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The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange
model with antiferromagneticsAFMd superexchange coupling, is fully worked out by means of Monte Carlo
simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no
first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low
temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This
is signaled by a maximumsa cuspd in the specific heat. Below the phase transition, only short-range ordering
would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be
wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling
corrections are present in the reachable lattice sizes.
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I. INTRODUCTION

There are at least two motivations for studying the spin-
only version of the double-exchangesDEd models. On the
one hand, one has its relationship with the colossal magne-
toresistancesCMRd effect.1–3 On the other hand, in this prob-
lem some puzzles arise4 with the universality hypothesis,5

which deserve a detailed study. Let us start addressing the
first aspect.

CMR has renewed the interest in double-exchange
systems.6 The typical CMR manganites are La1−xAxMn1−yO3,
whereA=Ca, Sr in the range 0.2,x,0.5. It is believed that
the relevant degrees of freedom1 are the localizedS
=3/2 Mn3+ core spins, and theeg holes. The Mn3+ ions form
a single cubic lattice and, besides the DE mechanism, inter-
act through an antiferromagneticsAFMd superexchange cou-
pling. The relatively high spin of the Mn3+ core suggests
treating them as classical spinsfW i. Although phonons are
believed to be crucial for the CMR effect,7 manganites dis-
play a very rich magnetic phase diagram which can be ad-
dressed neglecting lattice effects.8 In spite of these simplifi-
cations, and of the introduction of powerful new tools,9–11

the numerical study of the DE model in large lattices beyond
the mean-field approximation is out of reach for present day
computers. Yet, finite-size effects in these systems are unusu-
ally large.8 The need to obtain reliable predictions has made
people further simplify models, replacingeg holes by an ef-
fective interaction among the localizedS=3/2 Mn3+ core
spins. Indeed, a simple calculation6 shows that the kinetic
energy of the electrons depends on the relative orientation of

neighboring Mn3+ core spins asÎ1+fW ifW j. This substitution
of a simpler spin-only problem in place of the very difficult
electronic problem lies at the heart of several theoretical
analysesssee, e.g., de Gennes in Ref. 6d and numerical
simulations.12 In spite of this, to our knowledge there is only
one detailed previous study13 of the phase diagram of the
bosonic DE model. That study predicted the existence of a

disordered paramagneticsPMd phase at very low tempera-
tures for intermediate superexchange coupling. This is very
reminiscent of the presence of a quantum critical point14

which is believed to be of importance for the CMR
phenomenon,15 and has been predicted to occur in mangan-
ites by some model calculations.16 The experimental charac-
terization of this quantum critical point is a wedge of para-
magnetic phase, maybe glassy,17 that at zero temperature
becomes a single point separating two ordered phases.15 The
glassy wedge would be created by disorder,15 and would be
separated from the paramagnetic state at the high-
temperature scaleT* . Maybe the most surprising result of the
here presented analysis is that this glassy wedge could not be
PM or glassy at all, but ordered in a segmentlike way18–21sas
in liquid crystalsd. This ordering will be referred to in the
following as RP2 sreal projective spaced. As we shall show,
the RP2 phase cannot be detected in neutron-scattering ex-
perimentssalthough a short-range ordering will be presentd.
Nevertheless, the phase transition can be studied experimen-
tally using the specific heat, which should present a maxi-
mum sfurthermore, a cuspd at the critical temperature. In-
deed, the thermal critical exponent is predicted4 to be n
=0.78s2d which impliesa=−0.34, and hence the cusp behav-
ior follows. Another bonus of our simplified model is that it
allows us to study qualitativelyssee Sec. IV Dd the unusual
interplay between ferromagnetism, antiferromagnetism, tem-
perature, and applied magnetic field in low-doped
La1−xSrxMnO3.

23–26

Let us now address universality. A common wisdom is
that the critical properties of a system are given by its dimen-
sionality and the local propertiessi.e., near the identity ele-
mentd of the coset spaceG /H, where G is the symmetry
group of the Hamiltoniansthe symmetry of the high-
temperature phased andH is the remaining symmetry group
of the broken phaseslow temperatured. So, systems with lo-
cally isomorphicG /H belong to the same universality class.
This seems to be true in perturbation theory, where the ob-
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servables are computed by doing series expansions around
the identity element ofG /H. In this picture, a phase transi-
tion of a vector model, with Os3d global symmetry and with
an Os2d low-temperature phase symmetry, in three dimen-
sions must belong to the Os3d /Os2d scheme of symmetry
breaking sclassical Heisenberg modeld. In addition, if H
=Os1d=Z2 is the remaining symmetry, the corresponding
scheme should be27 Os4d /Os3d which is locally isomorphic
to Os3d /Os1d.

Hence, it is interesting to check if the global properties of
the coset spaceG /H are relevant or not to the phase transi-
tion. The common wisdom has been challenged in the past
by the so-called chiral models.28 However, the situation is
still hotly debated: some authors believe that the chiral tran-
sitions are weakly first order,29 while others claim30 that the
chiral universality class exists, implying the relevance of the
global properties ofG /H. On the other hand, we do not have
any doubt about the second-order nature of the PM−RP2

transition. A detailed study of the critical exponents was re-
cently published4 in letter form. In the present work, we
perform a detailed Monte Carlo, mean field, and large-N
study of the phase diagram. The large-N calculation is actu-
ally split into two different computationssfor J,−1/2 and
J.−1/2d; therefore, there are two different saddle points for
the paramagnetic phase. A thorough study is performed of
the RP2 phase. We shall confirm that the pattern of symmetry
breaking is Os3d /Os2d, suggesting a violation of universality.
However, a qualitative argumentssee Sec. IV Bd suggests
that the universality class could be the one of the Os5d non-
linear s model. Indeed, the numerical results are compatible
with this possibility.

The layout of the rest of this paper is as follows. In Sec. II
we define the model, study the phase diagram at zero tem-
perature, and define the order parameters and observables
measured in the Monte Carlo simulations. The mean-field
calculation is explained in Sec. III, where we also report the
results of the large-N analysis. In Sec. IV we present our
Monte Carlo results. We start determining the global phase
diagram in Sec. IV A. What is known19 about a generic RP2

phase is recalled in Sec. IV B. The RP2 phase, as realized in
the double-exchange model, is investigated in more detail in
Sec. IV C, while the effects of a magnetic field on conduc-
tivity close to a ferromagnetic-antiferromagnetic transition
are considered in Sec. IV D. We present our conclusions in
Sec. V. We complement the paper with three appendixes.
Appendix A contains the details about the large-N calcula-
tion. In Appendix B the reader will find the mean-field phase
diagram as obtained from the fourth-order expansion of the
free energy. Finally, in Appendix C a spin-wave calculation
for the low-temperature RP2 region is presented.

II. THE MODEL

A. The Hamiltonian

We define a system of spinshfW ij existing in a three-
dimensional cubic lattice of sizeL sand volumeV=L3d with
periodic boundary conditions. The spins are three-component
real unit vectors. We consider the Hamiltonian

H = − o
ki,jl

sJfW i · fW j + Î1 + fW i · fW jd , s1d

where the sum is extended to all pairs of nearest neighbors
and we consider onlyJ,0. Notice that we will measure
temperature in units of the double-exchange constant. The
cubic lattice is bipartite; therefore we shall call the lattice site
i evenor odd according to the parity of the sum of its coor-
dinates,xi +yi +zi.

We will consider the system at a temperatureT, the par-
tition function being

Z =E p
i

dfW e−H/T, s2d

where the integration measure is the standard measure on the
unit sphere.

B. Phase diagram at zero temperature

As usual, the study of the phase diagram begins with an
understanding of the ordered phases at zero temperature. We
can write in a compact way our original Hamiltonian:

H = − o
ki,jl

VsfW i · fW jd, s3d

where

Vsyd = Jy+ Î1 + y, s4d

and clearlyy[ f−1,1g. In the limit of zero temperature, the
only configurations that contribute to the partition function
are those that provide a maximum ofVsyd. If, as confirmed
by the Monte Carlo simulations, the spin texture itself is
bipartite, the value ofy will be uniform through the lattice.
Thus, a simple computation yields that the maxima ofVsyd
are at the following values ofy sdenoted byymaxd:

ymax=5 1 for J ù −
1

2Î2
,

− 1 +
1

4J2 for J ø −
1

2Î2

. s5d

It is clear thatymax=1 corresponds to a ferromagnetic state
and that in theJ→−` limit we reach an anti-ferromagnetic
one symax=−1d. The intermediate values ofymax correspond
to a ferrimagnet if 0,ymax,1 and to an antiferrimagnet
when −1,ymax,0. The physical picture is as follows. The
spins in the, say, even sublattice are all parallel alongsfor
instanced theZ axis. On the other hand the odd spins lie on a
cone forming an angleu scosu=ymaxd with the Z axis.

