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I. INTRODUCTION

Recent developments in the physics of intrinsic localized
modessILM d1,2 have shown that the ILMs are not only con-
ceptually important in theoretical and mathematical physics
as ubiquitous fundamental modes in nonlinear, discrete
physical systems,3 but also possess innovative potential ap-
plications in fundamental science and technology in addition
to their experimental observation.4–6 Areas of such applica-
tions cover coupled Josephson junctions, photonic crystals,
optical lattices in Bose-Einstein condensates, all-optical logic
and switching devices, targeted breaking of chemical bonds,
and so on.7

Very recently, the interplay between nonlinear dynamics
and geometry has attracted particular attention in ILM
problems.8 Historically, such an observation was made when
formulating model Hamiltonians for the dynamics of bases
in DNA to take care of helical structure.9,10 The latter prob-
lem gave rise to the intuitive introduction of the so-called
sine-latticesSLd model11 in which intersite interactions along
a given strand are taken to be sinusoidal rather than the con-
ventional quadratic ones. The SL model later turned out to
yield a different type of ILM, referred to as an intrinsic ro-
tating modesIRMd, also termed a roto-breather.12 An ex-
ample of transition from oscillation to such rotation modes in
simulations of molecular crystals can be found in Ref. 13.
Another example of this type is given by curved or bent
chains14 and long-range interactions on a fixed curved
substrate.15

Geometric constraints naturally appear in crystalline bod-
ies consisting of relatively rigid atomic clusters. An impor-
tant example of this class of materials are the polymorphs of
silica sSiO2d, where the structural unitssi.e., SiO4 tetrahedrad
are corner-linked by oxygen atoms, and the energy cost of
deformation of the tetrahedra is much greater than the cost of
their mutual rotations. Atoms in the almost rigid clusters
move as if they were subjected to a geometrical constraint.
To describe the position of a finite-size molecular cluster,
one has to introduce not only translational but also rotational
degrees of freedom. It has been demonstrated that the rota-

tional degrees of freedom can be responsible for the incom-
mensurate phase in quartz,16–18 negative Poisson ratio of
cristobalite and quartz,19–22 and negative thermal expansion
of b quartz.23 Similar effects can be observed in other mate-
rials with microscopic rotations, such as perovskitesse.g.,
SrTiO3d containing corner-linked TiO6 octahedra, the
KH2PO4 sKDPd family of crystals with comparatively rigid
PO4 tetrahedra, among others.

Motivated by these investigations, we proposed in a pre-
vious paper a mechanical model in which a set of masses on
a linear chain are rearranged to slide on fixed rings.24 Such a
model was shown to contain rich nonlinear dynamics, exhib-
iting various types of nonlinear modes ranging from kinks to
IRMs. The method employed there amounts to applying a
specific geometrical constraint to a purely harmonic lattice,
leading eventually to equations having the form of an ex-
tended version of the SL equations.

It is our purpose here to propose a method for studying
the above-mentioned interplay between nonlinearity and ge-
ometry in a more general and transparentsthan our earlier
workd way. The basic point of our method is to take three-
dimensionals3Dd harmonic lattices as a starting point on
which geometrical constraints are imposed. Since linear sys-
tems constitute a basis for studying physics and mathematics,
in general, we expect the present method will give much
more insight into the problem. The work is composed of two
parts: the first presents a general scheme of geometrical con-
straints, while the second complements it with a detailed
study of the ILMs in sine plus linear lattices resulting from
the helical constraints that we impose on the original 3D
harmonic lattice.

This paper is organized as follows. In Sec. II, we present
a simple 3D harmonic-lattice model and consider a general
scheme of the geometrical constraint applied to it. In Sec. III,
we introduce the helical constraints as an application of the
general method to arrive at helical lattices described by sine-
linear-latticesSLLd equations interpolating between SL and
linear lattice. Section IV is devoted to the study of some
properties of the SLL equations. Generalization of the SLL
model is made in Sec. V to include the effect of an on-site
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potential, giving rise to the ILMs. Section VI is devoted to
concluding remarks.

