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Atomic size effect on critical cooling rate and glass formation

Payman Jalali and Mo Li
School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Received 10 November 2003; revised manuscript received 30 September 2004; published 21 Janyary 2005

Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated
using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically
influence the glass formation, a hard sphere model is employed in conjunction with a newly developed
densification method. The glass formability is defined as a set of optimal conditions that result in the slowest
cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics
simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-
forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy
concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly
by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading
to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal
packing and glass formation are discussed.
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I. INTRODUCTION cially in some of the bulk metallic glass systems synthesized

Glass form ability(GFA), or glass formability, is the mea- recently* The deviations from these rules call for a close

sure of how easy a given material system can be made ingggamination of the glass formability and, most importantly,
glass. GFA is usually quantified by the cooling rate requiredliScovery of the underlying mechanisms of the glass forma-

to make a glass from the liquid. A better or easier glas§i°”' On the practical side, it is highly desirable to establish a

former is the system that requires slower cooling rate. Therg€t Of new criteria that capredictthe glass formability from

are also several other measures widely used to gauge met4i{finsic material properties before any glass is made, as the

lic glass formability. These criteria are featured in their con-Parameters such &, Trm, Or T, used are the properties mea-

nection to other material properties. One is Turbull's reducedsur:?];rr?é?ufh; 2lt?cshs ii?rmgliismaelligﬁg)l/ T(?d:fties have been
glass transition temperatur‘éqG:Tg/Tm,l where Ty is the Prop

- J . identified that are known to affect the glass formability ef-
glass transition temperature afig is the melting tempera- fectively. They areg(1) the heat of mixing of different alloy
ture of the corresponding glass-forming system. Another i lementsAH, (2) the atomic size difference, or atomic size

the difference _b_etween the crystallizatic;n temperature an tio, «, (3) the number of alloy composition, and(4) the
the glass transition temperatuld =T,— Ty~ As pointed out  rg|ative concentration of each of the alloy elements
by Turnbull, a good glass former is the one of which they v, . x .. For example, nonpositive heat of mixing is
critical Trg equals to or becomes larger than 2/3. Otherwisepeeded to ensure the stability of the glass-forming liquid.
crystal nucleation prevails during cooling, which pre-emptiesincreasing number of alloy components seems to lead to bet-
the glass formation. On the other hanllT measures the ter glass former8However, the precise mechanisms of how
temperature window between the glass transition and the firshese material properties affect the glass formability have not
crystallization when a glass is heated up from below. Highbeen fully apprehended.
values of AT usually indicate more stable undercooled lig- As a result, the glass formability is still determined based
uids. Clearly these two criteria attempt to measure the samen the derivative properties such &g T, or T,.173 Synthe-
glass formability using different references with respect tosis of metallic glasses remains an empirical process: A large
Ty The critical Trg uses melting poinfT,,, of the glass- number of alloys are prepared by trial and error; and thermal
forming liquids as a reference aid” uses the crystallization and structural analysis is performed on the samples. Then the
temperaturel,. Recently a new criterion is proposethat  abovementioned criteria are tested using the data from the
takes bothT,,, and T, as the reference. measurements. Although the output from the testing against
Both criteria are connected, though implicitly, to kinetics the criteria can be used as an important intermediate step to
of glass-forming liquid: a highTrg implies thatTy is closer  guide the search of better glass formers in a large number of
to T,,,, thus a slow cooling rate is attainable when the liquid iscycles of trial and error, the lack of an effectivaepriori, or
cooled across the narrower temperature dap Ty, larger  intrinsic-material-property-dependent criterion greatly limits
AT also indicates a slower cooling rate as the undercooledur ability to predict and discover new bulk metallic glass
liquid can be kept longer belowW,. Therefore, slow cooling systems.
rate is indicative of a better GFA: The better the GFA is, the In this paper, we shall study one of the factors, the atomic
lower the required cooling rate for a glass-forming liquid, size difference. It is one of the intrinsic material properties
and larger or more bulky a glass sample can be Made. known to affect the glass formability critically. Experiments
Indeed, a large number of good glass-forming systemshow that the glass formation is easier if the atomic size
obey these criteri&:® But many exceptions also occur, espe- differences of the selected alloy elements are larger than
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12-15 %® It is also a common practice in computer simula- sphere model to probe the effects of only atomic size differ-
tions to use systems made of atoms or particles of differenénce on the glass formability, which is impossible to do in
sizes to enhance glass formation. This empirical relation beexperiment. With the help of a discontinuous densification
tween the atomic size difference and glass formability, howmethod in the MD simulation, we are able to identify the
ever, has not been explored theoretically as much as it shoulghitical cooling rates of the binary hard sphere system as a
be. Only a semiquantitative relation is availdi¢hat con-  function of the atomic size ratio and alloy concentration. We
nects the minimum alloy concentration for the glass forma|so characterized various metastable and stable crystalline
tion and the atomic size difference. Glass-forming regions irhhases and chemical clustering formed during cooling of the
binary systems are predicted using this model. A large num; lass-forming liquids that are competing with glass forma-
ber of transition metal or refractory metal binary systems argj,, ‘rrom the structure analysis of these crystalline phases
shown to follow the trend predicted by this modélBut and clusters, we could infer the changing potency of the

many exceptions also occur, which include binary system N " .
made of metal/metalloid and rare-earth/transition-metal at%tomm_smg effect on glass formablhty. Finally, we m?pped
ut a kinetic diagram of glass formation from these simula-

oms. They are known to have large charge transfer durin | ks the bound 2 al formi on in th
mixing. Even within the binary systems that follow the gen- ons. It marks the boun ary ota giass-iorming region In the
eral trend predicted by the relation, the deviations in theParameter space of the atomic size ratio and alloy concentra-

calculated minimum alloy concentrations from known ex-ton. _ _ _
perimental ones are typically in the range of 588 %. This paper is organized as follows. In the next section, we
Mixing solute atoms of different atomic sizes with the outline the simulation methods and the model hard sphere
host atoms introduces packing incompatibility crystalline ~ System used in our simulation. In Sec. lll, we describe the
phas¢ and as a result, local atomic stress arises. If the fluctesults obtained from our simulations of a binary hard sphere
tuation of the local pressure caused by the atomic size difSystem, including the critical cooling rate, the lowest critical
ference reaches a critical value, the local coordination numcooling rate, crystalline phase formation, possible mecha-
ber of the atom with different atomic size from its neighborshisms of local packing instability caused by atomic size dif-
will prefer to have local packing of noncrystalline symmetry, ference, the limitations of the instability models, and the ki-
thus resulting in glass formation. This mechanism proposedietic diagram for glass formation. In Sec. IV, we discuss the
by Egami and Waseda has implicitly the substitutional solidrelations between crystalline phase and the glass formation.
solution in mind’8 A recent extension of this model consid- Finally, we summarize our work in Sec. V.
ers alloy elements that could sit in the interstitial sites of the

