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The inelastic scattering intensities of glasses and amorphous materials have a maximum at a low frequency,
the so-called boson peak. Under applied hydrostatic pressureP, the boson peak frequencyvb is shifted upward.
We have shown previously that the boson peak is created as a result of a vibrational instability due to the
interaction of harmonic quasilocalized vibrationssQLVd. By applying pressure one exerts forces on the QLV.
These shift the low frequency part of the excess spectrum to higher frequencies. For low pressures we find a
shift of the boson peak linear inP, whereas for high pressures the shift is~P1/3. Our analytics is supported by
simulation. The results are in agreement with the existing experiments.
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I. INTRODUCTION

One of the most characteristic properties of glasses is a
maximum in the low frequency part of their inelastic scatter-
ing intensities.1 This maximum, the boson peaksBPd, origi-
nates from a maximum of the ratiogsvd /v2 wheregsvd is
the density of vibrational states which itself often has no
corresponding maximum.2 The BP shows an excess of low
frequency vibrations above the Debye contribution of the
sound waves. It is observed in experiments on Raman scat-
tering of light and inelastic neutron scattering within the fre-
quency interval 0.5–2 THz as well as in the temperature
dependence of the specific heat. It is considered to be one of
the universal properties of glasses and is found also in a
number of other disordered systems—see Ref. 3 and refer-
ences therein where also other approaches to the problem of
the boson peak are discussed.

For the proper interpretation of the BP, the key problem is
the nature of the vibrations that contribute togsvd. Since the
term BP frequently is used for any peak in the low frequency
inelastic scattering intensity one has to distinguish between
different cases. In some materials the BP is ascribed to low
lying optical or transverse acoustic modes of parental
crystals4–6 or to librations of some molecules in plastic
crystals.7,8 If these excitations have a small frequency spread
they will show as a peak ingsvd. The role of disorder is
merely to broaden modes which exist already without disor-
der.

In the opposite case the excess of low frequency modes is
caused by disorder itself. A simple example is realized in a
metalliclike model glass where the the parent crystal is fcc.9

In the present paper we discuss this latter case. Between
these two extreme cases of well-defined low frequency
modes, broadened by disorder, and no such modes before
disorder, there is a range of materials having aspects of both.
Despite being derived for the case of a disorder-induced BP,

our results will apply, at least semiquantitatively, to these
intermediate cases as long as the frequency spread of the
relevant low frequency modes is sufficiently large.

Numerous explanations have been proposed for the origin
of this disorder induced BP. It has been ascribed to vibrations
of clusters of atoms of typical sizes10,11 which, however, so
far have not been identified. Similarly, from random first-
order phase transition theory, rippling of domain boundaries
was postulated as the origin of the BP.12 Another explana-
tion, the broadening of acoustic sound waves as the origin of
the BPsRefs. 13 and 14d is in contradiction with the linear
dispersion law seen in molecular dynamics.15

A major effort has gone into the relationship between the
BP and random matrices. Disorder affects the vibrational
states differently than it affects the electronic ones. The main
point is that the matrix determining the eigenvalues of the
harmonic vibrations, the squared frequencies, must satisfy
the requirement of mechanical stabilityscf. Ref. 16d. In other
words, all eigenvalues must be positive, apart from the six
zero values for translation and rotation of the system as a
whole. Other than in the case of electronic states, there is a
fixed zero level. An arbitrary random matrix has no such
property. This means that, in general, such a matrix corre-
sponds to an unstable vibrational system. Such a mechanical
instability has often been observed in numerical simulations
of disordered vibrational systems for sufficiently large de-
gree of disorderscf. Refs. 17–19d.

However, as we have shown in Ref. 3, stability is restored
automatically when the effects of anharmonicity are taken
into account. A random matrix with the desired stability
property is generated in a natural way by solving the corre-
sponding nonlinear problem. It is remarkable that the density
of statesgsvd of such a “stable matrix” possesses the BP
feature. The BP is a reminder of the former mechanical in-
stability in the system.