II. LINEAR LATTICE MODEL AND A GEOMETRIC
CONSTRAINT

We consider a three-dimensional lattice governed by the
LagrangianL

L = T − V

; o
n

mn

2
sẋn

2 + ẏn
2 + żn

2d −
K

2o
n

fsxn+1 − xnd2

+ syn+1 − ynd2 + szn+1 − znd2g, s1d

whereT and U are the kinetic energy and the potential en-
ergy of the system, respectively. The quantitiesxn, yn, andzn
are the dynamical variables associated with thenth atom of
atomic massmn. Then, the Euler-Lagrange equations assume
the form

mn
d2xn

dt2
= Ksxn+1 + xn−1 − 2xnd,

mn
d2yn

dt2
= Ksyn+1 + yn−1 − 2ynd,

mn
d2zn

dt2
= Kszn+1 + zn−1 − 2znd. s2d

Physically, Eqs.s2d are equations of motion for harmonic-
lattice vibrations of a simplified version of a simple cubic
lattice, in whichxn, yn, andzn represent thex, y, andz com-
ponents of the displacement vectorrWn of the nth atom from
its equilibrium position.

Suppose now that there exists a single variables such that

xn = fssnd, yn = gssnd, zn = hssnd, s3d

wherefssd, gssd, andhssd are functions ofs. The Lagrangian
of the system is then written as

L =
1

2o
n

mnff8ssnd2 + g8ssnd2 + h8ssnd2gṡ2

−
K

2o
n

hffssn+1d − fssndg2

+ fgssn+1d − gssndg2 + fhssn+1d − hssndg2j. s4d

Then, the Euler-Lagrange equations takes the form

mnff8ssnd2 + g8ssnd2 + h8ssnd2gs̈n

+
mn

2
H d

ds
ff8ssnd2 + g8ssnd2 + h8ssnd2gJṡn

2

= Kffssn+1d + fssn−1d − 2fssndgf8ssnd

+ Kfgssn+1d + gssn−1d − 2gssndgg8ssnd

+ Kfhssn+1d + hssn−1d − 2hssndgh8ssnd, s5d

where A8ssd;sd/dsdAssd with A= f ,g,h. It can, hence, be

seen from Eqs.s4d and s5d that the geometric constraint of
Eqs. s3d transforms the original linear lattice equations into
nonlinear ones. Thus, depending on the choice off, g, andh,
we can obtain various nonlinear equations from the linear-
lattice model through the one-parameter geometric con-
straint. Equationss3d can be generalized to the case in which,
e.g., the quantitiesxn and yn are parametrized by two vari-
ables,ss1n,s2nd.

III. HELICAL CONSTRAINT AND THE
SINE-LINEAR LATTICE

We illustrate the above method by considering situations
in which the constraint functionsf, g, andh are of the form

fssnd = an cosscsnd ; an cossund,

gssnd = an sinscsnd ; an sinsund,

zn = vnsn ; bnun, s6d

wherec, an, andvn are constants depending on the site index
n andbn=vn/c. Inserting Eqs.s6d into Eq.s4d, we obtain the
Lagrangian of the system in the form

L = T − U

= o
n
Fmn

2
san

2 + bn
2du̇n

2G − o
n

K

2
fan+1

2 + an
2 − 2an+1an

3cossun+1 − und + sbn+1un+1 − bnund2g. s7d

Then, the Euler-Lagrange equations are given by

ün = Cnfan+1an sinsun+1 − und − anan−1 sinsun − un−1dg

+ Cnfbn+1bnun+1 + bnbn−1un−1 − 2bn
2ung, s8d

where

Cn =
K

mnsan
2 + bn

2d
. s9d

Equations8d interpolates between a generalized version of
the linear lattice

ün = Cnfbn+1bnun+1 + bnbn−1un−1 − 2bn
2ung s10d

and that of the sine-lattice equation10,11

ün = Cnfan+1an sinsun+1 − und − anan−1 sinsun − un−1dg,

s11d

where the coefficients on the right-hand side are all site de-
pendent. Equations8d is referred to as a sine-linear-lattice
sSLLd equation.

