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The inelastic scattering intensities of glasses and amorphous materials have a maximum at a low frequency,
the so-called boson peak. Under applied hydrostatic pre§suhe boson peak frequenay, is shifted upward.
We have shown previously that the boson peak is created as a result of a vibrational instability due to the
interaction of harmonic quasilocalized vibratio{@LV). By applying pressure one exerts forces on the QLV.
These shift the low frequency part of the excess spectrum to higher frequencies. For low pressures we find a
shift of the boson peak linear i, whereas for high pressures the shiftdBY/3. Our analytics is supported by
simulation. The results are in agreement with the existing experiments.
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[. INTRODUCTION our results will apply, at least semiquantitatively, to these
intermediate cases as long as the frequency spread of the
One of the most characteristic properties of glasses is televant low frequency modes is sufficiently large.

maximum in the low frequency part of their inelastic scatter- Numerous explanations have been proposed for the origin
ing intensitiest This maximum, the boson pedBP), origi-  ©f this disorder induced BP. It has been ascribed to vibrations
nates from a maximum of the ratig{w)/ w? whereg(w) is  Of clusters of atoms of typical s!zjé’§1 which, however, so
the density of vibrational states which itself often has nof@’ have not been identified. Similarly, from random first-
corresponding maximurhThe BP shows an excess of low order phase transition theory, rippling of domain boundaries

frequency vibrations above the Debye contribution of the!Vas Postulated as the origin of the BPAnother explana-
on, the broadening of acoustic sound waves as the origin of

SOl.md Waves. It S obser_ved n expenmerﬁs on R.aman Scatﬁjﬁe BP(Refs. 13 and 14is in contradiction with the linear
tering of light and inelastic neutron scattering within the fre'dispersion law seen in molecular dynamiés

quency interval 0.5-2 THZ as we!l as in the temperature A major effort has gone into the relationship between the
depen(_jence of the spemﬂc heat. It is consldered to be one #P and random matrices. Disorder affects the vibrational
the universal properties of glasses and is found also in @teq differently than it affects the electronic ones. The main
number of other disordered systems—see Ref. 3 and refefint is that the matrix determining the eigenvalues of the
ences therein where also other approaches to the problem girmonic vibrations, the squared frequencies, must satisfy
the boson peak are discussed. the requirement of mechanical stabilitf. Ref. 16. In other

For the proper interpretation of the BP, the key problem isyords, all eigenvalues must be positive, apart from the six
the nature of the vibrations that contributegi@). Since the  zero values for translation and rotation of the system as a
term BP frequently is used for any peak in the low frequencywhole. Other than in the case of electronic states, there is a
inelastic scattering intensity one has to distinguish betweefixed zero level. An arbitrary random matrix has no such
different cases. In some materials the BP is ascribed to lowroperty. This means that, in general, such a matrix corre-
lying optical or transverse acoustic modes of parentabponds to an unstable vibrational system. Such a mechanical
crystal$=® or to librations of some molecules in plastic instability has often been observed in numerical simulations
crystals’@ If these excitations have a small frequency spreadf disordered vibrational systems for sufficiently large de-
they will show as a peak ig(w). The role of disorder is gree of disordefcf. Refs. 17-18
merely to broaden modes which exist already without disor- However, as we have shown in Ref. 3, stability is restored
der. automatically when the effects of anharmonicity are taken

In the opposite case the excess of low frequency modes iato account. A random matrix with the desired stability
caused by disorder itself. A simple example is realized in groperty is generated in a natural way by solving the corre-
metalliclike model glass where the the parent crystal iSfcc. sponding nonlinear problem. It is remarkable that the density
In the present paper we discuss this latter case. Betweensf statesg(w) of such a “stable matrix” possesses the BP
these two extreme cases of well-defined low frequencyeature. The BP is a reminder of the former mechanical in-
modes, broadened by disorder, and no such modes befosgability in the system.
disorder, there is a range of materials having aspects of both. We start our investigation from the ubiquitously occurring
Despite being derived for the case of a disorder-induced BRjuasilocal(or resonant harmonic vibrationgQLV). These
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vibrations can be understood as a low frequency vibration ofernal forcesf, (in Ref. 3 this quantity was denoted &f)
a small group of atoms which has a weak bilinear interaction

