 RP? magnetization fades away, and no good fit can be ex-

pected. However, for mosk values(more precisely, fofT
which must vanish in the thermodynamic limit if the(Z)  <0.05 the fit is excellent, though they and v values are
symmetry is not broken. As usual the corresponding dimenadmittedly rather unusudb;=-0.5, »=1.8). The conclusion

sionless quantity is should be that there is no evidence for a2@breaking
transition at any finite distance froif.. A collapse of that
(A% transition over the RPPM transition might occur.
SRNTWEE (73) A more quantitative analysis can be made studying the

displacement of the temperature at a fixed valuecfin

Figure 9 shows histograms of angles at several temperaig. 12 we plot the obtained measures together with fits to
tures and lattice sizes. Dotted lines correspond to completelyeveral functional forms: a power law with the critical tem-
disordered configurations. In case of the system beif®) O perature fixed td.,=0.055 89%5),* a three-parameter power
symmetric(one large eigenvalue and two identical small ei-law, and a Kosterlitz-Thouless-like divergence. The results
genvaluey the distribution should be & function at angle point again to no breaking of the(@) symmetry inside the
m/6. For a system with broken(@) symmetry but unbroken RP? phase.
even-odd symmetry, the eigenvalues a@,0,-a)-like, . . .
which would correspond to a Diragfunction at angle 0. We D. Interplay between ferromagnetism, antiferromagnetism,

notice that, for small lattices, the distribution points to com- temperature, and an applied magnetic field
plete disorder, but as the size grows an inflection point turns in the low-doped La;,Sr,MnO 3
up atT=0.04, 0.045 forL=24, 48, respectively, and ds In a series of papet&?®the interplay between FM, AFM,

goes on growing a peak arises at angles ever closer to themperature, and an applied magnetic field in the low-doped

maximum. It might be said that the behaviorlins always  |a,_,SrMnOs, mainly atx close to 1/8, has been studied.

the same, except for a scale change. We would like to point out some properties of our FM-FI
Another interesting quantity is the difference between thephase transitioripoint t, in this paper which might help to

two small eigenvalue&\,), which should vanish in the pres- understand phenomena which, in those references, are re-

ence of @2) symmetry, so turning out to be an order param-lated to the FM-CO(charge orderedphase transition, not

eter. Figure 10 shows that quantity for several values of théully understood so far.

temperature and lattice size. If we look at an intermediate Roughly speaking, some of the mentioned phenomena are

size (L=24, for instancethe appearance is that of a transi- as follows.
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r 7 FIG. 11. Scaling ofA, for the analysis of a
< 0B ] possible @2) restoring transition. Data are fairly
o r - 7 well fitted assuming the transition occurs &t
3 r ‘ 7 (points next taT are not well fitted because there
kS r ?n 7 the largest eigenvalue becomes zero ahg
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(1) Resistance increases aglecreases belo (t, in tor, the fluctuations being larger than in the FI phase, as
our model. In our simplified model, this corresponds to the shown by measurements of specific heats and susceptibilities
fact that, when crossing the FM-FI transition, odd and evermade in both phases. More precisely, the magnetization in-
spins cease to be aligned, which makes conductivity via DEEreases as the temperature goes down from the FM to the FI
harder. phase, which can be explained by a diminution of fluctua-

(2) Experimentally?® the charge-ordered phase growstions. In fact, one would expect that the magnetization
larger when an external magnetic field is applied. In our caseshould be smaller in the FI phase, with fixed odds and evens
we have run a simulation with nonzero magnetic field and, a®n an open cone around the odd direction, than in the FM
pointed out in italics in the second next paragraph, our Fphase, where the evens lie on a narrower cone, with a larger
phase invades the FM phase and the critical temperatugrojection on the odd direction. Yet, the large fluctuations in
rises. the FM phase destroy the even contribution to the magneti-

(3) In the CO phase, at fixed temperature, the magnetizazation. The FI vacuum consists then of the odd, practically
tion increases with an external magnetic field, just as in a FMrozen, sublattice, and the even sublattice, with spins on an
phase. open, but less fluctuating cone.