IV. A PERFECT HELICAL LATTICE

Here we restrict ourselves to the simplest of situations in
which all the coefficients are site independent. Then, drop-
ping the subscriptn attached to the coefficients in Eq.s8d
leads to
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ün = Jfsinsun+1 − und − sinsun − un−1d + esun+1 + un−1 − 2undg,

s12d

where

J = Ca2, e = b2/a2. s13d

The nonintegrable equations12d can be considered as rel-
evant to helical lattices in which the helicity is determined by
the factore. Alternatively, Eq.s12d may be considered as a
modified version of the discrete sine-Gordon equation25 in
which the conventional on-site term sinsund is replaced by
the first term on the right-hand side of Eq.s12d.

A. Steady-state structures

Equations12d can be rewritten in the form

ün = JsDn − Dn−1d,

Dn = sinsdnd + edn, dn = un+1 − un. s14d

Equilibrium solutions to Eq.s14d can be found fromDn
=Dn−1, which is particularly satisfied when

Dn = 0 s15d

for all n. Stable equilibria are subjected to an additional con-
dition, Dn8sdnd=cossdnd+e.0.

To study the physical properties of Eq.s12d, which repre-
sents the competition between the linearity and the helicity,
let us consider the potential functionVsdnd associated with
Dnsdnd,

Vsdnd = 1 − cossdnd + e
dn

2

2
, e . 0. s16d

We pay particular attention to its minimum points. For suf-
ficiently largee sweak helicityd, the potentialV has only one
minimum atdn=0 and the only stable state of the SLL is the
ground state,un=const. However, with a decrease ofe, new
minima appear in the potentialVsdnd, the lth minimum ap-
pearing at

el < s4l − 1d
p

2
−Îs4l − 1d2p2

4
− 2, l . 0. s17d

For example,e1<0.2172,e2<0.091 33, ande3<0.057 97.
The potentialVsdnd is shown in Fig. 1 for these values ofe
and also for a larger magnitude,e=0.4, when there is only
one minimum. In the limiting casee→0, the SLL Eq.s12d
degenerates to the SL equation with energetically indistin-
guishable minima situated atdn=2pl.

As the number of minima on the potentialVsdnd increases,
the variety of the stable structures of the SLL Eq.s12d also
increases. Forel+1,e,el, dn can obtain 2sl −1d values
spositive or negatived in addition todn=0, which is allowed
for any e.

For the particular class of equilibrium solutions expressed
by Eq. s15d, configuration of thenth bond,dn=un+1−un, is
not affected by the adjacent bonds, and one can easily create
various compactonlike localized defects. For example, fore

=0.2,Vsdnd has minima atdn=0 anddn= ±4.9063. In Fig. 2
we show several stable configurations of SLL ate=0.2 and
J=1. Shown aresad a kink-type structure,sbd a point defect
in a ground-state structure,scd a zigzag periodic structure,
andsdd a point defect in the zigzag structure. The defects in
periodic structures presented in Fig. 2 can be regarded as
discrete compactons26 because they are sharply localized and
do not have exponential tails.

B. Perturbation-induced dynamical structures

A vibration mode can be excited on the defect in zigzag
structure presented in Fig. 2sdd. The mode isspracticallyd
localized on three particles; it is presented in Fig. 3. The
existence of this mode can be easily understood. The zeroth
particle in Fig. 2sdd oscillates with a frequency close to the
upper edge of the ground state spectrum, which, however, is

FIG. 1. The potentialVsdnd of Eq. s16d is shown as a function of
dn for different magnitudes ofe. Curves 1–4 correspond toe=0.4,
e1<0.2172,e2<0.091 33, ande3<0.057 97. The magnitudesel, at
which lth minimum of the potential function appears, are given by
Eq. s17d.

FIG. 2. Examples of stable equilibrium structures in SLL with
J=1, e=0.2. sad Kinklike structure,sbd point defect in the ground-
state structure,scd zigzag structure, andsdd point defect in the zig-
zag structure.
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outside of the frequency band of the zigzag structure.
Due to translational invariance, the SLL model of Eq.s12d

admits solutions withun=w for arbitrary w=const. Domain
walls separating two domains withw1Þw2 can also be
formed. Here we consider the case when the differenceuw1
−w2u is not equal to the distance between the minima of the
potential Vsdnd Eq. s16d and that can give rise to moving
kinks. There are many possibilities to initiate such moving
kinklike structures; one is presented in Fig. 4 forJ=1 and
e=0.2. Here the kinks were initiated by applying initial con-

ditions u0s0d=0, u̇0s0d=3, with zero initial conditions for all
other particles. The height of the kinks isuw1−w2u<0.9p,
and it increases by increasing the initial velocity of the ze-

roth particle. Here we use periodic boundary conditions to
demonstrate that the kinks survive collisions and, hence, are
relatively robust objects.