with the continuum of acoustic vibrations of the whole sys- Wp * ffl>/3- 1)
tem. They share many properties of the localized vibrations

but are different from these exact harmonic eigenstates. ThefYith higher interactionw, is shifted upward and the intensity

can be seen as resonances in the low frequency part of tff the BP is reduced. _ _
local spectra of the set of atoms involved. In Mdssbauer ©One of the most interesting properties of the boson peak

experiments one observes anomalously large Debye-Wallé? glasses is its shi_ft toward higher frequencies under appl_i-
factors for the atoms vibrating with such QE¥In simula- cation of hydrostatic pressure. In _the present paper we will
tions the QLV are seen in the harmonic eigenstates as “lowHOW that such a shift can be visualized as a result of a
frequency localized modes” or mixed into the extendedSMPI€ physical mechanism. If one applies a pres§uoato
modes. This is found for the textbook case of a heavy mas& SPecimen of glass the internal random forces acquire addi-
defect as well as for QLV in glass&5A “low frequency tional random contributionAf proportional to the pressure.
localized mode” of a small system does not vanish when thé'S @ result, one obtains a “blue” shift of the Boson peak
system becomes larger—it just hybridizes with the otheff€quency with pressure. For small pressure this pressure
modes of similar frequency. If one counts the modes aroun§ontribution is small compared to the characteristic value of
the QLV frequency one still finds an additional eigenmode,/Ntemal forcesfy and the shift of the BP is linear in the
compared to the modes in the unperturbed system. A morr€ssure. With increasing prﬁgsuﬂacan become larger than
detailed discussion of QLV with emphasis on glasses can bl @nd the BP shifts asy, =P,

found in our previous work on the boson péakhere one

can also find supporting references. I1l. RANDOM FORCE DISTRIBUTION IN A GLASS

In the soft potential mod&23 one describes the low fre- UNDER PRESSURE
quency vibrations of the defect system in the harmonic ap- ) ) . o
proximation utilizing a basis ofextendedi sound waves and In the present section we will briefly derive, in analogy to

local oscillators. The latter are the cores of the QLV or “bareRe€f. 3, the random force distribution under an applied hydro-
QLV” which have been found to extend over severalStalic pressure. From Hook's law one gets

atoms?*25In this basis there is a bilinear interaction which is

treated as a perturbation. gk = = (P/3K) oy, 2

whereg;, is the strain tensor and K/is the compressibility

Il. EFFECTS OF FINITE CONCENTRATION of the glass.
OF QUASILOCALIZED VIBRATIONS The interaction of a QLV with the strain is bilin€r
In a glass one has a finite concentration of QLV's. As Hint = AikeieX = — (PIBK) Ajix, (3

discussed in our previous pagethis has a profound effect
on their density of state$DOS). The interaction of the where A; is the deformation potential tensor amds the
QLV’s with the sound waves induces an elastic dipole intercoordinate of the QLV. For simplicity we will write in the
action between them. First, the interaction of soft QLV’s with following A instead ofA;;. Thus the additional contribution
surrounding QLV’s of higher frequency may lead in har- to the random force due to applied pressure is proportional to
monic approximation to unstable modes. Stability is restoredhe pressure
by the anharmonic terms. This leads to a linear density of
states,g(w) = w, for o <w, where o, is determined by the Af=(P/3K)A. (4)
typical interaction strength. . . . .
Second, these renormalized low frequency QLV'’s interacﬁThe dgformat_mn potential of a.QLV is a random quantity.
with each other. In effect this means that the QLV's are sub" pgrﬂc.ular, It h"’.‘s a rand_om sign, so that Fhe corresponding
ject to random forced, later referred to amternal forces ~ distribution functionD(A) is an even function ofA. As a
Due to the high susceptibility of low frequency vibrations result, the distribution of the random forcésin the glass
their low frequency DOS is changed @(w)>w* for @  remains an even function dfwhen the pressure is applied.

