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In this work we investigate the dynamics of planar vortices in the presence of nonmagnetic impurities in a
two-dimensional magnet withXY symmetry. We use analytical as well spin dynamics simulation methods. Our
results indicate that vortices are attracted by defects in the lattice. Trapped by the nonmagnetic impurities they
execute nonharmonic oscillations. In the regime of small oscillations our analytical results predict that the
frequency is proportional to the inverse of the linear size of the system, in quite good agreement with numerical
calculations. Although such oscillations barely can be observed in thermodynamic limit, it should be easy to be
detected in nanoscale systems. We also consider the vortex motion near a line of nonmagnetic impurities. In
such case, the vortex oscillates back and forth along the impurity line.
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I. INTRODUCTION

The idea that nonlinear excitations arise in real physical
systems had a strong impact on modern physics. Particularly,
they are believed to play an important role in magnetic
systems.1–6 Recently, the direct experimental visualization of
vortices in magnetic nanodots by magnetic force and Lorentz
microscopy measurements7–9 has given a new impulse to in-
vestigations in topological excitations in magnetic materials.
Intensive artificial two-dimensional(2D) lattices of magnetic
nanodots in vortex configurations10 lead to potential techno-
logical applications of these structures in magnetic memory
devices. Now even a delicate phenomenon like a shift of the
vortex position from the center of a nanodot in an external
magnetic field can be observed experimentally.11 However,
many particular features of vortex dynamics in layered mag-
nets are still a matter of controversy. For example, below and
above the Berezinskii-Kosterlitz-Thouless transition tem-
perature there is no theory that can fully explain the central
peaks observed both in inelastic neutron scattering
experiments12–14 and in combined Monte Carlo and spin dy-
namics simulations.1,2,15–18 A qualitative agreement is
achieved by a phenomenological vortex and vortex-pair gas
theory,1–3 but one of its assumptions—namely, ballistic vor-
tex motion—is questionable. In fact, simulations indicate
that a vortex has only local motion.17–21

The purpose of this paper is to discuss the effects due to
lattice defects such as nonmagnetic impurities in magnetic
two-dimensionalXY-like materials. Lattice defects can in-
duce and control vortex motion, playing a crucial role in
disrupting order in solids.22 Pinning of vortices on defects of
magnetic structures has been considered recently by many
authors.23–26Here, we show that a vortex oscillates around a
nonmagnetic impurity. Particularly, it is also shown that a
line of nonmagnetic atoms artificially built on a magnetic

lattice by substitutions of the magnetic atoms by nonmag-
netic ones(doping) will make a vortex to move in an oscil-
latory motion along the line of impurities. This phenomenon
indicates that the vortex motion may be artificially con-
trolled. Although the problem proposed here(with planar
vortices) may have some connections with nanomagnetism,
we note that in experiments with nanodots the vortices are in
out-of-plane configuration8 with just different dynamics.

We consider a classical magnetic system in a square lat-
tice described by theXY model, which, for the case of or-
derly array of spins, can be written as

H = − J o
km,nl

sSm
x Sn

x + Sm
y Sn

yd, s1d

whereJ is a coupling constant, the classical spin vector has

three componentsSW =sSx,Sy,Szd, and the summation is taken
over the nearest-neighbor square lattice sites. This model
should not be confused with the planar rotator model that,

although it has a similar Hamiltonian, the spin vectorSW has
only two components and has no true dynamics. The intro-
duction of a low nonmagnetic impurity density modifies the
array of spins and also the Hamiltonian. In earlier papers,22,27

the authors studied the interaction between a single vortex
and a static nonmagnetic impurity using analytical calcula-
tions based on the continuum limit of theXY Hamiltonian
and also using simulation methods on a discrete lattice. Their
conclusion was that the vortex is attracted and pinned by a
nearby spin vacancy. In the continuum limit, the effective
attractive potential vortex vacancy was obtained supposing
that a nonmagnetic impurity could be represented by remov-
ing a disk of radiusa from the plane,22 wherea is the lattice

constant. TakingSW2=1 and using the value of pinning energy
equal to22 −3.54J, this potential can be trivially expanded in
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a Taylor series around the bottom of the well, giving

