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Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated
using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically
influence the glass formation, a hard sphere model is employed in conjunction with a newly developed
densification method. The glass formability is defined as a set of optimal conditions that result in the slowest
cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics
simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-
forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy
concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly
by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading
to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal
packing and glass formation are discussed.

DOI: 10.1103/PhysRevB.71.014206 PACS numberssd: 61.25.Mv, 81.05.Kf, 61.20.Ja, 61.43.Fs

I. INTRODUCTION

Glass form abilitysGFAd, or glass formability, is the mea-
sure of how easy a given material system can be made into
glass. GFA is usually quantified by the cooling rate required
to make a glass from the liquid. A better or easier glass
former is the system that requires slower cooling rate. There
are also several other measures widely used to gauge metal-
lic glass formability. These criteria are featured in their con-
nection to other material properties. One is Turbull’s reduced
glass transition temperatureTRG=Tg/Tm,1 where Tg is the
glass transition temperature andTm is the melting tempera-
ture of the corresponding glass-forming system. Another is
the difference between the crystallization temperature and
the glass transition temperatureDT=Tx−Tg.

2 As pointed out
by Turnbull, a good glass former is the one of which the
critical TRG equals to or becomes larger than 2/3. Otherwise,
crystal nucleation prevails during cooling, which pre-empties
the glass formation. On the other hand,DT measures the
temperature window between the glass transition and the first
crystallization when a glass is heated up from below. High
values ofDT usually indicate more stable undercooled liq-
uids. Clearly these two criteria attempt to measure the same
glass formability using different references with respect to
Tg: The critical TRG uses melting pointTm of the glass-
forming liquids as a reference andDT uses the crystallization
temperatureTx. Recently a new criterion is proposed3 that
takes bothTm andTx as the reference.

Both criteria are connected, though implicitly, to kinetics
of glass-forming liquid: a highTRG implies thatTg is closer
to Tm, thus a slow cooling rate is attainable when the liquid is
cooled across the narrower temperature gapTm−Tg; larger
DT also indicates a slower cooling rate as the undercooled
liquid can be kept longer belowTx. Therefore, slow cooling
rate is indicative of a better GFA: The better the GFA is, the
lower the required cooling rate for a glass-forming liquid,
and larger or more bulky a glass sample can be made.2

Indeed, a large number of good glass-forming systems
obey these criteria.1–3 But many exceptions also occur, espe-

cially in some of the bulk metallic glass systems synthesized
recently.4 The deviations from these rules call for a close
examination of the glass formability and, most importantly,
discovery of the underlying mechanisms of the glass forma-
tion. On the practical side, it is highly desirable to establish a
set of new criteria that canpredict the glass formability from
intrinsic material properties before any glass is made, as the
parameters such asTg, Tm, or Tx used are the properties mea-
sured from the glass samples already made.

A handful of such intrinsic material properties have been
identified that are known to affect the glass formability ef-
fectively. They ares1d the heat of mixing of different alloy
elementsDH, s2d the atomic size difference, or atomic size
ratio, a, s3d the number of alloy compositionn, ands4d the
relative concentration of each of the alloy elements
x1,x2, . . . ,xn−1. For example, nonpositive heat of mixing is
needed to ensure the stability of the glass-forming liquid.
Increasing number of alloy components seems to lead to bet-
ter glass formers.5 However, the precise mechanisms of how
these material properties affect the glass formability have not
been fully apprehended.

As a result, the glass formability is still determined based
on the derivative properties such asTg, Tm, or Tx.

1–3 Synthe-
sis of metallic glasses remains an empirical process: A large
number of alloys are prepared by trial and error; and thermal
and structural analysis is performed on the samples. Then the
abovementioned criteria are tested using the data from the
measurements. Although the output from the testing against
the criteria can be used as an important intermediate step to
guide the search of better glass formers in a large number of
cycles of trial and error, the lack of an effective,a priori, or
intrinsic-material-property-dependent criterion greatly limits
our ability to predict and discover new bulk metallic glass
systems.

In this paper, we shall study one of the factors, the atomic
size difference. It is one of the intrinsic material properties
known to affect the glass formability critically. Experiments
show that the glass formation is easier if the atomic size
differences of the selected alloy elements are larger than

PHYSICAL REVIEW B 71, 014206s2005d

1098-0121/2005/71s1d/014206s12d/$23.00 ©2005 The American Physical Society014206-1



12–15 %.6 It is also a common practice in computer simula-
tions to use systems made of atoms or particles of different
sizes to enhance glass formation. This empirical relation be-
tween the atomic size difference and glass formability, how-
ever, has not been explored theoretically as much as it should
be. Only a semiquantitative relation is available7,8 that con-
nects the minimum alloy concentration for the glass forma-
tion and the atomic size difference. Glass-forming regions in
binary systems are predicted using this model. A large num-
ber of transition metal or refractory metal binary systems are
shown to follow the trend predicted by this model.7,8 But
many exceptions also occur, which include binary systems
made of metal/metalloid and rare-earth/transition-metal at-
oms. They are known to have large charge transfer during
mixing. Even within the binary systems that follow the gen-
eral trend predicted by the relation, the deviations in the
calculated minimum alloy concentrations from known ex-
perimental ones are typically in the range of 5–80 %.7

Mixing solute atoms of different atomic sizes with the
host atoms introduces packing incompatibilitysin crystalline
phased and as a result, local atomic stress arises. If the fluc-
tuation of the local pressure caused by the atomic size dif-
ference reaches a critical value, the local coordination num-
ber of the atom with different atomic size from its neighbors
will prefer to have local packing of noncrystalline symmetry,
thus resulting in glass formation. This mechanism proposed
by Egami and Waseda has implicitly the substitutional solid
solution in mind.7,8 A recent extension of this model consid-
ers alloy elements that could sit in the interstitial sites of the
host crystal structures.9 The atomic size disparity of the in-
terstitial atoms with the host atoms leads to another bound in
the glass formation regions0.60,a,0.80d. However, the
atomic size ratio of most pairs of atoms in the periodic table
is usually in the range of 0.7–1.3 for majority of metal at-
oms. Only very limited number of binary systems with at
least one transition or refractory metal atom falls into this
region sa,0.70d. This new bound, therefore, has very re-
stricted application in glass-forming systems of transition
and refractory metals. But many nonmetallic glass-forming
systems have different sized constitutive particles such as in
colloids, granular particles, and minerals. In these systems,
particle size can vary freely.

