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A theoretical model for the calculation of the quantized spectrum of spin modes frequencies in cylindrical
magnetic dots of radius ranging from the nanometric to the submicrometric scale in the vortex ground state at
zero applied magnetic field is presented. The effective field includes both the surface and the volume dynamic
magnetostatic and exchange fields. We also show that the core energy affects the spin dynamics. The modes at
lower frequencies present as radial eigenvectors Bessel functions of high orderssmù1d, while the axially
symmetric modes at higher frequencies correspond to zero order Bessel functions.
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I. INTRODUCTION

In the last decade the study of magnetic nanostructures
has been of fundamental importance for the numerous appli-
cations in the field of high density magnetic storage. Great
interest has been also addressed to the experimental study of
the spin dynamics of small particles in the vortex state. In
particular, a series of recent experimental studies using
magneto-optical techniques1–4 has confirmed the presence of
a vortex state in periodic arrays of magnetic dots. Moreover,
there is a series of recent measurements performed with
magnetic force microscopy,5 spin polarized scanning tunnel-
ing microscopy6 and x-ray techniques7 patterns of nano- and
micron-sized ferromagnetic dots in the vortex state which
have confirmed, as predicted by theory, the formation of a
vortex core with the magnetization pointing outside the plane
of the dot.

Up to now a general theoretical solution to the problem of
spin modes in vortex state ferromagnetic cylindrical dots,
free from limiting assumptions, has not yet been reported.
Therefore, in this paper we present a complete analytical
model for the calculation of the spin modes eigenfrequencies
of cylindrical ferromagnetic dots, with aspect ratiob=L /R
,1 and dot radiusR ranging from the nanometric to the
submicrometric scale, in the presence of a vortex and for
zero external magnetic field. We restrict ourselves to arrays
of dots where the interdot distanced is large, so that the
interdot magnetostatic energy may be considered negligible.
Compared to previous recent approaches,8,9 we have taken
into account in the present model:(a) the core(C) effective
field, (b) the dynamic exchange field in the whole dot,(c)
both volume and surface dynamic magnetostatic field contri-
butions in the out-of-core(OC) region without any
“ultrathin-dot” approximation to obtain the magnetostatic
Green’s function tensor components, and(d) the dependence
of the dynamic magnetization on thez-coordinate perpen-
dicular to the dot plane. The paper is organized as follows. In
Sec. II the theoretical model is presented. Section III is de-
voted to the discussion and to the main numerical results. In
Sec. IV the Conclusions are drawn.

II. THEORETICAL MODEL

Under the linear approximation we write the total magne-
tization as a sum of a static part and a small dynamic part,

viz. M sr ,td=M 0+msr ,td with msr ,td=m0rsrdeimfeik'ze−ivt

in cylindrical coordinatessr ,f ,zd; m0 is the dynamic mag-
netization amplitude,v is the spin mode frequency. We as-
sume thatk'. ± ik with k' andk the perpendicular and the
in-plane wave vector components, respectively. Due to its
angular distribution the “curling” magnetization10 in the OC
region is of the formM 0=s0,Mf

oc,0d where f is the azi-
muthal angle anduM 0u=Ms; instead, in the C region a
z-component arises so thatM 0=s0,Mf

c ,Mzd becomes per-
pendicular to the dot surface in the very centre of the dot.
The dynamic part of the magnetization is given in the OC
region bymoc=smr ,0 ,mzd wheremr and mz are the radial
and thez-component, respectively. Due to the turning out of
the “curling” M , in the C region the precession plane pro-
gressively rotates so thatmc=smr ,mf8 ,mz8d with mf8
=mz cosu and mz8=mz sinu whereu is the polar angle be-
tween thez-axis andM 0. We decompose the effective field
into a static part,Heffsr d=Heff

ocsr d+Heff
c sr d including both an

OC and a C contribution,11 and a small dynamic one,
heffsr ,td, in order to write the linearized equation of motion
neglecting the second-order contributions and omitting the
spatial and temporal dependences:

