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Ab initio total energy calculations, based on the exact muffin-tin orbital(EMTO) theory, are used to deter-
mine the elastic properties of Al1−xLi x random alloyssxø0.20d in the face-centered-cubic crystallographic
phase. The compositional disorder is treated within the framework of the single-site coherent potential approxi-
mation (CPA). The effect of the local lattice relaxation on the elastic constants is estimated using a supercell
technique. We study the effect of the single-site approximation by comparing the theoretical ground-state
properties calculated using different corrections to the Madelung energy. We find that the calculated equilib-
rium volumes and alloy formation energies strongly depend on the approximations employed in the Poisson
equation, in accordance with former observations. At the same time, the experimental trends of the elastic
moduli of disordered Al-Li alloys are well reproduced by the EMTO-CPA method. Using these theoretical
results we show that the nonlinear effect of Li addition on the elastic constants originates from the detailed
band structure of Al near the Fermi level.
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I. INTRODUCTION

During the 1980s and early 1990s Al-Li alloys were the
focus of theoretical and experimental investigations.1–8 Other
competing light-metal engineering materials have now
emerged, but the complex electronic structure of Al-Li
alloys6–9 and the observed interesting trends, such as the con-
traction of the equilibrium volume relative to a linear inter-
polation between Al Li(Ref. 10) and the drastic increase of
the Young’s and shear moduli on alloying Al Li(Ref. 11)
have continued to be a scientific challenge.

Several successful theoretical efforts5–8 have concentrated
on understanding the origin of this rather unusual behavior.
Alloy theories based on the virtual crystal approximation12

(VCA), coherent potential approximation13,14 (CPA), and
cluster expansion approach15,16have been used in theab ini-
tio description of the ground-state properties of Al-Li. Al-
though they reproduced the most characteristic features of
the composition-dependent equilibrium volume, the theoret-
ical mapping of the elastic properties against concentration
has remained a problem. For instance, the pseudopotential-
VCA method used by Vaks and Zein5 gave an incorrect elas-
tic anisotropy and led to a sharp decrease of the Young’s
modulus above 5% Li, in contrast to the experiment.2 The
more advanced CPA-based calculation by Korzhavyiet al.7

was carried out within the atomic sphere approximation,17

which did not allow one to determine the single-crystal elas-
tic constants.

An important aspect of modernab initio electronic struc-
ture calculations in solids is that they can be used to establish
high-resolution maps of physical properties in terms of crys-
tal structure or chemical composition. Recent progress in
the theory and methodology of disordered alloys18,19 has
made it possible to extend the accurate quantum mechanical

calculations of elastic constants from ordered structures20,21

to the case of substitutional random alloys of any
concentration.22–26 In the present work, using these develop-
ments, we give a detailed account of the elastic properties of
face-centered-cubic(fcc) Al-Li binary solid solutions con-
taining up to 20% randomly distributed Li. Ourab initio
electronic structure study is based on the density functional
theory27 (DFT). The Kohn-Sham equations28 are solved us-
ing the exact muffin-tin orbital(EMTO) method,9,19,29–32and
for the total energy calculation we employ the full charge
density technique.19,33

The substitutional disorder of Li atoms is taken into ac-
count using the coherent potential approximation imple-
mented on the EMTO basis.18 Since in the CPA the impurity
problem is treated within the single-site approximation, no
information is obtained regarding the charge distribution
around the solute atoms. During the last decade this defi-
ciency of the CPA was analyzed by several research
groups.7,34–42It has been shown7,8,40that an additional Made-
lung energy contribution, accounting for the charge transfer
between alloy components, gives quantitatively improved
properties compared to those obtained within the original
single-site CPA. Here we study the role of this term in the
case of the EMTO-CPA method. We show that the calculated
equilibrium volumes and alloy formation energies crucially
depend on the Madelung energy, in good agreement with
former observations.7,8 However, we find that the elastic con-
stants of Al-Li alloys are less sensitive to the single-site
approximation and the EMTO-CPA method combined with
an approximate Madelung term reproduces the observed
trends in the elastic properties with an accuracy comparable
to that of the DFT calculations for ordered structures.

