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Nonlinear lattices generated from harmonic lattices with geometric constraints
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Geometrical constraints imposed on higher-dimensional harmonic lattices generally lead to nonlinear dy-
namical lattice models. Helical lattices obtained by such a procedure are shown to be described by sine- plus
linear-lattice equations. The interplay between sinusoidal and quadratic potential terms in such models is
shown to yield localized nonlinear modes identified as intrinsic resonant modes.
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I. INTRODUCTION tional degrees of freedom can be responsible for the incom-
mensurate phase in quatfz!® negative Poisson ratio of
Recent developments in the physics of intrinsic localizedcristobalite and quart®22 and negative thermal expansion
modes(ILM)*2 have shown that the ILMs are not only con- of g quartz?3 Similar effects can be observed in other mate-
ceptually important in theoretical and mathematical physicsials with microscopic rotations, such as perovskites.,
as ubiquitous fundamental modes in nonlinear, discret&rTiO;) containing corner-linked Ti@ octahedra, the
physical system3,but also possess innovative potential ap-KH,PO, (KDP) family of crystals with comparatively rigid
plications in fundamental science and technology in additiorPQ, tetrahedra, among others.
to their experimental observatién® Areas of such applica- Motivated by these investigations, we proposed in a pre-
tions cover coupled Josephson junctions, photonic crystalsjous paper a mechanical model in which a set of masses on
optical lattices in Bose-Einstein condensates, all-optical logi@a linear chain are rearranged to slide on fixed ritfgSuch a
and switching devices, targeted breaking of chemical bondsmodel was shown to contain rich nonlinear dynamics, exhib-
and so or. iting various types of nonlinear modes ranging from kinks to
Very recently, the interplay between nonlinear dynamicsiRMs. The method employed there amounts to applying a
and geometry has attracted particular attention in ILMspecific geometrical constraint to a purely harmonic lattice,
problems? Historically, such an observation was made whenleading eventually to equations having the form of an ex-
formulating model Hamiltonians for the dynamics of basestended version of the SL equations.
in DNA to take care of helical structufé® The latter prob- It is our purpose here to propose a method for studying
lem gave rise to the intuitive introduction of the so-calledthe above-mentioned interplay between nonlinearity and ge-
sine-lattice(SL) modeH in which intersite interactions along ometry in a more general and transparé&han our earlier
a given strand are taken to be sinusoidal rather than the covork) way. The basic point of our method is to take three-
ventional quadratic ones. The SL model later turned out talimensional(3D) harmonic lattices as a starting point on
yield a different type of ILM, referred to as an intrinsic ro- which geometrical constraints are imposed. Since linear sys-
tating mode(IRM), also termed a roto-breath8rAn ex-  tems constitute a basis for studying physics and mathematics,
ample of transition from oscillation to such rotation modes inin general, we expect the present method will give much
simulations of molecular crystals can be found in Ref. 13.more insight into the problem. The work is composed of two
Another example of this type is given by curved or bentparts: the first presents a general scheme of geometrical con-
chains* and long-range interactions on a fixed curvedstraints, while the second complements it with a detailed
substraté?® study of the ILMs in sine plus linear lattices resulting from
Geometric constraints naturally appear in crystalline bodthe helical constraints that we impose on the original 3D
ies consisting of relatively rigid atomic clusters. An impor- harmonic lattice.
tant example of this class of materials are the polymorphs of This paper is organized as follows. In Sec. Il, we present
silica (SiO,), where the structural unitse., SiQ, tetrahedra  a simple 3D harmonic-lattice model and consider a general
are corner-linked by oxygen atoms, and the energy cost a§cheme of the geometrical constraint applied to it. In Sec. lll,
deformation of the tetrahedra is much greater than the cost afe introduce the helical constraints as an application of the
their mutual rotations. Atoms in the almost rigid clustersgeneral method to arrive at helical lattices described by sine-
move as if they were subjected to a geometrical constraintinear-lattice(SLL) equations interpolating between SL and
To describe the position of a finite-size molecular clusterjinear lattice. Section IV is devoted to the study of some
one has to introduce not only translational but also rotationaproperties of the SLL equations. Generalization of the SLL
degrees of freedom. It has been demonstrated that the rotarodel is made in Sec. V to include the effect of an on-site
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potential, giving rise to the ILMs. Section VI is devoted to seen from Eqs(4) and (5) that the geometric constraint of

concluding remarks. Egs. (3) transforms the original linear lattice equations into
nonlinear ones. Thus, depending on the choicg gf andh,
Il. LINEAR LATTICE MODEL AND A GEOMETRIC we can obtain various nonlinear equations from the linear-
CONSTRAINT lattice model through the one-parameter geometric con-

straint. Equation$3) can be generalized to the case in which,
e.g., the quantities,, andy, are parametrized by two vari-

ables, (s, Son)-

We consider a three-dimensional lattice governed by th
LagrangianL
L=T-V
oMy K ) Il. HELICAL CONSTRAINT AND THE
=2 0+ 2 = 5 2 [ = %) SINE-LINEAR LATTICE
n n