host CryStaI StrUCtUré.SThe atomic size dlsparlty of the in- II. MODEL SYSTEM AND SIMULATION METHODS
terstitial atoms with the host atoms leads to another bound in
the glass formation regiof0.60< «<0.80. However, the The model material used in this study is a hard sphere

atomic size ratio of most pairs of atoms in the periodic table(HS) system. Atoms in this model are represented as hard
is usually in the range of 0.7-1.3 for majority of metal at- Spheres. Different from the systems with continuous inter-
oms. Only very limited number of binary systems with at atomic potentials, such as Lennard-Jones or embedded atom
least one transition or refractory metal atom falls into thispotentials, atoms or particles in HS systems interact with a
region (¢<0.70. This new bound, therefore, has very re- potentialV(r;j) that is purely repulsivé’ that is, V(r;;) = if
stricted application in glass-forming systems of transitionfi; < (di+d;)/2, andV(r;;) =0, otherwiser;; is the separation
and refractory metals. But many nonmetallic glass-formingdistance between atomandj in the systemg; andd; are
systems have different sized constitutive particles such as itheir diameters, respectively. Therefore, a multicomponent
colloids, granular particles, and minerals. In these systemsystem made of hard spheres of different sizes has zero en-
particle size can vary freely. thalpy of mixing. This choice of the model system is made
Egami-Waseda model captures some trend of the effect afeliberately to single out the atomic size factor from the rest
atomic size difference on the glass formation. Due to thedf the intrinsic material properties, as it is known that mixing
complexity of the problem, detailed mechanisms of howdifferent types of atoms introduces not only different atomic
atomic size difference affect topological packing and glassliameters but also different enthalpies of mixing. The hard
formation still remain unsettled, especially those pertinent tesphere model system allows us to focus on the effects of
kinetics of glass-forming liquids. For example, what is its atomic size only.
connection to the cooling rate of the glass-forming liquids? For binary hard sphere model, there are only two param-
How does the atomic size difference affect glass formabilityeters that can fully characterize the system. One is the atomic
if multiple stable and metastable crystalline phases are igize ratio,a=dg/ds, and the other is the relative concentra-
direct competition with glass phase? Answers to those issud®n of the alloy elementz=Ng/(Na+Ng), whered, anddg
which are not considered in the previous models, are exare the atomic diameters of typeandB, andN, andNg are
pected to further our understanding of glass formability ancdhe number of each type of the atom&=Na+Ng is the total
also contribute to establishment of a truly predictive criterionnumber of atoms in the system. In the rest of this paper, we
for glass synthesis. shall call the typeB atom the solute atom, or alloy element,
To answer these questions, we carry out an investigatioand the typeA atom the host, or solvent atom. The solute is
using molecular dynamic@vD) simulations. The advantage the minority elementx<0.50 and the solvent is the major-
and uniqueness of this approach will become clear as outy element. Their names can switch if the solute becomes
work progresses in this paper. Specifically, we employ a hareahajority, as we see later in this work.
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The simulation technique of this hard sphere model sys- dj' = d; + ot/ a;. (1b)
tem is correspondingly different from that of the systems
with continuous interatomic interactions. Instead of solvingThe size ratio between atonandj is denoted byy;, that is,
the equations of motion for atoms in a series of discrete tim@,ij =d;/d,=d]/d]. The size incremendd, is a fraction of the
steps as in the standard MD simulations, the changing poskurface-surface distancé,, od;=f[di/(di+d))]dmin. The
tions, and velocities of the hard spheres are acquired througfalue of the coefficienf can be chosen between 0 and 2, as
the events of collision. The collision time of a pair of atomsit js not desirable for the size growth to introduce any over-
is obtained when the separation of two atoms approaches thgpping between the spheres. In the present simulafiaas
sum of their radiiry=(d;+d;)/2. Two different techniques set to 0.9. Once the size incremendd, and 8d; = &d;/ o;; are
are used to determine collision partners of each spidre.  determined for the two types of atornandj, the diameters
one technique, we assign an array for each particle that comf the rest of atoms of the same type will be changed by the
tains the list of its neighbors up to théh nearest neighbors. corresponding amount while the size ratio is maintained. So
This neighbor list is modified periodically depending on howin a quenching process, the diameters of the atoms with dif-
fast the neighbors change. The valuekds usually 2 or 3,  ferent sizes remain constant up to tilgand then they jump
which depends on the instantaneous packing density of syso new values. They subsequently remain constant until the
tem. For a very dilute systerk,may be increased to 5 or 6, next step which is determined again by the available mini-
while it can be 1 for a jammed state. Obviously the updatingnum separation,,,,. Note thatt, controls the densification
period of neighbors list affects the efficiency of the rate. Larger values df, correspond to smaller densification
algorithm? In the second technique, we implement linked rates. The mean quench rate is determined by the mean

cell structure to determine the collision partners of particlesgrowth rate of packing density of the system within a time
Each particle belongs to a cell and its collision partners argnterval made of 10-20 such steps.