We start our investigation from the ubiquitously occurring
quasilocalsor resonantd harmonic vibrationssQLVd. These
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vibrations can be understood as a low frequency vibration of
a small group of atoms which has a weak bilinear interaction
with the continuum of acoustic vibrations of the whole sys-
tem. They share many properties of the localized vibrations
but are different from these exact harmonic eigenstates. They
can be seen as resonances in the low frequency part of the
local spectra of the set of atoms involved. In Mössbauer
experiments one observes anomalously large Debye-Waller
factors for the atoms vibrating with such QLV.20 In simula-
tions the QLV are seen in the harmonic eigenstates as “low
frequency localized modes” or mixed into the extended
modes. This is found for the textbook case of a heavy mass
defect as well as for QLV in glasses.21 A “low frequency
localized mode” of a small system does not vanish when the
system becomes larger—it just hybridizes with the other
modes of similar frequency. If one counts the modes around
the QLV frequency one still finds an additional eigenmode,
compared to the modes in the unperturbed system. A more
detailed discussion of QLV with emphasis on glasses can be
found in our previous work on the boson peak3 where one
can also find supporting references.

In the soft potential model22,23 one describes the low fre-
quency vibrations of the defect system in the harmonic ap-
proximation utilizing a basis ofsextendedd sound waves and
local oscillators. The latter are the cores of the QLV or “bare
QLV” which have been found to extend over several
atoms.24,25In this basis there is a bilinear interaction which is
treated as a perturbation.

II. EFFECTS OF FINITE CONCENTRATION
OF QUASILOCALIZED VIBRATIONS

In a glass one has a finite concentration of QLV’s. As
discussed in our previous paper,3 this has a profound effect
on their density of statessDOSd. The interaction of the
QLV’s with the sound waves induces an elastic dipole inter-
action between them. First, the interaction of soft QLV’s with
surrounding QLV’s of higher frequency may lead in har-
monic approximation to unstable modes. Stability is restored
by the anharmonic terms. This leads to a linear density of
states,gsvd~v, for v,vc wherevc is determined by the
typical interaction strength.

Second, these renormalized low frequency QLV’s interact
with each other. In effect this means that the QLV’s are sub-
ject to random forcesf, later referred to asinternal forces.
Due to the high susceptibility of low frequency vibrations
their low frequency DOS is changed togsvd~v4 for v
,vb. This is a general property of the low frequency DOS of
non-Goldstone bosonic excitations in random media16 and
has been discussed in numerous papers on low energy exci-
tations in glasses, see Refs. 16, 23, 24, 26, and 27. It is
associated with the so-called “seagull” singularity in the dis-
tribution of the stiffness constants of the QLVsRefs. 23 and
24d in the soft potential model.23 This seagull singularity has
also been observed in computer simulations.28,29

By the crossover between the two limiting regimes of the
DOS the BP is formed and obtains a “universal” shape. The
frequency of the BPvb is again determined by the interac-
tion strength and thus by the characteristic value of the in-

ternal forcesf0 sin Ref. 3 this quantity was denoted asdfd

vb ~ f0
1/3. s1d

With higher interactionvb is shifted upward and the intensity
of the BP is reduced.3

One of the most interesting properties of the boson peak
in glasses is its shift toward higher frequencies under appli-
cation of hydrostatic pressure. In the present paper we will
show that such a shift can be visualized as a result of a
simple physical mechanism. If one applies a pressureP onto
a specimen of glass the internal random forces acquire addi-
tional random contributionsDf proportional to the pressure.
As a result, one obtains a “blue” shift of the Boson peak
frequency with pressure. For small pressure this pressure
contribution is small compared to the characteristic value of
internal forcesf0 and the shift of the BP is linear in the
pressure. With increasing pressureDf can become larger than
f0 and the BP shifts asvb~ P1/3.

III. RANDOM FORCE DISTRIBUTION IN A GLASS
UNDER PRESSURE

In the present section we will briefly derive, in analogy to
Ref. 3, the random force distribution under an applied hydro-
static pressure. From Hook’s law one gets

«ik = − sP/3Kddik, s2d

where«ik is the strain tensor and 1/K is the compressibility
of the glass.