1) We illustrate the above method by considering situations

+ 2+ — 2
e = Yo"+ (Znea = 200, in which the constraint function§ g, andh are of the form

whereT andU are the kinetic energy and the potential en-

ergy of the system, respectively. The quantitigsy,, andz, f(sn) = an codcs) = a, cod6y),
are the dynamical variables associated with tieatom of . _
atomic massn,. Then, the Euler-Lagrange equations assume g(sn) = a, sin(csy) = a, sin(6,),
the form
d?x Z, =Sy = by, (6)
n_
Mge = K(Xns1* X1~ 2%n), wherec, a,, andv,, are constants depending on the site index

n andb,=v,/c. Inserting Eqs(6) into Eq.(4), we obtain the
Lagrangian of the system in the form

d?y,
my dtzn = K(Yn+1 *VYn-1— ZYn)v L=T-U
d’z, :2[%(32*'*32);92]—25[3% L+ 85~ 28,48
+ +1%n
My = K@i+ 201 22). ®) S L2 A2 "
X COL Oy — 6) + (Dre16ne1 — br6,) 2. (7)

Physically, Eqs(2) are equations of motion for harmonic-
lattice vibrations of a simplified version of a simple cubic Then, the Euler-Lagrange equations are given by
lattice, in whichx,, y,, andz, represent the, y, andz com-

ponents of the displacement vectgrof the nth atom from 0= Col @n4180 SINGns1 = 6) = BB-1 SIN(0y = G-1)]
its equilibrium position. n + — 2p2
Suppose now that there exists a single variatdach that Colbne1Pnia + Bubn-16n-1.= 2030, ®
where
Xn=F(sh), Yn=9(s0), z=h(sy), ®3) «
wheref(s), g(s), andh(s) are functions of. The Lagrangian Ch=— = - (9
of the system is then written as my(aq + by
1 Equation(8) interpolates between a generalized version of
L= 52 mf'(s)%+g'(s)%+h'(s,)%]5 the linear lattice
n
K 5 0n = Cn[bn+lbn0n+1 + bnbn—lﬁn—l - 2br210n] (10)
- E% {[f(sne) ~ (s0)] and that of the sine-lattice equati8i!
+[0(sw1) —9(s) P+ (s —h(s)T}. (4) 0= Co[an18, SIN(Bheq — 6) — 8,81 SIN(6, = 6r-1)],
Then, the Euler-Lagrange equations takes the form (11)
mf'(s)2+g'(s,)2+h'(s,)2]5, where the coefficients on the right-hand side are all site de-
q pendent. Equationi8) is referred to as a sine-linear-lattice
. %{d—s[f'(snﬁ +g (52 + h'(m}sﬁ (SLL) equation.
= K[f(Syp) + f(sh-p) — 2(5,)]F'(s)) IV. A PERFECT HELICAL LATTICE
+ K[g(Shs1) + 9(Sh-1) — 20(sy)19'(sy) Here we restrict ourselves to the simplest of situations in

_ , which all the coefficients are site independent. Then, drop-
+KIh(sh) + h(sn-0) = 20(s)IN"(s0), (5) ping the subscriph attached to the coefficients in E¢B)
where A'(s)=(d/d9)A(s) with A=f,g,h. It can, hence, be leads to
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. . . 20 T
On = I[SIN(Ons1 = O) = SINOy = O-1) + €(Opia + Op-1 = 26,)],
(12
where 15
J=Ca&, e=h%a (13)

The nonintegrable equatiofi2) can be considered as rel- ¥ 10
evant to helical lattices in which the helicity is determined by

the factore. Alternatively, Eg.(12) may be considered as a
modified version of the discrete sine-Gordon equafian 5
which the conventional on-site term 6#) is replaced by

the first term on the right-hand side of E42).