searched within this cell and the neighboring c&lis These Each simulation starts wittN number of spheres, typi-
techniques can reduce the number of calculations considegally N=500—20 000 in this work, which are distributed in a
ably and larger systems can thus be handled. To avoid unew-density (or liquid) configuration. An initial quench rate
necessary digression from the main theme of this paper, wig chosen for each system characterized by different atomic
leave the technical details of the algorithm and computatiosize ratio and concentratiofw,xg). The system is subse-
efficiency in a separate publicatiéhWe only give a brief  quently quenched to higher density. Different quench rates
description of the algorithm used in this work below. can be implemented in the simulation for each given system.
Another special feature of these simulations is modelinga high quench rate usually leads to glass formation. As
quench process. For hard sphere systems, temperature is R@own in the next section, by varying the quench rate, we
defined independent of other state variables. In fact, it i%an |dent|fy the critical quench rate Crossing which Crysta|_
directly related to the packing density of the systérfihere-  jine and glass phase boundary is traversed. The critical
fore, quenching a hard sphere liquid is the same as increasinfiiench rate thus identified is the slowest cooling rate that
the packing density. For this reason, we use “quench” an@epresents materials’ GFA.
“densification” synonymously. In this study we adopted a Note that in the algorithm we adopt here, the diameters of
discontinuous densification algorithm that allows us tOsphereS increas(a) discontinuous]y andb) based on instan-
quench a liquid but avoid trapping the system as much aganeous minimum atomic distance. These provide extra
possible in artificial metastable states. So the equilibrium aghance for relaxation of atoms during densification as com-
well as metastable crystalline phases can be obtained relgared to previously used algorithms. This can be observed in
ably. Fig. 1(a) in which the rate of packing density growth de-
The central idea of this algorithm is to increase the sphergreases beyond certain tinfer packing densitydue to the
diameters in a controlled fashion, which is equivalent to in-decrease in the minimum atomic distance at h|gher packing
creasing the packing density while keeping the volume of thejensities. A previously used densification algoritfrwith
simulation box fixed. During a quench or densification pro-constant rate of diameter growth introduces an increasing
cess, we increase the diameters of the atoms, usually afterrate of packing density growth in time, as shown in Fig)1
given time interval. The amount of radius growth is not aThijs will add additional, undesirable forces for overlapping
constant at each step; it depends on the minimum separatigfioms and therefore, causes the system to evolve unnaturally
distance between two atoms available in the system at th@ward glass transition, and in particular, crystallization,
instant. We consider a binary system below. The same fofwhile our present algorithm does not do so.
mulation can be extended straightforwardly to monatomic as Tg map out the kinetic diagram for glass formatigfig.

well as multicomponent systems. . 3), we have run several hundreds of samples for different
Suppose that at a given time, the minimum surfacecombinations of atomic size and solute concentration. Each
surface distancel, is found between atomsandj of di- ~ sample is simulated with 5-10 different quench rdtese

ameterd; andd; in the system. Their new diameters will be Fig. 1(b)]. Each simulation lasts several million collisions.
assigned using the following relations to assure that th@ata are collected at the end of the simulations and various
original size ratio will not change: measures are taken later to characterize structures of the bi-
nary systems during and after quenching. Among them are

radial distribution functions, the bond orientational order dis-

di =d+5d;, (1a) tribution function, the nearest-neighbor number distribution
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FIG. 1. (a) Variation of packing density versus time with different initial densification rates. The fast densification has the initial rate of
01:=0.0055 and the slow densification fgs=0.0014. Solid lines represent the results of the current simulations and dash lines represent
curves using the protocol introduced in Ref. 14. Thin solid lines show the initial slope of the curve in our sim@at@ependence of the
final packing density on initial quench, or densificati@ef. 16 rate(I'"Y) in a one-component system. Our cooling rgtis related tol’
by q=(a®Nw/2Va?IT,)I'. N is the number of spheres in the periodic bexis their dimensionless diameter, afigrepresents a reduced
temperature defined based on dimensionless velocity of spheres. We prefergoatiser thanl’ as it is a general definition that can be
readily used in binary and polydisperse packing. Each circle represents one MD simulation of the system at a specific quench rate. 500
spheres placed in a cubic box are used. The critical densification mgte @s00453. The sharp division of the crystal and glass phase region
can be seen. Results of a continuous size growth algofieh 16 is also shown by squares connected by solid ljpeQuenched samples
consisted of different number of sphe@® 000, 3000, and 500All samples are obtained around their CCR, whichds 0.0039 with 10%
variation. (d) Variation of PV/NkgT with ¢ for the cases shown in Fig(d. Black, light gray and dark gray colors represent samples with
20 000, 3000, and 500 hard spheres.

function, as well as visualization. Another method for detect- Since the critical quench rate is measured through crystal-
ing phase transition in each simulation is to plot the equationization, possible effects from finite sample size need to be
of states,PV/NkgT versus the packing density, whereP  checked. In this work, we used three sample sizes 500, 3000,
andV are pressure and volume of the system, kpis the  and 20 000, to test the finite size effect. The variation of the
Boltzmann constant anflis the system temperature. If crys- critical quench rates is found less than 10% for a variety of
tallization occurs, a sharp drop can be observeB\WWMINkgT ~ mixtures («=0.2) with different sample sizes. This agrees
at the transition packing density. This transition packing denwell with the results in simulations of HS systems where
sity is around 0.56 for monodisperse packing, but it maycritical crystal nucleation size is known to be less than a few
vary from 0.55 to 0.59 in binary mixtures. hundred atom$> Most of the results presented in this work
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are performed using 500 and 3000 atoms. However, the finitgorithm, we may not be able to get CCR and accurately map
size effect can no longer be neglected for systems with largeut correct glass-forming diagrateee Fig. 3.

disparity in the particle sizéx<0.2) and small solvent con- Furthermore, CCR is found insensitive to the system size
centration. The slow kinetics of the large sphere and theiflifference between 500 and 20 000 spheres. Figum 1

relative scarcity could make the crystallization process diffi-shows the configurations obtained from densifications of
cult. We shall encounter this issue in next section. 500, 3000 and 20 000 monosized spheres crystallized at their

CCR’s. The averagec is found to be 0.0039 through these
samples with a maximum variation of 10%. Even though

IIl. RESULTS CCR remains constant some differences are observed as the
size of system increases. For example, a system with 500
A. Identification of critical cooling rate spheres forms single crystal while systems with 3000 and

As discussed early, the glass formability of a glass-20 000 hard spheres form polycrystalline phases. Such a dif-

forming liquid can be defined as a set of optimal Conditionsference is also reflected in the equation of state for each

that result in the critical cooling ra€CR). The conditions ~ SYStem. as shown in Fig(d): The drop of the pressure at the

. s : : crystallization becomes much less and the pressure versus
are the aforementioned intrinsic matenal properties. Therepacking density becomes almost flattened out for larger sys-
fore, we can formally write the critical cooling ratg as a

. tems. A horizontal line is expected for an infinitely large
function of these parameters system. For practical purpose, therefore, small system is a
better choice to detect possible crystallization.