C. An approximate analytical solution:
Nonlinear resonant modes (NRM)

Let us consider situation in which an atom located at the
site 0 makes a large excursion around one of the minimum
pointsa of the potential, while the others only perform small
amplitude oscillatory motion. This means that

uu0u @ uunu for unu ù 1. s18d

As we expect a highly localized solution, we preserve the
full nonlinearity of the equations for the central site only,
while the other equations are linearized around the equilib-
rium position. Such a procedure leads to

ü0 = Jh− 2fsinsu0d + eu0g + fcossu0d + egsu1 + u−1dj,

s19d

ü±1 = Jh− fcossu0d + 1 + 2egu±1 + s1 + edu±2 + sinsu0d + eu0g,

s20d

ün = Js1 + edsun+1 + un−1 − 2und, for unu ù 2. s21d

We now seek solutions to this set of equations in the form

u0 = a + u0, with sinsad + ea = 0,

un ; un, for unu ù 1. s22d

When, in Eq.s22d a=0, all particles oscillate near one well
of the potentialVsdnd, while for aÞ0 the zeroth particle
oscillates in a different well.

Inserting Eq.s22d into Eqs.s19d–s21d and retaining solely
terms linear with respect tou0 andunsnÞ0d, we arrive at a
set of equations that are of the same form as those appearing
in one-impurity problems in harmonic-lattice vibrations.
Thus, setting

un = vn exps− ivtd, s23d

wherevn is time independent andv is a constant, we reduce
the above set of equations to the form

sLs0d − v2dvn = L8vn,

with Ls0dvn = Js1 + eds2vn − vn+1 − vn−1d, s24d

with

L8v0 = Jf1 − cossadgs2v0 − v1 − v−1d,

L8v±1 = Jf1 − cossadgsv±1 − v0d,

L8vn = 0 for n Þ 0, ± 1. s25d

From the above equations, the ILMs we are seeking are
presumed to exist within the frequency bandvskd2

FIG. 3. Vibration mode excited for zigzag metastable structure
with a defect present in Fig. 2sdd. The mode is localized onsprac-
tically onlyd three particles.J=1 ande=0.2.

FIG. 4. Moving kinks initiated by the initial conditionu0s0d
=0, u̇0s0d=3, and zero initial conditions for all other particles, pre-
sented by the set of plotsu vs n for different times. The height of
the kinks isuw1−w2u<0.9p, and it increases with increase in initial
velocity of zeroth particle. Periodic boundary conditions are used
here to demonstrate the kinks’ robustness against collisions.J=1,
ande=0.2.
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=2Js1+edf1−cosskdg of the perfect harmonic lattice charac-
terized by wavenumberk. Such a nonlinear localized in-band
modes are referred to assintrinsicd nonlinear resonant modes
sNRMd. Then, Eqs.s24d and s25d can be handled by intro-
ducing lattice Green’s functions

gsnd ; gsn,v2d =
1

N
o
k

expsiknd
2Js1 + edf1 − cosskdg − v2 − ig

,

g → 0+. s26d

Analytical expressions for the lattice Green’s functionsgsnd
can be obtained by replacing the sum with respect tok by an
integral over the first Brillouin zone as follows:

gsnd =
1

2Js1 + ed
1

p
E

0

p cossnxddx

y − cossxd − ig

=
in+1

2Js1 + ed
fCnsyd − iSnsydg, s27d

where

Cnsyd =E
0

`

cossytdJnstddt,

Snsyd =E
0

`

sinsytdJnstddt,

with y = 1 −
v2

2Js1 + ed
, s28d

in which Jnstd is the Bessel function of thenth order. We note
that the quantity

C0syd =
1

Î1 − y2
,

with S0syd = 0 for 0, y , 1, s29d

represents the density of states of the band. In terms of the
gsnd’s so obtained, Eqs.s24d and s25d are rewritten as