A. Steady-state structures 0 10 2
. . . J
Equation(12) can be rewritten in the form »
FIG. 1. The potentiaV/(5,) of Eq. (16) is shown as a function of
o, for different magnitudes oé. Curves 1-4 correspond #=0.4,
) €,~0.2172,6,~0.091 33, and3~0.057 97. The magnitudes, at
Dp=sin(d,) + €8y,  6,= Oney— bOn. (14)  which Ith minimum of the potential function appears, are given by

Eq. (17).

bn =J(Dp—Dp-1),

Equilibrium solutions to Eq.(14) can be found fromD,

=D,_1, Which is particularly satisfied when o .
=0.2,V(65,) has minima at5,=0 andé&,=+4.9063. In Fig. 2
D,=0 (15  we show several stable configurations of SLLeat0.2 and
J=1. Shown ar€a) a kink-type structure(b) a point defect

for all n. Stable equilibria are subjected to an additional con- . e
dition, D'(8,)=cog 8,)+e>0 in a ground-state structurég) a zigzag periodic structure,
1 n n n .

To study the physical properties of Ed.2), which repre- and(d) a point defect in the zigzag structure. The defects in

sents the competition between the linearity and the helicitygiesr(';r)gt'g :;ﬁcgéfosﬁgggzzzgidtgg F{'i?é gh;?nl blicraeligzagg?ai das
let us consider the potential functior(s,) associated with P ; . y Ply
D,(5.) do not have exponential tails.

n\~n/s

52n B. Perturbation-induced dynamical structures
V(8,)=1-cos5,) +e—, €>0. (16) ] ] ) o

2 A vibration mode can be excited on the defect in zigzag
structure presented in Fig(d). The mode is(practically
localized on three particles; it is presented in Fig. 3. The
existence of this mode can be easily understood. The zeroth
particle in Fig. 2d) oscillates with a frequency close to the
upper edge of the ground state spectrum, which, however, is

We pay particular attention to its minimum points. For suf-
ficiently largee (weak helicity, the potentiaV has only one
minimum até,=0 and the only stable state of the SLL is the
ground statef,,=const. However, with a decrease ©fnew
minima appear in the potential(45,), the lth minimum ap-

pearing at 6 o
(A =D iar - 27’_2_ 4(a) ] 4(b)
€=~ (4 1)2 (41-1) 2 2, 1>0. (@17 P P
2 1 2
For example,e;~0.2172,€,~0.091 33, ande;~0.057 97.
The potentialV(§,) is shown in Fig. 1 for these values ef 0 ] 0
and also for a larger magnitude=0.4, when there is only 543241012345 54321012345
one minimum. In the limiting case— 0, the SLL Eq.(12) 6 6
degenerates to the SL equation with energetically indistin- (c) ()]
guishable minima situated a@=2l. o ! 0 4
As the number of minima on the potenti45,) increases, 2 ] 2
the variety of the stable structures of the SLL EtR) also
increases. Fore, <e<g, 8, can obtain 2-1) values 0 0
(positive or negativein addition to §,=0, which is allowed 64321 ’? 12345 4 2 3 2 4

for any e.

For the particular class of equilibrium solutions expressed FIG. 2. Examples of stable equilibrium structures in SLL with
by Eq. (15), configuration of thenth bond, §,=6,.1— 6, IS  J=1, €=0.2.(a) Kinklike structure,(b) point defect in the ground-
not affected by the adjacent bonds, and one can easily creadete structure(c) zigzag structure, anttl) point defect in the zig-
various compactonlike localized defects. For example.efor zag structure.
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04

02 roth particle. Here we use periodic boundary conditions to
6, 00 demonstrate that the kinks survive collisions and, hence, are
gf' relatively robust objects.
5.2
g 50 N N\ LN\
-1 :.g NS C. An approximate analytical solution:
’ Nonlinear resonant modes (NRM)
5.2 . . . . .
AT AN AN AN AN AN A Let us consider situation in which an atom located at the
oy VOV VUV site 0 makes a large excursion around one of the minimum
| points«a of the potential, while the others only perform small
52 amplitude oscillatory motion. This means that
O AN NN NN NS
46 , , , |66| > |6, for |n| = 1. (18
0.4 . . .
g 02 As we expect a highly localized solution, we preserve the
2 g-'z' full nonlinearity of the equations for the central site only,
4):40 3 1o 15 20 while the other equations are linearized around the equilib-

t rium position. Such a procedure leads to

FIG. 3. Vibration mode excited for zigzag metastable structure bo = J{- 2[sin(6,) + €6y] +[coL 6y) + €](6, + 6_1)},
with a defect present in Fig.(@). The mode is localized ofprac- 19
tically only) three particlesJ=1 ande=0.2. (19)

outside of the frequency band of the zigzag structure. 0,1 =J{—[coq6y) + 1+ 2€]0,1 + (1 + €) O, + SiN(Gp) + €6y],