The corresponding free energy is just

fsJd =5 Î2 + J for J ù −
1

2Î2
,

−
1

4J
− J for J ø −

1

2Î2
.

s6d

Hence we have the following phase transitions.
s1d Ferromagnetic-ferrimagneticat J=−1/Î8. It is easy
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to check thatdf /dJ is continuous atJ=−1/Î8 butd2f /dJ2 is
discontinuous. Hence, according to the standard Erhenfest
classification, we have a second-order phase transition.

s2d Ferrimagnetic-antiferrimagneticat J=−1/2, where
the free energy isC`. At this special pointymax changes from
positive to negative. The fact thatymax=0 implies that one
can reverse every single spin independently of the others
without changing the energysmore pedantically, one finds a
dynamically generated Z2 gauge symmetry4d.

s3d The limiting valueymax=−1 that corresponds to an
antiferromagnetrather than an antiferrimagnet is reached
only at J=−`.

The transition 2sferrimagnet-antiferrimagnetd needs fur-
ther discussion. We can expand the Hamiltonian around the
minimum y=0, and we obtain

Vsyd = 1 −
1

8
y2 + Osy3d. s7d

Thus, atJ=−0.5 and close toT=0 one has, neglecting con-
stant terms,

H =
1

8o
ki,jl

sfW i · fW jd2 + O(sfW i · fW jd3), s8d

which corresponds to an antiferromagnetic RP2 theory.18–21

The minimum energy configuration satisfiesy=0. Hence, we
obtain that the ferrimagnet-antiferrimagnet transition occurs
at zero temperature via a RP2 state at a single point. We shall
see that at finite temperature the RP2 phase occupies a region
close to J=−0.5 srather than a single pointd of the phase
diagram.

From the previous analysis at zero temperature, one ex-
pects to find the following phases at finite temperature.

PM: the usual disordered state, where all the symmetries
of the model are preserved.

FM: a standard ferromagnetic ordering, i.e., the spin fluc-
tuates arounds0,0,1d.

AFM: a standard antiferromagnetic ordering. Evensoddd
spins fluctuate aroundfW e=s0,0,1d ffW o=s0,0,−1dg.

FI: The ordering consists on even spins fluctuating around
theZ axis and odd spins fluctuating around the cone of angle
u,p /2 with axisZ.

AFI: This ordering is similar to the previous one, withu
.p /2.

RP2: Here the ordering is the finite-T version of the one
found analytically inJ=−0.5,T=0, i.e., even spins fluctuat-
ing around theZ axis with random sense, and odd spins
fluctuating around the cone with random sense.

C. Order parameters

In models with antiferromagnetic couplings, one might
expect an even-odd structure of the ordered phases. There-
fore, from the local fieldhfW ij, we define the standard mag-
netization as the Fourier transform at momentum 0, and the
staggered magnetization as the Fourier transform at momen-
tum sp ,p ,pd:

MW =
1

L3o
i

fW i , s9d

MW s =
1

L3o
i

s− 1dxi+yi+zifW i . s10d

In a finite lattice we must take the modulus before taking the
mean value. We will study

mV = kiMW il, s11d

ms
V = kiMW sil. s12d

The associated susceptibilities are

xV = L3kMW 2l, s13d

xs
V = L3kMW s

2l. s14d

In order to explore RP2-type phases we introduce a tensor
invariant under the local spin reversal. In this case we use as
local field the matriceshtij, constructed as

ti = fi
afi

b −
1

3
dab, a,b = 1,2,3. s15d

Notice that they are traceless; thus they represent objects of
spin 2. We can now define the associated traceless tensor
magnetizations

M =
1

L3o
i

ti , s16d

Ms =
1

L3o
i

s− 1dxi+yi+ziti , s17d

and the mean values

mT = kÎTr M2l, s18d

ms
T = kÎTr Ms

2l. s19d

The corresponding susceptibilities are

xT = L3kTr M2l, s20d

xs
T = L3kTr Ms

2l. s21d

Let us close this subsection by recalling the value’s of the
order parameterssin the infinite-volume limitd in each of the
ordered phases found in the previous subsection:

FM: mV . 0, ms
V = 0 s⇒mT . 0, ms

T = 0d,

AFM: ms
V . 0, mV = 0 s⇒mT . 0, ms

T = 0d,

FI: mV . ms
V . 0 s⇒mT, ms

T . 0d,

AFI: ms
V . mV . 0 s⇒mT, ms

T . 0d,

RP2: ms
T . mT . 0, ms

V = mV = 0. s22d
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D. Correlation length

In the most general case, for models with antiferromag-
netic interactions, both the usual susceptibility and also the
staggered susceptibility diverge. Thus, in the Brillouin zone,
one needs to monitor the behavior of the Green functions
close to the origin as well as close tosp ,p ,pd. Since in
critical-phenomena studies one usually considers only the
behavior around zero momentum, it is more intuitive—
although redundant—to define four Green functions in terms
of four fields in momentum space:

fŴ spd = o
i

e−ip·r ifW i , s23d

fŴ sspd = o
i

e−ip·r is− 1dxi+yi+zifW i , s24d

T̂spd = o
i

e−ip·r iti , s25d

T̂sspd = o
i

e−ip·r is− 1dxi+yi+ziti , s26d

the Fourier transforms of the correlation functions being

ĜVspd =
1

L3kfŴ spd · fŴ *spdl, s27d

Ĝs
Vspd =

1

L3kfŴ sspd · fŴ s
*spdl, s28d

ĜTspd =
1

L3kTr T̂spdT̂†spdl, s29d

Ĝs
Tspd =

1

L3kTr T̂sspdT̂s
†spdl. s30d

Notice thatĜs
V,Tspd=ĜV,T(p+sp ,p ,pd), so that one could

consider only nonstaggered correlation functions that would
be studied close to boths0, 0, 0d and sp ,p ,pd.

Near a scontinuousd phase transition where the corre-
sponding correlation lengthj diverges, the correlation func-
tions in the thermodynamic limit behave for smallp2j2, as

Ĝspd .
Zj−h

p2 + j−2 . s31d

Herej diverges asutu−n, t being the reduced temperature. The
anomalous dimensionh will depend on the considered field.

In a finite lattice, to estimate the correlation length one
uses the propagator at zero momentum and at the minimum
nonzero momentum compatible with boundary conditions.

Defining F=Ĝs2p /L ,0 ,0d and noting thatx=Ĝs0d, one
has31

j = S x/F − 1

4 sin2sp/LdD
1/2

. s32d

III. MEAN-FIELD CALCULATION

When several phases compete, it is quite tricky to calcu-
late the phase diagram in the mean-field approximationsthe
T=0 calculation has shown that we should face this prob-
lemd. Since one can find different ordered phases at low tem-
peratures within different mean-field schemes, it is necessary
to decide which phase will be the most stable one. We con-
sider that the cleanest way of performing such a calculation
is to use the variational formulation of the mean-field ap-
proximation ssee, for example, Ref. 32d, with a variational
family large enough to take into account all the phases found
in the phase diagram. In this way, all the phases compete on
the same grounds and one has an objective criterion to de-
cide which phase is to be found in a given region of the
phase diagram.

One needs to compare the actual system with a simplified
model where all degrees of freedom are statistically indepen-
dent. The method is derived from the inequality32

F ø F0 + kH − H0l0. s33d

Here,H0 is a trial Hamiltonian depending on some param-
eterssthe mean fieldsd and the averagek…l0 means the av-
erage with the Boltzmann weight corresponding toH0. The
right-hand side of the inequalitys33d is minimized with re-
spect to the free parameters inH0 and then used as our best
estimate of the free energy. Thus the task is to generalize the
standard Curie-Weiss ansatzH0=hoifi

z sfi
z is the component

of the local spinfW i along theZ axisd, to cover all the ex-
pected orderings.