un = Jf1 − cosskdgfgsnds2v0 − v1 − v−1d + gsn − 1dsv1 − v0d

+ gsn + 1dsv−1 − v0dg. s30d

We pay particular attention to ans-like mode having the
symmetry property

v1 = v−1 s31d

and use the identity relation

Js1 + edf2gsnd − gsn + 1d − gsn − 1dg − v2gsnd = Dn

s32d

to obtain

vn = lfv2gsnd + Dngsv0 − v1d, s33d

where

l =
1 − cossad

1 + e
s34d

andDn are Kronecker’s delta.
In terms of the dimensionless frequencyj=v2/2Js1+ed,

an equation giving the eigenfrequency of the NRM is ob-
tained from Eqs.s27d, s29d, ands33d as follows:

1 − l − lj − ilj2C0syd = 0. s35d

The dimensionless squared eigenfrequencyj is therefore ob-
tained as

j =
1 − l

l
+ ij0Î j0

2 − j0
. s36d

The localization of the NRM is given by the equation

vn = lv2gsndsv0 − v1d, n Þ 0. s37d

As mentioned before, here the localized mode around the
local minimum point of the potential function is of resonant
type, the eigenfrequency that appears close to bottom of the
frequency bandvskd2=2Js1+edf1−cosskdg. Apart from the
factor a, which is the position of the local minimum, the
localization properties of the NRM are essentially different
from those of the ILM in that it exhibits oscillatory slow
decay, contrary to what is the case for the ILM. This point
will be examined in detail below.

We have attempted to excite NRMs in SLL of Eqs.s12d.
Such a numerical calculation is presented in Fig. 5. Here we
set J=1, e=0.2, and for the initial conditions,u0s0d=4.88

and u̇0s0d=0, with zero initial conditions for all other par-

FIG. 5. An attempt to excite a NRM in a SLL lattice Eqs.s12d
by means of initial conditionsu0s0d=4.88, u̇0s0d=0, with zero ini-
tial conditions for all other particles.J=1 ande=0.2. The zeroth
particle oscillates near the minimum ofVsdnd situated at dn

<4.9063, while other particles oscillate near the minimum atdn

=0. Due to the rather strong interaction with the lattice, the energy
of excitation is “dissipated” to the lattice after only a few
oscillations.
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ticles. For this choice ofe, the potentialVsdnd has minima at
dn=0 anddn< ±4.9063. One can see that the zeroth particle
oscillates near the minimum ofVsdnd situated at dn

<4.9063, while the remaining particles oscillate near the
minimum atdn=0. Due to the rather strong interaction with
the linear excitations of the lattice, the energy of the NRM is
rapidly imparted to the latticesafter a few oscillationsd. The
lifetime of the excitation does not increase much, either by
changing the initial deviation of the zeroth particle from the
potential minimum or by changing«.

V. INCLUSION OF THE ON-SITE POTENTIAL

A. Derivation of the model

It is of interest to see what happens if we include on-site
potentials in our original lattice. This is done by generalizing
Eq. s1d in the form

L = o
n

mn

2
sẋn

2 + ẏn
2 + żn

2d −
K

2o
n
Fsxn+1 − xnd2

+ syn+1 − ynd2 + szn+1 − znd2 +
k1

2
xn

2 +
k2

2
yn

2G , s38d

where k1 and k2 are constants. Applying the helical con-
straint, Eq.s6d leads to

L = K − U

= o
n
Fmn

2
san

2 + bn
2du̇n

2G
− o

n

K

2
Fan+1

2 + an
2 − 2an+1an cossun+1 − und

+ sbn+1un+1 − bnund2 +
an

2sk2 − k1d
4

cosf1 − coss2undgG .

s39d

It is seen that such a procedure adds a sine-Gordon-type
on-site potential 1−coss2und to the Lagrangian. The equa-
tions of motion forun then assume the form

ün = Lnfan+1an sinsun+1 − und − anan−1 sinsun − un−1d

− lan
2 sins2undg + Lnfbn+1bnun+1 + bnbn−1un−1

− sbn+1bn + bnbn−1dung, s40d

wherel=sk2−k1d /2. When all the coefficients are site inde-
pendent, the above equations reduce to

ün = Jfsinsun+1 − und − sinsun − un−1d − l sins2und

+ esun+1 + un−1 − 2undg. s41d

The presence of the on-site potential here can be speculated
to induce the existence of localized modes with longer life-
time than that of the case of Eq.s12d. In the following, we
demonstrate the existence of ILMs in the model of Eq.s41d.