Egami-Waseda model captures some trend of the effect of
atomic size difference on the glass formation. Due to the
complexity of the problem, detailed mechanisms of how
atomic size difference affect topological packing and glass
formation still remain unsettled, especially those pertinent to
kinetics of glass-forming liquids. For example, what is its
connection to the cooling rate of the glass-forming liquids?
How does the atomic size difference affect glass formability
if multiple stable and metastable crystalline phases are in
direct competition with glass phase? Answers to those issues
which are not considered in the previous models, are ex-
pected to further our understanding of glass formability and
also contribute to establishment of a truly predictive criterion
for glass synthesis.

To answer these questions, we carry out an investigation
using molecular dynamicssMDd simulations. The advantage
and uniqueness of this approach will become clear as our
work progresses in this paper. Specifically, we employ a hard

sphere model to probe the effects of only atomic size differ-
ence on the glass formability, which is impossible to do in
experiment. With the help of a discontinuous densification
method in the MD simulation, we are able to identify the
critical cooling rates of the binary hard sphere system as a
function of the atomic size ratio and alloy concentration. We
also characterized various metastable and stable crystalline
phases and chemical clustering formed during cooling of the
glass-forming liquids that are competing with glass forma-
tion. From the structure analysis of these crystalline phases
and clusters, we could infer the changing potency of the
atomic size effect on glass formability. Finally, we mapped
out a kinetic diagram of glass formation from these simula-
tions. It marks the boundary of a glass-forming region in the
parameter space of the atomic size ratio and alloy concentra-
tion.

This paper is organized as follows. In the next section, we
outline the simulation methods and the model hard sphere
system used in our simulation. In Sec. III, we describe the
results obtained from our simulations of a binary hard sphere
system, including the critical cooling rate, the lowest critical
cooling rate, crystalline phase formation, possible mecha-
nisms of local packing instability caused by atomic size dif-
ference, the limitations of the instability models, and the ki-
netic diagram for glass formation. In Sec. IV, we discuss the
relations between crystalline phase and the glass formation.
Finally, we summarize our work in Sec. V.

II. MODEL SYSTEM AND SIMULATION METHODS

The model material used in this study is a hard sphere
sHSd system. Atoms in this model are represented as hard
spheres. Different from the systems with continuous inter-
atomic potentials, such as Lennard-Jones or embedded atom
potentials, atoms or particles in HS systems interact with a
potentialVsr ijd that is purely repulsive,10 that is,Vsr ijd=` if
r ij ø sdi +djd /2, andVsr ijd=0, otherwise.r ij is the separation
distance between atomi and j in the system;di and dj are
their diameters, respectively. Therefore, a multicomponent
system made of hard spheres of different sizes has zero en-
thalpy of mixing. This choice of the model system is made
deliberately to single out the atomic size factor from the rest
of the intrinsic material properties, as it is known that mixing
different types of atoms introduces not only different atomic
diameters but also different enthalpies of mixing. The hard
sphere model system allows us to focus on the effects of
atomic size only.

For binary hard sphere model, there are only two param-
eters that can fully characterize the system. One is the atomic
size ratio,a=dB/dA, and the other is the relative concentra-
tion of the alloy elementxB=NB/ sNA+NBd, wheredA anddB

are the atomic diameters of typeA andB, andNA andNB are
the number of each type of the atoms.N=NA+NB is the total
number of atoms in the system. In the rest of this paper, we
shall call the type-B atom the solute atom, or alloy element,
and the typeA atom the host, or solvent atom. The solute is
the minority elementsxø0.50d and the solvent is the major-
ity element. Their names can switch if the solute becomes
majority, as we see later in this work.
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The simulation technique of this hard sphere model sys-
tem is correspondingly different from that of the systems
with continuous interatomic interactions. Instead of solving
the equations of motion for atoms in a series of discrete time
steps as in the standard MD simulations, the changing posi-
tions, and velocities of the hard spheres are acquired through
the events of collision. The collision time of a pair of atoms
is obtained when the separation of two atoms approaches the
sum of their radiir ij =sdi +djd /2. Two different techniques
are used to determine collision partners of each sphere.10 In
one technique, we assign an array for each particle that con-
tains the list of its neighbors up to thekth nearest neighbors.
This neighbor list is modified periodically depending on how
fast the neighbors change. The value ofk is usually 2 or 3,
which depends on the instantaneous packing density of sys-
tem. For a very dilute system,k may be increased to 5 or 6,
while it can be 1 for a jammed state. Obviously the updating
period of neighbors list affects the efficiency of the
algorithm.10 In the second technique, we implement linked
cell structure to determine the collision partners of particles.
Each particle belongs to a cell and its collision partners are
searched within this cell and the neighboring cells.10,11These
techniques can reduce the number of calculations consider-
ably and larger systems can thus be handled. To avoid un-
necessary digression from the main theme of this paper, we
leave the technical details of the algorithm and computation
efficiency in a separate publication.12 We only give a brief
description of the algorithm used in this work below.

Another special feature of these simulations is modeling
quench process. For hard sphere systems, temperature is not
defined independent of other state variables. In fact, it is
directly related to the packing density of the system.13 There-
fore, quenching a hard sphere liquid is the same as increasing
the packing density. For this reason, we use “quench” and
“densification” synonymously. In this study we adopted a
discontinuous densification algorithm that allows us to
quench a liquid but avoid trapping the system as much as
possible in artificial metastable states. So the equilibrium as
well as metastable crystalline phases can be obtained reli-
ably.

The central idea of this algorithm is to increase the sphere
diameters in a controlled fashion, which is equivalent to in-
creasing the packing density while keeping the volume of the
simulation box fixed. During a quench or densification pro-
cess, we increase the diameters of the atoms, usually after a
given time interval. The amount of radius growth is not a
constant at each step; it depends on the minimum separation
distance between two atoms available in the system at the
instant. We consider a binary system below. The same for-
mulation can be extended straightforwardly to monatomic as
well as multicomponent systems.