Due to translational invariance, the SLL model of ELR) (20)
admits solutions withg,,=¢ for arbitrary ¢=const. Domain
walls separating two domains witl; # ¢, can also be .
formed. Here we consider the case when the differépge =31 +€)(Onra+ 61— 26y, for|n[=2. (21

— ¢ is not equal to the distance between the minima of thgue now seek solutions to this set of equations in the form
potential V(8,) Eqg. (16) and that can give rise to moving

kinks. There are many possibilities to initiate such moving 6p=a+ Uy, with sin(a) + ea=0,
kinklike structures; one is presented in Fig. 4 fbrl and
€=0.2. Here the kinks were initiated by applying initial con- 0,=u, for|n=1. (22)

ditions 6,(0) =0, 00(0):3, with zero initial conditions for all
other particles. The height of the kinks fig;—¢,|=~0.97,
and it increases by increasing the initial velocity of the ze-

When, in Eq.(22) =0, all particles oscillate near one well
of the potentialV(s,), while for a«# 0 the zeroth particle
oscillates in a different well.

Inserting Eq.(22) into Egs.(19)—(21) and retaining solely

200 | e terms linear with respect ta, andu,(n+ 0), we arrive at a
e —— _set of equatio_ns that are of t_he same fo_rm as thos_e ap_pearing
e — in one-impurity problems in harmonic-lattice vibrations.
150 b= S — — Thus, setting
e "4./_7_:
= >t U =vp eXpl=iot), (23
100 B ~ = o . .
t [~ < wherev,, is time independent and is a constant, we reduce
—— =— the above set of equations to the form
50 lllll ‘\“‘ (L9 - w?)v,=L"v,,
=R —— . with LOb,= J(1+ €20y~ v~ vp0),  (24)
-100 -50 0 50 100 with
n

L'vo=J[1 - cosa)](2vg— vy~ v-y),
FIG. 4. Moving kinks initiated by the initial conditiom(0)

=0, 6,(0)=3, and zero initial conditions for all other particles, pre- L'vs =1~ coda)](ve —vg),
sented by the set of plo#® vs n for different times. The height of
the kinks is|¢;— ¢, = 0.9, and it increases with increase in initial
velocity of zeroth particle. Periodic boundary conditions are used
here to demonstrate the kinks’ robustness against collisibng, =~ From the above equations, the ILMs we are seeking are
ande=0.2. presumed to exist within the frequency bang(k)?

L'v,=0forn#0, £1. (25)
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=2J(1+¢€)[1-cogk)] of the perfect harmonic lattice charac-
terized by wavenumbek. Such a nonlinear localized in-band
modes are referred to éisitrinsic) nonlinear resonant modes
(NRM). Then, Eqgs.(24) and (25) can be handled by intro-

ducing lattice Green'’s functions

_ 12 expikn)
TN 2J(1 + )1 - cogk)]

g(n) = g(n, ) T
(26)

Analytical expressions for the lattice Green'’s functi@ts)
can be obtained by replacing the sum with respeéthy an
integral over the first Brillouin zone as follows:

y— 0,.

cognx)dx
y-cogx) —iy

1 aa
g = 2J(1+e) ;fo

in+1

T 2)(1+e @7

[Ca(y) =iSy(Y)],

where

Cily) = f ) cogyt)Jy(t)dt,
0

S(y) = f sin(yt)J,(t)dt,
0

2

withy=1-——2 —
Y= e

(28)
in which J,(t) is the Bessel function of theth order. We note
that the quantity

1
Coly) = —,
o(y) - y2

with §(y) =0 for 0<y <1, (29

represents the density of states of the band. In terms of the

g(n)’s so obtained, Eq424) and(25) are rewritten as
U, =J[1 - cogk) J[g(n)(2vg — vy —v-1) + g(N = 1) (v~ vo)
+g(n+D(v_1-vo)]. (30)