In our case, we must use the simplest possible variational
family that permits us to have different orderings in the even
and odd sublattices:

H0 = − o
ieven

Vesfi
zd − o

iodd
Vosfi

zd. s34d

Notice that, as far as the calculation of thek¯l0 averages is
concerned, all spins can be considered as statistically inde-
pendent. Thus, the mean value of an arbitrary function of a
spin placed inssayd the odd sublattice is simply

kfsfW dl0
soddd =

E
0

2p

dwE
−1

1

dfzfsfW de−Vosfzd/T

E
0

2p

dwE
−1

1

dfze−Vosfzd/T

, s35d

fW = „
Î1 − sfzd2 cosw, Î1 − sfzd2 sinw,fz

…. s36d

We now need to parametrize the local potentials with the
help of the mean fields, which will be our minimizing pa-
rameters. One easily sees that keeping only the linear term
fVe,osfzd=he,of

zg will not reproduce the ferrimagnetic or an-
tiferrimagnetic phases, since at very low temperatures and
nonvanishing mean fieldshe,o the spins would always be
santidaligned with theZ axis. If one keeps also the quadratic
term Ve,osfzd=he,of

z+le,osfzd2, the situation improves sig-
nificantly. The minimum ofVe,o can now be −1øfmin

z ø1
which implies that at low temperature spins would lie on the
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cone of angleu, cosu=fmin
z . Therefore, we will choose as

our variational family

H0 = − o
i even

fhefi
z + lesfi

zd2g − o
i odd

fhofi
z + losfi

zd2g .

s37d

As an extra bonus, we find that the RP2 phase can be repre-
sented by this ansatz if the mean fields that minimize the
right-hand sidesRHSd of inequalitys33d—at those particular
T and J values—happen to behe=ho=0, le=−lo.0. This
can be explicitly checked by calculating the order parameters
as a function of the mean fields. Due to the symmetry be-
tween the even and odd sublattices, the expressions simplify
in terms of the natural linear combinations of the mean fields
he, ho, le, lo:

h = she + hod/2,

hs = she − hod/2,

l = sle + lod/2,

ls = sle − lod/2. s38d

In terms of these variables, by means of a series expansion in
h, hs, l, andls, one gets for the order parameters

mV =
1

2
skfzl0

sevend + kfzl0
sodddd

=
2

3
bh +

8

45
shl + hslsd + Osh2,hs

2,l2,ls
2d, s39d

ms
V =

1

2
skfzl0

sevend − kfzl0
sodddd

=
2

3
bhs +

8

45
shsl + hlsd + Osh2,hs

2,l2,ls
2d, s40d

mT =
1

2
fksfzd2l0

sevend + ksfzd2l0
sodddg −

1

3

=
4

45
bl +

2

45
b2sh2 + hs

2d +
4

945
b2sl2 + ls

2d

+ Osh2,hs
2,l2,ls

2d, s41d

ms
T =

1

2
fksfzd2l0

sevend − ksfzd2l0
sodddg

=
4

45
bls +

1

45
b2hhs +

8

945
b2lls

+ Osh2,hs
2,l2,ls

2d. s42d

With this information in hand one can identify the different
phases that we found atT=0 in terms of the nonvanishing
mean fieldssof course the high-temperature PM phase corre-
sponds to the vanishing of all four mean fieldsd:

FM: h . 0, hs = l = ls = 0,

AFM: hs . 0, h = l = ls = 0,

FI: h,ls . 0, hs = l = 0,

AFI: hs,l . 0, h = ls = 0,

RP2: ls . 0, h = hs = l = 0. s43d

Let us now describe the actual calculation. As previously
said, we introduce the function

Fsh,hs,l,lsd = F0 + kH − H0l0, s44d

which, at its minimum as a function ofh,hs,l, andls, we
shall identifysin mean-field approximationd with the equilib-
rium free energy. The partition function can be factorized to
the contribution of theV/2 points of the even sublattice and
the V/2 points of the odd sublattice:

Z0 = Ze
V/2Zo

V/2 = e−bF0, s45d

where

Ze,o=E
0

2p

dwE
−1

1

dfzebfhe,of
z+le,osf

zd2g , s46d

F0 = −
V

2b
sln Ze + ln Zod. s47d

The average of the mean-field Hamiltonian is

kH0l0 = −
V

2
fhekfzl0

sevend + leksfzd2l0
sevend

+ hokfzl0
soddd + loksfzd2l0

sodddg . s48d

As for the average of the true Hamiltonian, one finds

kHl0 = − 3VJkfzl0
sevendkfzl0

soddd − 3VJkÎ1 + fW e · fW ol0.

s49d

In the above expression,fW e,o is a generic spin belonging to
the evensoddd sublattice. The problem is that, even iffW e and
fW o are statistically independent, the calculation of the mean
value of the square root in Eq.s49d cannot be straightfor-
wardly factorized in to even and odd contributions. In order
to achieve this factorization, we shall use the series expan-
sions introduced by de Gennes.33 One first uses an expansion
in Legendre polynomials:

Î1 + fW e · fW o = o
l=0

`

AlPlsfW e · fW od, s50d

Al = s− 1dl+1 2Î2

s2l − 1ds2l + 3d
. s51d

We can now factorize the Legendre polynomials using their
expression in terms of spherical harmonics:
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PlsfW e · fW od =
4p

2l + 1 o
m=−l

l

Yl
m*sfe

z,wedYl
msfo

z,wod. s52d

Thus, the mean values are factorized into even and odd con-
tributions. Due to the rotational symmetry along theZ axis,
only them=0 terms in Eq.s52d are nonvanishing. Thus we
obtain

kPlsfW e · fW odl0 = kPlsfzdl0
sevendkPlsfzdl0

soddd. s53d

Fortunately, if one wants to calculate the free energyF as a
series expansion in the mean fieldsh, hs, l, andls at a given
order only a finite number of terms in Eq.s50d contribute,
due to the orthogonality properties of the Legendre polyno-
mials. This expansion allows as to discuss the continuous
phase transitions from the PM phaseswhere h=hs=l=ls
=0 is the absolute minimum of the free energyd to ordered
phases. Indeed, calculatingF sper unit volumed to second
order one gets

1

V
Fsh,hs,l,lsd < Sb

6
−

Jb2

3
−

2Î2b2

15
Dh2

+ Sb

6
+

Jb2

3
+

2Î2b2

15
Dhs

2

+ S8Î2b2

1575
+

2b

45
Dl2

+ S−
8Î2b2

1575
+

2b

45
Dls

2. s54d

This is a quadratic form inh, hs, l, and ls. If the above
quadratic form is positive definite, the PM phase is aslocald
minimum of the free energy. The other way around, when
one of the eigenvalues of the quadratic form is negative, the
PM phase is unstable with respect to some ordered phase,
depending on the mean-field that should grow in order to
minimize the free energy. Notice also that the eigenvalue

corresponding tol2 is always positive. Thus, even if there
are four eigenvalues, we obtain three lines of continuous
phase transitions, where the eigenvalues vanish:

PM-FM line: T = 2J + 4Î2/5,

PM-AFM line: T = − 2J − 4Î2/5,

PM-RP2 line: T = 4Î2/35. s55d

Therefore the PM phase, stable at high temperature, meets
two transition lines of opposite slope, and a horizontal line
that separates it from the RP2 phasessee Fig. 1d.

For temperatures below the full lines in Fig. 1, one needs
to discuss the stability of a minimum of the free energy dif-
ferent fromh=hs=l=ls=0. To locate that minimum, and to
discuss its stability, one needs to extend the series expansion
in s55d at least to fourth order inh, hs, l, andls. This can be
donessee Appendix Bd, but it is not particularly illuminating
since the series expansion forF is slowly convergent. We
have rather turned to a numerical method. Given a particular
value of the mean fieldsh, hs, l, ls, we have calculatedF by
means of a Gauss-Legendre integration of all the terms in
Eq. s44d. To do this, we have divided the intervalf21, 1g
into 12 subintervals and we have done a 12th-order Gauss-
Legendre integration in each of them. The series of Eq.s50d
has been evaluated to order 50. Being able to calculateF, the
minimization has been done using a conjugate gradient
method. The resulting phase diagram is shown in Fig. 2. It
can be compared with the Monte Carlo datassee Fig. 1 of
Ref. 4d. The mean-field calculation overestimates the critical
temperatures bysroughlyd a factor 2.3. Once this factor is
corrected the agreement between Monte Carlo and mean-
field critical lines is remarkable.

The mean-field calculation predicts that all the transitions
are second order except the ferromagnetic-RP2 which is first
order snevertheless, this transition line is an artifact of the
mean-field solution; in the Monte Carlo phase diagram it
seems to collapse to a tetracritical point, as shown in Fig. 1

FIG. 1. Phase diagram as obtained from the
second-order series expansion of the free energy
s55d. The paramagnetic phase is unstable for tem-
peratures below the full linessthe instability be-
ing toward the FM, AFM, or RP2 phase, as indi-
cated in the plotd. The dashed lines indicate the
places where some of the eigenvalues of the qua-
dratic form in Eq.s55d vanish, but they do not
correspond to phase transitions.
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of Ref. 4d. The second-order nature of the transitions found
in the numerical minimization can be checked by computing
the appropriate order parameter at a given value ofT andJ,
then noticing that it vanishes at the transition line with mean-
field exponentssM ~ uT−Tcu1/2 or ~uJ−Jcu1/2d.