The interaction of a QLV with the strain is bilinear30

Hint = Lik«ikx = − sP/3KdLiix, s3d

where Lik is the deformation potential tensor andx is the
coordinate of the QLV. For simplicity we will write in the
following L instead ofLii . Thus the additional contribution
to the random force due to applied pressure is proportional to
the pressure

Df = sP/3KdL. s4d

The deformation potentialL of a QLV is a random quantity.
In particular, it has a random sign, so that the corresponding
distribution functionDsLd is an even function ofL. As a

result, the distribution of the random forcesf̃ in the glass

remains an even function off̃ when the pressure is applied.

The total random forcef̃ is a sum of two contributions

f̃ = f + Df . s5d

Here f is the internal random force in the absence of pres-
sure. If the distribution of the internal forcesf is Qsfd then

the distribution of the total random forcef̃ in a glass under
pressure is given by the convolution

FPs f̃d =E
−`

`

dLQS f̃ −
L

3K
PDDsLd. s6d
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For P=0 it reduces to the unperturbed distributionQsfd since
the distributionDsLd is normalized to unity. In the Appendix
we give the results of the convolution for three cases which
should be typical, namely, two types of Lorentzian distribu-
tions and a Gaussian distribution off andL.

IV. BOSON PEAK SHIFT UNDER PRESSURE

Let us discuss how random forces change the frequencies
of the QLV’s. In a purely harmonic case, the linear forces
would not affect the frequencies. Anharmonicity, however,
renormalizes the relevant part of the spectrum.3,23 Although
the QLV’s are essentially harmonic vibrations their frequen-
cies under applied forces can be shifted as in the usual quasi-
harmonic approximation.

To start the description of a QLV, consider an anharmonic

oscillator under the action of a random static forcef̃

Usxd = Ax4/4 + Mv1
2x2/2 − f̃x. s7d

Herev1 is the oscillator frequency in the harmonic approxi-
mation andA is the constant of anharmonicity. The role of
the omitted third order term as well as that of the distribution

of A will be discussed further on. The forcef̃ shifts the
equilibrium position fthe minimum of the potentialUsxdg
from x=0 to x0Þ0, given by

Ax0
3 + Mv1

2x0 − f̃ = 0, s8d

where the oscillator has a newharmonicfrequency

vnew
2 = v1

2 + 3Ax0
2/M . s9d

If g̃1sv1d is the distribution function of frequenciesv1 and

FPs f̃d is the distribution of random forces in a glass under
pressure, then the pressure-dependent renormalized DOS is
given by

gPsvd =E
0

`

g̃1sv1ddv1E
−`

`

df̃FPs f̃ddsv − vnewd. s10d

Integrating thed function with regard to Eqs.s8d and s9d
we get

gPsvd = 2MÎM

3A
v3E

0

v g̃1sv1ddv1

Îv2 − v1
2

FPsfv,v1
d. s11d

Here

fv,v1
=

M

3
ÎM

3A
sv2 + 2v1

2dÎv2 − v1
2. s12d

As shown in Ref. 3 and shortly discussed in Sec. II the
interaction of high and low frequency QLV lead to a linear
DOS in the relevant frequency range. In writing Eq.s7d we
took QLV already including this effect. Therefore, we can
approximateg̃1sv1d=Cv1 and write Eq.s11d in the form

gPsvd = 2CMÎM

3A
v4E

0

1 dyy
Î1 − y2

3FPFM

3
ÎM

3A
v3s1 + 2y2dÎ1 − y2G . s13d

Let us introduce a characteristic valuef̃0sPd of the total
random forces acting on the QLV’s under pressure. This is

the characteristic scale of variation of the argument ofFPs f̃d.
Depending on the relative strengths of the internal forces
without pressure and the pressure induced forces, the follow-
ing estimates hold:

f̃0sPd < H f0f1 +OsP/P0dg for P ! P0

sP/P0df0 for P @ P0.
J s14d

Here P0 is the characteristic pressure, which in the simple
case of Lorentzian distributions centered around 0fsee Eqs.
sA1d and sA2dg, is given byP0=3Kf0/L0. Thus forP! P0,

f̃0sPd= f0 while for P@ P0, f̃0sPd~ P.
According to Ref. 3, for a Lorentzian distribution of ran-

dom forces, the Boson peak frequency is given by

vbsPd <
1.9A1/6f̃0

1/3sPd
M1/2 . s15d

For frequenciesv!vbsPd the argument of the function
FP in Eq. s13d is much smaller than the typical value of

f̃0sPd. One can replace this function byFPs0d<1/ f̃0sPd. Ac-
cording to Eq.s13d, gPsvd~FPs0dv4. Thus at high pressures
P@ P0,

gPsvd ~ v4/P for v ! vbsPd. s16d

In the opposite casev@vbsPd the integral overy is domi-
nated by such values ofy near the upper limit that