−
1

g

dmoc

dt
= mc 3 Heff

c + moc 3 Heff
oc + M 0 3 heff, s1d

where g is the gyromagnetic ratio. We have made the
assumption that dm /dt=s1−hdsdmoc/dtd+hsdmc/dtd
.dmoc/dt, becausedmoc/dt.dmc/dt; the term 1−h with
h=a/R (a core radius) is a weighting factor for the OC re-
gion. The static part of C effective fieldHeff

c sr d=Hdem
c sr d

+Hexch
c sr d+Han

c sr d includes the static exchange, the demag-
netizing and the anisotropy C field, respectively. The dy-
namic part of the effective field isheffsr ,td=hexchsr ,td
+hd

ocsr ,td+hd
csr ,td. The nonuniform exchange field in the

whole dot ishexchsr ,td=s1−hdhexch
oc sr ,td+hhexch

c sr ,td. Since
in principle hexch

oc sr ,td.hexch
c sr ,td it is also hexchsr ,td

.hexch
oc sr ,td. Therefore we may write hexchsr ,td

.a¹2mocsr ,td where a=2A/Ms
2 is the exchange constant.

hd
oc andhd

c are the OC and C dynamic dipolar field, respec-
tively. Simplifying the time dependence and omitting the
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spatial dependence the linearized equations of motion in
terms of the OC dynamic magnetization components take the
form

Heff
ocmr − Mshdr

oc + Hexch
cf mr − Mshdr

c − aMs¹
2mr = iVmz,

s2d

Heff
ocmz − Mshdz

oc + Hexch
cf mz sinu − sHexch

cz + Hdem
c

+ Han
c dmz cosu − Mshdz

c − aMs¹
2mz = − iVmr, s3d

whereV=v /g, Hexch
cf andHexch

cz are thef and thez compo-
nents of the C exchange field averaged over the dot area,
respectively. Due to its small effect the contribution of the C
mf8 component to the torque has been neglected. The effec-
tive static OC field is composed by both a demagnetizing and
an exchange contribution, i.e.,Heff

ocsr d=Hdem
oc sr d+Hexch

oc sr d.
Even if in principle it is locally different from zero and along
the direction of the static magnetization, because of the ra-
dial symmetry of the vortex state it vanishes if averaged over
the f azimuthal coordinate. The OC dynamic dipolar field
gives a great contribution to the spin excitations in the pres-
ence of a vortex. It may be expressed as a functional ofm12

in terms of the magnetostatic 333 tensorial Green’s function

Ĝ: hd
ocsr d=s1−hdeV d3r 8Ĝsr ,r 8dmocsr 8d whereV is the vol-

ume of the OC region. We have calculated the average over
the coordinatesz and z8 Lkeik'zGabsr ,r 8deik'z8lz,z8 sa ,b
=r ,zd. This average divided by thez component normaliza-
tion constant turns out to be proportional to the susceptibility
fitted by xskLd=s1−e−2kLd /2. The subsequentr8 andf8 in-
tegrations give for the radial component of them=0 modes:

hdr
ocsrd . − 4ps1 − hdxskLdmrsrd. s4d

We have numerically calculated the OC radial component for
themÞ0 modes. The result of ther8 andf8 integrations for
the perpendicular component gives instead

hdz
ocsr,fd . − 4ps1 − hdf1 − xskLdgmzsrdeimf. s5d

The quality of the local approximation used in Eq.(4) and
Eq. (5) deteriorates whenb is near to 1, because the static
magnetization at the boundary of the cylinder is then no
longer pinned perpendicular to the cylinder axis and can tilt
more or less freely in thez direction. The C demagnetizing
field Hdem

c sr d is one order of magnitude smaller than the
other two terms of the C static effective field, therefore it has
been neglected in the frequency calculation. The largest en-
ergy contribution inside the C region comes from the static
exchange fieldHexch

c sr d=a¹2s0,Mf
c ,Mzd. The z component

averaged over the dot areaS=pR2 is

Hexch
cz = ±

aMs

S
E d2rFcosuSdu

dr
D2

+ sinu
d2u

dr2 +
1

r
sinu

du

dr
G ,

s6d

where we have takenMz
c= ±Ms cosusrd13 with the 1 (2)

indicating that the static magnetization points outward(in-
ward) the dot surface.

