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We have applied a “real-reciprocal space analysis,” using the continuous wavelet transform technique, to the
experimental neutron and x-ray structure factors of silica glass to elucidate a correlation between the “first
sharp diffraction peaksFSDPd” in reciprocal space and the corresponding length scale in real space. The
present analysis allows us to obtain compelling evidence that the dominant interatomic distance linked to the
FSDP in silica glass is,5 Å, although longer distances are also important, making an exponentially decreas-
ing contribution. Further analysis using molecular-dynamics simulations demonstrates that the interatomic
spatial correlations atr ,5 Å are associated with a couple of local “pseudo-Bragg” planes having an interlayer
separation of,4 Å, accounting for the origin of structural ordering on the medium-range length scale in silica
glass.
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I. INTRODUCTION

The nature of order and disorder on the medium-range
length scales,5 to ,10 Åd in glasses and liquids has long
been debated.1–5 X-ray and neutron diffraction are commonly
used experimental techniques to get information about the
atomic arrangements of such noncrystalline materials, not
only on a short-range but also on a medium-range length
scale. The diffraction data are collected as a function ofQ
s=4p sinu /l, wherel is the wavelength of the incident ra-
diation and 2u the scattering angled to obtain the structure
factor, SsQd, of the corresponding materials. Then the
r-space correlations can be obtained by the Fourier transform
of SsQd, i.e., a decomposition of theSsQd function into sine
waves of constant amplitude. Thus Fourier transformation is
an ideal method to analyze diffraction components that are
delocalized over the observedQ range, corresponding to
relatively sharp features inr spacese.g., first- and second-
neighbor shells of atoms in the structured. However, for com-
ponents that are localized in limited regions inQ space, such
as the anomalous but ubiquitous sharp feature called the
“first sharp diffraction peak”sFSDPd seen inSsQd of many
different types of noncrystalline materials,2 Fourier analysis
results in rather delocalized features inr space, conveying
little information about the interatomic correlations involved.
For this reason, the precise structural origin of FSDP still
remains to be solved, although it is believed that the FSDP
gives a clue to the extent of medium-range order in glassy
and amorphous solids.6–9

To circumvent the above problem, we here employ an
alternative approach, i.e., a “time-frequency” analysis using
the continuous wavelet transform,10–13 to analyze the ob-
servedSsQd functions. Recently, it has been recognized,10,12

that the wavelet transform has considerable potential as a
tool to investigate locality both inQ andr spacesor equiva-
lently in both time and frequency domainsd. Instead of being
based on sinusoidal functions, the method is based on wave-

let functions, which are localized in time as well as fre-
quency. That is, the input function is expanded in terms of
oscillations of these localized functions in both time and fre-
quency domains simultaneously. Thus the wavelet method
should be ideally suited for an analysis of the FSDP, both in
terms ofQ and r space.

The last decade has witnessed an explosion of applica-
tions of wavelets in mathematics and physics to study the
temporal and localized behavior of oscillatory signals.10–13

Previously, Dinget al.14 applied the wavelet method to a
structural analysis of diffraction data for silica glass, but the
wavelet function that they used was the so-called “Mexican
hat” wavelet,10,11which is unsuited for the analysis of highly
frequency- and amplitude-modulated signals, such asSsQd
for glassy materials.15 Recently, we15 have developed a “tun-
able” complex wavelet function based on the continuous
wavelet transformsCWTd,13 which is well suited, as com-
pared with the existing “Mexican hat” wavelet or the Morlet
wavelet,16 to the analysis of one-dimensional signals whose
frequency components are rapidly changing in frequency as
well as in amplitude. In this work, we have applied this
wavelet function15 to an analysis of the reduced structure
factor QfSsuQud−1g for silica glass measured by neutron and
high-energy x-ray diffraction techniques. Previous diffrac-
tion measurements on silica glass have revealed that
the position of the FSDP lies at around 1.5 Å−1, which im-
plies structural correlations in the distance range,3 to
,10 Å.2,7,17The present wavelet analysis sheds new light on
the connection between the FSDP and the corresponding
r-space correlations, showing the dominant interatomic dis-
tances linked to the FSDP in silica glass.

II. NUMERICAL TECHNIQUES

We have calculated the instantaneous amplitude of the
CWT of QfSsuQud−1g using neutron18 and high-energy
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x-ray19 diffraction datafsee Figs. 1sad and 1sbd, respectivelyg
using the wavelet technique. Since the details of the numeri-
cal procedures were given in our previous paper,15 we here
present a brief outline of the technique.