Let us now describe the physics of the FM-FI transition. Let us now look at the FM phase close to the FI transition,
Near the FM-FI transition, in the FM phase the ordering isand switch on a weak magnetic field in tAeadirection. This
symmetric with respect to the odd-even exchange and thwill have the general effect of collimating the spins. In more
field fluctuates at random around the total magnetization veddetail, odd spins will freeze closer to tZedirection, which

T T T
v

i —— 0.05590-0.072(3) [°%1®

0.06 —\% ---- 0.062(3)-0.071(1) L7°%®® —

-------- 0.087(4)—0.26(4)/log[L/0.08(3)]

~ FIG. 12. Displacement of the critical tempera-
TI' 0.04 — ture, defined as the point whekg takes a fixed

& L value, as a function of size. Fits suggest that there
we | is no O2)-breaking transition, at a temperature

| less than the RPPPM transition temperature.
0.03 —
s \ \ L
0.00 0.05 0.10 0.15
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FIG. 13. Hysteresis alontp. The transition
occurs in the region wherﬁg changes suddenly,
and the figure shows a movementTefto higher
values whenh=0.01 is switched or{T.(h=0)
=0.0171.

Ms

will cause the even sublattice to freeze on the cone, with We have studied in detail thexotic RP*> phase(segment
smaller fluctuations. Paradoxically, the collimating effect ofordered, concluding that it is a single phase up to the reso-
the magnetic field in th& direction is to stabilize the cone, lution allowed by the lattice sizes used in the simulation. The
effectively opening it, giving rise to a more Fl-like ordering, presence of a RPphase up tor=0 is interesting from the
i.e., the FI phase invades the FM phase, and the criticalexperimental point of view, since it can be confused with a
temperature risesThis phenomenofsee point 2is accom- PM or glassy phase and consequently with a quantum critical

pani(_ed by an increase in the magnetization at fixed tempereb—oim_ We have shown that the structure fac(tlo?rﬂcZ(p)H, in
tur?n":):cri]:r?)pchhlsc%iﬁepggrtrgctness of the descrintion. w Fig. 5 remains bounded in the full Brillouin zone. Therefore

. . ; Cription, Wee rRp phase cannot be detected in neutron-scattering ex-
have simulated in the neighborhood of the transition with eriments as a long-range ordering, although the phase tran-
=0.01, which dpes not alter the system properties, and ha\%tion will show up as a maximunimo}e precisely, a cusipf
r_ug Oal Z)r/]sét]_e_r%sbszgzcée gll;n_;-??’AIncl)_o_dlc?t’)si‘:vga\év?;rﬁtrhe the specific heat. A short-range ordering would of course
ARy o 2)- A9 always be present. Since the critical exponens negative,
transition isu . The results at the twb values show that the

finite-size effects are negligible compared with the change ithe Harris criteriof? implies that our results are robust
T with h glg P 9 I?algainst disorder effects. The Rphase is characterized by a
. .

Figure 13 shows the result, which confirms that the inclu_breakdown of the even-qd%symmetry and a rema.u-nl@)o
sion of a magnetic field risek., causing the invasion of the symmetry. A 2+ expansio suggests that the critical ex-
FI ordering into regions which &t=0 were FM. ponents must be those of the classical Heisenberg model.

Yet, if one constructs a Ginzburg-Landau functional, the

natural conclusion is that the universality class is the one of
V. CONCLUSIONS the Q(5) nonlinears model. This last possibility seems to be
. . . the one realized in practice.
We have studied a simple model for double-exchange in- We have also discussed the effects of a magnetic field on

teractions which retains a good number of interesting prop; . . : " .
; o . . the ferromagnetic-ferrimagnetic transition, and we have dis-
erties. It exhibits a complex phase diagram with ferromag- L : . g
ussed its interplay with electrical conductivity.

netic and ferrimagnetic phases, with their staggere(f
counterparts, and a segment-ordered phase.
W_e obtain qua_ntltatlvely all phases_wnh approximate cal- ACKNOWLEDGMENTS
culations (mean field and IN expansions which can be
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the precise positions of the transitions, information aboutesearch  contracts  FPA2001-1813, FPA2000-0956,
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APPENDIX A: LARGE- N APPROXIMATION assuming that we will describe under this ansatz translation-
ally invariant phases, like paramagnetic and ferromagnetic
ones. So we will consider that all these fields are independent
H=-N3 W1+ 97>i ] Jn)- (A1) ?grz a'lar\uidsﬂ and we will write them aa,, p, u, ando. There-