We pay particular attention to astlike mode having the
symmetry property

V1=V, (31
and use the identity relation
J1+el2g9(n) —g(n+1) -g(n- 1] - w’g(n) = A,
(32)
to obtain
vn=N’g(n) + Agl(vo—vy), (33

where

PHYSICAL REVIEW B 71, 014304(2005
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FIG. 5. An attempt to excite a NRM in a SLL lattice Eq42)
by means of initial conditiong,(0)=4.88, 6,(0)=0, with zero ini-
tial conditions for all other particlesl=1 ande=0.2. The zeroth
particle oscillates near the minimum of(5,) situated até,
~4.9063, while other particles oscillate near the minimumgat
=0. Due to the rather strong interaction with the lattice, the energy
of excitation is “dissipated” to the lattice after only a few
oscillations.

\ = 1-cosa)

T+e (39

and A, are Kronecker’s delta.
In terms of the dimensionless frequengy w?/2J(1+e€),
an equation giving the eigenfrequency of the NRM is ob-

tained from Eqgs(27), (29), and(33) as follows:
1-N—NE-INERCy(y) = 0. (35)

The dimensionless squared eigenfrequeficy/therefore ob-
tained as

-A §o
=—+i . 36
=7 vk 5oy (36)
The localization of the NRM is given by the equation
vp=A0’g(N)(vg—vy), N#0. (37)

As mentioned before, here the localized mode around the
local minimum point of the potential function is of resonant
type, the eigenfrequency that appears close to bottom of the
frequency bandw(k)?=2J(1+€)[1-cogk)]. Apart from the
factor @, which is the position of the local minimum, the
localization properties of the NRM are essentially different
from those of the ILM in that it exhibits oscillatory slow
decay, contrary to what is the case for the ILM. This point

will be examined in detail below.

We have attempted to excite NRMs in SLL of Eq$2).
Such a numerical calculation is presented in Fig. 5. Here we
setJ=1, €=0.2, and for the initial conditionsf,(0)=4.88

and PO(O):O, with zero initial conditions for all other par-
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ticles. For this choice o€, the potentiaM(48,) has minima at 15
5,=0 andé,=~ +4.9063. One can see that the zeroth particle &, o0
oscillates near the minimum oW(§,) situated at &,
~4.9063, while the remaining particles oscillate near the
minimum até§,=0. Due to the rather strong interaction with 8, g9
the linear excitations of the lattice, the energy of the NRM is
rapidly imparted to the latticéafter a few oscillations The
lifetime of the excitation does not increase much, either by 6, oo/\/\N\/\/\/\
changing the initial deviation of the zeroth particle from the ’

potential minimum or by changing. -

V. INCLUSION OF THE ON-SITE POTENTIAL 0, [ 1 e N P P I e

A. Derivation of the model -

It is of interest to see what happens if we include on-site g
potentials in our original lattice. This is done by generalizing

Eqg. (1) in the form ) 5 1°t 15 20

My, ., ., . K
L=> ?n(xﬁ‘*)’ﬁ‘* 7) - EE |:(Xn+1_xn)2 FIG. 6. ILM with all particles oscillating in one well of the
n n on-site potential. The mode has amplitule=1.37 and frequency
5 b, Ki o Ko 5 w=2.15, which is considerably lower than the bottom edge of the
+ (Vo1 —Yn) + (Z1 = Z)° Exn + Eyn , (38 linear spectrum,wpmi,~3.162, with all higher harmonics lying
above the upper edgey,,,~3.847.J=1, €=0.2, and\=5.
where k; and «, are constants. Applying the helical con-

straint, Eq.(6) leads to w?= J4(1 + Osirt(k/2) + 2], (42)
L=K-U
m . with
SILEN
n — _—
< Omin = V2IN,  ©max= VJ[4(1 +€) + 2\]. (43
-2 E|:aﬁ+l + @3 — 28,418, COL Opey — 6r) When omad 2< min [i.., A>2(1+¢€)], one can look for
n an ILM oscillating with frequencyvy,,/ 2 < o < wpy, SO that
5 aﬁ(Kz— K1) all higher harmonicsw, with an integett > 1, lie abovew,,y.
+ (Dpe16ne1 = b6 + — 1 cogl-co$26,)]|. In this situation the ILM would not interact with the lattice
preserving its identity.
(39
It is seen that such a procedure adds a sine-Gordon-type 1. ILM with all particles in one potential well