The basis set of the CWT contains localized oscillations
characterized by two transform parameters, namely the scale
sor dilationd and the translation. This makes the CWT more
preferable, as compared with the Fourier transform, for the
analysis of signals which contain rapidly varying frequencies
and amplitudes, as mentioned earlier. In this work, the CWT
is performed by calculating the set of inner products of
QfSsuQud−1g with a basis set of waveletsCst ;sd. The func-
tional form of the wavelet used in this work is as follows:15

Cst;sd = p−1/4e−s1/2dt2hpssdfcossstd − kssdg + iqssdsinsstdj,

wherepssd andqssd are given by

pssd = s1 + 3e−s2
− 4e−s3/4ds2

d−1/2, qssd = s1 − e−s2
d−1/2,

with kssd=e−s2/2. This wavelet function has a tuning param-
eter,s, which controls the number of oscillations in the en-
velope. This parameter has to be carefully chosen, since it
allows “time and frequency” uncertainties to be traded.
Smallerslargerd values ofs result in higherspoorerd resolu-
tion in Q space but poorershigherd resolution inr space. We
found that usings=7 allows the best trade-off between

FIG. 1. sColord Three-dimensionalr −Q diagrams of the instantaneous amplitudeAd of the CWT of the reducedsad neutron andsbd x-ray
experimental structure factors for silica glass. Short-range SiuO, OuO, and SiuSi correlations, along with the positions of the FDSP, are
indicated by arrows. Cross sections of the CWT at 1.5 Å−1 are also shown on the right-hand side of each wavelet diagram.
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r-space andQ-space resolution in this case. It should be
noted, however, that it is for smaller values ofs sø2d that
our new wavelet is markedly superior to, say, the Morlet
wavelet. We then obtained the instantaneous amplitude,Ad,
of a signal component using the stationary-phase approxima-
tion, as described in Ref. 15.

III. RESULTS

First, we concentrate our interest on the CWT diagrams in
the distance range 1–3 Å, which characterizes the nearest-
neighbor bonding environments of the cation-centered tetra-
hedral SiO4 units. We see from Figs. 1sad and 1sbd that, in
this distance range, there exist three main ridges that are
delocalized over a wide range ofQ values in the CWT
diagram. The peak positions of these ridges are located at
,1.6, ,2.6, and,3.0 Å, which are in accordance with the
reported nearest-neighbor SiuO s1.61–1.62 Åd, OuO
s2.62–2.64 Åd, and SiuSi s3.06–3.07 Åd correlations in
silica glass.17 The interpretation of such ridges is that broad
ranges ofQ values in the structure factor are associated with
particular short-range-order distances corresponding to the
ridge peak positions. This demonstrates that the present
CWT procedure reveals the short-range atom-atom correla-
tions associated with the constituent SiO4 tetrahedral units.

We next turn to the distance region beyond 3 Å in the
CWT diagrams. In this region, in contrast to that below 3 Å,
the CWT features appear as ridges delocalized inr space, but
localized at particularQ values. It should also be noted that,
in both Figs. 1sad and 1sbd, a ridge exists along ther-axis
centered at aQ value of ,1.5 Å−1, in agreement with the
position of the FSDP in the corresponding structure factor.
The ridge atQ,1.5 Å−1 is not uniformly delocalized over
the entirer range, but decays almost exponentially for dis-
tances greater than,10 Å. Thus a wide range of interatomic
distances contribute to the formation of the isolated peak in
SsQd that is the FSDP. One can also see from Figs. 1sad and
1sbd that the FSDP ridge atQ,1.5 Å−1 exhibits a broad, but
strong, maximum at,5 Å, before the rapid decay at longer
distances. It should be noted, however, that the decay feature
at longer distancessr *7 Åd depends strongly on the scat-
tered sources, namely, neutrons and x rays although both the
neutron and x-raySsQd data yield the same peak position of
the respective FSDPs. This implies that the longer-distance
sr *7 Åd structural correlations only have a minor influence
on the position of the FSDP. Thus the present CWT analysis
demonstrates that the dominant interatomic distance relevant
to the FSDP is,5 Å. This is basically in harmony with a
previous finding that the shape of the FSDP inv-SiO2 is
especially sensitive to spatial correlations between 4 and
8 Å,17 and that structural correlations for a distance greater
than,10 Å are of little importance.7,20

IV. DISCUSSION

The CWT diagrams have shown that dominant inter-
atomic distance linked to the FSDP in silica glass is,5 Å. It
is hence interesting to investigate how interatomic correla-
tions at ,5 Å in the random network of silica glass can

create the low-Q feature inSsQd, the FSDP. Figure 2 shows
a schematic view of a series of atom-centered spheres with a
radius of,5 Å. Each shell of the spheres, along with their
centers, is characterized by a high density of atoms of inter-
est. In a glass network, these spheres and their centers are not
arranged so as to form regular planes of atoms on a long-
range length scale. However, if we concentrate on the length
scale of,5 Å, a set of three contiguous “planes” of high
atomic density, which consist of atoms in centers and shells
of two adjacent spheres, is well defined, irrespective of the
random nature of the networkssee Fig. 2d. In other words,
two adjacent spheres are likely to create such a set of local
“planes” of high atomic density on the medium-range length
scale. According to previous classical17,21,22 and ab initio23