VsXd . − 3.54J +
1

2!
S7.63

a2 pJDX2 −
1

4!
S431.6

a4 pJDX4 + ¯ ,

s2d

whereX is the distance between the centers of the vortex and
the vacancy. Although it is an approximation, expression(2)
suggests that, in the small-amplitude regimeX!a, the vor-
tex center may oscillate around the spinless site under a force

FW =−kXW , k=7.63pJ/a2 being the effective force constant.
Alike motion may be possible for solitons in isotropic
magnets.6,28 If we consider the vortex as an ordinary particle
of mass M, the resulting motion is nothing but a two-
dimensional harmonic oscillator. However, to calculate the
oscillation frequency, an important question related to the
vortex effective mass is still open. It follows from a theory
that this mass is proportional toJ lnsL /ad, whereL is the size
of the system.29,30 More recently, for a planar vortex,

Wysin31 has shown that the coordinateXW of the vortex center

satisfies the Newton equationFW =MXẄ with a mass that in-
creases with increasing system size asM ~L2. However, it
may not be the vortex mass but the mass of coherent spin
waves in the presence of vortex which really is proportional
to L2. If the results of Ref. 30 could be applied to the poten-
tial hole of defect, the oscillation frequency should be ap-
proximated byv=Î7.63pJ/Ma2—i.e., proportional to 1/L.
This vortex oscillatory mode may be very difficult to observe
in the thermodynamic limit since its frequency should be
very small. Therefore, keeping the differences in mind, it
may be possible to observe it experimentally in magnetic
nanostructures like nanodots. The fabrication of small ferro-
magnetic particles containing artificial point defects is al-
ready possible.32 At high temperature we expect the oscilla-
tion amplitude to grow and nonharmonic terms in Eq.(2) to
become more important. Beside that, corrections due to dis-
creteness effects and the development of out-of-plane com-
ponents should play an important role. In the following we
use Monte Carlo simulations in order to compare the simu-
lations with the simple analytical results commented here.

II. SIMULATIONS

To study the dynamical behavior of a vortex close to a
spin vacancy we use a Monte Carlo numerical simulation.
Our simulations were carried out using the standard Me-
tropolis algorithm and lattices of sizeL3L with L from L
=20 up to 500. The dynamics is obtained through the equa-
tions of motion for each spin:

dSW i,j

dt
= SW i,j 3 HW ef f, s3d

HW ef f = Jo
a

sSi−1,j
a + Si+1,j

a + Si,j−1
a + Si,j+1

a dêa, s4d

where a=x,y and si , jd stands for the spin position in the
lattice. Equation(3) represents a set of coupled equations to

be integrated numerically. To integrate the equations we have
used a fourth-order Runge-Kutta scheme with size stepdt
=0.04J−1. To obtain the dynamical behavior of the vortex
near a spin vacancy, we have to have some control over the
vortex properties. If we use open or periodic boundary con-
ditions, it is impossible to get an isolated vortex due to the
geometric constraint imposed by the boundary conditions:
they always appear as bounded vortex-antivortex pairs. We
can artificially create an isolated vortex somewhere in the
system, but that is not an equilibrium state of the system
such that the vortex excitation disappears very quickly gen-
erating spin waves. Our strategy is to use diagonally antipe-
riodic boundary conditions,17,22,33whose ground state has a
single vortex or antivortex. We do not need to equilibrate the
system at any specific temperature our only exigence being
that there is only one vortex in the system. For possible
applications of our results in magnetic nanodots, we would
have to consider also the magnetodipole interactions. The
magnetostatic energy contribution is related to the surface
magnetic charges(due to dipoles) appearing along the en-
velop of a nanodisk. In order to minimize stray field energy,
the magnetization of a nanodisk is aligned along the edge to
close the magnetic flux. However, it is not the interest of the
present paper and will be studied in a future work. Consid-
ering only the exchange interaction, we proceed as follow-
ing. We create a vacancy at a position out of the center of the
system, starting the Monte Carlo procedure at a very low
temperature. Analyzing the system we observe that a vortex
is created close to the vacancy. We take this as the initial spin
conditions to be used in the equations of motion. The vortex
motion can be followed by analyzing the phases of the spins
close to vortex center. If the vortex center oscillates with
frequencyv, the time-dependent spin component at siten is
given by6