< wy. This is a general property of the low frequency DOS of e total random forcé is a sum of two contributions
non-Goldstone bosonic excitations in random m&dand

has been discussed in numerous papers on low energy exci- FofaAf 5)
tations in glasses, see Refs. 16, 23, 24, 26, and 27. It is '

associated with the so-calledeagull singularityin the dis-  Here f is the internal random force in the absence of pres-
tribution of the stiffness constants of the QRefs. 23 and  gyre, |f the distribution of the internal forcdsis Q(f) then
24) in the soft potential modef This seagull singularity has

also been observed in computer simulati&h®.

By the crossover between the two limiting regimes of th
DOS the BP is formed and obtains a “universal’ shape. The w A
frequency of the BRy, is again determined by the interac- Fo(f) :f dAQ(’f'_ —p>D(A), (6)
tion strength and thus by the characteristic value of the in- - 3K

the distribution of the total random fordein a glass under
ghressure is given by the convolution
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the distributionD(A) is normalized to unity. In the Appendix
we give the results of the convolution for three cases which

should be typical, namely, two types of Lorentzian distribu- M M o —
tions and a Gaussian distribution baand A. XFp 3V3a? L+ )V1-y=|. (13

Let us introduce a characteristic valﬁg{P) of the total
random forces acting on the QLV’'s under pressure. This is

Let us discuss how random forces change the frequenciafe characteristic scale of variation of the argumerff).
of the QLV's. In a purely harmonic case, the linear forcespepending on the relative strengths of the internal forces

would not affect the frequencies. Anharmonicity, however,yithout pressure and the pressure induced forces, the follow-
renormalizes the relevant part of the spectd#hAlthough  jng estimates hold:

the QLV’s are essentially harmonic vibrations their frequen-
|

For P=0 it reduces to the unperturbed distributiQ(f) since dyy
gp(w) =2CM f
0

\’_

IV. BOSON PEAK SHIFT UNDER PRESSURE

fo[1 +O(PIPy)] for P < Py
(PIPy)f, for P> P.

cies under applied forces can be shifted as in the usual quasi-
harmonic approximation.
To start the description of a QLV, consider an anharmonic

oscillator under the action of a random static fofce Here P, is the characteristic pressure, which in the simple
case of Lorentzian distributions centered arour{éée Egs.

(A1) and(A2)], is given byPy=3Kfy/Ag. Thus forP<Py,
U0 = AX14 + M2 =P (D F4(P)=t, while for P> Py, To(P) =
According to Ref. 3, for a Lorentzian distribution of ran-
dom forces, the Boson peak frequency is given by

(14)

Here w, is the oscillator frequency in the harmonic approxi-
mation andA is the constant of anharmonicity. The role of

the omitted third order term as well as that of the distribution 1 %1/6‘1/3(P)
of A will be discussed further on. The forde shifts the wp(P) = Vi (15
equilibrium position[the minimum of the potential(x)]
from x=0 to X, # 0, given by For frequenciesn< w,(P) the argument of the function
FP in Eq. (13) is much smaller than the typlcal value of
AR +Maw?xo—-f=0, (8)  fo(P). One can replace this function 5(0) = 1/fo(P). Ac-
cording to Eq.(13 Fp(0)w®. Thus at high pressures
where the oscillator has a ndwarmonicfrequency P>P0g 4(13), ge() > Fo(O)™ gnp
Wnew= @F + BAX/M. ©) gp(®) o P for w < wy(P). (16)

If §,(w,) is the distribution function of frequencies and  In the opposite case> w,(P) the integral overy is domi-
Fo(f) is the distribution of random forces in a glass undern@ted by such values gfnear the upper limit that
pressure, then the pressure-dependent renormalized DOS is 1 [AF oP)

given by 1-y=<—1\|— <1. 17
N y M M (,03 ( )

gp(w) :f al(wl)dwlf d~f|:P(?)5(w_ wnew) . (10) After integration, making use of the normalization qu(~f),
0 —0 we regain the equation for the unperturbed pressure-

Integrating thes function with regard to Eq48) and (9) independent linear density of states

we get Op(w) =01(w) = o for wp(P) < w < o, (18)