(0. '

We write the model as

The Boltzmann weight is expH) and A
g xpH) —= gd[)\(l -p) +Na?+2W(p)]

W(X) = Ix+ V. (A2)

Using the exp[ession of the Dira%functions(oge to fix + /‘23“(1 -0 - %f dq |09[M -\, cosqV] ,
the spin modulusbizz 1 and another to write that= ¢; - ¢;) in v
terms of functional integrals, we can write the partition func- (A8)

tion of the model in the following wag®4
whered is the dimension of space and

& f d[pl)\uu’v (Z]eNA' (A3) ddq
qusf 2 )d=1. (A9)
with A, the action, as [0,2m L&
N Hence, this computation is valid in paramagnetic and ferro-
22 [Nij + N ¢>, ¢1 Nijpij + 2W(p;j) ] magnetic phases where we have translational invariance. As
. usual we write
- 52 pi(¢? = 1). (A4) B2 =43 sir(p,/2). (A10)
1 v

As we are interestedin this part of the calculationin  The continuum limit ofp? is p?, and so we can define a mass
paramagnetic or/and ferromagnetic phases, we separate th%

spin into two pieces: the first one parallel to the symmetry-

breaking directiong' (one degree of freedomand the or- ) 2u
thogonal partN-1 degrees of freedo)gn[ﬁ)% At this point, Mo = N 2d (AL1)
the spins have no definite modulus, and we can perform the

functional integration over the orthogonal part of the sgans andA can be written as

Gaussian integral

A B B
L _ . —=-dN1-p) +No?+2W(p) ]+ “u(l-0?)
f d[ L ]e MRS RE" o exp(— —N2 o log R>, (A5) Vo2 2

1 N2
whereRE" is the propagatofa,b=1,...,N~1 andi exists in T Iog Ao _J dqlog(mg + p7]. (A12)
the three-dimensional lattitend is given by
The saddle point equations are
53]_1b: & (B:Uﬂ ij E )\IJ ) (A6) 1
pd(1=p) + [(mg+2d)1 (mg) ~ 1] + dBo” = O,
The sum runs back and forth along the three lattice axes and
i is the neighbor of sité in the direction defined by. The (A13)
trace Tr is over the space and spin components. The quantity
%((;L .RJ,L) is_the co_ntri_bution tA inyolving thfa orthoggnal B(1-02) = gl(mﬁ) (A14)
part of the spingwhich is a quadratic form with matriR).
In momentum spaceR reads
2W'(p) =\, (A15)
R(q,q) = 0L S elta-a
Vi o(d\ - ) =0, (A16)
1 - -
X (Mi - 52 [N €97+ et "’]) : where
1
(A7) _ f S
mg) = | da o (A7)

wherev:riy—ry. In the largeN technique we must maximize
A. In order to keep the computation at its simplest level, weOne solution isc=0, the paramagnetic phase. We can find a
make an ansatz over the fieldg, w;, pj, and ¢ we are second-order phase transition by fixing the maggo zero:
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1 1
TI0)=J+ ——, (A18) -TI0)=J+ ——, (A27)
2\po 2\po
where where
=2- 1 (A19) -1 (A28)
Po= <" 5d1(0)” Po= 2410

In three dimensiond(0)=0.2527. So we have found the In addition 0<o <1 is also a solution and s\ = u and this
critical line between the paramagnetic and ferromagnetiémplies, as in the PM-FM computation, tha§=0 The phase
phases. This solution is only valid ih>-1/2. It is easy to  being a(staggerefimagnetized one, this does not imply criti-
check that thel=-1/2 vertical line corresponds to infinite cality. The solution is then

mass. So, with these formulas we cannot reach the region to

the left of J=-1/2. Below we will see how to solve this p = 1-o0 (A29)
drawback. 21(0)d
We can try to connect this calculation with tie=0 re- and
sults. The solutionr# 0 implies thatd\=u and somé=0.
Notice that in a magnetized phas®y has no longer the 1-0% 1
meaning of a maséence, in this casen,=0 is not a signa- = W J+ ﬁ : (A30)