Suppose that at a given time, the minimum surface-
surface distancedmin is found between atomsi and j of di-
ameterdi anddj in the system. Their new diameters will be
assigned using the following relations to assure that the
original size ratio will not change:

di8 = di + ddi , s1ad

dj8 = dj + ddi/ai j . s1bd

The size ratio between atomi and j is denoted byai j , that is,
ai j =di /dj =di8 /dj8. The size incrementddi is a fraction of the
surface-surface distancedmin, ddi = ffdi / sdi +djdgdmin. The
value of the coefficientf can be chosen between 0 and 2, as
it is not desirable for the size growth to introduce any over-
lapping between the spheres. In the present simulationsf is
set to 0.9. Once the size increments,ddi andddj =ddi /ai j are
determined for the two types of atomsi and j , the diameters
of the rest of atoms of the same type will be changed by the
corresponding amount while the size ratio is maintained. So
in a quenching process, the diameters of the atoms with dif-
ferent sizes remain constant up to timets and then they jump
to new values. They subsequently remain constant until the
next step which is determined again by the available mini-
mum separationdmin. Note thatts controls the densification
rate. Larger values ofts correspond to smaller densification
rates. The mean quench rate is determined by the mean
growth rate of packing density of the system within a time
interval made of 10-20 such steps.

Each simulation starts withN number of spheres, typi-
cally N=500–20 000 in this work, which are distributed in a
low-densitysor liquidd configuration. An initial quench rate
is chosen for each system characterized by different atomic
size ratio and concentrationsa ,xBd. The system is subse-
quently quenched to higher density. Different quench rates
can be implemented in the simulation for each given system.
A high quench rate usually leads to glass formation. As
shown in the next section, by varying the quench rate, we
can identify the critical quench rate crossing which crystal-
line and glass phase boundary is traversed. The critical
quench rate thus identified is the slowest cooling rate that
represents materials’ GFA.

Note that in the algorithm we adopt here, the diameters of
spheres increasesad discontinuously andsbd based on instan-
taneous minimum atomic distance. These provide extra
chance for relaxation of atoms during densification as com-
pared to previously used algorithms. This can be observed in
Fig. 1sad in which the rate of packing density growth de-
creases beyond certain timesor packing densityd due to the
decrease in the minimum atomic distance at higher packing
densities. A previously used densification algorithm14 with
constant rate of diameter growth introduces an increasing
rate of packing density growth in time, as shown in Fig. 1sad.
This will add additional, undesirable forces for overlapping
atoms and therefore, causes the system to evolve unnaturally
toward glass transition, and in particular, crystallization,
while our present algorithm does not do so.

To map out the kinetic diagram for glass formationsFig.
3d, we have run several hundreds of samples for different
combinations of atomic size and solute concentration. Each
sample is simulated with 5–10 different quench ratesfsee
Fig. 1sbdg. Each simulation lasts several million collisions.
Data are collected at the end of the simulations and various
measures are taken later to characterize structures of the bi-
nary systems during and after quenching. Among them are
radial distribution functions, the bond orientational order dis-
tribution function, the nearest-neighbor number distribution
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function, as well as visualization. Another method for detect-
ing phase transition in each simulation is to plot the equation
of states,PV/NkBT versus the packing densityw, whereP
andV are pressure and volume of the system, andkB is the
Boltzmann constant andT is the system temperature. If crys-
tallization occurs, a sharp drop can be observed inPV/NkBT
at the transition packing density. This transition packing den-
sity is around 0.56 for monodisperse packing, but it may
vary from 0.55 to 0.59 in binary mixtures.

Since the critical quench rate is measured through crystal-
lization, possible effects from finite sample size need to be
checked. In this work, we used three sample sizes 500, 3000,
and 20 000, to test the finite size effect. The variation of the
critical quench rates is found less than 10% for a variety of
mixtures saù0.2d with different sample sizes. This agrees
well with the results in simulations of HS systems where
critical crystal nucleation size is known to be less than a few
hundred atoms.15 Most of the results presented in this work

FIG. 1. sad Variation of packing density versus time with different initial densification rates. The fast densification has the initial rate of
q1=0.0055 and the slow densification hasq2=0.0014. Solid lines represent the results of the current simulations and dash lines representw-t
curves using the protocol introduced in Ref. 14. Thin solid lines show the initial slope of the curve in our simulation.sbd Dependence of the
final packing density on initial quench, or densificationsRef. 16d rate sG−1d in a one-component system. Our cooling rateq is related toG
by q=ss2Np /2Îs3/TrdG. N is the number of spheres in the periodic box,s is their dimensionless diameter, andTr represents a reduced
temperature defined based on dimensionless velocity of spheres. We prefer to useq rather thanG as it is a general definition that can be
readily used in binary and polydisperse packing. Each circle represents one MD simulation of the system at a specific quench rate. 500
spheres placed in a cubic box are used. The critical densification rate isqc=0.00453. The sharp division of the crystal and glass phase region
can be seen. Results of a continuous size growth algorithmsRef. 16d is also shown by squares connected by solid line.scd Quenched samples
consisted of different number of spheress20 000, 3000, and 500d. All samples are obtained around their CCR, which isqC=0.0039 with 10%
variation.sdd Variation of PV/NkBT with w for the cases shown in Fig. 1scd. Black, light gray and dark gray colors represent samples with
20 000, 3000, and 500 hard spheres.
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are performed using 500 and 3000 atoms. However, the finite
size effect can no longer be neglected for systems with large
disparity in the particle sizesa,0.2d and small solvent con-
centration. The slow kinetics of the large sphere and their
relative scarcity could make the crystallization process diffi-
cult. We shall encounter this issue in next section.

III. RESULTS

A. Identification of critical cooling rate

As discussed early, the glass formability of a glass-
forming liquid can be defined as a set of optimal conditions
that result in the critical cooling ratesCCRd. The conditions
are the aforementioned intrinsic material properties. There-
fore, we can formally write the critical cooling rateqC as a
function of these parameters

qC = fsDH,a,n,x1,x2, . . . ,xn−1d. s2d

On the other hand, we define cooling rate operationally in
our simulation asq=dw0/dt, wherew0 is the initial packing
density andt stands for dimensionless time.q can be se-
lected prior in our simulation as described in Sec. IIfalso see
Fig. 1sadg. Unlike an earlier definition16 for the cooling rate
G, the current definitionq, is conveniently used in bidisperse
and polydisperse mixtures.

In a binary hard sphere system, the relation shown in Eq.
s2d is reduced toqC= fsa ,xBd. This simplification allows us
to seek direct relation between the atomic size ratio and the
cooling rate. Through a series of simulations with differentq
at each point atsa ,xBd, we can locate theqC. The critical
cooling rateqC is the one below which the first crystalliza-
tion would occur. In other words, the CCR is the lowest
cooling rate for a given glass-forming system.