As shown below, in binary HS systems the CCR depends
On the other hand, we define cooling rate operationally insensitively on the atomic size ratio and shows a significant
our simulation agj=de,/dr, whereey is the initial packing  change as solute atoms are added to the host. As alloy ele-
density andr stands for dimensionless timg.can be se- ments of different diameters are added to the host of atoms,
lected prior in our simulation as described in Se¢also see  the critical cooling rate is expected to decrease. To obtain the
Fig. 1(a)]. Unlike an earlier definitiof? for the cooling rate critical cooling rate in the binary mixture, we prepared a
I, the current definitior, is conveniently used in bidisperse series of samples that have different size ratios at a fixed
and polydisperse mixtures. concentratiorxg of small atoms. We then quench or densify

In a binary hard sphere system, the relation shown in Egthese samples with different initial quench ratedherefore,

(2) is reduced tayc=f(a,xg). This simplification allows us at a given solute concentratiog, each simulation is charac-

to seek direct relation between the atomic size ratio and theerized by two independent parameters, namely the size ratio
cooling rate. Through a series of simulations with differgnt « and the densification, or quench rateThe final phase in

at each point ata,xg), we can locate thgc. The critical  each of the simulations is characterized and its packing den-
cooling rateq is the one below which the first crystalliza- sity is calculated. The critical cooling rate is identified as the

tion would occur. In other words, the CCR is the lowestlowest cooling rate for each system before crystallization oc-
cooling rate for a given glass-forming system. curs. In the following, we show the quench process and the

It is worth to mention that in computer simulation, sameresults forgc=f(a,Xg) from three systems az=0.1, 0.20
as in real experiment, glass phase could always form if thend 0.3.
cooling rate is sufficiently high. However, the CCR may not  Figure 2a) shows the phases obtained using various cool-
be attainable in many atomistic simulations because thing rates and the critical cooling ratg, or CCR, for the
small time scales dictated by the interatomic potentialssystem atxg=0.2. The vertical axis represents the final, or
(<xE"Y2 whereE is the characteristic interatomic bonding the steady state value of the packing dengityachieved by
energy and the finite simulation time'¢:1’ The time scale in  continuing simulations up to a large enough time. The pack-
the hard sphere system is not well definedEais zero. In  ing density ¢ is defined as the ratio between the volume
addition, the dynamics in the hard sphere model is fast. Thusccupied by the atoms and the total volume of the system.
we could, with relative ease, identify CCR for our HS model Each vertical bar in Fig. (@) represents the location of each
system characterized by andxg. sample in thew-q parameter space and its height shows the

The CCR is the property uniquely determined by the in-corresponding value of the final packing density. The tip
trinsic material properties. The pure systém¥ 1,x3=0) has  of each bar marked by either a filled circle or an unfilled
the highest CCR. As shown in Fig.), q. of the one- circle represents crystalline and amorphous phase respec-
component hard sphere system can be unambiguously idetively.
tified using our adopted algorithm. This cooling rate can be The critical quench rate is identified in the diagram as the
used as a reference point for all alloy systems since the timwest cooling rate and it forms a boundary separating the
in the hard sphere system is unitless. And thus direct comerystalline phase and glass. A smooth boundary from the
parison with experiments can be made with the relative, odiscrete number of simulations is determined using a curve-
normalized cooling rates using the CCR of the pure systenfitting tool in MATLAB .18 The axis corresponding tqc is in
as the reference. Note that the Lubachevsky-Stilling&) logarithmic scale in Fig. @). The general trend is obvious,
algorithm#16 does not show a clear boundary between glassiamely, at a given atomic size ratio, increasing quench or
transition and crystallization as we compare their results witldensification ratej leads to more disordered or glassy phase.
ours in Fig. 1b). This is a crucial test for us in adopting our Or with a given quench rate, decreasing the atomic size ratio
densification algorithm to determine CCR; and using LS al{or increasing atomic size differencéeads to disorder or

dc = f(AH, a,N, X3, X9, + .. Xn_1)- (2)
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comes excessively longThe CCR atxg=0.30 are also the
lowest among three systems teste¢=0.1,0.2,0.3 As
shown later, the best GFA systems determined above coin-
cide with the regions where the equilibrium phases are eu-
tectic. The glass-forming liquids with these atomic size ratios
can be cooled with the slowest cooling rate; In other words,
glasses with the largest size can be made for these systems.
The rendering of the relatiorge=f(a,Xg), in the entire
parameter spacéx,xg) would be desirable; but very time
consuming. Some may not even be possible to obtain due to
slow kinetics for crystallizatiorfand finite simulation time
However, these systems usually have high solute concentra-
tions, or extreme ratios of atomic siz€swhich are outside
. . . : of the domain of interest for metallic alloys. An alternative
0.005 - ] way to obtain this relatiomc=f(«,xg) is through contour
plot shown below.

0.001 |

B. Glass-forming diagram

0.0001 A kinetic phase diagram can be mapped out in the entire
parameter spacé&g,«) to show a systematic view of glass
and crystal phases, glass-forming regions, and glass form-
ability. As noted early, any sufficiently high cooling rate can
lead to glass formation. Therefore, unlike equilibrium phase
diagram, in this kinetic phase diagram, cooling rate must be
considered. This diagram can be obtained from simulations
of the HS systems with differen; and « at a given quench
, , , , rate g accessible to our computing capability. In this case,
0.75 08 0.85 09 0.95 1 instead of changing the cooling rate for each systemgat
(b) o and a as we did to identify the CCR, we change the param-
etersxg and « at each preselected. The boundary can,
therefore, be obtained that marks the transition point between
glass and crystalline phagevhich is amount to mapping
out the glass-crystalline phase transitions at a specific cool-
ing rate q from the glass formability map(Fig. 2),
g=09c=f(a,xg)]. If a series of cooling rates are selected
glass phase. Clearly, the glass formability, as represented kgyoperly, a contour plot can be mapped out. The contour plot
the cooling rateyc differ for systems with varyingy at dif-  of the kinetic phase boundaries 3 and « obtained from
ferentxg. The GFA increases as the cooling rate decreasedifferentq defines the glass-forming regions. Such a kinetic
when « change from 1 for the pure system to 0.6 for thephase diagram is shown in Fig. 3.
alloys. gc drops the largest at;=0.3. As seen below, this  Figure 3 shows the glass-forming region for a large range
trend of decreasing|c or increasing GFA is related to the of the atomic size ratio and concentratiomith 5 or 10 %
slowing down of the kinetics in the microstructure formation interval for change ine and xg) at three different applied
of the equilibrium crystal phases caused by atomic size difcooling rates, corresponding to medium, slow and extremely
ference. slow cooling. They differ about five times from each other.
It is interesting to notice that among the CCR’s, some arel'he slowest one is taken as the CCR from the system with
the lowest for certain systems. As shown in Fig. 2, for thea=0.80 andxg=0.20 as shown in Fig. 2.
atomic size ratiaox<<0.85, the CCR starts to level off for the First, we notice that the glass-forming boundary of the
system atxg=0.2. It reaches a plateau in the range aroundmixtures in the range 0 «<<0.85 is almost invariant to the
0.70< @< 0.80. This lowest CCRLCCR) is found to be change of cooling rate. At this range @f the corresponding
gc=5x10"° for «=~0.80, xg=0.20[Fig. 2@)]. As a com- concentration for the glass-forming boundary is around
parison, the LCCR for the pure system, which is the same axs=0.20. Coincidently, the atomic size differences for the
CCR, isq2~5x 1073 g2 is almost two orders of magnitude alloy composition are remarkably close to the critical values
higher than that of the mixture. found by Hume-Rothery for crystalline solid solubility
The systems with the lowest critical cooling rate are the(a=<0.85.2° As shown in a large number of real binary
best glass formers. For our model systems with the alloyystem& the stable phases in the binary alloys beyond the
composition atxg=0.20 they are those at the atomic sizesHume-Rothery atomic size limit are eutectic. Our results
0.70< @< 0.80. For the systems ai=0.30 the LCCR is show that indeed, these systems with the highest stability
inaccessible forr< 0.80 (beyond which simulation time be- (with almost invariant glass-crystal phase boundary shown in