Since the mean-field calculation overestimates critical
temperatures, it is interesting to compare the previous results
with the ones of another approximationslargeNd that usually
underestimates them. We have calculated the position of the
PM-FM and PM-AFM phase transitions in the large-N ap-
proximationssee Appendix Ad:

PM-FM line: T = + 1.2578J + 0.5578,

PM-AFM line: T = − 1.2578J − 0.793. s56d

The critical temperature is underestimated by roughly the
same factor that the mean-field approximation overestimates
it ssee Fig. 1 of Ref. 4d. To extend further this calculation
would require a study of non-translationally-invariant saddle
points, which is rather complex.

IV. MONTE CARLO SIMULATION

The models1d can be investigated using a standard Monte
Carlo method. We shall here describe some technical points,
the results being discussed in the following subsections.

A single Monte CarlosMCd step consists of a full-lattice
Metropolis lattice sweep. Some of the simulations have been
done at extremely low temperatures; thus the method of
choice would have been a heat-bath algorithm, but its imple-
mentation in this model is rather complex. Fortunately, one
can effectively falsify a heat-bath algorithm by means of a
multihit Metropolis method, proposing per each hit as spin
update a random spin on the unit sphere. Luckily enough, to
achieve a 50% acceptance the number of needed hits is quite
modest except for the lowest temperatures which represent a
negligible fractionsbelow 1%d of the total CPU time devoted
to the problem. The pseudo-random-number generator was

the congruential1 Parisi-Rapuanossee, e.g., Ref. 34d.
To extract critical exponents and critical temperatures, we

have used the quotient methods:18,19,35for a pair of lattices of
sizesL and 2L we choose the temperature where the corre-
lation lengths in units of the lattice size coincides2jL=j2Ld.
Up to scaling corrections, the matching temperature is the
critical point. Let nowO be a generic observable diverging at
the critical point like utu−xO. Then, one hassup to scaling
corrections18,19,35d

U kOl2L

kOlL
U

j2L/jL=2
= 2xO/n, s57d

where n is the critical exponent for the correlation length
itself. For extractingn we have used the temperature deriva-
tive of the correlation length,x]Tj=1+n. To satisfy the
matching condition 2jL=j2L one often needs to extrapolate
from the simulation temperature to a nearby one. This has
been done using a reweighting methodssee, e.g., Ref. 36d.

A. Phase diagram

In previous work,4 we studied in great detail the critical
properties of the RP2-PM phase transition atJ=−0.5. The
location of the critical lines was also reported. These critical
temperatures were obtained via hysteresis cycles. We here
report a finite-size scaling study of selected critical points in
the phase diagram. Those points will be referred to ast0
sFM-PM transitiond, t1 sRP2-AFId, t2 sFM-FId, t3 sAFM-
AFId, andt4 sRP2-FId.

In all the five pointst0–t4, we have simulated latticesL
=6, 8, 12, 16, 24, 32, 48, and 64, producing 203106 MC
full-lattice sweeps for the largest lattices in each transition.
We have discarded 53105 MC steps for thermalization. In
all cases this has been checked to be much larger than the
integrated autocorrelation time. In addition, at the lowest
temperatures, we have compared different starting configu-
rations srandom, FM, etc.d, concluding that the results are
start independent.

Before discussing the results let us briefly comment on
what can be expected on universality grounds. Transitiont0
connects the paramagnetic phase, where the full Os3d sym-
metry group is preserved, to a FM phase where the symmetry
group is just the Os2d group corresponding to the global
rotations around the global magnetization. Thus it is ex-
pectedsand confirmedd to be in the universality class of the
Os3d nonlinears model ssee Table III belowd. For all the
other transitions the scheme of symmetry breaking is not so
clear. The only obvious symmetry breakingsfor transitionst2
and t3d is the symmetry between the even and odd sublat-
tices. This is a Z2 symmetry; thus one might expect the tran-
sition to be in the Ising universality class. The symmetries of
the RP2 phase are intriguing and will be investigated in the
following subsection. Let us only recall that the transition
between the PM and the RP2 phase atJ=−0.5 has been re-
cently studied in great detail in Ref. 4. The critical exponent
n appears in Table III. Perhaps not unexpectedly, the critical
exponents were found to be compatible within errors with
that of the antiferromagnetic RP2 model.18,19

FIG. 2. Phase diagram of the model, as predicted by the Mean-
Field approximation. The critical lines are obtained minimizing nu-
merically the free-energys44d ssee text for detailsd.
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As for transitionst0–t4, we have located quite accurately
the critical parametersssee Table Id. We have focused in each
case on the largest order parameterfsee Eq.s22dg. The PM-
AFM transition should have the same critical behavior and
we have not invested computer time in this study. We are
reasonably confident in the continuous nature of all five tran-
sitions. This stems from two facts. First, the energy histo-
grams are not double peakedssee an example in Fig. 3d. Yet,
a much more refined test comes from thesL-dependentd
value of the effectiven exponents shown in Table II. With
the exception of transitiont0, which as expected belongs to
the universality class of the Heisenberg model in three di-
mensions, scaling corrections are not even monotonic in their
evolution with the lattice size. Although an asymptotic value
cannot be guessed with reachable lattice sizes, at least one
sees that, for the largest lattices, the exponentn is reasonably
far from the value 1/2 to be expected in weak first-order
transitions.

B. The RP2 phase beyond mean field

As we have seen in Eq.s8d, the effective Hamiltonian for
the RP2 phase is that of an RP2 model. The neglected terms
in Eq. s8d have lower symmetries and they could change this

picture, but we shall see in Sec. IV C that this seems not to
happen. To lighten the forthcoming discussion, we shall
briefly recall here what it is known about the pure antiferro-
magnetic RP2 model,19 whose Hamiltonian is

HRP2
= o

ki,jl
sfW i · fW jd2. s58d

The most striking feature of Eq.s58d is that it remains
invariant under the transformation

fW i → − fW i . s59d

In other words, every spin can be reversed independently of
the others. This symmetry is a local one, and the Elitzur
theorem22 tell us that it cannot be spontaneously broken.
Therefore the spin-spin correlation function for the model
s58d is

kfW i · fW jl = di j . s60d

This means that the propagators27d will be precisely 1/V for
everyp in the Brillouin zone. Of course the local symmetry
s59d is at most approximated for the original Hamiltonians1d
if we are away fromT=0 andJ=−0.5. Yet we shall show

TABLE I. Jc or Tc determined by the intersection of the correlation lengths measured in two lattices of sizeL and 2L. tNsX,Ad indicates
the transitiontN, with X a fixed parameter andA the order parameter associated with the correlation length considered.

Transition L=6 L=8 L=12 L=16 L=24 L=32

t0 sT=0.05,mVd 20.453561s15d 20.453293s32d 20.453131s19d 20.453090s15d 20.453091s29d
t1 sT=0.05,mVd 20.59828s8d 20.59939s4d 20.60015s2d 20.60038s1d 20.60043s2d 20.60044s2d
t1 sT=0.05,ms

Vd 20.60083s4d 20.60084s3d 20.60078s2d 20.60067s1d 20.60052s2d 20.60048s2d
t2 sJ=−0.43,ms

Vd 0.017663s12d 0.017343s5d 0.017163s4d 0.017129s2d 0.017112s2d 0.017101s4d
t3 sJ=−0.8,mVd 0.07528s4d 0.07387s2d 0.07304s2d 0.07283s1d 0.07267s1d 0.07260s1d
t4 sT=0.01,mVd 20.47199s3d 20.47198s2d 20.47196s2d 20.47195s1d 20.471919s6d 20.471916s3d
t4 sT=0.01,ms

Vd 20.47241s3d 20.47219s3d 20.47201s2d 20.47196s1d 20.471914s6d 20.471912s3d

FIG. 3. Histogram forEv=kfW i ·fW jl sfor near-
est neighborsi and jd, in transitiont3.
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that the propagator is still of order 1/V in the full Brillouin
zone, at a finite distance fromT=0 and J=−0.5, for our
model ssee Fig. 5 belowd. Hence, if one considers the spins
asarrows, there is no hint of any ordering in this region.

On the other hand, we shall show that the tensor correla-
tion function ssee also Ref. 19d

ksfW i · fW jd2l −
1

3
s61d

does not tend to zero at infinite distance. Hence, if one think
of the spins assegmentssthat is, if one forgets about their
signd, a global magnetic ordering exists.