In order to carry out explicitly the calculation a form for
usrd is needed. We assume the Usov distribution,13 usrd

=arcsinf2ar / sa2+r2dg for røa. Substituting it into the inte-
grand Isrd of Eq. (6) we get Isrd=8a2fsa2−r2d / sa2+r2d3g.
Averaging this expression overS we obtain

Hexch
cz = ± 2aMs

1

R2 . s7d

The averagedf component is obtained approximately
from the simple relationHexch

cf =Hexch
cz / kcotulusrd where

k¯lusrd indicates the average of cotu over theusrd Usov
distribution. The result of this calculation is

Hexch
cf = 3aMs

1

R2 . s8d

Moreover, in the frequency calculation also the uniaxial C
anisotropy fieldHan

c sr d has been included. Another non neg-
ligible contribution to the spin modes energy arises from the
dynamic dipolar field in the C region defined ashd

csr d
=heVcd

3r 8kĜRsr ,r 8dlusrdkmcsr 8dlusrd wherek¯lusrd indicates
the average of the rotated magnetostatic Green’s function

ĜRsr ,r 8d=R̂−1Ĝsr ,r 8dR̂ and of the C dynamic magnetization
mc over theusrd Usov distribution in the C region(VC is the

C volume); R̂ is the rotation matrix defined by the Euler
angless0,p /2−u ,0d. The average overz andz8 followed by
an integration overr8 andf8 leads for them=0 modes to

hdr
c srd . − 4phxskLdmrsrd. s9d

The C radial component for themÞ0 modes has been evalu-
ated numerically; instead

hdz
c sr,fd . − 4phs4 log 2 − 2ds4 − pdf1 − xskLdgmzsrdeimf.

s10d

The same conclusions concerning the limitations of the
local dipolar approximation drawn for the derivation of Eq.
(4) and Eq.(5) have to be extended also to Eq.(9) and Eq.
(10). Morevover, it is known that the dynamic dipolar field in
the C region is not homogeneous along the thicknessL if the
cylinder becomes sufficiently thick.

We have assumed that, with the previously calculated ef-
fective field, the radial parts of Eq.(2) and Eq.(3) allow as
solution a combination of two linearly independent Bessel
functions of the formrmskrd=bJmskrd+cYmskrd where the
Jm and theYm are Bessel functions of orderm, of the first and
second kind, respectively. We have taken as particular com-
bination of the radial eigenfunctions, forr@ l0 rmskrd
~Jmskrd+smskl0dYmskrd,14 wherem=0, ±1, ±2. . . .smskl0d
is a measure of the scattering of the spin wave modes in the
OC region14 due to the presence of the vortex andl0 is the
reduced exchange length. In principle, in our scheme the
scattering amplitude should be derived applying a perturba-
tion approach to Eq.(2) and Eq. (3). However, we have
found that the effect of the dipolar term is numerically neg-
ligible. Therefore, it is enough to consider the expression of
smskl0d already derived in Ref. 8 and Ref. 15 for an ex-
change Hamiltonian: sm=0=sp /4dskl0d2 lns1/kl0d, sm=71

= ± sp /4dkl0 andsm~ skl0dp with pù4 for umu.1.
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Due to the vortex state symmetry we have considered
only radial boundary conditions on the lateral dot surface.
The quantized wave numberkmn has been obtained as solu-
tion of the equation for themr component of the dynamic
magnetization8 Jm8 skmnrd+smskmnl0dYm8 skmnrd+pfJmskmnrd
+smskmnl0dYmskmnrdg=0 with p the pinning parameter given
in Ref. 8 andn the number of nodes in the half dotsn
=0,1,¯ d. We have also supposed themz component with
the same quantization condition asmr. From Eq.(2) and Eq.
(3) and from the radial boundary condition, an analytical
expression for the quantized spectrum of the vortex spin
modes can be obtained. One first multiplies Eq.(2) and Eq.
(3) together; multiplying the result of this operation on the
left by mr