Sn
k . S0,n

k + Asndexps− ivtd, s5d

obtained in a continuum approximation. Here the subscript 0
refers to the static vortex,Asnd!1 is a small amplitude and
k=x,y,z. By monitoring a particular spin or a group of spins
belonging to the vortex structure(spins were chosen near the
vacancy), we note that their components execute a rather
more complicated oscillation than that described by Eq.(5),
as can be seen in Fig. 1. On the other hand, to confirm that
this motion is due to the vortex-vacancy interaction, we also
considered the vortex in a lattice with no vacancies. It was
not observed any spin oscillation for pure systems, as can
also be seen in Fig. 1. The Fourier transforms for the oscil-
lations of the spin components are presented in Fig. 2. Be-
cause the spin motion observed in Fig. 1 is not so simple, the
center of a vortex must not execute a simple harmonic oscil-
lation. The discrepancy is due to many different causes. First,
for a vortex in an easy-plane magnet the spin-wave spectrum
is gapless. It implies that for oscillations of the vortex under
the influence of the vacancy force with a finite frequencyv,
which frequency inevitably falls in a spin-wave continuum.
As a result, vortex motion excites spin-wave modes, and that
will lead to fundamentally different consequences for vortex
motion in an unbounded medium and in a finite sample. For
a magnet of finite size, one expects that the radiation of spin
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waves, their reflection off the boundary, and their effect back
on the vortex will result in the establishment of a dynamical
state of the magnet which includes both the moving vortex
and the coherent magnetization oscillations matched to the
vortex motion. This is a complex picture and really, in this
case, an adequate description of the dynamics of a magnetic
vortex in easy-plane magnets may be obtained only with the
use of a complicated hierarchy of equations of motion, con-
taining all the higher-order time derivatives.34 Second, dis-
creteness effects and nonharmonic terms present in expan-
sion (2) may also be relevant in modifying Eq.(5). In fact,
our simulations indicate that the modulus ofX can be as
large as one lattice spacinga, suggesting that the third term
in Eq. (2) is important.

Besides, in the continuum theory, the nonmagnetic impu-
rity was represented by a circular disk cut out from the plane
leading to a central potential of interaction between the vor-
tex and the vacancy. However, in a real square lattice, the
plaquette around the impurity has a form of a square, and of

course, the vortex-vacancy potential must not be isotropic.
We believe that the above considerations are responsible for
disturbing the vortex movement around the vacancy, being
the main causes of a more complicated motion than ex-
pected. Another effect associated with the vortex motion may
also induce further complications. When a planar vortex
starts moving it develops a small out-of-plane structure,2

which in this case must be also time dependent, due to the
changes in the direction of motion. Figures 1 and 2 show that
this last contribution can be neglected, mainly for low fre-
quencies, as it is expected for strongly anisotropic systems.35

The method used to identify the vortex center position is
the following: consider a line of spins(belonging to the vor-
tex structure) parallel to thex axis. Following the spin ori-
entation along this line, it is easy to see that they component
of the spins changes the sign at thex coordinate of the vortex
center position. Then, we considered all possible lines paral-
lel to the x axis in a particular lattice, finding for each line
the exact point in which they component of spins changed
sign. The mean value of these points was used as thex co-
ordinatesCxd of the vortex center position. Similar procedure
can be done to determine they coordinate of the vortex cen-
ter position. In Fig. 3 we plot thex coordinate of the vortex
center positionsCxd as a function of time forL=100a. Note
that the amplitude of oscillation is of the order of one lattice
spacing. Figure 3 also presents the Fourier transform of the
vortex center oscillations. Many peaks at well-defined fre-
quencies are observed in this graphic. These results imply in
a complicated vortex motion. As can be seen in the Fourier
transform(Fig. 3), there is a main peak representing a normal
mode and many other small peaks representing other normal
modes that would be also excited around the vortex struc-
ture. Here, we will consider only the three first modes. It is
easy to observe that the first relevant mode contributes very
little to the vortex oscillations and its frequency isv1
<0.059J. The second mode is the main peak(with frequency

FIG. 1. Oscillation of the componentsSx, Sy, andSz of a spin
vector belonging to the vortex structure in the presence of a va-
cancy localized at the vortex center(solid lines). The dashed lines
show that these same spin components practically do not oscillate if
there is no vacancy placed at the vortex center. HereL=100a.