(w)d as it should be. For higheb(w> w.) the linear DOS pro-
gp(w) = 2M \/ f Gil@y)day wl Fe(f,.). (11)  duced by the interaction between the QLV will be modified
0

Vw - wl andgp(w) shows material-dependent deviations.
Figure 1 shows the frequency dependence of the BP for
Here different applied pressures. Both the distributions of internal
forcesf and of the deformation potentials were approxi-
mated by Lorentzians centered at 0. After convolution a
=5 \/ (w + 202\ ? - 2. (12 broadened Lorentzian is obtained, E43). One clearly ob-
serves the pronounced flattening with pressure of the low
As shown in Ref. 3 and shortly discussed in Sec. Il thefrequency part of the BP. Contrary to this, the high frequency
interaction of high and low frequency QLV lead to a linear part is not affected. In calculating the curves in Fig. 1 we
DOS in the relevant frequency range. In writing Ed) we  assumedg;(w) < w. In real materials, this linearity of the
took QLV already including this effect. Therefore, we can DOS will only hold up to some frequency.. Above that
approximatéj;(w;,) =Cw; and write Eq.(11) in the form frequency the DOS will be material dependent and, there-

014209-3



GUREVICH, PARSHIN, AND SCHOBER

15 T T T T

g(w)/o

o/, (0)

FIG. 1. Boson peak according to E@.3) for different applied

pressures, excluding the low frequency Debye contribution. Lorentg x 1074, 1073, 3% 1073, 6x 1073, and 102.
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FIG. 3. Simulated)(w)/ w? for different external force strengths
[N=2197 go(w) * w,J=0.07]. Curves from left to rightf® =107,

ext

zian distributions were assumed for both internal and pressure in-

duced forces, EqA3).

fore, the BP will no longer have a universal form above that
frequency. This can be seen by comparison of the present

Fig. 1 with Fig. 3 of Ref. 3.
The variation of the BP frequency,, with pressure is

shown in Fig. 2 for different distributions of the internal
forces and deformation potentials. The limiting behavior for

P 2 |1/6
Al .

which describes a sharper crossover.

wp(P) = wb(O)[l + (

V. NUMERICAL SIMULATION

small and large pressures is independent of the distributions.

The crossover, on the other hand, does somewhat depend on

A. Pressure dependence

the type of distribution used. This indicates a material depen- To test our analytic description we extended the numerical

dence in this pressure range. The shiftegf with pressure

simulations of Ref. 3 to include additional external forces

can be described for the Lorentzian distributions, EqgsAf, Eq.(4). We placed\N=2197 oscillators with frequencies

(A1)—~A4), by

|P| 1/3
1+ 171}
P

0

wp(P) = wb(0)< (19

with

and for the Gaussian distributions, Eq85)—(A8), by the
slightly different form

10 Ty
—— Eq.(A3)

Eq. (A7)

- Eq. (A10)

®,(0)/o,(P)

0.01 0.1 1 10 100

PP,

FIG. 2. Frequencyy, of the boson peak maximum as a function
of applied pressure for different force distributions. Solid line:
Lorentzian distributions Eq(A3); dashed line: Gaussian distribu-
tions Eq. (A7); dotted line: double Lorentzian distribution, Eq.
(A10), with A=12A,,.

0<w;<1 on a simple cubic lattice with lattice constaat
=1 and periodic boundary conditions. The bilinear interac-
tion between two oscillators, j, is written as

Ulhe= g (JIrixx, (22)

wherer;; is the distance between the oscillators dnd the
strength of their coupling which results from the coupling of
bare QLV’s and sound waved= A?/pv?. Herep is the den-
sity andv the average sound velocity of the material. To
simulate random orientations of the oscillators we took for
gjj random numbers in the intervgt0.5,0.9. The masses
M, and anharmonicity parametekswere put to 1. The DOS
for the noninteracting oscillators was taken @Ggw) « »",
with n=1,2. Random forces

Afl = g;f?

ext

(23

were exerted on the oscillators whegewere random num-
bers in the interval-0.5,0.5.