As the reader can see, the ground state for the Hamil-
tonians58d is very peculiar. The only constraint is that every
spin must be orthogonal to its nearest neighbors. One may
think about two extremal situations.

s1d One may put every singleevenspin alignedsor anti-
alignedd with the ssayd Z axis, while the spins on the odd
sublattice are placed on theXY plane atrandom. On the
whole, this ground-state is Os2d symmetric, as one can make
a global rotation around theZ axis without changing the
correlation functions. Notice, however, that the even and the
odd sublattices play a very asymmetrical role. Yet, in the
Hamiltonians1d, the two sublattices are equivalent. Hence, in
this ground state we have a breaking of the Os3d symmetry

group to an Os2d subgroup,and a breaking of the even-odd
symmetry. The translational invariance is reduced to the dis-
placements that do not change the parity of the site.

s2d One may consider spins in the even sublattice aligned
sor antialignedd with the ssayd Z axis, while the spins on the
odd sublattice are alignedsantialignedd with the ssayd X axis.
This ground state fully breaks the Os3d symmetry. Yet, the
two sublattice play a symmetrical role. If one considers ro-
tationally invariant correlation functionsfsuch asksfW i ·fW jd2l
for any i and jg, the translation group is not broken.

At first sight one could say that the first ground state has
a much larger entropy. However, for the the second ground
state, fluctuations for the even sublattice can be much larger
than for the first ground state. To decide which ground state
is realized, one may try a “spin-wave” calculation for each
casessee Appendix Cd. At the leading order in the tempera-
ture one finds that their contribution to the partition function
has the same power ofT and consequently it is not straight-
forward to conclude analytically which is the stable phase.

A detailed numerical study19 showed that at very low tem-
perature the Os2d-symmetric ground state prevails. Yet, upon
increasing the temperature, the correlations for the spins on
the planar sublattice grow. The increased fluctuations of the
collinear sublattice induce a ferromagnetic effective short-
range coupling for the planar sublatticesorder from disor-
derd. One may wonder if this effective couplingswhich
grows with temperatured will be enough to break the remain-
ing Os2d symmetry, before reaching the paramagnetic phase.
The answer is negative. In Sec. IV C, we shall show that in
the present model there is only a low-temperature phase,
with a remaining Os2d symmetry, and where the even-odd
symmetry is fully brokenssee Fig. 7 belowd.

In the Introduction, we recalled the nonlinears model
sNLsMd arguments27 suggesting that this symmetry-
breaking pattern implies that the universality class is the one
of the Os3d NLsM. The numerical result—see Table III—
seem hardly compatible with this possibility. Yet, one can
produce an argument, suggesting a different conclusion.

If one wants to construct the Landau free-energy func-
tional, in principle the two order parametersM and Ms
would appear. Yet the mean-field calculationssee also the
Appendix in Ref. 19d has taught us thatM is just the square
of Ms. Thus, onlyMs appears in the functional. NoticeMs
transforms under the even-odd symmetry asMs→−Ms;
hence only even powers ofMs are present. Then, the more
general form for the Landau potentialsup to fourth orderd,

TABLE II. Apparentn exponent obtained from the quotient method applied tosL ,2Ld pairs.

Transition L=6 L=8 L=12 L=16 L=24 L=32

t0 sT=0.05,mVd 0.707s4d 0.702s7d 0.712s12d 0.710s10d 0.629s95d
t1 sT=0.05,mVd 0.594s20d 0.556s7d 0.555s8d 0.540s8d 0.546s17d 0.596s25d
t1 sT=0.05,ms

Vd 0.592s5d 0.561s6d 0.538s5d 0.519s7d 0.517s13d 0.561s22d
t2 sJ=−0.43,ms

Vd 0.591s8d 0.569s5d 0.537s3d 0.548s5d 0.588s8d 0.604s17d
t3 sJ=−0.8,mVd 0.583s10d 0.557s4d 0.562s3d 0.582s6d 0.605s7d 0.651s20d
t4 sT=0.01,mVd 0.534s4d 0.536s10d 0.560s10d 0.597s15d 0.630s17d 0.656s24d
t4 sT=0.01,ms

Vd 0.545s7d 0.564s13d 0.581s13d 0.611s16d 0.629s17d 0.650s25d

TABLE III. Critical exponentn for some three-dimensional uni-
versality classes.

Model n

Os1d sIsingd sRef. 37d 0.6294s10d
Os2d sRef. 38d 0.67155s27d
Os3d sRef. 39d 0.710s2d
Os4d sRef. 39d 0.749s2d
Os5d sRef. 40d 0.766

RP2-AFM sRef. 19d 0.783s11d
RP2-PM sdouble exchanged sRef. 4d 0.781s18d

Chiral sHeisenbergd sRef. 30d 0.57s3d
Chiral sXYd sRef. 30d 0.55s3d

Tricritical sRef. 5d 1/2

Weak first ordersRef. 41d 1/2

First order 1/3
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compatible with the rotational symmetry of the Hamiltonian
s1d is

UsMsd =E dr fg2Tr Ms
2 + g4sTr Ms

2d2 + g48Tr Ms
4g. s62d

Now, the only constraint onMs is that it is a symmetric
traceless matrix:

Ms = 1a c d

c b e

d e − a − b
2 . s63d

If one introduces a five-component vector field

F = Sa + b
Î2

,
a − b
Î2

,c,d,eD , s64d

it is easy to show that

Tr Ms
2 = 2sF · Fd, s65d

Tr Ms
4 = 2sF · Fd2. s66d

Thus, the Landau free-energy functional is identical to the
one of an Os5d NLsM. And the numerical resultssTable IIId
are in much better agreement with this possibility than with
that of the Os3d NLsM.

C. Detailed study of the RP2 phase

The RP2 phase of models1d—we donot refer to the ideal
case of Eq.s58d—poses several questions:s1d Is the RP2

phase truly segmentlike?frecall that the Hamiltonians1d is
not invariant under individual spin reversalg. s2d Is the even-
odd symmetry broken up to the temperature separating the
RP2 phase from the paramagnetic state?s3d Is the low-
temperature Os2d-symmetric RP2 phase preserved up to the
temperature separating the RP2 phase from the paramagnetic
state? We shall address them separately, in the stated order.

1. Tensor versus vector ordering

We have called RP2 the phase in which the vector mag-
netization vanishessfor any momentum in the Brillouin
zoned, and the tensor magnetization is nonvanishing, both at
momentums0,0,0d smTd and at momentumsp, p, pd sms

Td. In
Fig. 4 stop and middle partsd we show, fixingJ=−0.5, that,
for temperatures ranging from 0.001 to 0.05, there is a non-
vanishing thermodynamic limit for both quantities. For com-
parison, we show in the bottom part the vector magnetization
at momentumsp, p, pd sms

Vd, which goes to zero as 1/ÎL3.
We have also measured the correlation length in the vector
channel. Although some short-range ordering is present, the
correlation length is not larger than 0.3 lattice spacing.

To confirm the absence of any other vectorial magnetiza-
tion we have measured atJ=−0.55, T=0.5 sjust in the
middle of the RP2 phased all Fourier components of the vec-
tor field fW i for 90 statistically independent configurations for
each lattice size, and plotted in Fig. 5 the corresponding
momentum versus the maximum value of the Fourier com-
ponent squared. In other words, we are searching for the
maximum sover the Brillouin zoned of the static structure
factor sdivided byL3d. We have chosen as lattice sizesL=6,
8, 12, 30, 60 to allow for different periodicities of the

FIG. 4. Lattice size dependence ofms
T, mT,

andms
V at different temperatures, forJ=−0.5.
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would-be vector-ordered states. If no vectorial ordering is
present, the last quantity should go to zero as 1/L3, up to
logarithmic corrections that arise from the fact that we are
computing the maximum of a set ofOsL3d elements. The
absence of ordering is clear from Fig. 5.

2. Even-odd symmetry

To analyze the even-odd symmetry, we measure the tensor
correlation difference at second neighbors between even and
odd lattices. The normalized total difference for a given con-
figuration can be written as

DE =
2

3L3So
even

sfi · f jd2 − o
odd

sfi · f jd2D , s67d

where the sums extend over evensoddd second-neighbor
pairs. The nonvanishing of the difference in the thermody-
namic limit signals even-odd symmetry breaking. Notice that
the sublattice energy difference can be defined locally, and it
plays the role of a local field. Another interesting observable
is the dimensionless quantity associated with the energy dif-
ference,

kE =
kDE

2l
kDEl2 . s68d

Figure 6 shows the tensor energy difference as a function
of temperature for several lattice sizes. A clear nonvanishing
thermodynamic limit forDE is observed forT,0.05; there-
fore, the even-odd symmetry is broken up to this tempera-
ture. At T=0.05 the asymptotic behavior can be elucidated
by a direct study of the tensor energy difference histograms.
A L=96 lattice is necessary to clearly resolve the two-peak
structure of the histogramssee Fig. 7d, corresponding to an

even-odd symmetry breaking. Notice thatL=96 is the largest
lattice used, which makes it impossible to study the thermo-
dynamic limit of that quantity forT larger than 0.05 and less
thanTc=0.0559. We can conclude that, within the computa-
tional resources employed, no evidence exists for a thermo-
dynamic limit with unbroken even-odd symmetry.