0.00001

x, =030
8 Crystal

FIG. 2. (a) The quench rate versus atomic size rdtie-«) for
the binary mixtures withlkg=0.20. The vertical bar represents the
final packing densityp,, The CCR is shown as a dotted ling)
The critical quench rate€CCR) versus atomic size rati@—«) for
the binary mixtures withxg=0.10, 20, and 0.30.
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i higher alloy concentrationg starting ata<<0.75 is caused
0.9 1 . . . . .
" by formation of different crystalline microstructures and in-
0.8 L Glass 1 termetallics or compounds. A phase separation of two disor-
- i | dered fcc solid solutions occurs arouaet0.752° This find-
: | ing is fundamentally different from the mechanism proposed
0.6 h.' 1 in Ref. 9, where homogeneous interstitial solid solution is
i assumed and become unstable and thus determining the
Ve 0.5 1 glass-forming region boundary. The mechanism involving
0.4F two competing crystalline phases were not anticipated in the
early models’®
0.3 When the solute concentration becomes higher
(xg>0.80 we can consider the systems as mixiagsmall
0.2 .
amount of large atoms into the host of the small ones. The
0.1 Crystal atomic size ratio in this case is effectively greater than unity,
9 or a>1. For this reason, we plotted this portion of the dia-

gram(a>1) separately in Fig. 3. The boundary fits Egami-
Waseda model in the region atlda< 1.1 (Fig. 3). This is in
FIG. 3. The kinetic diagram for glass formation obtained ata sharp C_ontrast 0 the region_ with low solute conc_entrgtion
three d.iffe.rent cooling rates represented by thinner lines. Solid Iine(t-he left side of the- dlggram withr < 1). We can explain this
dash line, and dotted-dash line stand for the cooliné rates Oglﬁerencg by the k|net|ps of the Iqrge atoms, The large atoms
> P g s 4 ; re less likely to move in the environment of small atoms. As
0=1.5%107, Gp=5.5X 107, ;=2.8x 107, respectively. As a o result, we found no detectable amount of microstructure
comparison, results from Egami and .Wasémf' 7 (th'.Ck dash forming (promoted by large atomsn this region. However,
line) and Miracle and SenkofRef. 9 (thick dotted-dash linemod- . .
els are also plotted. The areas representing glassy and crystallir’?‘eS the atomic size difference becomes larger 0.50.and
regions are outlined in the figure. a>1.2), subtle mlcrqgtructures start t'o form, that involve
small atoms reorganizing themselves into ordered structures
Fig. 3 and best glass formabilittamong the slowest cooling in the interstitials of the large atoms. In this region we also
rates shown in Fig. 2have their crystalline counterpart of observed strong finite size effect on the microstructure and
eutectic phase. This finding agrees with the well-known exglass formatiort?
perimental observatiord. The features reported above are observed for all three

Figure 3 also shows agreement in general trend wittcooling rates. However, the magnitude of the change, or
Egami-Wadeda mod&found in the range of 08@<0.80  shifting of the glass-crystal phase boundary is different in
for the systems under the slowest cooling rate. Howeverdifferent regions ofa and xg under different cooling rates.
large deviations from the model are found in the region ofThe largest shift of the boundaries at medium and high cool-
a>0.85 andxg>0.30. In this case, the glass-forming regioning rates are found for systems with<0.70 anda>1.2.
is found to shift to smaller atomic size raia<0.85 inour  The glass-forming region expands with increasing cooling
simulations, while the Egami-Waseda calculation predictgate. Also, the expansion of the glass-forming region in sys-
the region bounded a#<<0.95. In fact, the glass-forming tems witha>0.85 becomes significant only at the high cool-
region predicted from the model is more in agreement withing rate. Under the medium cooling rate which is almost five
the glass-forming boundary at the fast cooling rate in outtimes faster than the slowest one, the boundary does not shift
simulations. This is a key result pertinent to understandingnuch. At the high cooling rate, the phase boundary in this
the atomic mechanisms of atomic size effect on glass formaegion moves very close to that predicted by Egami and
tion, and we shall return to it in the next section. Wasedd.