Î1 − y &
1

M
Î A

M

f̃0sPd
v3 ! 1. s17d

After integration, making use of the normalization ofFPs f̃d,
we regain the equation for the unperturbed pressure-
independent linear density of states

gPsvd = g̃1svd ~ v for vbsPd ! v , vc s18d

as it should be. For highervsv.vcd the linear DOS pro-
duced by the interaction between the QLV will be modified
andgPsvd shows material-dependent deviations.

Figure 1 shows the frequency dependence of the BP for
different applied pressures. Both the distributions of internal
forces f and of the deformation potentialsL were approxi-
mated by Lorentzians centered at 0. After convolution a
broadened Lorentzian is obtained, Eq.sA3d. One clearly ob-
serves the pronounced flattening with pressure of the low
frequency part of the BP. Contrary to this, the high frequency
part is not affected. In calculating the curves in Fig. 1 we
assumedg̃1svd~v. In real materials, this linearity of the
DOS will only hold up to some frequencyvc. Above that
frequency the DOS will be material dependent and, there-
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fore, the BP will no longer have a universal form above that
frequency. This can be seen by comparison of the present
Fig. 1 with Fig. 3 of Ref. 3.

The variation of the BP frequency,vb, with pressure is
shown in Fig. 2 for different distributions of the internal
forces and deformation potentials. The limiting behavior for
small and large pressures is independent of the distributions.
The crossover, on the other hand, does somewhat depend on
the type of distribution used. This indicates a material depen-
dence in this pressure range. The shift ofvb with pressure
can be described for the Lorentzian distributions, Eqs.
sA1d–sA4d, by

vbsPd = vbs0dS1 +
uPu
P0
D1/3

s19d

with

P0 = 3Kf0/L0. s20d

and for the Gaussian distributions, Eqs.sA5d–sA8d, by the
slightly different form

vbsPd = vbs0dF1 +S P

P0
D2G1/6

s21d

which describes a sharper crossover.

V. NUMERICAL SIMULATION

A. Pressure dependence

To test our analytic description we extended the numerical
simulations of Ref. 3 to include additional external forces
Df, Eq. s4d. We placedN=2197 oscillators with frequencies
0,vi ,1 on a simple cubic lattice with lattice constanta
=1 and periodic boundary conditions. The bilinear interac-
tion between two oscillators,i, j , is written as

Uint
i j = gijsJ/r ij

3dxixj , s22d

wherer ij is the distance between the oscillators andJ is the
strength of their coupling which results from the coupling of
bare QLV’s and sound waves,J=L2/rv2. Herer is the den-
sity and v the average sound velocity of the material. To
simulate random orientations of the oscillators we took for
gij random numbers in the intervalf−0.5,0.5g. The masses
Mi and anharmonicity parametersAi were put to 1. The DOS
for the noninteracting oscillators was taken asg0svd~vn,
with n=1,2. Random forces

Df i = gi fext
0 s23d

were exerted on the oscillators wheregi were random num-
bers in the intervalf−0.5,0.5g.

Generalizing the potential energy Eq.s7d for one oscilla-
tor to the system ofN oscillators and adding the interaction
terms described by Eq.s22d, we then minimized the potential
energy of the total system ofN coupled anharmonic oscilla-
tors. In the usual harmonic expansion around this minimum
we calculated the DOS for different values offext

0 , represent-
ing different external pressures. This was repeated for up to
10 000 representations.

The frequency dependence ofgsvd /v2 is given in Fig. 3,
for g0svd~v and J=0.07, for different strengths of the ex-
ternal force,fext

0 . The behavior of the analytic results, Fig. 1,

FIG. 1. Boson peak according to Eq.s13d for different applied
pressures, excluding the low frequency Debye contribution. Lorent-
zian distributions were assumed for both internal and pressure in-
duced forces, Eq.sA3d.