on-site potential 1-c@&6,) to the Lagrangian. The equa-

. . A le, takd=1, €=0.2, =5, with
tions of motion foré, then assume the form S an example, we takd €=0.2, and\=5, wi

wmin=110~3.162 andwm,,=114.8~3.847 so that the nec-

0.=L SIN(Bsr — 6.) — a8 SIN(O.— O essary condition of the existence of LM< 2wmin, IS
! n[a';lén (One2.= On) = o8- SINGy = On-) fulfilled. A large-amplitude localized mode can be excited by
= N&;; Sin(26n) ] + L[ bnsabnbie1 + babn-1 61 choosing the initial deviation and/or initial velocity of a par-
— (bps1by + bobr1) 6,] (40) ticle. As an example, we initialize the zeroth particle with
n n n~n— nly .

0,(0)=1.5, 6,(0) =0 with zero initial conditions for other par-
ticles and, after some stabilization period, a steady oscilla-
tory motion is observedsee Fig. 6. One can see that the

where\=(k,—k1)/2. When all the coefficients are site inde-
pendent, the above equations reduce to

D = i PR _ o ILM is highly localized. The mode has a frequeney
0 = J[SiN0ne = Op) =SNGy = br-0) =X SIN260) ~2.15, which is considerably lower than the bottom edge of
+ €( 01t On-1— 260,)]. (41)  the linear spectrumw.,, with all higher harmonics lying

The presence of the on-site potential here can be Specmatgg?r\;]itltiﬂuggfggdgemfgximatel exoressed analvtically as-
to induce the existence of localized modes with longer life- PP Yy €xp y y

time than that of the case of E(L2). In the following, we suming that
demonstrate the existence of ILMs in the model of Eq,.
00(t) = Al S|n((1)t) + A3 S|n(3(1)t) ,
B. Intrinsic localized modes
The linear spectrum of the SLL with the on-site potential,
Eq. (41), is given by 01(t) = 6_4(t) =By sin(wt),
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gg 18 B8 ' =
6, 00 () === wl (b) ]

0.2 [ ]

04 “r )

02 I ]
0 : 00 \/\"—/\/v\/\"/\/v e o 12 .
3 B :

02 t [

04 10} q

4 o
1] 2 t sl
L] s g eeseorersl |
4 S ol

0.2
0 0.0 ] [
1 0'2 RO = 2k

04 0 [ . )
0.2 -15 n 15 %o 55  eo  es 70
é
2 0.0 o,
02
-04
0 5 10, 15 20 FIG. 8. ILM with one particle oscillating in a potential well

different from that where other particles are locat@iPlots 6 vsn
FIG. 7. Same as in Fig. 6 but for larger amplitudg,~3.71.  for different times showing the dynamics of particlghe zeroth
The ILM has frequency»~ 0.607 which is significantly lower than particle is not shown here because its coordinate differs from coor-
the bottom edge of the linear spectrum,i,~3.162. The mode dinates of other particles significantly, by roughly)2 (b) Dynam-
radiates energy extremely slowly due to the interaction of higheics of zeroth particle. The ILM is rather broad. The zeroth particle
harmonics with the linear spectrum. Note the difference in the oroscillates with the amplituda(6,) =~ 0.6 while its nearest neighbors

dinate scale for the middle pandl=1, e=0.2, and\=5. have nearly the same amplitud&6.,) =~ 0.52, and the amplitudes
decrease rather slowly with deviation from zeroth partidkel, €
=0.05, and\=1.
6,(t) =0 for |n| > 1, (44)

with A;<A; andB; <A,;. Parameters of the approximate so- ity. The ILM in Fig. 7 has amplitudé, ~3.71 and frequency
lution of Eq. (44) can be expressed in terms of the ILM »=0.607, which is significantly lower the bottom edge of
amplitudeA,, the linear spectrunm,,,~3.162. The mode radiates energy
extremely slowly due to the interaction of higher harmonics
w2=J[2(1 +et ) - }(1 + 4)\)A"{} with the linear spectrum. Note the difference in the ordinate
4 ’ scale for the middle panel.
For small ILM amplitudes, approaching the allowed limit
(1+ M)A [Eq. (46)] the solution profile becomes wider and our as-
A= > ) sumption that it is localized on three particles becomes in-
12{93 —2(1+e+ )\)J valid. Estimation for the limiting amplitudgeq. (46)] is also
J valid only for a highly localized ILM. In fact, it is possible to
excite an ILM with a very small amplitude, but the width of
1. such ILM increases considerably and its frequency ap-
(1+eA - §A1 proachesw,, from below. The smooth transformation of the
Bi=——. (45  ILM from a highly localized (as the amplitude decreages
2(1+e+N\) - @ into a very broad one is not surprising because for smooth
J solutions, (61— 6,) <1, one has Si,.;— 6,) = (6he1— 6,)