ture of criticality). In this case the complete solution is
As in the PM-FM case, this last equation tells us what is the

p = Z—ﬁ, (A20) magnetization 1+2 in a given point(T,J). Again, in this
21(0)d part of the calculation we cannot reach the region-1/2.
and The lineJ=-1/2 has agaim3=0.
Finally, we report the transition lines in terms of the tem-
B 1-0% 1 perature measured in the Monte Carlo simulation. Taking
T= 1(0) J+ Z\F : (A21) into account thafly,c=T/N, whereT is the temperature of

the largeN calculation, and fixingN to 3, we obtain the
This last equation tells us what is the magnetizatiorrd in FM-PM line

a given point(T,J). In the intervalJ>-1/2 we obtain the

solution o=1. In addition in the intervalJe(-1/2, Tuc =1.2578+0.5578, (A31)
-1/(2y2)) a second solution witlr<1 appears. This is the and the AFM-PM line

signature of the ferrimagnetic phase. Hence, we have recov-

ered part of the previou§=0 results. Twc=-1.2578 - 0.793. (A32)

As mentioned, above the previous calculation is valid
only in paramagnetic and ferromagnetic phases. In order to
manage the paramagnetic and antiferromagnetic phases we
use the following trick: we change the sign of the odd spins
and we leave unchanged the even spins, so the Hamiltonian

APPENDIX B: MEAN-FIELD
FOURTH-ORDER ANALYSIS

reads

H (A22)

=-NBXZ W(L -, - ),
\B);

and following the technique outlined above, we obtain th

equations of the saddle point:

A=-2W (p), (A23)
1—0'2=%I(m8), (A24)
dp:d(l—az)—{[(zd+m§)|(0)— 1], (A25)
o(d\ — ) =0. (A26)

Again m3=2u/\-2d.
In the paramagnetic phase=0 is the solution and the
equation of the critical line isobtained by fixingmf):O)

(S

We have extended our mean-field power expansion analy-
sis to fourth order, so that we can find transitions where the
paramagnetic phase is not involved. The analytical minimi-
zation with respect to all fields is a very hard task. But we
can face the problem by restricting the parameter region,
using the essential fields that can describe the transition. First
of all, let us explore the transitions inside the ferromagnetic
region found in the second-order analysis:

Dpy (N = P(H™",0,0)y), (B1)

where h™" is the value ofh where ®,(h)=®(h,0,0,0
reaches the minimum. We can expand

Dy (A = D(h™",0,0,0 +ay, (T I\

+ b, (T, )N+ O(N). (B2)

Then, if bms(T,J) is positive there is a stable minimum with
nonzeroks whenay, (T,J) is negative. Therefore, we find a
transition line wheray, (T,J)=0. In this caséy, (T,J) >0 if

T<0.31 and the transition line between the ferromagnetic
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and a ferrimagnetic phase, whdveand Mg are nonzero, is

4(20 + 832 + 1401

TP 8612+ 8750+ 1369 392 + 971 81020 + 1 265 425° (9
We can do a similar analysis inside the Rihase. In this case we study
@, y(h) = D(h,0,0AT"™), (B4)
and
@, (hy) = D(0,h,ONT™), (B5)
obtaining the following transition lines:
32(327 + 406/2J)
Trrep = = ' (B6)
35(480\2 + 539 + \— 575 136 — 768 76@J + 290 5217)
32(283 + 406/2J)
Trre.aF = = : (B7)
35(— 1282 + 5390 — 1929 312 + 1148 22d2J + 290 5212
Finally, inside the antiferromagnetic phase we find a transition to an antiferrimagnetic ordering minimizing
Dy (N =D(O,hI™ 0N, (B8)
The transition line is
S _ 4(404 + 795/23 + 7001?) | ®9)
5(296\2 + 875 + V463 688 + 1 085 63(RJ + 1 265 425?)
I
The fourth-order phase diagram is depicted in Fig. 14, APPENDIX C: SPIN-WAVE CALCULATION

together with the numerical calculation of Sec. lll. Letting
aside the FM-RPline (which is first order in the mean-field
approximation, the results of the fourth-order approximation
are qualitatively satisfying.