FIG. 2. Frequencyvb of the boson peak maximum as a function
of applied pressure for different force distributions. Solid line:
Lorentzian distributions Eq.sA3d; dashed line: Gaussian distribu-
tions Eq. sA7d; dotted line: double Lorentzian distribution, Eq.
sA10d, with l=Î2L0.

FIG. 3. Simulatedgsvd /v2 for different external force strengths
fN=2197,g0svd~v ,J=0.07g. Curves from left to right:fext

0 =10−4,
6310−4, 10−3, 3310−3, 6310−3, and 10−2.
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is reproducedsP/P0=1520fext
0 d. The slightly different maxi-

mal intensities for the higher forcesspressuresd result from
the different choice of distribution for the external forces
ssquare instead of Lorentziand. The internal forces originate
in the simulation directly from the bilinear interaction.

The pressure dependence of BP frequency is shown in a
double logarithmic plot in Fig. 4 for two different original
DOS’s: g0svd~v and g0svd~v2. The results for both sets
agree with our theoretical predictions. This illustrates that
our results are indeed independent of the choice of the initial
g0svd, as long as it is not too strongly peaked. As stressed in
our previous work, above some frequencyvc which is gen-
erally well separated abovevb, the redistribution of frequen-
cies becomes ineffective and the originalg0svd survives. For
instance in a plot ofgsvd /v2, corresponding to Fig. 3, for
g0svd~v2 the curves converge to a constant given by the
normalization, and the maximal intensities decay more
slowly.

B. Oscillator participation numbers

In our model the formation of the BP is driven by the
interaction between soft oscillatorssbare QLV’sd. At low fre-
quencies this interaction is weak and, therefore, the QLV’s
will be only weakly coupled. The BP frequency is deter-
mined by the typical interaction strength between the oscil-
lators. To quantify the interaction we introduce an oscillator
participation number

noscsvd = KSo
j

ueju4D−1L
v

, s24d

whereej denotes the component on oscillatorj of an eigen-
vector of the coupled oscillator system andk lv indicates the
average over all eigenmodes of frequencyv. Note that this
oscillator participation number is different from the usual
satomic or moleculard participation number of an eigenmode

of an atomic system. First a QLVsan oscillator in the present
descriptiond has typically an atomic participation number of
ten or more.24,25An oscillator participation number of ten is
then equivalent to an atomic participation number of a hun-
dred or more. Second the participation numbers are further
increased by the interaction between the QLV’s and the
sound waves.21 Here this hybridization is only included
insofar as it brings about the interaction between QLV’s.

For all values of the applied external forcefext
0 , noscsvd

shows in Fig. 5 the same qualitative behavior as function of
v. For small frequencies, one has more or less isolated
QLV’s fnoscsvd<2g. With increasing frequencies, coupling
and hencenoscsvd rapidly increases. It reaches its maximum
around vb and drops to a plateau withnoscsvd<8. This
might at first sight look surprising, since the coupling be-
tween the oscillators, Eq.s22d was not changed. On closer
inspection of the coupled equations of motion and the equi-
librium condition, one sees, however, that the external force
does in fact change the coupling between the single oscilla-
tors. The maximal value ofnoscsvd increases withfext

0 oppo-
site to gsvbd /vb

2. This is what one would intuitively expect
from an increased coupling. As in the case of the DOS, also
noscsvd depends on the original DOS,gosvd, for frequencies
v.vc.vb.

C. Distribution of anharmonicity parameters

So far, we have taken the anharmonicity parameterA in
Eq. s7d as a constant and have neglected possible third order
terms. To check the influence of distributions of these terms,
we did additional simulations where we introduced distribu-
tions of these parameters. The scaled results are summarized
in Fig. 6, where we also show for comparison the theoretical
result of Eq.s11d sdotted lined. The solid line gives the simu-
lation results forg0svd~v and J=0.07 with a fixed value
A=1. The simulated BP is slightly wider than the theoretical
prediction which might be due to the non-Lorentzian distri-
bution of the couplings between the “naked” oscillatorsfEq.
s7dg. The deviation atv /vb<2 indicates the upper limitvc
where the interaction strength no longer suffices to destroy

FIG. 4. Boson peak frequencyvb versus external force strength
on a double logarithmic scale. Crosses:N=2197, g0svd~v2,
J=0.1; circles:N=2197,g0svd~v, J=0.07. The dashed lines give
fits with Gaussian force distributionsffit parameters:vbs0d and
P/P0=1520fext

0 and 6010fext
0 , respectivelyg. The asterisks and dia-

monds show the shift of the boson peak for weak and strong anhar-
monicity, as discussed further down.