It is worth to mention that in computer simulation, same
as in real experiment, glass phase could always form if the
cooling rate is sufficiently high. However, the CCR may not
be attainable in many atomistic simulations because the
small time scales dictated by the interatomic potentials
s~E−1/2, where E is the characteristic interatomic bonding
energyd and the finite simulation times.12,17The time scale in
the hard sphere system is not well defined, asE is zero. In
addition, the dynamics in the hard sphere model is fast. Thus
we could, with relative ease, identify CCR for our HS model
system characterized bya andxB.

The CCR is the property uniquely determined by the in-
trinsic material properties. The pure systemsa=1,xB=0d has
the highest CCR. As shown in Fig. 1sbd, qc of the one-
component hard sphere system can be unambiguously iden-
tified using our adopted algorithm. This cooling rate can be
used as a reference point for all alloy systems since the time
in the hard sphere system is unitless. And thus direct com-
parison with experiments can be made with the relative, or
normalized cooling rates using the CCR of the pure system
as the reference. Note that the Lubachevsky-StillingersLSd
algorithm14,16 does not show a clear boundary between glass
transition and crystallization as we compare their results with
ours in Fig. 1sbd. This is a crucial test for us in adopting our
densification algorithm to determine CCR; and using LS al-

gorithm, we may not be able to get CCR and accurately map
out correct glass-forming diagramssee Fig. 3d.

Furthermore, CCR is found insensitive to the system size
difference between 500 and 20 000 spheres. Figure 1scd
shows the configurations obtained from densifications of
500, 3000 and 20 000 monosized spheres crystallized at their
CCR’s. The averageqC is found to be 0.0039 through these
samples with a maximum variation of 10%. Even though
CCR remains constant some differences are observed as the
size of system increases. For example, a system with 500
spheres forms single crystal while systems with 3000 and
20 000 hard spheres form polycrystalline phases. Such a dif-
ference is also reflected in the equation of state for each
system, as shown in Fig. 1sdd: The drop of the pressure at the
crystallization becomes much less and the pressure versus
packing density becomes almost flattened out for larger sys-
tems. A horizontal line is expected for an infinitely large
system. For practical purpose, therefore, small system is a
better choice to detect possible crystallization.

As shown below, in binary HS systems the CCR depends
sensitively on the atomic size ratio and shows a significant
change as solute atoms are added to the host. As alloy ele-
ments of different diameters are added to the host of atoms,
the critical cooling rate is expected to decrease. To obtain the
critical cooling rate in the binary mixture, we prepared a
series of samples that have different size ratios at a fixed
concentrationxB of small atoms. We then quench or densify
these samples with different initial quench ratesq. Therefore,
at a given solute concentrationxB, each simulation is charac-
terized by two independent parameters, namely the size ratio
a and the densification, or quench rateq. The final phase in
each of the simulations is characterized and its packing den-
sity is calculated. The critical cooling rate is identified as the
lowest cooling rate for each system before crystallization oc-
curs. In the following, we show the quench process and the
results forqC= fsa ,xBd from three systems atxB=0.1, 0.20
and 0.3.

Figure 2sad shows the phases obtained using various cool-
ing rates and the critical cooling rateqC, or CCR, for the
system atxB=0.2. The vertical axis represents the final, or
the steady state value of the packing densitywm achieved by
continuing simulations up to a large enough time. The pack-
ing density w is defined as the ratio between the volume
occupied by the atoms and the total volume of the system.
Each vertical bar in Fig. 2sad represents the location of each
sample in thea-q parameter space and its height shows the
corresponding value of the final packing densitywm. The tip
of each bar marked by either a filled circle or an unfilled
circle represents crystalline and amorphous phase respec-
tively.

The critical quench rate is identified in the diagram as the
lowest cooling rate and it forms a boundary separating the
crystalline phase and glass. A smooth boundary from the
discrete number of simulations is determined using a curve-
fitting tool in MATLAB .18 The axis corresponding toqC is in
logarithmic scale in Fig. 2sbd. The general trend is obvious,
namely, at a given atomic size ratio, increasing quench or
densification rateq leads to more disordered or glassy phase.
Or with a given quench rate, decreasing the atomic size ratio
sor increasing atomic size differenced leads to disorder or
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glass phase. Clearly, the glass formability, as represented by
the cooling rateqC differ for systems with varyinga at dif-
ferent xB. The GFA increases as the cooling rate decreases
when a change from 1 for the pure system to 0.6 for the
alloys. qC drops the largest atxB=0.3. As seen below, this
trend of decreasingqC or increasing GFA is related to the
slowing down of the kinetics in the microstructure formation
of the equilibrium crystal phases caused by atomic size dif-
ference.

It is interesting to notice that among the CCR’s, some are
the lowest for certain systems. As shown in Fig. 2, for the
atomic size ratioa,0.85, the CCR starts to level off for the
system atxB=0.2. It reaches a plateau in the range around
0.70,a,0.80. This lowest CCRsLCCRd is found to be
qCø5310−5 for a<0.80, xB=0.20 fFig. 2sadg. As a com-
parison, the LCCR for the pure system, which is the same as
CCR, isqC

0 <5310−3. qC
0 is almost two orders of magnitude

higher than that of the mixture.
The systems with the lowest critical cooling rate are the

best glass formers. For our model systems with the alloy
composition atxB=0.20 they are those at the atomic sizes
0.70,a,0.80. For the systems atxB=0.30 the LCCR is
inaccessible fora,0.80 sbeyond which simulation time be-

comes excessively longd. The CCR atxB=0.30 are also the
lowest among three systems testedsxB=0.1,0.2,0.3d. As
shown later, the best GFA systems determined above coin-
cide with the regions where the equilibrium phases are eu-
tectic. The glass-forming liquids with these atomic size ratios
can be cooled with the slowest cooling rate; In other words,
glasses with the largest size can be made for these systems.1,2

The rendering of the relation,qC= fsa ,xBd, in the entire
parameter spacesa ,xBd would be desirable; but very time
consuming. Some may not even be possible to obtain due to
slow kinetics for crystallizationsand finite simulation timed.
However, these systems usually have high solute concentra-
tions, or extreme ratios of atomic sizes,19 which are outside
of the domain of interest for metallic alloys. An alternative
way to obtain this relationqC= fsa ,xBd is through contour
plot shown below.