On the other hand, glass-forming boundary drastically Only one part of the boundary, at G<7x < 0.85, exhibits
changes with densification rate far<0.65. As seen from a remarkable resilience to changing cooling rate. As we men-
Fig. 3, the glass-forming boundary shifts toward higkgr tioned early, this region corresponds to the eutectic compo-
while Egami and Waseda modelee Eq(3) below] predicts  sition of the binary hard sphere systems and has the best
a monotonically decreasings as the atomic size ratio de- GFA. Finally, we found that the cooling rate shows relatively
creases. Even more drastic change is observed around tbmall effects on the phase boundaries in the high solute re-
value «~0.40. The boundary shifts abruptly to a much gion (a>1). As explained below, this is mainly due to the
higher alloy concentration(xg=0.60. Another abrupt slow kinetics of the large sized atoms.
change of the boundary is also observedvat0.20 where The contour plots at three different cooling rates
the minimum alloy concentration at the boundary of the glasglso gives us a sketch of the CCR landscapes f(a,Xg):
forming region is shifted further up t&;=0.80. The glass- The CCR surface changes the fastest in the region
forming region becomes narrower as the atomic size rati®.7< «<0.95(anda<1.1) and remains relatively flat in the
decreases furthdiv<0.20). region 0.76<« (and «>1.2). In the region close to 0.7

As shown in Fig. 3, the phase boundaries from our simu< «<0.85 andxg~ 0.20 the CCR surface exhibits an almost
lations differ also significantly from the prediction in a recentvertical drop. The contour plot with even lower cooling rates
work® at the lower atomic size ratigx<0.70. As explained  would give more details of the glass-forming property, espe-
below, the large shift of the glass forming boundary towardcially in the regions in the middle of the phase diagram

0.5 1

014206-7



P. JALALI AND M. LI PHYSICAL REVIEW B 71, 014206(2005

(xg~0.50 and 0. @< 0.85. However, this is beyond our . .
computational capability. - monodisperse line

C. Packing instability : : : :
0.7 ........... ........... .......... .......... F

Glass formation induced by atomic size difference is often : : : :
rationalized from the point of view of crystdlpacking < : : : S
instability:” If crystal(s) cannot form due to packing instabil- _ g : : ; .
ity in a system made of different sized atoms, a glass will < : : . 89
form. An example of this argument is the solid-state amor- ~ 0.65p--- - AR 8 §g ----- gg ----- 094

phization(SSA) where glasses do form through direct desta-
bilization of crystals’?23 This atomic-size-induced instabil-

ity was originally proposed by Hume-Rothery to predict : binary FCC solid solution

L (Eq. 3 for x_=0.20):
phase formation in binary systerts. 0.6 ; . B ; ;
As argued by Hume-Rothery, when small atoms are 0.5 0.6 0.7 0.8 0.9 1
mixed with large ones, the host made of the large atoms catr. «

dissolve certain amount of small atoms by accommodating FIG. 4. Variation of¢l,, with a for a pure(xg=0) and binary
: : o : ; . . 4. e
Crtical value.(This applies 06 10 mixing arge atoms nto YS\e(Xs=020. Packing densiies obtained from simulatios are
. . e . also shown: Filled circles represent the fcc binary solid solution and
small at_om hos}._Further Increase in .atomlc Size dlfference_open circles represent the amorphous phase. Multiple symbols at
causes increase in the strain energy in the host due to the sige, samen represent packing densities of the same system under
disparity. If this energy increase becomes large enough, {iterent quench rates.

would drive the solution into different phases, most likely

eutectics as we see from most of the Hume-Rothery aIon§r : . . :
NN . . This equation gives the exact result in the pure system
0,24 -
Tprritt fizllg}[/v trleorggez. E ;:]'fvflgggggs:ﬁiaglr eHXligqn%eR(?tnize_corresponding tog=0 anda=1. In the same figure, we also
a~0v.00. Egan O ..~ plot the maximum, or final packing densities, and (,ofbcc for
Rothery theory. by_mclgdmg local topolog|cal |nstab|I|tyl|n- lasses and fcc solid solutions from our simulations. The
duced by atomic size difference. Unlike the phase transition ower packing density for the pure system and binar.y foe

observed in Hume-Rothery alloys, this model imposes a re- . . . ; ) .
o S . mixture, or solid solution from the simulations is a result due
striction of polymorphism; and as a result, the final phas

predicted from the model is either a crystal or glass, both o 0 the presence of defects, grain boundaries, or nonuniform

. X , . ~ distribution of atomgsee Fig. 1c)].
\;/)vct‘slri:t?ozre single phase with the saifiecal) chemical com Equation(3) shows thatef.. decreases monotonically as

There are several key questions that have not been agroves to smaller size ratios. If we alloy}.. take values at

dressed in the instability theories for glass formatiéh. Zg‘fs”lfr o e ‘mg s00n 1un to 2 E’S't'fu”;gj‘fe mf b%acl:(i)krl:eg
How is the packing instability relevant when a liquid is Y rec

cooled, or how the CCR observed in quenching the glass§maller than the packing density of a glass. In other words,

. o Lo o the mixture will be more stable if it collapses into a disor-
forming liquid connects to the packing instability or glass . . .
formation?(2) What are the roles in glass formation played dgirr?tdiﬁt?;i thzt:g?]s %gr'%?ter f?gr%k'fr;% (ignasngisgr]seggc)jssbz\t/er
by competing crystalline phases which could form under théd)enser hasg i ngls a oésible hase transiticier-to-
same instability conditions, or if the polymorphic constraint P g P P

is no longer valid? In the following, we shall probe thesed'S_?Ldeeér(iiircglyvsatﬁj'et%%las;;rggigfnnd at which the packin
questions from a different angle in the HS system. @ P 9

Since there is no attractive interaction, phase stability anaiensny of the fcc mixture equals that in the disordered,

thermodynamic properties in hard sphere systems are don#]assy state. From the simulation results shown in Fig. 4, we

nated by packing density. The maximum achievable packingan see that the critical value for this transition occurs at
density in binary mixtures depends on atomic size ratio an 01‘?; doéc:vx(/)iiﬁo E{?ﬁ;%ﬁ?ﬁﬁe g?r‘:ﬁé %Zi?d Iztgsz-%rSrgin
relative solute atom concentration. We can estimate the pacl?é ion obtaineC(; using the LCC)I/? in the uer?chin roce%s
ing density of a binary mixture made by mixing smaller at- (Fig 3 9 q 9p

oms uniformly with the large ones to form a random substi- 9. 9.

tutional fcc solid solution(For the pure hard sphere system, C V\(/g)C?fnv?ésgsessutg]neai?]at\rt]?hcl:antl(I:;lsls“rtr:grfgtfggeg?é:grcvhen
fcc packing is the equilibrium structure with the highest g (). 9

packing density. Its packing density can be readily calcu- the packing density of the crystalline mixture reaches that of