FIG. 2. The Fourier transforms for the oscillation of the compo-
nentsSx, Sy, andSz shown in Fig. 1 forL=100a.

FIG. 3. Vortex center position as a function of time forL
=100a and its Fourier transform.
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v2<0.14J) and the third mode(with frequencyv3<0.22J)
has the second more significative contribution for the vortex
oscillations. Some of these peaks are also present in the os-
cillations of spin in thez direction(for instance, see the small
peak at frequency close to 0.14J in Fig. 2). Of course, such a
peak in the Fourier transform for the oscillation of the com-
ponentSz is connected with the vortex motion. We also plot-
ted the frequencies of these three normal modes as a function
of the lattice sizeL (see Fig. 4). These frequencies can be
fitted by v1<5.97/L, v2<13.57/L, and v3<22.2/L. We
notice that some of these modes can be associated with nor-
mal modes that result from the vortex-magnon interactions.31

In fact, Wysin31 has studied the vortex-magnon spectra(in
2D systems without vacancies) considering the dependence
of the eigenfrequenciesvnl on the system radius. These
modes are classified according to azimuthal quantum number
l (due to the fact that the wave function must not be multiple
valued) and a principal quantum numbern, defined as the
number of nodes in a radial direction in the wave function. In
Ref. 31, only the frequencies of some of the lowest modes
versus the system size were calculated. As can be seen in
Fig. 5, our first and second modes are associated with the
modes withsn=0,l =0d andsn=1,l =1d obtained by Wysin,31

respectively. Our third mode cannot be compared with any
sn, ld mode because its frequency is bigger than the ones
shown in Ref. 31. Besides these modes, other higher modes
are also present in the Fourier transform in Fig. 3 contribut-
ing to the observed vortex behavior. These results suggest
that the vortex oscillations may have an interesting and dif-
ferent interpretation. Instead of thinking about an oscillating
vortex, we can imagine a static vortex centered on the impu-
rity surrounded by spin waves. These modes could be iden-
tified by viewing the motions of spins that result when some
given spin-wave eigenfunctions are added to the original vor-
tex structure. Then, the spin movements would be interpreted
as normal modes on the vortex structure and not as being due
to the vortex oscillation. However, the Fourier transform of

spin oscillations is not in accordance with the Fourier trans-
form of the vortex center oscillations. Note that the spin
oscillations are very complicated without any visible period-
icity (see Fig. 1) while the vortex center oscillations are evi-
dently periodical(Fig. 3). Thus, it is not all clear that the
observed modes are really due to vortex-magnon interactions
alone.

To explore in more details the above question, it would be
interesting to follow the vortex motion with larger amplitude.
It can be done by studying the vortex behavior along a line
of vacancies. Thus, we consider now a line ofp neighbor
nonmagnetic impurities, implying inp neighbor holes of ra-
diusa, which the centers are distributed along a line in thex
axis. For simplicity, we usep odd sp=1,3,5, . . .d. Thus, if
the central impurity is localized at origin and the vortex cen-
ter is placed at distancer =Îx2+y2 away, the results of Ref.
22 can be generalized leading to the potential experienced by
a vortex due to the defect line:

FIG. 6. Interaction potential between a vortex and a line of five
impurities. Here the vacancies are placed along the axisy=0. The
central impurity is located at(0, 0).

FIG. 4. Frequencies of the three lowest modes observed in the
Fourier transform of the vortex position versus lattice sizeL. These
frequencies can be fitted byv1<5.97/L, v2<13.57/L, and v3

<22.2/L.