Theoretical investigations of random alloys based onab
initio CPA-related methods usually neglect the local lattice
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relaxation (LLR) around the impurity atoms. In some
systems—e.g., Cu-Au alloys—the energy associated with
LLR is comparable with the ordering energies, and therefore
for these alloys the proper treatment of the lattice relaxations
is an indispensable step.43 In the present work, using a su-
percell technique, we study the LLR, and establish the order
of magnitude of the effect of LLR on the elastic moduli of
Al-Li solid solutions.

The rest of the paper is divided into two main sections
and Conclusions. Section II presents the theoretical tools.
This includes(a) an overview of theab initio electronic
structure calculation method, with special emphases on the
technical details related to the single-site CPA,(b) a brief
description of the single-crystal and polycrystal elastic
moduli, and(c) the most important details of the numerical
simulations. The results are presented and discussed in Sec.
III.

II. THEORY

A. Ab initio EMTO-CPA method

The EMTO theory29–32is an improved screened Korringa-
Kohn-Rostoker method, where the exact one-electron poten-
tial vsr d is represented by large overlapping muffin-tin po-
tential spheres. By using overlapping spheres one describes
more accurately the exact crystal potential, when compared
to the conventional muffin-tin or nonoverlapping
approach.19,30 The EMTO’s are defined for each lattice site
and for each angular momentum quantum numberL
;sl ,md with l ø lmax. They are constructed from the screened
spherical waves, which are solutions of the wave equation
with boundary conditions given in conjunction with nonover-
lapping hard spheres.29 Inside the potential spheres the low-
l sl ø lmaxd projections of the orbitals onto the spherical har-
monicsYLsr̂d are the partial waves.29 The matching between
the screened spherical waves and the partial waves is real-
ized at the hard spheres.29

The Kohn-Sham equations28 are solved for the optimized
overlapping muffin-tin potential19,30,44using the Green func-
tion formalism. In the case of random alloys the substitu-
tional disorder is treated within the CPA.13,14 The average
alloy density of states is determined from the average Green
function, which, in turn, is obtained as the self-consistent
solution of the CPA equations.18,44 The complete nonspheri-
cally symmetric charge density of the alloy componenti is
represented in one-center form around the lattice sites—i.e.,

nisr d = o
L

nL
i srdYLsr̂d, s1d

where the sum includes the high-l (i.e., l . lmax) partial den-
sity componentsnL

i srd as well.19,44 In practice the high-l
terms are truncated atlmax

h =8–12. The optimized overlap-
ping muffin-tin potential is calculated from the full charge
densitynisr d, as described in Refs. 19 and 44.

Since the impurity problem in both the Schrödinger and
Poisson equations is treated within the single-site approxima-
tion, the Coulomb system of a particular alloy component
may contain a nonzero net charge. The effect of the charge

misfit on the potential is taken into account using the
screened impurity model8,35,36,39 (SIM). According to this
model the additional shift

DvSIM,i = −
2a

w SQi,s − o
i

ciQi,sD s2d

is added to the spherical part of the one-electron potential.
Here Qi,s is the number of electrons inside the potential
sphere,ci the concentration of the alloy componenti, andw
the average atomic radius. The coefficienta in Eq. (2) con-
trols the radius, where the net charge is redistributed around
the impurity. WithDvSIM,i expressed in atomic units, the sug-
gested optimal value for the SIM parametera is between
,0.6 and,1.0 (Refs. 7, 8, 35, and 36).

Finally, within the EMTO method the total energy is cal-
culated using the full charge density and the shape function
techniques.33,44 In the case of random alloys the electrostatic
energy includes the SIM correction term,8,35,36,39which has
the form

ESIM = − o
i

ci a8

w SQi − o
i

ciQiD2
, s3d

where Qi denotes the total number of electrons inside the
Wigner-Seitz cell around the alloy componenti. Most recent
models of screening in the random alloys35,43 suggest a dif-
ference of,10% between the coefficientsa and a8 from
Eqs.(2) and(3). By usinga8 larger thana one can incorpo-
rate additional effects inESIM compared toDvSIM,i, such as
the multipole-multipole electrostatic interactions near the im-
purity. In the present application we neglect these effects and
usea8=a.