B. Glass-forming diagram

A kinetic phase diagram can be mapped out in the entire
parameter spacesxB,ad to show a systematic view of glass
and crystal phases, glass-forming regions, and glass form-
ability. As noted early, any sufficiently high cooling rate can
lead to glass formation. Therefore, unlike equilibrium phase
diagram, in this kinetic phase diagram, cooling rate must be
considered. This diagram can be obtained from simulations
of the HS systems with differentxB anda at a given quench
rate q accessible to our computing capability. In this case,
instead of changing the cooling rate for each system atxB
anda as we did to identify the CCR, we change the param-
eters xB and a at each preselectedq. The boundary can,
therefore, be obtained that marks the transition point between
glass and crystalline phasefwhich is amount to mapping
out the glass-crystalline phase transitions at a specific cool-
ing rate q from the glass formability mapsFig. 2d,
q=qC= fsa ,xBdg. If a series of cooling rates are selected
properly, a contour plot can be mapped out. The contour plot
of the kinetic phase boundaries inxB and a obtained from
different q defines the glass-forming regions. Such a kinetic
phase diagram is shown in Fig. 3.

Figure 3 shows the glass-forming region for a large range
of the atomic size ratio and concentrationswith 5 or 10 %
interval for change ina and xBd at three different applied
cooling rates, corresponding to medium, slow and extremely
slow cooling. They differ about five times from each other.
The slowest one is taken as the CCR from the system with
a=0.80 andxB=0.20 as shown in Fig. 2.

First, we notice that the glass-forming boundary of the
mixtures in the range 0.7,a,0.85 is almost invariant to the
change of cooling rate. At this range ofa, the corresponding
concentration for the glass-forming boundary is around
xB=0.20. Coincidently, the atomic size differences for the
alloy composition are remarkably close to the critical values
found by Hume-Rothery for crystalline solid solubility
saø0.85d.20 As shown in a large number of real binary
systems20 the stable phases in the binary alloys beyond the
Hume-Rothery atomic size limit are eutectic. Our results
show that indeed, these systems with the highest stability
swith almost invariant glass-crystal phase boundary shown in

FIG. 2. sad The quench rate versus atomic size ratiosq−ad for
the binary mixtures withxB=0.20. The vertical bar represents the
final packing densitywm. The CCR is shown as a dotted line.sbd
The critical quench ratessCCRd versus atomic size ratiosq−ad for
the binary mixtures withxB=0.10, 20, and 0.30.
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Fig. 3d and best glass formabilitysamong the slowest cooling
rates shown in Fig. 2d have their crystalline counterpart of
eutectic phase. This finding agrees with the well-known ex-
perimental observations.21

Figure 3 also shows agreement in general trend with
Egami-Wadeda model8 found in the range of 0.6,a,0.80
for the systems under the slowest cooling rate. However,
large deviations from the model are found in the region of
a.0.85 andxB.0.30. In this case, the glass-forming region
is found to shift to smaller atomic size ratiosa,0.85d in our
simulations, while the Egami-Waseda calculation predicts
the region bounded ata,0.95. In fact, the glass-forming
region predicted from the model is more in agreement with
the glass-forming boundary at the fast cooling rate in our
simulations. This is a key result pertinent to understanding
the atomic mechanisms of atomic size effect on glass forma-
tion, and we shall return to it in the next section.

On the other hand, glass-forming boundary drastically
changes with densification rate foraø0.65. As seen from
Fig. 3, the glass-forming boundary shifts toward higherxB,
while Egami and Waseda modelfsee Eq.s3d belowg predicts
a monotonically decreasingxB as the atomic size ratio de-
creases. Even more drastic change is observed around the
value a,0.40. The boundary shifts abruptly to a much
higher alloy concentrationsxBù0.60d. Another abrupt
change of the boundary is also observed ata,0.20 where
the minimum alloy concentration at the boundary of the glass
forming region is shifted further up toxBù0.80. The glass-
forming region becomes narrower as the atomic size ratio
decreases furthersa,0.20d.

As shown in Fig. 3, the phase boundaries from our simu-
lations differ also significantly from the prediction in a recent
work9 at the lower atomic size ratiosa,0.70d. As explained
below, the large shift of the glass forming boundary toward

higher alloy concentrationxB starting ata,0.75 is caused
by formation of different crystalline microstructures and in-
termetallics or compounds. A phase separation of two disor-
dered fcc solid solutions occurs arounda=0.75.19 This find-
ing is fundamentally different from the mechanism proposed
in Ref. 9, where homogeneous interstitial solid solution is
assumed and become unstable and thus determining the
glass-forming region boundary. The mechanism involving
two competing crystalline phases were not anticipated in the
early models.7,9

When the solute concentration becomes higher
sxB.0.80d we can consider the systems as mixingsa small
amount ofd large atoms into the host of the small ones. The
atomic size ratio in this case is effectively greater than unity,
or a.1. For this reason, we plotted this portion of the dia-
gram sa.1d separately in Fig. 3. The boundary fits Egami-
Waseda model in the region at 1,a,1.1 sFig. 3d. This is in
a sharp contrast to the region with low solute concentration
sthe left side of the diagram witha,1d. We can explain this
difference by the kinetics of the large atoms. The large atoms
are less likely to move in the environment of small atoms. As
a result, we found no detectable amount of microstructure
forming spromoted by large atomsd in this region. However,
as the atomic size difference becomes largersa,0.50 and
a.1.2d, subtle microstructures start to form, that involve
small atoms reorganizing themselves into ordered structures
in the interstitials of the large atoms. In this region we also
observed strong finite size effect on the microstructure and
glass formation.19

The features reported above are observed for all three
cooling rates. However, the magnitude of the change, or
shifting of the glass-crystal phase boundary is different in
different regions ofa and xB under different cooling rates.
The largest shift of the boundaries at medium and high cool-
ing rates are found for systems witha,0.70 anda.1.2.
The glass-forming region expands with increasing cooling
rate. Also, the expansion of the glass-forming region in sys-
tems witha.0.85 becomes significant only at the high cool-
ing rate. Under the medium cooling rate which is almost five
times faster than the slowest one, the boundary does not shift
much. At the high cooling rate, the phase boundary in this
region moves very close to that predicted by Egami and
Waseda.7

Only one part of the boundary, at 0.7,a,0.85, exhibits
a remarkable resilience to changing cooling rate. As we men-
tioned early, this region corresponds to the eutectic compo-
sition of the binary hard sphere systems and has the best
GFA. Finally, we found that the cooling rate shows relatively
small effects on the phase boundaries in the high solute re-
gion sa.1d. As explained below, this is mainly due to the
slow kinetics of the large sized atoms.