molecular-dynamicssMDd simulations of silica glass, a peak
at ,5 Å in the real-space atomic-density correlation func-
tions results from second-nearest-neighbor SiuSi and
OuO separations, i.e., SiuOuSiuOuSi and
OuSiuOuSiuO correlations. This implies that both Si
and O atoms will contribute to the formation of a set of
planes of high atomic density. Indeed, as shown in Fig. 3,
such sets of parallel local planes can be identified in model
silica glass networks, which have been created byN-P-T
-MD simulations using 1500 atoms with a modified
potential24 originally proposed by van Beestet al.25 and by
quenching from the meltsT=6000 Kd to the well-relaxed
glassy statesT,10−4 Kd at an average quench rate of
,1 K/ps. In our previous paper,26 we showed that the model
glass thus created has reproduced fundamental structural and
vibrational properties of actual silica glass. We see from Fig.
3 that these sets of planes are decorated by both Si and O
atoms, and, in between the planes, there is a region of low
atomic density sor “voids”6d. Thus the second-neighbor
SiuSi and OuO correlations at,5 Å occur in such a
coherent manner as to form a set of near-parallel local
“planes” of high atomic density, whosesmedium-ranged
length scale is comparable with that of the interatomic cor-
relations of,5 Å. It is expected that interatomic correlations

FIG. 2. sColor onlined A schematic representation of the forma-
tion of pseudo-Bragg planes as a result of atom-atom correlations at
,5 Å. The circles indicate atom-centered spheres of high atomic
density resulting from second-nearest-neighbor SiuSi sor OuOd
separations. Centers of the spheres are linked by a dotted line. This
dotted line is not straight but winding because of the random nature
of the glass network. Even in such a random network, a set of three
contiguous near-parallel planes of high atomic densityssee the bold
linesd, whose length scale is comparable to the radius of the spheres
s,5 Åd, can be well defined. In real silica glass, it is expected that
these planes will be decorated by both Si and O atoms. The result-
ing interplanar distance is less than,5 Å; a probable value is
,4 Å because of geometrical considerations.
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at larger distancesssee, for example, a weak maximum at
−7.5 Å in the WT diagramsd also contribute to the formation
of such local planelike configurations, but the coherence of
such contributions will decrease with increasing distance. It
is also worth mentioning that, from the geometrical consid-
erations shown in Fig. 2, the perpendicularsnoninteratomicd
distance between the parallel planes, or “periodicity,” is
,4 Å. A similar correlation distance has been found in the
model glass network as well in the distance range from
4.0 to 4.2 Åssee also Fig. 3d. That is, as far as the medium-
range length scale is concerned, local “pseudo-Bragg” planes
having an interplanar spacing of,4 Å can be defined, even
in the glassy SiO2 network. However, the spatial extent of
these local quasi-Bragg planes is insufficient to give rise to
appreciable anisotropy in thek-vector-dependent structure
factor Askd, which has been used as a monitor for extensive
layering in disordered structures.8 It is hence reasonable to
assume that these planes, which are defined only on the
medium-range length scale, are responsible for much of the

constructive diffraction leading to the FSDP inSsQd, in the
case of silica glass characterized by a “period” of
2p /QFSDP>4.1 Å. Of course, the density fluctuations asso-
ciated with the “pseudo-Bragg” planes tend to vanish over a
length scale of 10–15 Å because of local disorder, especially
in dihedral angles, leading to a more random nature of the
glass network on longer-range length scales, thereby explain-
ing the rapid spatial decay of the FSDP ridge atQ
,1.5 Å−1 in the CWT for distances greater than 10 Å.

Finally, we should note that our structural model for the
origin of the FSDP is not identical to a previous quasilattice
plane model,7 which assumes crystallinelike layers in the
glass structure. Our model does not necessarily require a
crystalline counterpart to account for the FSDP, although the
position of the FSDP for silica glass does correspond closely
to that of the Bragg-diffraction peak fromh101j planes of
a-cristobalite. It may be true that structural arrangements
similar to those found ina-cristobalite are, in part, respon-
sible for the “pseudo-Bragg” planes in silica glass, but this
does not mean that crystallinelike layered structures exist in
the glassy system. In the present picture, these planes of high
atomic density result from collective structural correlations
among second- and third-neighbor SiO4 structural units in
the SiO2 network and the resultantr-space ordering at,5 Å.

V. CONCLUSIONS

We have shown that the present approach, combining
“time-frequency” continuous wavelet transform analysis
with molecular-dynamics simulations, enables us to predict
the nature of medium-range structural ordering in silica
glass. Interatomic distances in the region ofr ,5 Å, associ-
ated with a couple of local “pseudo-Bragg” planes, are a
manifestation of medium-range order in silica glass. Whether
or not the structural ordering pertaining to local planes,
which we have found in structural models of silica glass, is
present in other glassy systems, and hence can give a unified
picture of the FSDP in glasses, remains to be seen. However,
we believe that our method of time-frequency wavelet analy-
sis, which we refer to as “real-reciprocal space analysis,” is
uniquely able to clarify this issue.
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