The accuracy of the EMTO-CPA method has been
demonstrated for the ground-state properties of metals, semi-
conductors, and oxides45–48 and binary ordered9 and
random18,22–26alloys.

B. Elastic properties

The elastic properties of crystals are given by the ele-
mentscij of the elasticity tensor. For a cubic lattice there are
three independent elastic constantsc11, c12, andc44. The elas-
tic anisotropy can be described, e.g., by the Every anisotropy
parameter49 AE=sc11−c12−2c44d / sc11−c44d. For an isotropic
crystal we haveAE=0. From the three elastic constants one
obtains the longitudinal and transversal sound velocities. The
average of them over all directions gives the sound velocity
nD, which is used in the conventional Debye model with the
Debye temperature defined as50

uD = s6p2/Vd1/3s"/kBdnD. s4d

HereV is the atomic volume and" andkB are Planck’s and
Boltzmann’s constants.

The main difference between the single-crystal alloys
considered in first-principles calculations and the isotropic
polycrystalline material is the inherent disorder in the grain
orientations. The only way to establish first-principles pa-
rameters of these polycrystalline systems is to derive single-
crystal values first and then to transform them to macro-
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scopic quantities by suitable averaging methods. Here we
adopt Hershey’s averaging method,51 which has turned out to
give the most accurate relation between single-crystal and
polycrystalline data.52 Then, the average shear modulusG is
given by the solution of the cubic equation

G3 + aG2 + bG + g = 0, s5d

where

a = s5c11 + 4c12d/8,

b = − c44s7c11 − 4c12d/8,

g = − c44sc11 − c12dsc11 + 2c12d/8.

For a cubic lattice the average bulk modulus is identical to
the single-crystal bulk modulus—i.e.,B=sc11+2c12d /3. The
Young’s modulus is obtained fromB and G as E
=3BG/ s3B+Gd.

C. Details of the numerical calculations

At each concentration the theoretical equilibrium volume
V and the bulk modulusB were determined from a Mur-
naghan type function53 fitted to theab initio total energies of
fcc structures for five different atomic volumes. In order to
calculate the two cubic shear modulic8;sc11−c12d /2 and
c44, we used the volume-conserving orthorhombic,

1
1 + «o 0 0

0 1 − «o 0

0 0
1

1 − «o
2
2 , s6d

and monoclinic,

1
1 «m 0

«m 1 0

0 0
1

1 − «m
2
2 , s7d

deformations, respectively. We calculated the total energies
Es«od=Es0d+2Vc8«o

2+Os«o
4d and Es«md=Es0d+2Vc44«m

2

+Os«m
4 d for six distortionse=0.00,0.01, . . . ,0.05.

In the present application of the EMTO-CPA method to
the Al-Li binary system the one-electron equations were
solved within the scalar-relativistic and frozen-core approxi-
mations. The Green function was calculated for 16 complex
energy points distributed exponentially on a semicircular
contour. To obtain the accuracy needed for the calculation of
elastic constants, we used about 15 000 uniformly distributed
k points in the irreducible wedge of the orthorhombic and
monoclinic Brillouin zones. However, at small concentra-
tions a significantly higher number ofk points s,105d was
needed for an accurate mapping of the reciprocal space. In
the EMTO basis set we includeds, p, and d orbitals slmax

=2d, and in the one-center expansion of the full charge den-
sity we usedlmax

h =10. The conventional Madelung energy44

was calculated forlmax
m =8. The self-consistent calculation

was performed within the local density approximation54

(LDA ) for the exchange-correlation functional, and, in addi-
tion to the LDA, the total energy was calculated using the
generalized gradient approximation55 (GGA) and the re-
cently developed local Airy gas approximation45 (LAG). For
the SIM parameter we used two representative valuesa
=0.6 anda=0.9. Finally, the radii of the overlapping muffin-
tin spheres of Al and Li were chosen to be equal to the
average atomic sphere radiusw.