Although no thermodynamic limit can be reached beyond
T=0.05, more information can be obtained through a finite-
size analysis. The closer we get toT=0.05, the harder it
becomes to find a two-peak structure in the histogram. A
correlation length could be defined in the even-odd symme-
try breaking channel which grows as the possible critical
point between the RP2 phase with broken even-odd symme-
try and a hypothetical RP2 phase with restored even-odd
symmetry is approached. The functional form of the growth
of the correlation length might give an indication of the ex-
istence of such phase transition. A direct way to carry out
that study is to define the correlation length as the lattice size
itself, when the histogram has a central valley at half the
peak hight. The result shows a growth of the correlation
length asT increases compatible with a divergence just atTc,

FIG. 5. Scatter plot for 90 statistically independent configura-
tions for each lattice sizesL=6, 8, 12, 30, 60d at J=−0.55,T=0.5.
On the horizontal axis we plot the maximum over the Brillouin
zone of the squared Fourier transform of the spin field, and on the
vertical axis the corresponding associated momentump=ipi. The
horizontal position of the legends scales asL−3 log L in agreement
with the absence-of-order prediction.

FIG. 6. Difference of the tensor second neighbors energies be-
tween sublattices, forT=0.05.

FIG. 7. Histogram ofDE for J=0.5, T=0.05.

PHASE DIAGRAM OF THE BOSONIC DOUBLE-… PHYSICAL REVIEW B 71, 014420s2005d

014420-11



though with rather peculiar exponents. But the measurement
of that correlation length is very noisy. A much more precise
way to study the possible presence of a transition previous to
Tc is to define as apparent critical point theT value at which
kE takes a fixed value. Figure 8 shows the results. Although
the possibility of an even-odd symmetry recovery transition
previous toTc cannot be discarded, results are compatible

with a divergence just atTc. The figures show a fit to a power
law sfixing the critical point to the valueTc=0.055 895s5d
obtained in Ref. 4d. It is worth remarking that the effectiven
exponent obtained with a power law fit is very larges2 or
largerd, which might point to a logarithmic divergence. Thus,
all our results point to a single RP2 phase with broken even-
odd symmetries at all temperatures.

3. O(2) symmetry

The chosen tool to study whether the Os2d symmetry of
the T=0 state is preserved at higher temperatures has been
the eigenvalue structure of the tensorMs. The latter being
traceless implies that the vectorl=sl1,l2,l3d must lie on
thex+y+z=0 plane. The whole information reduces, then, to
a modulusswhich is nothing but the observablemsd, and an
angle, which contains all the information of the eigenvalues
on the symmetry Os2d. As any result must be symmetric
under eigenvalue permutations and global inversion, we can
restrict the angle to the interval between 0 andp /6. More
precisely, we consider the orthonormal basishux,uyj for the
plane given by

ux =
1
Î2

s− 1,1,0d, s69d

uy =
1
Î6

s− 1,− 1,2d. s70d

and define the angleu from the relation

FIG. 8. Displacement of the critical temperature, defined as the
point wherekE takes a fixed value, as a function of size. Fits sug-
gest that there is no even-odd symmetry restoration at a temperature
less than the RP2-PM one.

FIG. 9. Histograms of the
angle of the eigenvalue vector
on the s1,1,1d plane for two
temperatures atJ=−0.5. The dots
correspond to paramagnetic
configurations.
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tanu =
l ·uy

l ·ux
, s71d

with the proviso that we choose a permutation and a global
sign such thatu lies between 0 andp /6.

Another interesting quantity can be defined as follows. In
the thermodynamic limit an Os2d-symmetric phase corre-
sponds tol2=l3. We thus define

Dl = ul2 − l3u, s72d

which must vanish in the thermodynamic limit if the Os2d
symmetry is not broken. As usual the corresponding dimen-
sionless quantity is

kl =
kDl

2l
kDll2 . s73d

Figure 9 shows histograms of angles at several tempera-
tures and lattice sizes. Dotted lines correspond to completely
disordered configurations. In case of the system being Os2d
symmetricsone large eigenvalue and two identical small ei-
genvaluesd, the distribution should be ad function at angle
p /6. For a system with broken Os2d symmetry but unbroken
even-odd symmetry, the eigenvalues aresa,0 ,−ad-like,
which would correspond to a Diracd function at angle 0. We
notice that, for small lattices, the distribution points to com-
plete disorder, but as the size grows an inflection point turns
up at T=0.04, 0.045 forL=24, 48, respectively, and asL
goes on growing a peak arises at angles ever closer to the
maximum. It might be said that the behavior inL is always
the same, except for a scale change.

Another interesting quantity is the difference between the
two small eigenvaluessDld, which should vanish in the pres-
ence of Os2d symmetry, so turning out to be an order param-
eter. Figure 10 shows that quantity for several values of the
temperature and lattice size. If we look at an intermediate
size sL=24, for instanced the appearance is that of a transi-

tion at T=0.03 to a phase with broken Os2d symmetry. Yet,
asL increases, the apparent transition moves back, approach-
ing Tc ever more closely.

To check the consistency of the results with respect to the
existence of a transition within the RP2 phase we can per-
form a finite–size scaling study fittingDlLb/n as a function of
sT−T0dL1/n. Only T0=Tc yields a reasonable fitssee Fig. 11d.
Notice that forT close toTc the definition ofDl ceases to be
meaningful, as a large eigenvalue exists no longer since the
RP2 magnetization fades away, and no good fit can be ex-
pected. However, for mostT valuessmore precisely, forT
,0.05d the fit is excellent, though theh and n values are
admittedly rather unusualsh=−0.5, n=1.8d. The conclusion
should be that there is no evidence for an Os2d-breaking
transition at any finite distance fromTc. A collapse of that
transition over the RP2-PM transition might occur.

A more quantitative analysis can be made studying the
displacement of the temperature at a fixed value ofkl. In
Fig. 12 we plot the obtained measures together with fits to
several functional forms: a power law with the critical tem-
perature fixed toTc=0.055 895s5d,4 a three-parameter power
law, and a Kosterlitz-Thouless-like divergence. The results
point again to no breaking of the Os2d symmetry inside the
RP2 phase.

D. Interplay between ferromagnetism, antiferromagnetism,
temperature, and an applied magnetic field

in the low-doped La1−xSrxMnO 3

In a series of papers23–26the interplay between FM, AFM,
temperature, and an applied magnetic field in the low-doped
La1−xSrxMnO3, mainly at x close to 1/8, has been studied.
We would like to point out some properties of our FM-FI
phase transitionspoint t2 in this paperd which might help to
understand phenomena which, in those references, are re-
lated to the FM-COscharge orderedd phase transition, not
fully understood so far.

Roughly speaking, some of the mentioned phenomena are
as follows.

FIG. 10. Modulus of the difference between
the two smaller eigenvalues ofMs as a function
of T.
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s1d Resistance increases asT decreases belowTCO st2 in
our modeld. In our simplified model, this corresponds to the
fact that, when crossing the FM-FI transition, odd and even
spins cease to be aligned, which makes conductivity via DE
harder.

s2d Experimentally,23 the charge-ordered phase grows
larger when an external magnetic field is applied. In our case,
we have run a simulation with nonzero magnetic field and, as
pointed out in italics in the second next paragraph, our FI
phase invades the FM phase and the critical temperature
rises.

s3d In the CO phase, at fixed temperature, the magnetiza-
tion increases with an external magnetic field, just as in a FM
phase.

Let us now describe the physics of the FM-FI transition.
Near the FM-FI transition, in the FM phase the ordering is
symmetric with respect to the odd-even exchange and the
field fluctuates at random around the total magnetization vec-

tor, the fluctuations being larger than in the FI phase, as
shown by measurements of specific heats and susceptibilities
made in both phases. More precisely, the magnetization in-
creases as the temperature goes down from the FM to the FI
phase, which can be explained by a diminution of fluctua-
tions. In fact, one would expect that the magnetization
should be smaller in the FI phase, with fixed odds and evens
on an open cone around the odd direction, than in the FM
phase, where the evens lie on a narrower cone, with a larger
projection on the odd direction. Yet, the large fluctuations in
the FM phase destroy the even contribution to the magneti-
zation. The FI vacuum consists then of the odd, practically
frozen, sublattice, and the even sublattice, with spins on an
open, but less fluctuating cone.