Generalizing the potential energy ET) for one oscilla-
tor to the system oN oscillators and adding the interaction
terms described by E@22), we then minimized the potential
energy of the total system &f coupled anharmonic oscilla-
tors. In the usual harmonic expansion around this minimum
we calculated the DOS for different valuesfdf, represent-
ing different external pressures. This was repeated for up to
10 000 representations.

The frequency dependence giiw)/ w? is given in Fig. 3,
for go(w) *x w and J=0.07, for different strengths of the ex-

ternal force,f2,. The behavior of the analytic results, Fig. 1,
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FIG. 5. Average oscillator participation numbers as function of

FIG. 4. Boson peak frequeney, versus external force strength frequency for different external force strengths. The curves corre-
on a double logarithmic scale. Crossed=2197, go(w)* w?, spond to the systems of Fig. 3.
J=0.1; circles:N=2197,gy(w) * w, J=0.07. The dashed lines give
fits with Gaussian force distributiondit parameters:w,(0) and
P/Py=1520% , and 60182, respectively. The asterisks and dia-
monds show the shift of the boson peak for weak and strong anha

monicity, as discussed further down.

of an atomic system. First a QLAAn oscillator in the present
Hescriptior) has typically an atomic participation number of
ten or more’*25 An oscillator participation number of ten is
then equivalent to an atomic participation number of a hun-
dred or more. Second the participation numbers are further
increased by the interaction between the QLV's and the
sound waved! Here this hybridization is only included
insofar as it brings about the interaction between QLV's.

is reproducedP/P,=15202 ). The slightly different maxi-
mal intensities for the higher forcdpressuresresult from
the different choice of distribution for the external forces

(square instead of LorentzipnThe internal forces originate For all values of the applied external foré&,, noo(®)

in the simulation directly from the bilinear Interaction. 515 i Fig. 5 the same qualitative behavior as function of
The pressure dependence of BP frequency is shown in a

double logarithmic plot in Fig. 4 for two different original o. For small frequencies, one has more or less isolated
DOS's: go(w) * @ and go(w) = w?. The results for both sets QLV's [n,dw)=2]. With increasing frequencies, coupling

4 4 . . nd hen rapidly incr . It reaches its maximum
agree with our theoretical predictions. This illustrates thata d hencetosd w) rapidly increases. It eacnes ts ma mu
round w, and drops to a plateau with,{w)=8. This

our results are indeed independent of the choice of the initial ight at first sight look surprising, since the coupling be-

Go(), as long as itis not too strongly peaked. As stressed Itween the oscillators, Eq22) was not changed. On closer

our previous work, above some frequensywhich is gen- . X ) ; .
O inspection of the coupled equations of motion and the equi-

erally well separated abowas,, the redistribution of frequen- .~ .
librium condition, one sees, however, that the external force

cies becomes ineffective and the origiggle) survives. For does in fact change the coupling between the single oscilla-

instancezin a plot ofj(w)/w?, corresponding to Eig. 3, for tors. The maximal value df..(w) increases With‘gxtoppo-
go(w)oc_w _the curves converge fo a constant given by thesite to g(w,)/ wz. This is what one would intuitively expect
rs1|(2)rvrvr;al|zat|on, and the maximal intensities decay MOr&%om an increased coupling. As in the case of the DOS, also
Y- Nysd w) depends on the original DO§,(w), for frequencies
W> W > Wy,
B. Oscillator participation numbers

In our model the formation of the BP is driven by the
interaction between soft oscillatofisare QLV'S. At low fre-
quencies this interaction is weak and, therefore, the QLV's  gq far, we have taken the anharmonicity parameétén
will be only weakly coupled. The BP frequency is deter-gq. (7) as a constant and have neglected possible third order
mined by the typical interaction strength between the oscilterms. To check the influence of distributions of these terms,
lators. To quantify the interaction we introduce an oscillatorye dig additional simulations where we introduced distribu-

C. Distribution of anharmonicity parameters

participation number tions of these parameters. The scaled results are summarized
3 2 olf4 -1 24 in Fig. 6, where we also show for comparison the theoretical
Nosd @) = ( : el ) : (24 result of Eq.(12) (dotted ling. The solid line gives the simu-