The effect of local lattice relaxation was studied using a
supercell containing one Li and 15 Al atoms. First we calcu-
lated the equilibrium volume of the Al15Li1 system using a
fixed fcc underlying lattice, and next we relaxed the first 12
nearest-neighbor Al atoms around the Li impurity. The te-
tragonal shear modulusc8 was calculated for both fixed and
relaxed supercell geometries, using,2500 uniformly distrib-
utedk points in the irreducible wedge of the Brillouin zone.
In the case of the orthorhombic distortion(6) the 12 nearest-
neighbor Al atoms around a Li impurity are grouped in three
different coordination shells, each of them consisting of 4 Al
atoms. We performed additional relaxation for these 4-site
shells for«o=0.05 and found that the effect of relaxation on
the total energy was comparable with the accuracy of our
method. Therefore, in the elastic constant calculation we
used the relaxed supercell geometry obtained for the undis-
torted lattice—i.e., for«o=0.00.

III. RESULTS AND DISCUSSION

We evaluate the relative merits of the LDA, GGA, and
LAG approximations to density functional theory in the case
of Al-rich Al-Li alloys by comparing their performances for
the equilibrium volume and elastic properties of pure metals.
First we compare the present theoretical volume and bulk
modulus of Li and Al, displayed in Table I, with the available
experimental values. At low temperature and pressure Li has
a close-packed, samarium-type hexagonal structure.56 Here
we approximate this structure by the fcc Li phase, which,
however, is expected to have a minor effect on the equilib-
rium volume and bulk modulus. The difference between the-
oretical and experimental data from Table I is typical for
what has been obtained for simple and transition metals45,57

in conjunction with the above approximations for the

TABLE I. Theoretical (EMTO-CPA) and experimental(Expt.)
equilibrium atomic volumeV (in Å3), and bulk modulusB (in GPa)
for Li and Al. Theoretical values were obtained for the fcc lattice
using LDA, GGA, and LAG approximations for the exchange-
correlation functional. Experimental data are listed for low-
temperature hex(9) Li (Ref. 56) and for fcc Al (Ref. 11 and 56).

LDA GGA LAG Expt.

Li V 18.98 20.02 20.43 21.06a

B 14.96 14.00 13.26 12.6a

Al V 15.95 16.54 16.38 16.61a

B 85.47 76.80 78.34 72.8,a 76.5b

aReference 56.
bReference 11.
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exchange-correlation energy functional. The LDA strongly
underestimates the equilibrium volumes and overestimates
the bulk modulus for both metals. The GGA corrects this
overbinding and reduces the mean LDA errors inV and B
from −7% and 16% to −3% and 6%, respectively. We find
that, on average, the LAG approximation outperforms both
the LDA and GGA, giving errors −2% in volume and 5% in
bulk modulus. However, when only Al is taken into account,
the accuracy of the GGA is superior compared to that of the
LAG approximation.

In Table II we list the calculated single-crystal elastic con-
stants for fcc Al and compare them with the experimental
data11,58 and formerab initio results calculated using full-
potential(FP) linear augmented plane-wave3,59 (LAPW) and
linear muffi-tin orbitals60,61 (LMTO) methods. We verify the
accuracy of the EMTO-CPA method for anisotropic lattice
distortions involved in elastic constant calculations by com-
paring our data with the FP values. If we let the error con-
nected with such calculations be described by the difference
between the FP results from Table II, the agreement between
the present and former theoretical results is very good.
Therefore, we have confidence in our data from Table II and
use them to judge the performances of the LDA, GGA, and
LAG for the elastic constants of fcc Al. The calculated aver-
age deviations between the experimental11 and present theo-
retical data for cubic elastic constants, obtained within the
LDA, GGA, and LAG, are 25%, 10%, and 13%, respec-
tively. Thus, summing up the results from Tables I and II, we
find that the GGA yields significantly better ground-state
properties for Al compared to the LDA and marginally better
compared to the LAG approximation. In the rest of the paper
we will, therefore, present and discuss only results obtained
within the GGA.

In Fig. 1 we present the calculated equilibrium volume
and enthalpy of formation for Al-Li alloys as functions of
concentration. Data are shown for two differenta values

from Eqs.(2) and (3). We find thata<0.9 reproduces well
the observed trend in the equilibrium volume, whereasa
=0.6 gives an increase inV with Li addition, which is in
between the experimental value and the one estimated from
the linear rule of mixture. The enthalpy of formation of fcc
Al1−xLi x alloy is calculated as

TABLE II. Theoretical and experimental elastic constants(in GPa) and elastic anisotropy for fcc Al. The
present theoretical values were obtained within LDA, GGA, and LAG approximations for the exchange-
correlation functionals. References are given for the full-potential(FP) and experimental(Expt.) data.