; the glassy phase, op?cczgog|asszo.65, the critical size ratio
lated as a function og and « (Ref. 25, ac=0.73. This estimate is slightly lower than the values ob-

b T 3 tained from simulation$0.75< a-<0.80. The discrepancy
Prec = ﬁ[l_XB(l -], 3) between these two critical atomic size ratios comes from
difference incp?cc in Eq. (3) and simulations. In Eq(3) we
where 0.5 a<1 and Osxz=<0.5. Equation(3) is plotted assume a perfect fcc structure while in simulation, various
for xg=0 (pure systethandxg=0.20(binary mixturg in Fig.  disorder may be presefgee Fig. 1c)]. The later will lower
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the values of¢f,. and thus raise the estimated critical valuewill be different and also much high&t.The reason for this

of atomic size ratiaxe in our simulation results in Fig. 4.  discrepancy(or the upward swing of the boundary asde-
From these results and E@), we can, therefore, obtain a creasegis the formation of two disordered fcc phases with

formal relation between the minimum alloy concentratign  different solute concentratio which is not considered in

and the atomic size rati@, which marks the boundary of the Eg. (4) and the Egami-Waseda model. We shall return to this

glass-forming region point in next section with more details. Therefore, we could
. conclude that the instability criteria are not suitable for pre-

min_ 1— 3\52<pfcbclrr A 4 dicting glass formability, as they only apply when cooling

B~ 11-a3 - I1-o3 (4) rate is extremely high; while to predict glass formability, it is

the slowest cooling rate that matters.

The glass-forming region is defined = Xg" (). The co-
efficient in Eq. (4), A=1-3\2¢/ 7=1- ¢/ ¢ree, Where V. DISCUSSIONS
¢eiec=m3Yy2=0.74 is the packing density of a pure fcc phase.
@ is the critical packing density of the metastable fcc solid How atomic size difference affects glass formation has
mixture at the onset of the instability. For an estimate, we lebeen an outstanding problem in materials science and glass
e equal the packing density of the glass phaggssand  synthesis. Using a hard sphere model, we were able to sim-
¢iec=0.74. ThenA=0.122 if we substitute the packing den- plify the issue to a relation involving only atomic size ratio
sity for the amorphous phasgy,se=0.65 forgo;cbc_ If we use and relative alloy concentration in binary systems. This
the value forepy,. from our simulation(Fig. 4), ¢;..=0.70, we ~ model system makes it possible to see how the critical cool-
haveA=0.07. The phase boundaries estimated using(#q. ing rate of a glass-forming liquid is related to the atomic size
with A=0.7 agree very well with our simulation results in the difference. We need to stress here that this relation does not
range of 0. «<0.85(see Fig. 4. necessarily predict the glass formability for real binary alloys

A similar relation[Eq. (4)] was derived by Egami and or mixtures(direct reference can, however, be made in sys-
Wasedd. The coefficientA was estimated to be 0.1 in their tems exhibiting hard-sphere-like characteristics, such as col-
work.” Our results presented above show tAds generally loidal particles, granular matter, and rogkiestead, it shows
not a constant. It is a function of the atomic size ratious what the glass formability should look similar to if it is
through the packing density;". which is dependent ofr  affected by atomic size difference alone. Modifications to the

(andxg as wel).1° Note also that Eq93) and(4) are appli- kinetic diagram for the glass formation would occur once
cable to the systems where the ground state, or the host is tigégher factors, especially the heat of mixing, or attractive in-
fcc phase. teratomic interactions, are considefédNevertheless, this

In deriving Eq.(4), and also in the model by Egami and relation(Fig. 3) is expected to provide a useful reference for
Waseda, a polymorphic constraint is imposed: There is n@tomic size effect if different atoms, or particles are consid-
alloy concentration change allowed. On atomic scale, we agred for making bulk metallic glasses or colloidal glasses.
sume that alloy elements are not allowed to move beyond the This work focuses mainly on characterizing phenomenol-
first neighbor shell once they occupy fcc lattice positions.0gy using computer simulations of glass formation and glass
Clearly, this constraint is not valid in a glass-forming liquid formability as a function of atomic size difference, including
when it is cooled toward undercooled region. Atoms do havéhe critical cooling rate and glass formabilitgec. Il A),
time to move through diffusion, unless the cooling rate iskinetic glass formation diagraf®ec. Ill B), and packing in-
infinitely fast, or at least faster than that determined by thestability of mixtures(Sec. Il ). There are also results that
characteristic diffusion time of the system. Therefore, thehave not been presented in detail in this paper, but are im-
instability theories of the hard sphere modEl. (4)] and  portant for understanding the observed phenomena. In the
Egami-Waseda model are only valid for high cooling rate.following, we shall briefly summarize them:

This conclusion is corroborated by our simulation results Competing microstructuresAs mentioned in Sec. Il B,
(Fig. 3. the phase boundary for the glass formation region shifts to
(1) As mentioned early, in simulation the glass-forming higher value ata<0.75 (also ata>1.2). This and other
boundary in the region oft>0.85 shifts to the right as the parts of the kinetic phase diagram are closely related to the
cooling rate increases, and become closer to the theoreticBirmation of various microstructures and crystalline
boundary predicted by Egami and Waseda. The boundary iphases? A brief summary of the crystalline phases observed

a>1.2 shifts upwards. In both cases, the glass forming rein our simulation is listed below.

gions are larger in the instability models than those from our (1) In the range of 0.5 a<0.75, we observe local clus-
simulations, and are closer to the simulated boundaries wittering of the same type of aton(Big. 5). This phenomenon
high cooling rate. is more pronounced in the binary systems of small atoms

(2) For the glass-forming systems at<0.75, the best mixed into the host of large aton&<1) than that in the
glass formers are those mapped out by our simulations sincgystems with large atoms mixed into small host atoms
they are obtained using the slowest cooling rates. The glaséa>1). (2) In the region aroundr~ 0.40, an intermetallic
forming boundary predicted from E¢) is below this curve. phase form that consists of the large atoms occupying the
In fact, we can make the crystal-glass phase boundary in thiegular fcc lattice and the small atoms sit in the octahedral
region to follow exactly the predicted relation. But the cool- interstitial sites(Fig. 6). The glass formation becomes pos-
ing rates in the simulation at each point along this boundargible only after all octahedral sites are occupied, or the mini-
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FIG. 6. Atomic structure of a sample with 500 atoms at
«=0.40 andx=0.50. It forms octahedral interstitial solid solution
and interstitial compound. Small atoms are shown to occupy octa-
hedral interstitials and a periodic arrangement of small atoms is
shown.

group of them ranging from two to four or six, occupy the
same octahedral sité5) For o>1.2, the same trend of up-
ward shift of xg'"" is observed. However, the magnitude is
smaller than that a&<<0.75. The main mechanism underly-
ing this trend is the local concentration change due to clus-
tering of small atoms.