The contour plots at three different cooling rates
also gives us a sketch of the CCR landscape,qC= fsa ,xBd:
The CCR surface changes the fastest in the region
0.7,a,0.95sanda,1.1d and remains relatively flat in the
region 0.70,a sand a.1.2d. In the region close to 0.7
,a,0.85 andxB,0.20 the CCR surface exhibits an almost
vertical drop. The contour plot with even lower cooling rates
would give more details of the glass-forming property, espe-
cially in the regions in the middle of the phase diagram

FIG. 3. The kinetic diagram for glass formation obtained at
three different cooling rates represented by thinner lines. Solid line,
dash line, and dotted-dash line stand for the cooling rates of
q1=1.5310−5, q2=5.5310−5, q3=2.8310−4, respectively. As a
comparison, results from Egami and WasedasRef. 7d sthick dash
lined and Miracle and SenkovsRef. 9d sthick dotted-dash lined mod-
els are also plotted. The areas representing glassy and crystalline
regions are outlined in the figure.
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sxB,0.50 and 0.7,a,0.85d. However, this is beyond our
computational capability.

C. Packing instability

Glass formation induced by atomic size difference is often
rationalized from the point of view of crystalspackingd
instability:7 If crystalssd cannot form due to packing instabil-
ity in a system made of different sized atoms, a glass will
form. An example of this argument is the solid-state amor-
phizationsSSAd where glasses do form through direct desta-
bilization of crystals.22,23 This atomic-size-induced instabil-
ity was originally proposed by Hume-Rothery to predict
phase formation in binary systems.12

As argued by Hume-Rothery, when small atoms are
mixed with large ones, the host made of the large atoms can
dissolve certain amount of small atoms by accommodating
them in the lattice site if the size difference is smaller than a
critical value.sThis applies too to mixing large atoms into
small atom host.d Further increase in atomic size difference
causes increase in the strain energy in the host due to the size
disparity. If this energy increase becomes large enough, it
would drive the solution into different phases, most likely
eutectics as we see from most of the Hume-Rothery alloys
that follow the rule.20,24 This critical size, or Hume-Rothery
limit is at a,0.85. Egami-Waseda model extended Hume-
Rothery theory by including local topological instability in-
duced by atomic size difference. Unlike the phase transitions
observed in Hume-Rothery alloys, this model imposes a re-
striction of polymorphism; and as a result, the final phase
predicted from the model is either a crystal or glass, both of
which are single phase with the sameslocald chemical com-
position.

There are several key questions that have not been ad-
dressed in the instability theories for glass formation.s1d
How is the packing instability relevant when a liquid is
cooled, or how the CCR observed in quenching the glass-
forming liquid connects to the packing instability or glass
formation?s2d What are the roles in glass formation played
by competing crystalline phases which could form under the
same instability conditions, or if the polymorphic constraint
is no longer valid? In the following, we shall probe these
questions from a different angle in the HS system.

Since there is no attractive interaction, phase stability and
thermodynamic properties in hard sphere systems are domi-
nated by packing density. The maximum achievable packing
density in binary mixtures depends on atomic size ratio and
relative solute atom concentration. We can estimate the pack-
ing density of a binary mixture made by mixing smaller at-
oms uniformly with the large ones to form a random substi-
tutional fcc solid solution.sFor the pure hard sphere system,
fcc packing is the equilibrium structure with the highest
packing density.d Its packing density can be readily calcu-
lated as a function ofxB anda sRef. 25d,

wfcc
b =

p

3Î2
f1 − xBs1 − a3dg, s3d

where 0.5øaø1 and 0øxBø0.5. Equations3d is plotted
for xB=0 spure systemd andxB=0.20sbinary mixtured in Fig.

4. This equation gives the exact result in the pure system
corresponding toxB=0 anda=1. In the same figure, we also
plot the maximum, or final packing densitieswm andwfcc

b for
glasses and fcc solid solutions from our simulations. The
lower packing density for the pure system and binary fcc
mixture, or solid solution from the simulations is a result due
to the presence of defects, grain boundaries, or nonuniform
distribution of atomsfsee Fig. 1scdg.

Equations3d shows thatwfcc
b decreases monotonically asa

moves to smaller size ratios. If we allowwfcc
b take values at

smaller a, we will soon run into a dilemma: The packing
density wfcc

b of the mixture with fcc structure will become
smaller than the packing density of a glass. In other words,
the mixture will be more stable if it collapses into a disor-
dered state that has a higher packing density. The crossover
point in the packing density from fcc to a disordered but
denser phase signals a possible phase transitionsorder-to-
disorder or crystal-to-glass transitiond.

The critical value fora can be found at which the packing
density of the fcc mixture equals that in the disordered,
glassy state. From the simulation results shown in Fig. 4, we
can see that the critical value for this transition occurs at
0.75,aC,0.80 for xB=0.20. The upper bound ataC=0.80
coincides witha at the boundary of the best glass-forming
region obtained using the LCCR in the quenching process
sFig. 3d.

We can also estimate the critical limit fora directly from
Eq. s3d. If we assume that the glass transition occurs when
the packing density of the crystalline mixture reaches that of
the glassy phase, orwfcc

b =wglass=0.65, the critical size ratio
aC=0.73. This estimate is slightly lower than the values ob-
tained from simulationss0.75,aC,0.80d. The discrepancy
between these two critical atomic size ratios comes from
difference inwfcc

b in Eq. s3d and simulations. In Eq.s3d we
assume a perfect fcc structure while in simulation, various
disorder may be presentfsee Fig. 1scdg. The later will lower

FIG. 4. Variation ofwfcc
b with a for a puresxB=0d and binary

systemsxB=0.20d. Packing densities obtained from simulations are
also shown: Filled circles represent the fcc binary solid solution and
open circles represent the amorphous phase. Multiple symbols at
the samea represent packing densities of the same system under
different quench rates.
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the values ofwfcc
b and thus raise the estimated critical value

of atomic size ratioaC in our simulation results in Fig. 4.
From these results and Eq.s3d, we can, therefore, obtain a

formal relation between the minimum alloy concentrationxB
and the atomic size ratioa, which marks the boundary of the
glass-forming region

xB
min =

1 − 3Î2wfcc
*b /p

u1 − a3u
=

A

u1 − a3u
. s4d

The glass-forming region is defined atxBùxB
minsad. The co-

efficient in Eq. s4d, A=1−3Î2wfcc
*b /p=1−wfcc

*b /wfcc, where
wfcc=p /3Î2=0.74 is the packing density of a pure fcc phase.
wfcc

*b is the critical packing density of the metastable fcc solid
mixture at the onset of the instability. For an estimate, we let
wfcc

*b equal the packing density of the glass phasewglass and
wfcc=0.74. ThenA=0.122 if we substitute the packing den-
sity for the amorphous phasewglass=0.65 forwfcc

*b . If we use
the value forwfcc from our simulationsFig. 4d, wfcc=0.70, we
haveA=0.07. The phase boundaries estimated using Eq.s4d
with A=0.7 agree very well with our simulation results in the
range of 0.7øa,0.85 ssee Fig. 4d.