LDA GGA LAG FP Expt.

c11 110.8 98.9 101.3 121.9±1.6,a 101.5b 108,e 106.9f

110.5,c 103.3d 114.3g

c12 72.8 65.7 66.9 62.7±1.3,a 70.4b 61,e 60.8f

58.0,c 53.3d 61.9g

c44 45.1 38.1 39.6 38.4±3.0,a 31.7b 29,e 28.2f

31.1,c 28.5d 31.6g

AE −0.79 −0.71 −0.73 −0.21,a −0.46b −0.13e,f,g

−0.12,c −0.09d

aReference 3, LAPW, LDA.
bReference 60, LMTO, LDA.
cReference 61, LMTO, GGA(Ref. 62).
dReference 59, LAPW, LDA calculated at the experimental volumes.
eReference 11.
fReference 58.
gExperimental values extrapolated toT=0 K, (Ref. 61).

FIG. 1. Concentration dependence of the theoretical and experi-
mental equilibrium atomic volume(upper panel) and mixing en-
thalpy (lower panel) of Al-Li random alloys. Experimental atomic
volumes are from Ref. 10(triangles) and Ref. 63(squares). EMTO-
CPA denotes the present results, and CWM stands for the results
obtained using the Connolly-Williams method(Ref. 8). The two
sets of EMTO-CPA results correspond to two different SIM param-
eters from Eqs.(2) and (3): a=0.9 (solid line) anda=0.6 (dashed
line).
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DHsxd = EsAl1−xLi xd − s1 − xdEsAl d − xEsLi d,

where all the energies are obtained for the theoretical equi-
librium volumes and expressed per atom.EsAl d and EsLi d
are the total energies of fcc Al and Li, respectively. In Fig. 1
the present enthalpy of formation is compared with that ob-
tained using the Connolly-Williams method8 (CWM). Within
the CWM (Ref. 15) the Madelung energy is treated exactly
and thus gives a good reference to establish the accuracy of
our approach for the formation energy of completely random
alloys. The perfect agreement in Fig. 1 between values cal-
culated using the CWM and the present method witha
=0.9 demonstrates that the charge-transfer effects can be ad-
equately taken into account in the single-site EMTO-CPA
approach. Our result forDHsxd confirms the previous
observations7,8 that the thermodynamic stability of Al-Li
solid solutions is to a large extent determined by the Made-
lung energy accounting for the charge-transfer between Al
and Li subsystems.

In Fig. 2 we illustrate the charge-transfer effects on the
single-crystal elastic moduli of Al-Li alloys. The two sets of
results forc8 and c44, marked by solid symbols connected
with solid and dashed lines, were obtained from self-
consistent EMTO-CPA calculations usinga=0.9 and a
=0.6, respectively. The variation of both sets of elastic con-
stants with Li content is smooth. They exhibit similar con-
centration dependences, and the only important difference
between them is the position of the maxima. We find that the
maximum values inc8 and c44 are shifted towards higher
concentrations with increasinga. When the calculations are
carried out at fixed volumes—e.g., those corresponding to
a=0.9 (shown by open symbols)—the effect ofa is even
less pronounced. The largest effect on the cubic shear moduli
is obtained forx=0.2, where we get] ln c44/] ln a<0.45.

This variation is one order of magnitude smaller than
] ln DHs0.2d /] ln a<4.42, calculated for the enthalpy of
formation (Fig. 1).