These findings clearly demonstrate that the atomic size
difference affect glass formability directly through the for-
mation of competing microstructure or crystalline phases.
The same driving forcéor energy increase in an interacting
system caused by atomic size difference, which are ex-
pected to lead to crystal packing instability, could also lead
to either composition change or crystalline phase formation
in the glass-formindiquid. For the former case, the poly-
morphic constraint no longer holds. For the later case, due to

FIG. 5. The atomic structure of a sample with 500 atoms withthe different crystalline phases, the mechanisms of the glass
a=0.50,x=0.25. The large spheres and small black spheres reprdormability could be quite different. In both cases, the refer-
sent the large atoms and the small atoms, respectively. To show tfence localcrystalline packing is different in local chemical
local clustering of the small atoms, a cross section inxghplane of composition or topology from the local packing in the insta-
the sample is shown. The filled circles represent small solute atomsility theory7'8 that has the same local chemical concentra-
The crystalline order of the large atoms in this cross section igjon as the mean alloy concentration or just one local crystal
clearly seen. The diameters of the circles in the cross section are ngfrycture.
in direct proportion to the diameters of the atoms due to the cut. For a given cooling ratey, the liquid has a time scale

determined by the cooling rate~1/qg. On the other hand,
mum concentration of the small atoms is larger than(8e®  the system have characteristic time scales for forming differ-
Fig. 3. (3) For systems with slightly larger size ratio, ent crystalline phases or microstructureg,,, ...7,, where
0.41< < 0.5, we found very small number of octahedral n is the number of possible crystalline phases and micro-
sites occupied by small atoms. Disordered fcc packing istructures. These different time scales are determined by spe-
abundant. This is not a surprising result since interstitial solictific crystalline phases that would form either in equilibrium
solution is very difficult to form due to the exceedingly high or metastable states. Glass formation becomes possible only
energy even when atomic size mismatch does not deviatashen these competing processes are removed. This requires
much from the octahedral interstitial ratf@=0.41). Corre-  that the time scale for cooling the glass-forming liquid,
spondingly, we see that the phase boundary in Fig. 3 rises<min{r, 7, ...,7} or g>maxl/r,1/7,...,1/7}. On
steeply in 0.4<«<0.5. (4) In the region aroundvr~0.20, the other hand, glass formability, as characterized by CCR,
we observe the formation of another intermetallics with largeis uniquely determined by the shortest characteristic
atoms occupying the fcc lattice and small atoms occupyingime scale among, 7, ...,7,. The critical cooling rate is
the octahedral sites. In this case, small atoms, usually g.=max1/7,1/7,,...,1/r,}. Therefore, the critical cooling

(b)
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rate or glass formability is determined directly by what the V. CONCLUSIONS
competing crystalline phase or microstructure is out there for
a given system. As shown above, these competing phases areUsing a binary hard sphere model, we are able to inves-
quite different in our model system. The detailed mechatigate the relationship between the atomic size difference and
nisms of how the crystalline phases form leads to the timehe critical cooling rate and glass formation. Through exten-
scalesr=min{r;, 7, ...,7,}, and the CCR. sive molecular dynamics simulations, we identified the criti-
For the systems a&r~0.40, the small alloy atoms are cal cooling rates for the systems and their relations with the
fast diffusers in formation of the interstitial solid solution atomic size difference. We also obtained the boundary of the
and interstitial compount? The CCR for this system is, crystallization and the best glass-forming region. We defined
therefore, determined by the formation of thes® phases.  the glass formability as a set of optimal conditions involving
This crystallization process could be slowed down whenntrinsic material properties that lead to slowest cooling rate
the available interstitial sites are taken, that is, only when theyy ccRr of the material system. Both the conceptual devel-
solute concentration is h|gh The excess number of Solutgpments and Computationa| efforts enab'e us to Study quan_
atoms in the liquid has to diffuse a long way to form atjtatively the atomic size effect on glass formability. As a
single component fcc phaser fcc solution with small  resylt, a glass formability map or a kinetic phase diagram is
amount of large atoms which prolong the characteristic mapped out that identify the glass formability and regions of
time 7. Indeed, the glass-forming boundary for this system isyjass and crystalline phases at different cooling rates.
moved up toxg=0.50 where the lowest CCR are found. As = e found that the glass formability is closely related to
a comparison, the glass-forming boundary around the regioghe formation of crystalline phases and other microstructures.
of 0.75<a<0.85 is much lowerxg~0.20. The reason for The mechanisms of the best glass formation are different,
this is that the competing crystalline microstructure in thisgepending on what and how the competing crystalline phases
range ofa is a eutectic mixture. It consists of twlisor-  form. Therefore, the glass formability is different for differ-
dered fcc solid solutions, one with large atom as the solventgnt systems with different intrinsic material properties. This
and another with small atoms as solvéhin order to form  conclusion manifests in the four different glass-forming re-
the eutectic mixture, long-range diffusion of both small andgions marked by different atomic size ratios. The potency of
large atoms are needed, which has much longer time scale ggomic size difference in the different regions is, therefore,
compared with that for the small atoms to diffuse to form theqyite different. It diminishes as the competing crystallization
interstitial compound aix=0.40. Thus the cooling rate is emerges.
lower, and the glass formability is higher at much lowgr The results obtained from the simple hard sphere system
In neither of the above cases is the polymorphic constrainkaye clearly demonstrated that glass formability is an intrin-
Obeyed: Val’ia'[ion Of |Oca| Chemical Concentl‘ation OCCUI‘S'SiC materia' property necessar”y Connected to Crysta| form_
and there are multiple competing crystal structures as wellapjlity. This conclusion provides a direct support, albeit in a
The |nStab|l|ty mOdEL on the other hand, demands that thﬁumericaj mode|' for Turbull's prop0§a]hat the best g|a_ss
composition remain homogeneous microscopically and th@or highest glass formabililycan be obtained only when
two disordered fcc phases are not considered either. crystalline phase) cannot form. Furthermore, we learned
Applicability of the crystal packing instability models that the instability models are incapable of predicting glass

Following the argument put forward above, we see that theormability (not the glass formatiordue to the strict kinetic
crystal packing instability models can only treat a rather speggnstraint.

cial case where the transition between glass and crystalline

phase is polymorphic. In general, maintaining this constraint
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