The aim of this appendix is to show that a straightforward
spin-wave calculation for the very low temperature behavior
of the RF phase doesiot decide between the fully broken
0O(3) phase and an @Q)-symmetric one. For the sake of sim-
plicity, we consider a simple antiferromagnetic ‘RiRterac-

tion (‘Zi'@zj)z-

1. O(2)-symmetric hypothesis

The vector sense does not play any role in the calculation
of the free energy. In other words, we may change arbitrarily
the sign of each spin independently of the others. Hence, we
choose the sense of the spins on the even sublattice in such a
way that they vary smoothly from site to site. We write the
“even” field as

Peven= (\"1 _032/ - vg,vy,vz), (Cy
L . 1 wherev, andv, are expected to be sméih absolute value
ol v e A 1 real numbers, that is, spin waves. The integration measure is
0.8 -0.7 -0.6 -0.5 -0.4 0.3
J then
FIG. 14. Mean-field phase diagram as obtained from the nu- f Do~ ZJ f dv,dv, €2
merical minimization of the free energglashed linesand from the even v2ip2<1 V1 —v2 - 02
minimization of the free energy calculated to fourth ordérll vz vz
lines. The dotted lines are artifacts of the fourth-order The equality sign does not hold in the last expression, be-
approximation. cause we are integrating only over half the spt{egenember
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that the spin waves are expected to be small 3
On the other hand, the “odd” spins are parametrized as f~- ZT logT+---. (C8
boga= (U V1 -UZ cose,1-UZsing),  (C3)
the integration measure being 2. Fully broken O(3) phase
- 1 2m In this case we consider the even spins aligned along the
SZDdJodd: 1de . de. (C4 X axis, as in Eq(CY), while the odd spins are essentially

aligned with theZ axis:
In this case, only, is expected to be smalas the spins are
basically restricted to be in the pla&). The fluctuations of oda= (U Uy, V1 -2 - 12), (C9)
the anglesp can be large.
The contribution of a pair of nearest neighbors to the acthe integration measure being analogous to the one in Eq.

tion is (C2). In this caseu,, u,, vy, andv, are all expected to be
1 small at low temperature.
- - ~ /— . . . . .
- ?(qbeven' Godd’ = — [Ux\’l —T(Ef, Now the contribution of nearest neighbors to the action is
~2 .~ 1 _Tp 1.- - PO P ==y, S
+ UZ) + vyVl —T~U§ cose - ?((lseven' ¢odd)2 == [UX\ 1- \?5 - T’;g + UyUy
+7,1-Twsingl’, (C5)

_ s s - _ +TNL-TE-\TE],  (c10
where T=u,/\T,v,=v,/\NT,v,=v,/NT. Power expanding

the RHS of Eq(C5) at lowest order inT and the fields we \here, in order to obtain @-independent contribution, we
obtain a temperature-independent contribution to the actiomygye needed to use the rescaliiyg u,/ 4T, vy=v,/ 4T and

(RHS) = — [Ty + T, COS¢ +T, sin o2+, (C6) TU.=u,/\T, v,=v,/\T. Power expanding in the fields we get

The ellipsis stands for contributions vanishing Tor 0. Yet, (RHS) = = [Ty + 7, + Uy J* +- -, (C1)
the change of variable from,, vy, v, to Ty, vy, 7, yields a
factor T per each even sit®//2 factorg, and a facton'T per  where the ellipsis stands for terms vanishingTat0. The
each odd site. Hence, the partition function, at the leadingeading behavior of the partition function with temperature is
order in temperature, is given by the change of variables: we get a factdrfor u,

7= TVARY 4. (c7) —Ti, (same forv,) and a factor{T for the changeu, — T,

' (same forv,).

wherek is a temperature-independent constant, and the ellip- Hence, at the leading order in temperature, the partition
sis stands for subdominant terms at low temperature. Hencéjnction is again proportional t®3V4 and the leading singu-
the free-energy density varies as larity of the free energy is exactly as in E8).
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