Next we address the question of LLR in Al-Li solid so-
lutions. The present theoretical equilibrium volume of
Al15Li 1 supercell is 16.52 Å3. This value is very close to
16.54 Å3 calculated for Al0.9375Li 0.0625 random alloy using
the CPA with a=0.9. Figure 3 shows the variation of the
total energy of Al15Li 1 sDEd as a function of the nearest-
neighbor(NN) Al-Li distance. From the energy minimum
we find approximately −0.6% NN relaxation; i.e., in Al15Li 1
the Al-Li distance decreases by 0.6% compared to the equi-
librium Al-Al bond length in pure Al. The NN relaxation
decreases the total energy relative to the unrelaxed structure
by DEmin<−3.3 meV/atom. Compared to other alloys, this
relaxation can be considered very small.43 Recently it was
proposed that the LLR is mainly governed by the change of
the volume of the host material.43 The difference between the
theoretical equilibrium volumes of Al15Li 1 and fcc Al is
,0.2%, which explains the small relaxation effects obtained
in Al-Li solid solution.

The enthalpy of formation for a 16-atom supercell with
an ideal fcc underlying lattice is calculated to be
−21.6 meV/atom. With relaxed NN distance this energy de-
creases to −24.9 meV/atom. These numbers considerably
exceed the mixing enthalpy of the Al0.9375Li 0.0625 random
alloy (Fig. 1). Using the data from Fig. 1 we estimate that
a<1.05–1.10 would reproduce the supercell result for the
formation energy. However, for a more accurate calculation
of a one needs significantly larger supercells, where both the
ordering energy and the energy due to the overlapping
screening densities around Li atoms are negligible.

The present theoretical tetragonal shear modulusc8 of
Al15Li 1 supercell with fcc underlying crystal structure is
20.3 GPa. The agreement between this value andc8
=21.2 GPa, obtained for Al0.95Li 0.05 random alloy usinga
=0.9 (Fig. 2), is satisfactory, especially if one takes into ac-
count the numerical difficulties associated with elastic con-

FIG. 2. Theoretical(EMTO-CPA) cubic shear modulisc11

−c12d /2 andc44 of Al-Li alloys as functions of Li content. Solid
symbols correspond to the results obtained usinga=0.9 (solid line)
anda=0.6 (dashed line) in Eqs.(2) and (3). Open symbols denote
results calculated at volumes corresponding toa=0.9 and usinga
=0.6 for the elastic constant calculations.

FIG. 3. Variation of the total energy of Al15Li1 supercell as a
function of the nearest-neighbor(NN) Al-Li distance. The energy
minimum corresponds to −0.6% inward relaxation of the first coor-
dination shell around the Li impurity.
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stant calculations. A similar calculation carried out for a su-
percell with relaxed geometry corresponding to Fig. 3 gives
c8=20.4 GPa. Within the error bars of the present calcula-
tions this value is identical to that obtained for the unrelaxed
geometry. The almost vanishing effect of the LLR on the
elastic constant of Al-Li solid solutions can be ascribed to
the small volume change on alloying. However, in systems
where the lattice relaxation is more pronounced, like in
Cu-Au alloys, a substantially larger impact of LLR on the
elastic properties can be expected.

In Fig. 4 the present EMTO-CPA elastic constants for
Al-Li random alloys, obtained usinga=0.9 in Eqs.(2) and
(3), are compared with the experimental data of Mülleret
al.11 For all three elastic constants we find that the theoretical
values and their variation with concentration are in good
agreement with the experimental data. At Li contents below
5% the calculated changes with concentration inc11, c12, and
c44 are 0.86, −1.13, and 0.77 GPa per at. % Li, respectively.
These numbers are close to the observed average variations
0.33, −0.95, and 0.51 GPa per at. % Li(Ref. 11).

In the variation of the elastic constantscij with the con-
centrationx of solute atoms in Fig. 4, we may single out that
part which can be accounted for as due to an average change
in the volume—i.e., in the lattice parameter. Data for higher-
order elastic constants of Al give the pressure dependence
]c11/]p=5.9,]c12/]p=3.3, and]c44/]p=1.9(Ref. 50). From
experiments63 on the lattice parametera of dilute Al-Li al-
loys we gets1/ads]a/]xd=−0.011. When combined with the
bulk modulus of Al, we get]c11/]x=14.4 GPa,]c12/]x
=8.1 GPa, and]c44/]x=4.6 GPa. Thus, the effect of alloying
on the lattice parameter would account for about half of the
increase observed inc11 [,33 GPa(Ref. 11)], about 1/10 of
the increase inc44 [,51 GPa(Ref. 11)], but it has a sign
opposite to that observed forc12 (cf. Fig. 4). It follows that
the Li solute atoms have an influence onc12 that depends
crucially on the changes in the electronic structure. It is grati-
fying that our calculations correctly account for this differ-

ence between the trends ofc12 and the other elastic constants.
The theoretical polycrystalline elastic moduli in Fig. 5