_ lation results forgy(w) > w and J=0.07 with a fixed value
whereel denotes the component on oscillajoof an eigen-  A=1. The simulated BP is slightly wider than the theoretical
vector of the coupled oscillator system afy, indicates the  prediction which might be due to the non-Lorentzian distri-
average over all eigenmodes of frequeneyNote that this  bution of the couplings between the “naked” oscillatidEs.
oscillator participation number is different from the usual (7)]. The deviation atw/wp=2 indicates the upper limib,
(atomic or molecularparticipation number of an eigenmode where the interaction strength no longer suffices to destroy
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FIG. 7. The boson peak iaSiO, under pressure; filled squares

FIG. 6. Simulated, scaled boson peak for different anharmonici®'® data of Ref. 39.

ties [N=2197 go(w) > w,J=0.07]. Solid line: B;=0; dashed line:
weak anharmonicity; dash-dotted line: strong anharmonicity; dotted VI. COMPARISON WITH EXPERIMENT

line: theoretical result. Unfortunately not too many experimental data are avail-

able. Our theory should, therefore, be considered rather as a
prediction concerning future experiments than as an interpre-
tation of the existing experimental data. A general increase of

2
Go( @) * @, wy, has been observed in experiments on a number of mate-
Taking, for the same parameters, random valyegom rials, e.g., SiQ3L2 GeO,3 GeS,®# polybutadiend?

the interval[0.7,1.3, no significant change can be discerned. polystyrene®® and Teflor?® Similar shifts have been reported
This is in agreement with our previous resuhat this an- from computer simulations of Si3738 However most of
harmonic term provides the mechanism to stabilize the interhese data are not sufficient for a quantitative analysis.

acting_ oscillators but, its magnitude does not determine the The shift of the BP over a large pressure range has been
resulting spectrum. . measured ira-Si0,.3% As shown in Fig. 7, the experimental
The situation is dlﬁ‘_erent Whgn we add a third order termgats can be fitted by our theory using E6E9) and(20) and
to the energy of the single oscillators H@), assuming a Lorentzian distributiofsee Eq.(A3)]. The
agreement between the theory and experiment remains good
Ui(x) = AX4 + B33 + walez. (25) even for high pressures. Regarding very high pressures, our
theory is applicable as long as the short range topology that
We obtain different behavior for weak and strong anhar-determines the structure of QLV's does not change.
monicy. The dashed line in Fig. 6 shows the resulting BP for iguré 8 shows the shift of the boson peakaiGes
weak anharmonicity witB,=bw; with b, a random number measyred by quap scattering. AIthou_gh the scatter of the
from [-1,+1] (go(w)* w). In this case Eq(25) still de- experlmental points is rather Iargg, again the general agree-
scribes single well oscillators. The shape of the BP is onl)}“ent with our theory is encouraging. .
marginally altered and the peak position for weak external RECENt measurements OBSpOIV'SObUtagZ%BHOW an in-
forces(pressuresis slightly shifted(asterisks in Fig. % This crease 9f the BP frequenesp™, Boyeret al. measured.the
weak effect can be understood considering that the ter hift V‘é'th pressure of the Ic_>w temperature maximum
Bx3/3 can be eliminated by a shift of origin resulting in a C(1)/T" in Teflon, whereC(T) is the specific heat. This
linear term representing an additional force on the oscillatorMaXimum is directly related to the BPAgain the observed
For strong anharmonicityB2>4AMw?) x=0 in Eq. (25) shift fits well with our predictions, see Fig. 9.
no longer is a minimum but becomes the maximum of a
double well potential. Under the influence of internal and
external forces the oscillator can jump from one minimum to
the other. Such a jump changes both the “naked” frequency
of the oscillator and the dipole forces exacted on the other
oscillators. This can no longer be described by a simple ad-
dition of forces. The resulting broadening of the BP is con-

the assumed density of the non-interacting oscillators

2'0 [ 1 T T T 1 1

-
wn

Wb(P){l"’b(o)