B. Intrinsic localized modes

The linear spectrum of the SLL with the on-site potential,
Eq. s41d, is given by

v2 = Jf4s1 + edsin2sk/2d + 2lg, s42d

with

vmin = Î2Jl, vmax= ÎJf4s1 + ed + 2lg. s43d

When vmax/2,vmin fi.e., l.
2
3s1+edg, one can look for

an ILM oscillating with frequencyvmax/2,v,vmin so that
all higher harmonicslv, with an integerl .1, lie abovevmax.
In this situation the ILM would not interact with the lattice
preserving its identity.

1. ILM with all particles in one potential well

As an example, we takeJ=1, e=0.2, andl=5, with
vmin=Î10<3.162 andvmax=Î14.8<3.847 so that the nec-
essary condition of the existence of ILM,vmax,2vmin, is
fulfilled. A large-amplitude localized mode can be excited by
choosing the initial deviation and/or initial velocity of a par-
ticle. As an example, we initialize the zeroth particle with

u0s0d=1.5,u̇0s0d=0 with zero initial conditions for other par-
ticles and, after some stabilization period, a steady oscilla-
tory motion is observedssee Fig. 6d. One can see that the
ILM is highly localized. The mode has a frequencyv
<2.15, which is considerably lower than the bottom edge of
the linear spectrumvmin with all higher harmonics lying
above the upper edgevmax.

The ILM can be approximately expressed analytically as-
suming that

u0std = A1 sinsvtd + A3 sins3vtd,

u1std = u−1std = B1 sinsvtd,

FIG. 6. ILM with all particles oscillating in one well of the
on-site potential. The mode has amplitudeA1<1.37 and frequency
v<2.15, which is considerably lower than the bottom edge of the
linear spectrum,vmin<3.162, with all higher harmonics lying
above the upper edge,vmax<3.847.J=1, e=0.2, andl=5.
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unstd ; 0 for unu . 1, s44d

with A3!A1 andB1!A1. Parameters of the approximate so-
lution of Eq. s44d can be expressed in terms of the ILM
amplitudeA1,

v2 = JF2s1 + e + ld −
1

4
s1 + 4ldA1

2G ,

A3 =
s1 + 4ldA1

3

12F9
v2

J
− 2s1 + e + ldG ,

B1 =

s1 + edA1 −
1

8
A1

3

2s1 + e + ld −
v2

J

. s45d

Let us analyze the obtained solution. First of all we note
that the ILM frequencyv cannot be greater thanvmin, i.e.,
we can only look for a mode with frequency belowvmin fsee
Eq. s43dg, which is possible only for ILMs with sufficiently
large amplitude,

A1 .Î8s1 + ed
1 + 4l

. s46d

For example, fore=0.2, andl=5, one hasA1.0.68. We
have confirmed numerically that, for this choice of param-
eters, our solution can be used forA1,1.

For larger amplitudes the ILM is highly localizedssee
Fig. 7d, but the solutionfEqs. s44d and s45dg becomes inac-
curate because it takes into account only cubic anharmonic-

ity. The ILM in Fig. 7 has amplitudeA1<3.71 and frequency
v<0.607, which is significantly lower the bottom edge of
the linear spectrumvmin<3.162. The mode radiates energy
extremely slowly due to the interaction of higher harmonics
with the linear spectrum. Note the difference in the ordinate
scale for the middle panel.

For small ILM amplitudes, approaching the allowed limit
fEq. s46dg the solution profile becomes wider and our as-
sumption that it is localized on three particles becomes in-
valid. Estimation for the limiting amplitudefEq. s46dg is also
valid only for a highly localized ILM. In fact, it is possible to
excite an ILM with a very small amplitude, but the width of
such ILM increases considerably and its frequency ap-
proachesvmin from below. The smooth transformation of the
ILM from a highly localized sas the amplitude decreasesd
into a very broad one is not surprising because for smooth
solutions, sun+1−und!1, one has sinsun+1−und<sun+1−und
and the SLL with the on-site potentialfEq. s41dg can be
approximated by the well-known continuum sine-Gordon
equation. The ILM is, then, nothing but the analog of
breather solution to the sine-Gordon equation. Using the Lor-
entz invariance of the sine-Gordon equation one can create a
moving small-amplitude breather.