Let us analyze the obtained solution. First of all we note@nd the SLL with the on-site potenti¢Eq. (41)] can be
that the ILM frequencyw cannot be greater thad,, i.€., appro_X|mated by the_ well-known continuum sine-Gordon
we can only look for a mode with frequency belaw,, [see ~ €duation. The ILM s, then, nothing but the analog of
Eq. (43)], which is possible only for ILMs with sufficiently breather solution to the sine-Gordon equation. Using the Lor-

large amplitude entz invariance of the sine-Gordon equation one can create a
moving small-amplitude breather.
8(1+e¢) (46) We also note that, whee>1 andA>1, the first two
1

terms on the right-hand side of E@1) can be neglected. In
this situation, where and\ are of the same order of magni-
For example, fore=0.2, andA=5, one hasA,;>0.68. We  tude, our solutiofEgs. (44) and (45)] describes a highly
have confirmed numerically that, for this choice of param-|gcalized ILM in the Erenkel-Kontorova modd.
eters, our solution can be used gy~ 1. _ o _ _

For larger amplitudes the ILM is highly localize@ee 2. ILM with one particle in a different potential well
Fig. 7), but the solutionEqgs. (44) and (45)] becomes inac- The SLL lattice with on-site potential supports localized
curate because it takes into account only cubic anharmonienodes of another type, when one particle is trapped in a

1+4\
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potential well different from the well occupied by the other (i) It provides us with a systematic derivation of the sine-
particles. To demonstrate this mode, we tdkel, e=0.05, lattice equations, which were derived heuristically in earlier
andA=1, with oy,=V2=1.414, andwm,=16.2~2.490 so  works.
that the necessary conditia < 2wmi, is fulfilled. Setting (i) Physically, applying the helical constraint amounts to
0,(0)=2.9, 6,(0)=0 with zero initial conditions for other par- transforming the original harmonic latticépossessing the
ticles, after some time a steady oscillatory motion presentetiard potentiglto a nonlinear dynamical lattice that supports
in Fig. 8 was observed. The zeroth particle was found taesonant and multikink modes. Seeking other kinds of non-
oscillate withw=1.35, which is below the linear vibration linear modes will be an interesting topic for future study.
band, but all higher harmonics are above the band. One can (iii) The method developed here may be relevant to the
see that the ILM is not highly localized. The zeroth particlestudy of nonlinear excitations in biomolecules with helical
oscillates with the amplitudé(6,) ~0.6 near the coordinate structure, such as DNA and proteins. There are several areas
shifted by roughly Zr with respect to the neutral position of of condensed-matter physics where the existence of a com-
all other particlegshown in Fig. 8b)]. Its nearest neighbors plex energy landscape with a number of local minima in the
oscillate with nearly the same amplitud6.,) =~0.52, and  potential function is presumed to play a crucial role in deter-
the amplitudes decrease rather slowly with deviation frommining their properties. Such examples can, for instance, be
the zeroth particl¢see Fig. &)]. found in the study of glasses and proteins. Application of the
VI. CONCLUDING REMARKS technique_zs employ_ed here to_ these_ pr_oblems would be an-
other topic warranting further investigation.

In this paper, we have outlined a general scheme to apply (jv) Finally, another relevant generalization would be to

geometrical constraints to a simplified version of the 3D har¢onsjder geometric constraints different from the helical one

monic lattice with or without an on-site potential to obtain 5304 to derive and study the ensuifigduced dynamical
nonlinear dynamical lattice equations. Depending on the typé,odels.

of the constraints, we arrive at various nonlinear equations, These topics are currently under study and will be re-
being interested in the coherent structures that arise in therﬁorted elsewhere.

We then studied, more specifically, a helical constraint by
which the original 3D harmonic lattice was shown to reduce This work was partially financially supported by NSF-
to 1D sine-plus-linear lattice equations or helical latticeDMS-0204585, NSF-CAREER, and the Eppley Foundation
equations. This formulation revealed several interesting feafor ResearciPGK). Work at Los Alamos is supported by the
tures: US DoE.
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