— th
siderably increased and it will be shifted. The dash-dotted [ Ou—;:g
line in Fig. 6 shows this foB;=0.5; with b; a random num- 0SF P —75 kbar ]
ber from[-1, +1]. For this choice of parameters one has a o
large number of double well potentials, much higher than can 0.0 gl bttt bt bbb

be expected in real glasses. Figurdddlamonds shows a P/P,
sizable frequency shift for this case. Nevertheless, under an

applied external pressure the shift of the BP with pressure FIG. 8. The boson peak ia-GeS, under pressure; open circles
follows again the analytic prediction. are data of Ref. 33.
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S 10 ° . APPENDIX: CONVOLUTION
L i — th , o . .
5 | OTefI::ry To make our investigation more general, we will consider
= oS Pee1s Kb ] Lorentzian and Gaussian distributions for both the random
[ o=1.5 Khar forces and the deformation potential. Besides, we will con-
0.0 b sider also a distribution of the deformation potentlakthat

may be called “double Lorentzian.” This is formed by two

superimposed Lorentzian distributions with widthg which
FIG. 9. The position of the bum.(P) in the specific heat ~are centered atx respectively. FOh> Ao/\3 the resulting

C(T)/T® in Teflon under pressure; open circles are the data oflistribution then has two symmetric side maxima and a mini-

Ref. 36. mum atA=0.

For the Lorentzian distributions centered at zero one has

. 1 f 1( i
However, the experiments on the change of the boson Q(f) = 0 f dryelfifolnl, (A1)

peak position under pressure are so far insufficient. There- e f2 - 27
fore, we believe that further detailed investigations of this
phenomenon are called for. and

1 A 1

2 2~
In our previous papémwe have proposed a mechanism of mAT+Ag 2w
the boson peak formation. The essence of the mechanism is As a result of the convolution of these distributions one
that a vibrational instability of the spectrum of weakly inter- gets again a Lorentzian centered at zero but with greater
acting QLV is responsible for the origin of the boson peak inyigth
glasses and some other disordered systems. Anharmonicity
stabilizes the structure but does not determine the shape of

VIl. CONCLUSION

D(A) = f dretAdm - (A2)

the boson peak. The vibrations forming the boson peak are Fp(f) = lf(’E—P) (A3)
harmonic. T §2 4+ £3(P)
The present paper extends these ideas. We show that un-
der the action of hydrostatic pressure the boson peak ighere
shifted to higher frequencies. At comparatively low pressures
the shift is linear in pressur@ while for high pressures it is ~ Ao|P|
proportional toPY3, These conclusions are in good agree- fo(P)=Tfo+ 3K (A4)

ment with the existing experimental data. Our work explains
the shift of the boson peek without the need to postulate In the same manner the convolution of two Gaussian dis-
additional negative third order anharmonicitfés. tributions
To obtain a quantitative proof, more extensive investiga- .
tions of the pressure dependence of the boson peak position Qf) = 1 e_fz,zfg: i dr e”Tl‘fSTi’z (A5)
in various disordered systems are needed. Since the proposed fo\yET 2 !
mechanism is very general, it will also be interesting to in-
vestigate both theoretically and experimentally the behaviogng
of the boson peak under different types of strain other than

—00

the hydrostatic one, studied here, as well as under static elec- \2/an2 o e A22
tric fields. In future work, we hope to show that the same D(A) = G e o= —f dre727%02% (AB)
physical mechanism is fundamental not only for the forma- ovem TS

tion of the Boson peak but also for such seemingly differen
phenomena as the creation of the two level systems th
dominate the properties of glasses at low temperatures.

?ads to another Gaussian distribution with increased width.

Fp(f) = % exy - f2/2f3(P)], (A7)
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Finally let us convolute the Lorentzian for the internal ?o(P)[ 1 1 ]
forces, Eq.(A1), with a double Lorentzian distribution Fp(f) = — + — ,
27 | (F+aN)2+T4(P)  (f—an)2+T2(P)
1 A A (A10)
D(A) =~ S+ S— 1. (A9) _ ~ o .
T (A=N2+A3 (A+N)2+A3 where «=P/3K and fy(P) is given by Eg. (A4). This
distribution now depends both on the widths of the two
Lorentzians and on the distance between their centarsn2
As a result of the convolution one gets D(A).
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