We also note that, whene@1 and l@1, the first two
terms on the right-hand side of Eq.s41d can be neglected. In
this situation, whene andl are of the same order of magni-
tude, our solutionfEqs. s44d and s45dg describes a highly
localized ILM in the Frenkel-Kontorova model.25

2. ILM with one particle in a different potential well

The SLL lattice with on-site potential supports localized
modes of another type, when one particle is trapped in a

FIG. 8. ILM with one particle oscillating in a potential well
different from that where other particles are located.sad Plotsu vs n
for different times showing the dynamics of particlessthe zeroth
particle is not shown here because its coordinate differs from coor-
dinates of other particles significantly, by roughly 2pd. sbd Dynam-
ics of zeroth particle. The ILM is rather broad. The zeroth particle
oscillates with the amplitudeAsu0d<0.6 while its nearest neighbors
have nearly the same amplitude,Asu±1d<0.52, and the amplitudes
decrease rather slowly with deviation from zeroth particle.J=1, e
=0.05, andl=1.

FIG. 7. Same as in Fig. 6 but for larger amplitude,A1<3.71.
The ILM has frequencyv<0.607 which is significantly lower than
the bottom edge of the linear spectrumvmin<3.162. The mode
radiates energy extremely slowly due to the interaction of higher
harmonics with the linear spectrum. Note the difference in the or-
dinate scale for the middle panel.J=1, e=0.2, andl=5.
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potential well different from the well occupied by the other
particles. To demonstrate this mode, we takeJ=1, e=0.05,
andl=1, with vmin=Î2<1.414, andvmax=Î6.2<2.490 so
that the necessary conditionvmax,2vmin is fulfilled. Setting

u0s0d=2.9,u̇0s0d=0 with zero initial conditions for other par-
ticles, after some time a steady oscillatory motion presented
in Fig. 8 was observed. The zeroth particle was found to
oscillate withv<1.35, which is below the linear vibration
band, but all higher harmonics are above the band. One can
see that the ILM is not highly localized. The zeroth particle
oscillates with the amplitudeAsu0d<0.6 near the coordinate
shifted by roughly 2p with respect to the neutral position of
all other particlesfshown in Fig. 8sbdg. Its nearest neighbors
oscillate with nearly the same amplitude,Asu±1d<0.52, and
the amplitudes decrease rather slowly with deviation from
the zeroth particlefsee Fig. 8sadg.

VI. CONCLUDING REMARKS

In this paper, we have outlined a general scheme to apply
geometrical constraints to a simplified version of the 3D har-
monic lattice with or without an on-site potential to obtain
nonlinear dynamical lattice equations. Depending on the type
of the constraints, we arrive at various nonlinear equations,
being interested in the coherent structures that arise in them.

We then studied, more specifically, a helical constraint by
which the original 3D harmonic lattice was shown to reduce
to 1D sine-plus-linear lattice equations or helical lattice
equations. This formulation revealed several interesting fea-
tures:

sid It provides us with a systematic derivation of the sine-
lattice equations, which were derived heuristically in earlier
works.

sii d Physically, applying the helical constraint amounts to
transforming the original harmonic latticesspossessing the
hard potentiald to a nonlinear dynamical lattice that supports
resonant and multikink modes. Seeking other kinds of non-
linear modes will be an interesting topic for future study.

siii d The method developed here may be relevant to the
study of nonlinear excitations in biomolecules with helical
structure, such as DNA and proteins. There are several areas
of condensed-matter physics where the existence of a com-
plex energy landscape with a number of local minima in the
potential function is presumed to play a crucial role in deter-
mining their properties. Such examples can, for instance, be
found in the study of glasses and proteins. Application of the
techniques employed here to these problems would be an-
other topic warranting further investigation.

sivd Finally, another relevant generalization would be to
consider geometric constraints different from the helical one
and to derive and study the ensuingsreducedd dynamical
models.

These topics are currently under study and will be re-
ported elsewhere.
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