* and bymz
* , assuming the dynamic exchange field

uniform along the thicknessL, integrating overd2r, and fi-
nally dividing by the in-plane normalization constantN it can
be shown that the diagonal spectrum is given by

Vmn
2 = VM

2 fjskmnLd2 + 3j + xskmnLdcmg
3fjskmnLd2 + kanf1 − s3 − 4log 2dh2g

+ 3js4 − pd − 2js2 log 2 − 1d

+ f1 − xskmnLdgfs1 − hd + hs4 − pds4 log 2 − 2dgg .

s11d

VM =4pM0, kan=8pK1/VM
2 is the reduced anisotropy field

constant andj=a /4pR2; n is the number of radial nodes in
the half dot. We have calculatedcm for m=0–4 finding
c0=1 for each n and c1=0.40, c2=0.27, c3=0.21, and
c4=0.15 forn=0.

III. DISCUSSION AND RESULTS

Numerical calculations have been performed for Permal-
loy (Py) which presents a “curling” magnetization using ma-
terial parameters of the continuous film:16 4pMs=9.5 kOe,
g /2p=2.996 GHz/kOe,a /4p=2.42310−13 cm2; in addi-
tion we have takenK1=0. Since the rigid vortex model un-
derestimates the C radius especially at smallL, we have
takena=26 nm for the range of thicknesses investigated(as
can be determined by the micromagnetic approach17). The
results for the calculated frequency of selected spin modes
[from Eq. (11)] are given in Fig. 1, as a function of the dot
radiusR, in the case of thicknessL=50 nm. The main find-
ings are the general decrease of the mode frequency versusR
(due to a reduction of the dynamic exchange field) and the
fact that the frequencies of the axially symmetric modes
s0,nd are higher than those of thesumu ,nd modes withm
Þ0, at least forn=0. This behavior may be explained in
terms of the larger contribution of the volume dynamic dipo-
lar field to the spin dynamics of them=0 modes with respect
to the modes of higher orderm. While the decrease of the
mode frequency versusR was also found by Ivanov and
Zaspel,8 these authors found a different behavior of the mode
frequency with respect to the mode indicesm andn. In par-
ticular in Ref. 8 a general monotonic increase of the fre-
quency versusm (at fixed n) has been obtained, with the
important exception of them= ±1 modes whose very soft
frequency(less than 1 GHz) was attributed to their nature of

vortex translational modes. No mode in this frequency range
was found in our framework(see discussion about Fig. 2).
While the general behavior of the modes shown in Fig. 1
(with respect to the mode indexm) is different from that of
Ivanov and Zaspel,8 it is similar to that provided by a nu-
merical calculation18 based on a recently proposed “dynami-
cal matrix” micromagnetic approach.19 Indeed, in Ref. 8 no
volume dynamic dipolar terms are included in the effective
field and the dynamic exchange contribution is treated in the

FIG. 1. Frequencies of thes0,nd with n=0,1 compared to that
of the sumu ,nd, with n=0 as a function ofR. umu labels the ±m
modes.

FIG. 2. Panel(a): Frequency of them=0, n=0 and of the
umu=1, n=0 modes. Full lines: calculated frequencies using Eq.
(11). Dotted lines: calculated frequencies neglecting the C field.
Panel(b): As in panel(a), but as a function of the aspect ratiob for
R=100 nm. Full squares: Brillouin light scattering experimental
frequencies(from Ref. 18).
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framework of the long-wave approximation which gives a
frequency linearly proportional to the wave vectork. The
sumu ,0d family of modes presents a frequency spread for each
R. Moreover, by increasingR the dynamic exchange field
becomes less important, with respect to the corresponding
hdz component of the dynamic dipolar field. Finally, forR
=100 nm the splitting of theumu=1 modes due to the pres-
ence of the C is about 0.3 GHz. It becomes negligible for
largerR and higher order modes; this result is very similar to
that predicted in Ref. 8.