FIG. 5. Average oscillator participation numbers as function of
frequency for different external force strengths. The curves corre-
spond to the systems of Fig. 3.
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the assumed density of the non-interacting oscillators,
g0svd~v2.

Taking, for the same parameters, random valuesAi from
the intervalf0.7,1.3g, no significant change can be discerned.
This is in agreement with our previous result3 that this an-
harmonic term provides the mechanism to stabilize the inter-
acting oscillators but, its magnitude does not determine the
resulting spectrum.

The situation is different when we add a third order term
to the energy of the single oscillators Eq.s7d,

Uisxd = Ax4/4 + Bix
3/3 + Mvi

2x2/2. s25d

We obtain different behavior for weak and strong anhar-
monicy. The dashed line in Fig. 6 shows the resulting BP for
weak anharmonicity withBi =bivi with bi a random number
from f−1, +1g sg0svd~vd. In this case Eq.s25d still de-
scribes single well oscillators. The shape of the BP is only
marginally altered and the peak position for weak external
forcesspressuresd is slightly shiftedsasterisks in Fig. 4d. This
weak effect can be understood considering that the term
Bix

3/3 can be eliminated by a shift of origin resulting in a
linear term representing an additional force on the oscillator.

For strong anharmonicitysBi
2.4AMvi

2d x=0 in Eq. s25d
no longer is a minimum but becomes the maximum of a
double well potential. Under the influence of internal and
external forces the oscillator can jump from one minimum to
the other. Such a jump changes both the “naked” frequency
of the oscillator and the dipole forces exacted on the other
oscillators. This can no longer be described by a simple ad-
dition of forces. The resulting broadening of the BP is con-
siderably increased and it will be shifted. The dash-dotted
line in Fig. 6 shows this forBi =0.5bi with bi a random num-
ber from f−1, +1g. For this choice of parameters one has a
large number of double well potentials, much higher than can
be expected in real glasses. Figure 4sdiamondsd shows a
sizable frequency shift for this case. Nevertheless, under an
applied external pressure the shift of the BP with pressure
follows again the analytic prediction.

VI. COMPARISON WITH EXPERIMENT

Unfortunately not too many experimental data are avail-
able. Our theory should, therefore, be considered rather as a
prediction concerning future experiments than as an interpre-
tation of the existing experimental data. A general increase of
vb has been observed in experiments on a number of mate-
rials, e.g., SiO2,

31,32 GeO2,
31 GeS2,

33 polybutadiene,34

polystyrene,35 and Teflon.36 Similar shifts have been reported
from computer simulations of SiO2.

37,38 However most of
these data are not sufficient for a quantitative analysis.

The shift of the BP over a large pressure range has been
measured ina-SiO2.

39 As shown in Fig. 7, the experimental
data can be fitted by our theory using Eqs.s19d ands20d and
assuming a Lorentzian distributionfsee Eq. sA3dg. The
agreement between the theory and experiment remains good
even for high pressures. Regarding very high pressures, our
theory is applicable as long as the short range topology that
determines the structure of QLV’s does not change.

Figure 8 shows the shift of the boson peak ina-GeS2
measured by Raman scattering. Although the scatter of the
experimental points is rather large, again the general agree-
ment with our theory is encouraging.

Recent measurements on polyisobutadiene40 show an in-
crease of the BP frequency~p1/3. Boyeret al.36 measured the
shift with pressure of the low temperature maximum
CsTd /T3 in Teflon, whereCsTd is the specific heat. This
maximum is directly related to the BP.41 Again the observed
shift fits well with our predictions, see Fig. 9.

FIG. 6. Simulated, scaled boson peak for different anharmonici-
ties fN=2197,g0svd~v ,J=0.07g. Solid line: Bi =0; dashed line:
weak anharmonicity; dash-dotted line: strong anharmonicity; dotted
line: theoretical result.