Let us now look at the FM phase close to the FI transition,
and switch on a weak magnetic field in theZ direction. This
will have the general effect of collimating the spins. In more
detail, odd spins will freeze closer to theZ direction, which

FIG. 11. Scaling ofDl for the analysis of a
possible Os2d restoring transition. Data are fairly
well fitted assuming the transition occurs atTc

spoints next toTc are not well fitted because there
the largest eigenvalue becomes zero andDl

ceases to make sensed. The fitted values areh=
−0.5, n=1.8, Tc=0.0559.

FIG. 12. Displacement of the critical tempera-
ture, defined as the point wherekl takes a fixed
value, as a function of size. Fits suggest that there
is no Os2d-breaking transition, at a temperature
less than the RP2-PM transition temperature.
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will cause the even sublattice to freeze on the cone, with
smaller fluctuations. Paradoxically, the collimating effect of
the magnetic field in theZ direction is to stabilize the cone,
effectively opening it, giving rise to a more FI-like ordering,
i.e., the FI phase invades the FM phase, and the critical
temperature rises. This phenomenonssee point 2d is accom-
panied by an increase in the magnetization at fixed tempera-
ture in the FI phasessee point 3d.

In order to check the correctness of the description, we
have simulated in the neighborhood of the transition withh
=0.01, which does not alter the system properties, and have
run a hysteresis cycle atJ=−0.43 in L=12, 24 betweenT
=0.01 andT=0.025si.e., alongt2d. A good observable for the
transition isms

V. The results at the twoL values show that the
finite-size effects are negligible compared with the change in
Tc with h.

Figure 13 shows the result, which confirms that the inclu-
sion of a magnetic field risesTc, causing the invasion of the
FI ordering into regions which ath=0 were FM.

V. CONCLUSIONS

We have studied a simple model for double-exchange in-
teractions which retains a good number of interesting prop-
erties. It exhibits a complex phase diagram with ferromag-
netic and ferrimagnetic phases, with their staggered
counterparts, and a segment-ordered phase.

We obtain quantitatively all phases with approximate cal-
culations smean field and 1/N expansionsd, which can be
contrasted withexactMonte Carlo calculations. The mean-
field calculation is also useful to formulate a Ginzburg-
Landau functional for the RP2 phase.

With Monte Carlo simulations we obtain, in addition to
the precise positions of the transitions, information about
their order. Our conclusion is that all transitions seem to be
second order, although an accurate determination of the criti-
cal exponents is difficult and it is beyond the scope of this
paper.

We have studied in detail theexoticRP2 phasessegment
orderedd, concluding that it is a single phase up to the reso-
lution allowed by the lattice sizes used in the simulation. The
presence of a RP2 phase up toT=0 is interesting from the
experimental point of view, since it can be confused with a
PM or glassy phase and consequently with a quantum critical

point. We have shown that the structure factorsL3ifŴ spdi, in
Fig. 5d remains bounded in the full Brillouin zone. Therefore
the RP2 phase cannot be detected in neutron-scattering ex-
periments as a long-range ordering, although the phase tran-
sition will show up as a maximumsmore precisely, a cuspd of
the specific heat. A short-range ordering would of course
always be present. Since the critical exponenta is negative,
the Harris criterion42 implies that our results are robust
against disorder effects. The RP2 phase is characterized by a
breakdown of the even-odd symmetry and a remaining Os2d
symmetry. A 2+e expansion27 suggests that the critical ex-
ponents must be those of the classical Heisenberg model.
Yet, if one constructs a Ginzburg-Landau functional, the
natural conclusion is that the universality class is the one of
the Os5d nonlinears model. This last possibility seems to be
the one realized in practice.

We have also discussed the effects of a magnetic field on
the ferromagnetic-ferrimagnetic transition, and we have dis-
cussed its interplay with electrical conductivity.
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FIG. 13. Hysteresis alongt2. The transition
occurs in the region wherems

V changes suddenly,
and the figure shows a movement ofTc to higher
values whenh=0.01 is switched onfTcsh=0d
=0.0171g.
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APPENDIX A: LARGE- N APPROXIMATION

We write the model as

H = − No
ki,jl

Ws1 + fW i · fW jd. sA1d

The Boltzmann weight is exps−Hd and

Wsxd = Jx+ Îx. sA2d

Using the expression of the Diracd functionssone to fix
the spin modulusfW i

2=1 and another to write thatx=fW i ·fW jd in
terms of functional integrals, we can write the partition func-
tion of the model in the following way:43,44

Z ~E dfr,l,m,fW geNA, sA3d

with A, the action, as

A =
b

2o
ki,jl

fli j + li jfW i · fW j − li jri j + 2Wsri jdg

−
b

2o
i

misfW i
2 − 1d. sA4d

As we are interestedsin this part of the calculationd in
paramagnetic or/and ferromagnetic phases, we separate the
spin into two pieces: the first one parallel to the symmetry-
breaking direction,fi sone degree of freedomd, and the or-
thogonal partsN−1 degrees of freedomd, fW '. At this point,
the spins have no definite modulus, and we can perform the
functional integration over the orthogonal part of the spinssa
Gaussian integrald

E dffW 'ge−s1/2dfW '·R̂fW '
~ expS−

N − 1

2
Tr log R̂D , sA5d

whereRij
ab is the propagatorsa,b=1,… ,N−1 andi exists in

the three-dimensional latticed and is given by

Rij
ab = dabbSbmidi j −

1

2o
n

li jdin jD . sA6d

The sum runs back and forth along the three lattice axes and
in is the neighbor of sitei in the direction defined byn. The
trace Tr is over the space and spin components. The quantity
1
2sfW ' ·R̂fW 'd is the contribution toA involving the orthogonal

part of the spinsswhich is a quadratic form with matrixR̂d.
In momentum space,R̂ reads

Rabsq,q8d = dabb

Vo
i

eisq−q8d·ri

3Smi −
1

2o
n

flii n
eiq8·n + li−nie

−iq8·ngD ,

sA7d

wheren=r in
−rn. In the large-N technique we must maximize

A. In order to keep the computation at its simplest level, we
make an ansatz over the fieldsli j , mi, ri j , and fi: we are

assuming that we will describe under this ansatz translation-
ally invariant phases, like paramagnetic and ferromagnetic
ones. So we will consider that all these fields are independent
of x andm and we will write them asl, r, m, ands. There-
fore, A is

A

V
=

b

2
dfls1 − rd + ls2 + 2Wsrdg

+
b

2
ms1 − s2d −

1

2
E dq logFm − lo

n

cosqnG ,

sA8d

whered is the dimension of space and

E dq; E
f0,2pdd

ddq

s2pdd = 1. sA9d

Hence, this computation is valid in paramagnetic and ferro-
magnetic phases where we have translational invariance. As
usual we write

p̂2 ; 4o
n

sin2spn/2d. sA10d

The continuum limit ofp̂2 is p2, and so we can define a mass
m0:

m0
2 =

2m

l
− 2d sA11d

andA can be written as

A

V
=

b

2
dfls1 − rd + ls2 + 2Wsrdg +

b

2
ms1 − s2d

−
1

2
log l −

1

2
E dq logfm0

2 + p̂2g. sA12d

The saddle point equations are

bds1 − rd +
1

l
fsm0

2 + 2ddIsm0
2d − 1g + dbs2 = 0,

sA13d

bs1 − s2d =
2

l
Ism0

2d, sA14d

2W8srd = l, sA15d

ssdl − md = 0, sA16d

where

Ism0
2d ; E dq

1

m0
2 + p̂2 . sA17d

One solution iss=0, the paramagnetic phase. We can find a
second-order phase transition by fixing the massm0 to zero:
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TIs0d = J +
1

2Îr0

, sA18d

where

r0 = 2 −
1

2dIs0d
. sA19d

In three dimensionsIs0d.0.2527. So we have found the
critical line between the paramagnetic and ferromagnetic
phases. This solution is only valid inJ.−1/2. It is easy to
check that theJ=−1/2 vertical line corresponds to infinite
mass. So, with these formulas we cannot reach the region to
the left of J=−1/2. Below we will see how to solve this
drawback.

We can try to connect this calculation with theT=0 re-
sults. The solutionsÞ0 implies thatdl=m and som0

2=0.
Notice that in a magnetized phase,m0 has no longer the
meaning of a massshence, in this case,m0=0 is not a signa-
ture of criticalityd. In this case the complete solution is

r* = 2 −
1 − s2

2Is0dd
, sA20d

and

T =
1 − s2

Is0d FJ +
1

2Îr* G . sA21d

This last equation tells us what is the magnetization 1−s2 in
a given pointsT,Jd. In the intervalJ.−1/2 we obtain the
solution s=1. In addition in the interval J[ (−1/2,
−1/s2Î2d) a second solution withs,1 appears. This is the
signature of the ferrimagnetic phase. Hence, we have recov-
ered part of the previousT=0 results.