The behavior of the two relevant modes(m=0,n=0, the
“fundamental mode” of the system) and sumu=1,n=0d is
studied in Fig. 2 as a function ofR (for fixed thicknessL
=50 nm) and b (for fixed radiusR=100 nm). The dotted
lines represent the frequencies of the above modes calculated
according to Eq.(11), but without the C field, i.e., neglecting

the contributions of the C fields given in Eqs.(7)–(10) to-
gether with the numerically calculated C radial component of
the mÞ0 modes dynamic dipolar field. The effect of the C
field on them=0, n=0 mode frequency is about 30% forR
=100 nm and only 5% forR=500 nm. This smaller effect
with increasingR is due to a decreasing of the C effective
field in dots of large radius. The C field also affects the
dynamics of theumu=1 mode(as well as that of higher order
modes) in the whole range of radii investigated, increasing
the frequency of more than 25% at smallR. The calculated
frequency as a function ofb is shown in panel(b) of Fig. 2
and is compared with the experimental frequencies measured
by Brillouin light scattering technique forb=0.15.18 The
agreement between the measured and the calculated frequen-
cies for theumu=1, n=0 andm=0, n=0 modes is very good
provided that the effect of the C field is included.

As far as the pinning of the modes is concerned, we have
found that for small dot radius the modes withmø1 are
pinned at the dot boundary while the pinning decreases with
increasing the mode orderm. This is shown in Fig. 3 for the
case R=100 nm andL=15 nm. The same effect is also
present at largerR, but it occurs at higher mode order. A
similar behavior has been reported by Guslienkoet al.20 for
the modes magnetization profiles in thin magnetic stripes. In
both approaches the pinning parameter depends on the ge-
ometry of the magnetic element, but from the boundary con-
dition it results that only in the present study the pinning
decreases with increasing the mode numberm. However, in
the case of magnetic stripes the pinning parameter is of
purely dipolar nature and decreases with increasing the width
stripe at fixed thickness, whereas in the present study it ex-

FIG. 3. Radial part of themr component for the modes with
m=0,1,2,3calculated for a dot withR=100 nm andL=15 nm.

FIG. 4. Frequency dispersion as a function of the number of
nodes of themr component. The lines connecting the points are
guides to eye. Panel(a): Calculations atR=100 nm andL=15 nm.
Full squares:s0,nd modes. Full circles:sumu ,0d modes. Panel(b):
Full line: calculations atR=100 nm andL=50 nm. Dash-dotted
line: calculations atR=500 nm andL=50 nm. The meaning of the
symbols is reversed compared to panel(a).
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presses the competition between the dipolar and the ex-
change energy at the boundary and increases with increasing
R. It is important to underline that magnetic stripes studied in
Ref. 20 are in a saturated state, while cylindrical dots of the
present study are in a vortex state.

In Fig. 4 the frequency vs the number of nodes for both
s0,nd andsumu ,nd modes is shown. In panel(a) we report on
the results of the calculations forR=100 nm andL=15 nm.
One notes the similarity of the upper branch(full circles)
with the behavior of the Damon-Eshbach-like modes of the
saturated state, i.e. the frequency increases with the number
of nodes. Conversely, due to competition between the ex-
change and the dipolar terms, the modes of the lower branch
show an initial decrease of the frequency with a minimum
for m=2, followed by a successive increase, analogously to
the backwardlike modes of the saturated state.16 In panel(b)
are shown the results of the calculations atL=50 nm and for
R=100 nm andR=500 nm. Due to a reduction of the dy-
namic exchange atR=500 nm(dash-dotted lines in Fig. 4)
the frequency increase of thes0,nd modes is less pronounced
with respect to that of theR=100 nm dots. Moreover, the

minimum in the frequency dispersion of thesumu ,nd modes is
at m=2 for R=100 nm.

IV. CONCLUSIONS

In conclusion, we have investigated the spin excitations of
a cylindrical dot in presence of a vortex including in the
effective field a full dependence from the dynamic exchange
and dipolar contributions. We have also shown the role
played by the exchange core energy in the spin excitations,
especially for small radii. The introduction of the
z-dependence in the dynamic magnetization profile has al-
lowed us to investigate also dots of moderate aspect ratio
sb,1d.
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