A similar relation fEq. s4dg was derived by Egami and
Waseda.7 The coefficientA was estimated to be 0.1 in their
work.7 Our results presented above show thatA is generally
not a constant. It is a function of the atomic size ratio
through the packing densitywfcc

*b which is dependent ofa
sandxB as welld.19 Note also that Eqs.s3d and s4d are appli-
cable to the systems where the ground state, or the host is the
fcc phase.

In deriving Eq.s4d, and also in the model by Egami and
Waseda, a polymorphic constraint is imposed: There is no
alloy concentration change allowed. On atomic scale, we as-
sume that alloy elements are not allowed to move beyond the
first neighbor shell once they occupy fcc lattice positions.
Clearly, this constraint is not valid in a glass-forming liquid
when it is cooled toward undercooled region. Atoms do have
time to move through diffusion, unless the cooling rate is
infinitely fast, or at least faster than that determined by the
characteristic diffusion time of the system. Therefore, the
instability theories of the hard sphere modelfEq. s4dg and
Egami-Waseda model are only valid for high cooling rate.
This conclusion is corroborated by our simulation results
sFig. 3d.

s1d As mentioned early, in simulation the glass-forming
boundary in the region ofa.0.85 shifts to the right as the
cooling rate increases, and become closer to the theoretical
boundary predicted by Egami and Waseda. The boundary in
a.1.2 shifts upwards. In both cases, the glass forming re-
gions are larger in the instability models than those from our
simulations, and are closer to the simulated boundaries with
high cooling rate.

s2d For the glass-forming systems ata,0.75, the best
glass formers are those mapped out by our simulations since
they are obtained using the slowest cooling rates. The glass-
forming boundary predicted from Eq.s4d is below this curve.
In fact, we can make the crystal-glass phase boundary in this
region to follow exactly the predicted relation. But the cool-
ing rates in the simulation at each point along this boundary

will be different and also much higher.13 The reason for this
discrepancysor the upward swing of the boundary asa de-
creasesd is the formation of two disordered fcc phases with
different solute concentrations,19 which is not considered in
Eq. s4d and the Egami-Waseda model. We shall return to this
point in next section with more details. Therefore, we could
conclude that the instability criteria are not suitable for pre-
dicting glass formability, as they only apply when cooling
rate is extremely high; while to predict glass formability, it is
the slowest cooling rate that matters.

IV. DISCUSSIONS

How atomic size difference affects glass formation has
been an outstanding problem in materials science and glass
synthesis. Using a hard sphere model, we were able to sim-
plify the issue to a relation involving only atomic size ratio
and relative alloy concentration in binary systems. This
model system makes it possible to see how the critical cool-
ing rate of a glass-forming liquid is related to the atomic size
difference. We need to stress here that this relation does not
necessarily predict the glass formability for real binary alloys
or mixturessdirect reference can, however, be made in sys-
tems exhibiting hard-sphere-like characteristics, such as col-
loidal particles, granular matter, and rocksd; instead, it shows
us what the glass formability should look similar to if it is
affected by atomic size difference alone. Modifications to the
kinetic diagram for the glass formation would occur once
other factors, especially the heat of mixing, or attractive in-
teratomic interactions, are considered.27 Nevertheless, this
relationsFig. 3d is expected to provide a useful reference for
atomic size effect if different atoms, or particles are consid-
ered for making bulk metallic glasses or colloidal glasses.

This work focuses mainly on characterizing phenomenol-
ogy using computer simulations of glass formation and glass
formability as a function of atomic size difference, including
the critical cooling rate and glass formabilitysSec. III Ad,
kinetic glass formation diagramsSec. III Bd, and packing in-
stability of mixturessSec. III Cd. There are also results that
have not been presented in detail in this paper, but are im-
portant for understanding the observed phenomena. In the
following, we shall briefly summarize them:

Competing microstructures. As mentioned in Sec. III B,
the phase boundary for the glass formation region shifts to
higher value ata,0.75 salso at a.1.2d. This and other
parts of the kinetic phase diagram are closely related to the
formation of various microstructures and crystalline
phases.19 A brief summary of the crystalline phases observed
in our simulation is listed below.

s1d In the range of 0.5,a,0.75, we observe local clus-
tering of the same type of atomssFig. 5d. This phenomenon
is more pronounced in the binary systems of small atoms
mixed into the host of large atomssa,1d than that in the
systems with large atoms mixed into small host atoms
sa.1d. s2d In the region arounda,0.40, an intermetallic
phase form that consists of the large atoms occupying the
regular fcc lattice and the small atoms sit in the octahedral
interstitial sitessFig. 6d. The glass formation becomes pos-
sible only after all octahedral sites are occupied, or the mini-
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mum concentration of the small atoms is larger than 0.5ssee
Fig. 3d. s3d For systems with slightly larger size ratio,
0.41,a,0.5, we found very small number of octahedral
sites occupied by small atoms. Disordered fcc packing is
abundant. This is not a surprising result since interstitial solid
solution is very difficult to form due to the exceedingly high
energy even when atomic size mismatch does not deviates
much from the octahedral interstitial ratiosa=0.41d. Corre-
spondingly, we see that the phase boundary in Fig. 3 rises
steeply in 0.4,a,0.5. s4d In the region arounda,0.20,
we observe the formation of another intermetallics with large
atoms occupying the fcc lattice and small atoms occupying
the octahedral sites. In this case, small atoms, usually a

group of them ranging from two to four or six, occupy the
same octahedral site.s5d For a.1.2, the same trend of up-
ward shift of xB

min is observed. However, the magnitude is
smaller than that ata,0.75. The main mechanism underly-
ing this trend is the local concentration change due to clus-
tering of small atoms.