As mentioned, above the previous calculation is valid
only in paramagnetic and ferromagnetic phases. In order to
manage the paramagnetic and antiferromagnetic phases we
use the following trick: we change the sign of the odd spins
and we leave unchanged the even spins, so the Hamiltonian
reads

H = − Nbo
ki,jl

Ws1 − fW x · fW yd, sA22d

and following the technique outlined above, we obtain the
equations of the saddle point:

l = − 2W8srd, sA23d

1 − s2 =
2T

l
Ism0

2d, sA24d

dr = ds1 − s2d −
T

l
fs2d + m0

2dIs0d − 1g, sA25d

ssdl − md = 0. sA26d

Again m0
2=2m /l−2d.

In the paramagnetic phases=0 is the solution and the
equation of the critical line issobtained by fixingm0

2=0d

− TIs0d = J +
1

2Îr0

, sA27d

where

r0 =
1

2dIs0d
. sA28d

In addition 0,s,1 is also a solution and sodl=m and this
implies, as in the PM-FM computation, thatm0

2=0 The phase
being asstaggeredd magnetized one, this does not imply criti-
cality. The solution is then

r* =
1 − s2

2Is0dd
sA29d

and

T = −
1 − s2

Is0d FJ +
1

2Îr* G . sA30d

As in the PM-FM case, this last equation tells us what is the
magnetization 1−s2 in a given pointsT,Jd. Again, in this
part of the calculation we cannot reach the regionJ.−1/2.
The lineJ=−1/2 has againm0

2=0.
Finally, we report the transition lines in terms of the tem-

perature measured in the Monte Carlo simulation. Taking
into account thatTMC=T/N, whereT is the temperature of
the large-N calculation, and fixingN to 3, we obtain the
FM-PM line

TMC = 1.2578J + 0.5578, sA31d

and the AFM-PM line

TMC = − 1.2578J − 0.793. sA32d

APPENDIX B: MEAN-FIELD
FOURTH-ORDER ANALYSIS

We have extended our mean-field power expansion analy-
sis to fourth order, so that we can find transitions where the
paramagnetic phase is not involved. The analytical minimi-
zation with respect to all fields is a very hard task. But we
can face the problem by restricting the parameter region,
using the essential fields that can describe the transition. First
of all, let us explore the transitions inside the ferromagnetic
region found in the second-order analysis:

Fhls
slsd = Fshmin,0,0,lsd, sB1d

where hmin is the value ofh where Fhshd=Fsh,0 ,0 ,0d
reaches the minimum. We can expand

Fhls
slsd = Fshmin,0,0,0d + ahls

sT,Jdls
2

+ bhls
sT,Jdls

4 + Osls
4d. sB2d

Then, if bhls
sT,Jd is positive there is a stable minimum with

nonzerols whenahls
sT,Jd is negative. Therefore, we find a

transition line whenahls
sT,Jd=0. In this casebhls

sT,Jd.0 if
T,0.31 and the transition line between the ferromagnetic
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and a ferrimagnetic phase, whereM andMs are nonzero, is

TFM−FI = −
4s20 + 83Î2J + 140J2d

386Î2 + 875J + Î369 392 + 971 810Î2J + 1 265 425J2
. sB3d

We can do a similar analysis inside the RP2 phase. In this case we study

Flsh
shd = Fsh,0,0,ls

mind, sB4d

and

Flshs
shsd = Fs0,hs,0,ls

mind, sB5d

obtaining the following transition lines:

TRP2-FI =
32s327 + 406Î2Jd

35s480Î2 + 539J + Î− 575 136 − 768 768Î2J + 290 521J2d
, sB6d

TRP2-AFI =
32s283 + 406Î2Jd

35s− 128Î2 + 539J − Î929 312 + 1148 224Î2J + 290 521J2d
. sB7d

Finally, inside the antiferromagnetic phase we find a transition to an antiferrimagnetic ordering minimizing

Fhsls
slsd = Fs0,hs

min,0,lsd. sB8d

The transition line is

TFM-FI = −
4s404 + 795Î2J + 700J2d

5s296Î2 + 875J + Î463 688 + 1 085 630Î2J + 1 265 425J2d
. sB9d

The fourth-order phase diagram is depicted in Fig. 14,
together with the numerical calculation of Sec. III. Letting
aside the FM-RP2 line swhich is first order in the mean-field
approximationd, the results of the fourth-order approximation
are qualitatively satisfying.

APPENDIX C: SPIN-WAVE CALCULATION

The aim of this appendix is to show that a straightforward
spin-wave calculation for the very low temperature behavior
of the RP2 phase doesnot decide between the fully broken
Os3d phase and an Os2d-symmetric one. For the sake of sim-
plicity, we consider a simple antiferromagnetic RP2 interac-
tion sfW i ·fW jd2.

1. O„2…-symmetric hypothesis

The vector sense does not play any role in the calculation
of the free energy. In other words, we may change arbitrarily
the sign of each spin independently of the others. Hence, we
choose the sense of the spins on the even sublattice in such a
way that they vary smoothly from site to site. We write the
“even” field as

fW even= sÎ1 − vy
2 − vz

2,vy,vzd , sC1d

wherevy andvz are expected to be smallsin absolute valued
real numbers, that is, spin waves. The integration measure is
then

E
S2

DfW even< 2E E
vy

2+vz
2
ø1

dvydvz

Î1 − vy
2 − vz

2
. sC2d

The equality sign does not hold in the last expression, be-
cause we are integrating only over half the spheresremember

FIG. 14. Mean-field phase diagram as obtained from the nu-
merical minimization of the free energysdashed linesd and from the
minimization of the free energy calculated to fourth ordersfull
linesd. The dotted lines are artifacts of the fourth-order
approximation.
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that the spin waves are expected to be smalld.
On the other hand, the “odd” spins are parametrized as

fW odd= sux,Î1 − ux
2 cosw,Î1 − ux

2 sinwd , sC3d

the integration measure being

E
S2

DfW odd=E
−1

1

duxE
0

2p

dw. sC4d

In this case, onlyux is expected to be smallsas the spins are
basically restricted to be in the planeYZd. The fluctuations of
the anglesw can be large.

The contribution of a pair of nearest neighbors to the ac-
tion is

−
1

T
sfW even· fW oddd2 = − fũx

Î1 − Tsṽy
2

+ ṽz
2d + ṽy

Î1 − Tũx
2 cosw

+ ṽz
Î1 − Tũx

2 sinwg2
, sC5d

where ũx=ux/ÎT, ṽy=vy/ÎT, ṽz=vz/ÎT. Power expanding
the RHS of Eq.sC5d at lowest order inT and the fields we
obtain a temperature-independent contribution to the action:

sRHSd = − fũx + ṽy cosw + ṽz sinwg2 + ¯. sC6d

The ellipsis stands for contributions vanishing forT=0. Yet,
the change of variable fromux, vy, vz to ũx, ṽy, ṽz yields a
factorT per each even sitesV/2 factorsd, and a factorÎT per
each odd site. Hence, the partition function, at the leading
order in temperature, is

Z = T3V/4skV + ¯d, sC7d

wherek is a temperature-independent constant, and the ellip-
sis stands for subdominant terms at low temperature. Hence,
the free-energy density varies as

f , −
3

4
T log T + ¯. sC8d

2. Fully broken O„3… phase

In this case we consider the even spins aligned along the
X axis, as in Eq.sC1d, while the odd spins are essentially
aligned with theZ axis:

fW odd= sux,uy,Î1 − ux
2 − uy

2d , sC9d

the integration measure being analogous to the one in Eq.
sC2d. In this caseux, uy, vy, and vz are all expected to be
small at low temperature.

Now the contribution of nearest neighbors to the action is

−
1

T
sfW even· fW oddd2 = − fũx

Î1 −ÎTṽy
2 − Tṽz

2 + ṽyũy

+ ṽz
Î1 − Tũx

2 − ÎTũy
2g2

, sC10d

where, in order to obtain aT-independent contribution, we
have needed to use the rescalingũy=uy/Î4T, ṽy=vy/Î4T and
ũx=ux/ÎT, ṽz=vz/ÎT. Power expanding in the fields we get

sRHSd = − fũx + ṽz + ũyṽyg2 + ¯, sC11d

where the ellipsis stands for terms vanishing atT=0. The
leading behavior of the partition function with temperature is
given by the change of variables: we get a factorÎT for ux

→ ũx ssame forvzd and a factorÎ4T for the changeuy→ ũy
ssame forvyd.

Hence, at the leading order in temperature, the partition
function is again proportional toT3V/4 and the leading singu-
larity of the free energy is exactly as in Eq.sC8d.
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