FIG. 7. The boson peak ina-SiO2 under pressure; filled squares
are data of Ref. 39.

FIG. 8. The boson peak ina-GeS2 under pressure; open circles
are data of Ref. 33.
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However, the experiments on the change of the boson
peak position under pressure are so far insufficient. There-
fore, we believe that further detailed investigations of this
phenomenon are called for.

VII. CONCLUSION

In our previous paper3 we have proposed a mechanism of
the boson peak formation. The essence of the mechanism is
that a vibrational instability of the spectrum of weakly inter-
acting QLV is responsible for the origin of the boson peak in
glasses and some other disordered systems. Anharmonicity
stabilizes the structure but does not determine the shape of
the boson peak. The vibrations forming the boson peak are
harmonic.

The present paper extends these ideas. We show that un-
der the action of hydrostatic pressure the boson peak is
shifted to higher frequencies. At comparatively low pressures
the shift is linear in pressureP while for high pressures it is
proportional toP1/3. These conclusions are in good agree-
ment with the existing experimental data. Our work explains
the shift of the boson peek without the need to postulate
additional negative third order anharmonicities.42

To obtain a quantitative proof, more extensive investiga-
tions of the pressure dependence of the boson peak position
in various disordered systems are needed. Since the proposed
mechanism is very general, it will also be interesting to in-
vestigate both theoretically and experimentally the behavior
of the boson peak under different types of strain other than
the hydrostatic one, studied here, as well as under static elec-
tric fields. In future work, we hope to show that the same
physical mechanism is fundamental not only for the forma-
tion of the Boson peak but also for such seemingly different
phenomena as the creation of the two level systems that
dominate the properties of glasses at low temperatures.
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APPENDIX: CONVOLUTION

To make our investigation more general, we will consider
Lorentzian and Gaussian distributions for both the random
forces and the deformation potential. Besides, we will con-
sider also a distribution of the deformation potentialL that
may be called “double Lorentzian.” This is formed by two
superimposed Lorentzian distributions with widthsL0 which
are centered at ±l, respectively. Forl.L0/Î3 the resulting
distribution then has two symmetric side maxima and a mini-
mum atL=0.

For the Lorentzian distributions centered at zero one has

Qsfd =
1

p

f0

f2 + f0
2 =

1

2p
E

−`

`

dt1e
if t1−f0ut1u. sA1d

and

DsLd =
1

p

L0

L2 + L0
2 =

1

2p
E

−`

`

dt2e
iLt2−L0ut2u. sA2d

As a result of the convolution of these distributions one
gets again a Lorentzian centered at zero but with greater
width

FPsfd =
1

p

f̃0sPd

f2 + f̃0
2sPd

, sA3d

where

f̃0sPd = f0 +
L0uPu
3K

. sA4d

In the same manner the convolution of two Gaussian dis-
tributions

Qsfd =
1

f0
Î2p

e−f2/2f0
2
=

1

2p
E

−`

`

dt1e
if t1−f0

2t1
2/2 sA5d

and

DsLd =
1

L0
Î2p

e−L2/2L0
2
=

1

2p
E

−`

`

dt2e
iLt2−L0

2t2
2/2 sA6d

leads to another Gaussian distribution with increased width.

FPsfd =
1

f̃0sPdÎ2p
expf− f2/2f̃0

2sPdg, sA7d

where

f̃0sPd =Îf0
2 + SL0P

3K
D2

. sA8d

FIG. 9. The position of the bumpTmaxsPd in the specific heat
CsTd /T3 in Teflon under pressure; open circles are the data of
Ref. 36.
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Finally let us convolute the Lorentzian for the internal
forces, Eq.sA1d, with a double Lorentzian distribution

DsLd =
1

2p
F L0

sL − ld2 + L0
2 +

L0

sL + ld2 + L0
2G . sA9d

As a result of the convolution one gets

FPsfd =
f̃0sPd
2p F 1

sf + ald2 + f̃0
2sPd

+
1

sf − ald2 + f̃0
2sPd

G ,

sA10d

where a=P/3K and f̃0sPd is given by Eq. sA4d. This
distribution now depends both on the widths of the two
Lorentzians and on the distance between their centers, 2l, in
DsLd.
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