These findings clearly demonstrate that the atomic size
difference affect glass formability directly through the for-
mation of competing microstructure or crystalline phases.
The same driving forcesor energy increase in an interacting
systemd caused by atomic size difference, which are ex-
pected to lead to crystal packing instability, could also lead
to either composition change or crystalline phase formation
in the glass-formingliquid. For the former case, the poly-
morphic constraint no longer holds. For the later case, due to
the different crystalline phases, the mechanisms of the glass
formability could be quite different. In both cases, the refer-
ence localscrystallined packing is different in local chemical
composition or topology from the local packing in the insta-
bility theory7,8 that has the same local chemical concentra-
tion as the mean alloy concentration or just one local crystal
structure.

For a given cooling rateq, the liquid has a time scale
determined by the cooling ratet,1/q. On the other hand,
the system have characteristic time scales for forming differ-
ent crystalline phases or microstructures,t1,t2, . . .tn, where
n is the number of possible crystalline phases and micro-
structures. These different time scales are determined by spe-
cific crystalline phases that would form either in equilibrium
or metastable states. Glass formation becomes possible only
when these competing processes are removed. This requires
that the time scale for cooling the glass-forming liquid,
t,minht1,t2, . . . ,tnj or q.maxh1/t1,1 /t2, . . . ,1 /tnj. On
the other hand, glass formability, as characterized by CCR,
is uniquely determined by the shortest characteristic
time scale amongt1,t2, . . . ,tn. The critical cooling rate is
qc=maxh1/t1,1 /t2, . . . ,1 /tnj. Therefore, the critical cooling

FIG. 5. The atomic structure of a sample with 500 atoms with
a=0.50,x=0.25. The large spheres and small black spheres repre-
sent the large atoms and the small atoms, respectively. To show the
local clustering of the small atoms, a cross section in thexy plane of
the sample is shown. The filled circles represent small solute atoms.
The crystalline order of the large atoms in this cross section is
clearly seen. The diameters of the circles in the cross section are not
in direct proportion to the diameters of the atoms due to the cut.

FIG. 6. Atomic structure of a sample with 500 atoms at
a=0.40 andx=0.50. It forms octahedral interstitial solid solution
and interstitial compound. Small atoms are shown to occupy octa-
hedral interstitials and a periodic arrangement of small atoms is
shown.
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rate or glass formability is determined directly by what the
competing crystalline phase or microstructure is out there for
a given system. As shown above, these competing phases are
quite different in our model system. The detailed mecha-
nisms of how the crystalline phases form leads to the time
scalest=minht1,t2, . . . ,tnj, and the CCR.

For the systems ata,0.40, the small alloy atoms are
fast diffusers in formation of the interstitial solid solution
and interstitial compound.19 The CCR for this system is,
therefore, determined by the formation of thesetwo phases.
This crystallization process could be slowed down when
the available interstitial sites are taken, that is, only when the
solute concentration is high. The excess number of solute
atoms in the liquid has to diffuse a long way to form a
single component fcc phasesor fcc solution with small
amount of large atomsd, which prolong the characteristic
time t. Indeed, the glass-forming boundary for this system is
moved up toxBù0.50 where the lowest CCR are found. As
a comparison, the glass-forming boundary around the region
of 0.75,a,0.85 is much lower,xB,0.20. The reason for
this is that the competing crystalline microstructure in this
range ofa is a eutectic mixture. It consists of twosdisor-
deredd fcc solid solutions, one with large atom as the solvent
and another with small atoms as solvent.19 In order to form
the eutectic mixture, long-range diffusion of both small and
large atoms are needed, which has much longer time scale as
compared with that for the small atoms to diffuse to form the
interstitial compound ata=0.40. Thus the cooling rate is
lower, and the glass formability is higher at much lowerxB.

In neither of the above cases is the polymorphic constraint
obeyed: variation of local chemical concentration occurs;
and there are multiple competing crystal structures as well.
The instability model, on the other hand, demands that the
composition remain homogeneous microscopically and the
two disordered fcc phases are not considered either.

Applicability of the crystal packing instability models.
Following the argument put forward above, we see that the
crystal packing instability models can only treat a rather spe-
cial case where the transition between glass and crystalline
phase is polymorphic. In general, maintaining this constraint
demands high cooling ratesq=qinstabilityd in order to suppress
competing crystalline phases and local chemical composition
variations.26 Therefore, the glass formability determined by
this cooling rate does not reflect the intrinsic material prop-
erty. In general, qinstability@qc=maxh1/t1,1 /t2, . . . ,1 /tnj
= fsDH ,a ,n,x1,x2, . . . ,xn−1d if competing crystalline phases
exist, or alloy composition can change, including short-range
ordering or clustering. In other words, the glass formability
derived from the instability models is the fastest cooling rate,
not the CCR used to characterize the GFA.

V. CONCLUSIONS

Using a binary hard sphere model, we are able to inves-
tigate the relationship between the atomic size difference and
the critical cooling rate and glass formation. Through exten-
sive molecular dynamics simulations, we identified the criti-
cal cooling rates for the systems and their relations with the
atomic size difference. We also obtained the boundary of the
crystallization and the best glass-forming region. We defined
the glass formability as a set of optimal conditions involving
intrinsic material properties that lead to slowest cooling rate
or CCR of the material system. Both the conceptual devel-
opments and computational efforts enable us to study quan-
titatively the atomic size effect on glass formability. As a
result, a glass formability map or a kinetic phase diagram is
mapped out that identify the glass formability and regions of
glass and crystalline phases at different cooling rates.

We found that the glass formability is closely related to
the formation of crystalline phases and other microstructures.
The mechanisms of the best glass formation are different,
depending on what and how the competing crystalline phases
form. Therefore, the glass formability is different for differ-
ent systems with different intrinsic material properties. This
conclusion manifests in the four different glass-forming re-
gions marked by different atomic size ratios. The potency of
atomic size difference in the different regions is, therefore,
quite different. It diminishes as the competing crystallization
emerges.

The results obtained from the simple hard sphere system
have clearly demonstrated that glass formability is an intrin-
sic material property necessarily connected to crystal form-
ability. This conclusion provides a direct support, albeit in a
numerical model, for Turbull’s proposal1 that the best glass
sor highest glass formabilityd can be obtained only when
crystalline phasessd cannot form. Furthermore, we learned
that the instability models are incapable of predicting glass
formability snot the glass formationd due to the strict kinetic
constraint.
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