FIG. 5. Our first and second modes compared to the normal
modes withsn=0,l =0d and sn=1,l =1d obtained by studying the
vortex-magnon interactions in Ref. 31.
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Vpsx,yd =
pJ

2
lnHF1 −

a2

fx − sp − 1da/2g2 + y2 + b2G
3F1 −

a2

fx − ssp − 1d/2 − 1dag2 + y2 + b2G¯

F1 −
a2

fx + ssp − 1d/2 − 1dag2 + y2 + b2G
3F1 −

a2

fx + sp − 1da/2g2 + y2 + b2GJ . s6d

This approximated potential is shown in Fig. 6 forp=5. Note
that it contains four local minima and the fundamental state
is obtained when the vortex center coincides with the center
of the central impurity. The potential is attractive, and for
p.5a, it is weak, becoming stronger as the vortex center
approximates to the central impurity. For evenp, the poten-
tial is alike that of Fig. 6, but it contains two minima at the
two neighbor vacancies located at the middle of the line.

These results indicate that an initially stopped vortex will
start to move in direction to the line defect and after pen-
etrating this line, it may start to oscillate along the spinless
sites. In fact, after penetrating the line of impurities, the vor-
tex center will feel a kind of periodic potential.

To go from one side to the other, small barriers must be
overcome. The vortex will be trapped by the lattice defect,
oscillating from one side to the other along the line of spin-
less sites, in a complicated movement that will also be influ-
enced by the pinning potential due to the discreteness effects
(not present in the analytical calculations). Figure 7 shows a
typical spin configuration of a vortex initially around the
impurity line containing five vacancies and Fig. 8 shows a
spin configuration after 1000 time steps. The vortex center is
already inside the defect line.

We also plotted the oscillations of thex component of the
vortex center positionsCxd as a function of time forL
=100a, as well as their Fourier transforms, in Fig. 9. As can
be seen, for the vortex center, like the case of only one va-
cancy, our numerical simulations show that a vortex really

FIG. 7. A typical initial configuration of a
vortex initially around the impurity line contain-
ing five vacancies.

FIG. 8. Configuration after 1000 time
steps.
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oscillates back and forth along the impurity line. One impor-
tant thing to note in the Fourier transform for the vortex
center position around the defect line is that some of the
main peaks are too close to that observed in the case of only
one vacancy(compare Figs. 3 and 9). In fact, for a defect
line, there are essentially three peaks, which can be fitted as
v18=13.763/L, v28=22.503/L, and v38=25.390/L, respec-
tively, shown in Fig. 10. The fittings for the first and second
modes observed for the defect line are related to the second
and third modes observed in the case of one impurity—i.e.,
v18,v2 and v28,v3. It suggests that these modes are
strongly associated with the vortex oscillations around va-
cancies(mainly the mode with frequencyv3 absent in Wysin
results). Since the obtained relations for an impurity and a
line of impurities decay as 1/L sv3<22.2/Ld, this work also
reinforces the idea that the vortex mass indeed may be pro-
portional toL2 as Wysin has shown.31

III. CONCLUSIONS

In summary, we have investigated the magnetic vortex
motion near spin vacancies. For small-amplitude oscillations,
we developed a simple analytical model that predicts a har-
monic motion for the vortex center around a nonmagnetic
impurity center with a well defined frequencyv
=Î7.63pJ/Ma2~1/L. Our numerical simulations shows that
the amplitude oscillation is not so small and hence the center
of the vortex execute a rather complex motion. The vortex
center should really move around the vacancy center, but

following trajectories more difficulty to understand. In the
case of a vortex in a magnet of finite size the effective equa-
tions turn out to be more complicated than Newton equa-
tions. Indeed, the vortex oscillations under the influence of
the vacancy force has a finite frequency and falls in the con-
tinuum. Because of this, magnon modes are excited modify-
ing the dynamical state of the magnet, which should include
the coherent magnetization oscillations matched to the vortex
motion. We also studied the vortex motion along a line of
nonmagnetic impurities. Again, the vortex oscillates back
and forth along the impurity line. For a long line, the vortex
is able to dislocate large distances from one extremity to the
other and later it comes back to the initial position and so on.
Many properties of this movement(like direction, etc.) can
be artificially controlled. The possibility of a control on the
vortex motion may be of interest in connection with the pro-
posal to use topological structures as information carriers in
magnetic memory systems. As a final remark, we would like
to mention that these complex motions of vortices in both
situations(with one impurity or a line of impurities) should
be reflected in the response functions of the magnet. It is
already known that vacancies have a strong impact on the
critical properties of these easy-plane magnetic materials.36,37
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