(solid lines) were calculated using single-crystal results from
Fig. 4 and the averaging techniques presented in Sec. II B. In
Fig. 5 we included the experimental data on Al-Li alloys by
Müller et al.11 and those on commercial 2024 aluminum al-
loy by Sankaran and Grant.2 The observed decrease of the
bulk modulus and the sharp increase of the Young’s and
shear moduli at low Li concentrations are well reproduced by
the theory. In order to illustrate how sensitive the polycrys-
talline elastic moduli are to the value ofa, in Fig. 5 the
theoretical values obtained fora=0.6 are also shown(dashed
lines). The small effect ofa on the cubic elastic constants
demonstrated in Fig. 2 can be evidenced also in the case ofB
andG. A somewhat larger effect is obtained for the Young’s
modulus, where the experimental value for 11.4% Li is
poorly reproduced by the theoretical curve obtained fora
=0.6. However, it is not clear whether the 18.3% Young’s
modulus enhancement in this commercial alloy, relative to
that of pure Al, is due to the solid solution itself or to the
intermetallic phase, which forms within the solid solution
matrix above,12% Li (Ref. 2).

The ratio between the bulk modulus and the shear modu-
lus, shown in Fig. 5 asB/G, is a measure of the ductility of
solids: ductile alloys are characterized by largeB/G ratios,
whereas lowB/G ratios are representative of brittle solids.64

We find that a small amount of Li makes the alloy more
brittle compared to pure Al. In dilute Al-Li alloys the calcu-
lated B/G decreases with 9.6% per at. % Li, compared to
the experimental decrease of 7.6%. We note that the opposite
trend for c12 from Fig. 4, compared toc11, leads to a rapid

FIG. 4. Comparison between theoretical(present results) and
experimental Ref. 11 single-crystal elastic constants for Al-Li ran-
dom alloys.

FIG. 5. Comparison between present theoretical(solid circles)
and experimental(open triangles) (Ref. 11) polycrystalline elastic
moduli (B, E, andG stand for bulk, Young’s, and shear modulus,
respectively) of Al-Li random alloys. Solid and dashed lines corre-
spond to the two sets of self-consistent EMTO-CPA results from
Fig. 2. For reference we also included experimental data for the
Young’s and shear moduli(open squares) obtained for the 2024
commercial aluminum alloy(Ref. 2).
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increase in the cubic shear modulusc8=sc11−c12d /2 and thus
is essential for the observed rapid decrease inB/G on alloy-
ing Al with Li.

Finally, in Fig. 6 we present the low-temperature Debye
temperatures as calculated from Eq.(4). The low-
temperature experimental value for Al from Ref. 65 and the
FP-LMTO value by Clouetet al.60 are also included. Accord-
ing to our result, 10% Li addition to fcc Al increases the
Debye temperature and, thus, the low-temperature limit of
the heat capacity by 13%, in accordance with experiments.66

We have demonstrated that the EMTO-CPA method with
a<0.9 reproduces, with high accuracy, the observed trends
of the elastic moduli of Al-Li random alloys. In the follow-
ing we focus on the single-crystal elastic constants and in-
vestigate the peculiar concentration dependence ofc8 andc44
from Fig. 2. The two cubic shear moduli are proportional to
the energy changeDEs«d=Es«d−Es0d caused by a small lat-
tice distortion« relative to the high-symmetry structure. The
electrostatic and exchange-correlation parts ofDEs«d are de-
termined by the charge densitynisr d. Our EMTO-CPA results
show that the charge transfers and the multipole moments of
nisr d vary monotonously with Li concentration. Therefore we
can exclude the electrostatic67 or exchange-correlation origin
of the observed unusual trend in the elastic constants.

In order to estimate the band energy part ofDEs«d and,
thus, of the cubic shear moduli, first we analyze the density
of states(DOS) of fcc Al-Li alloys. In Fig. 7 we compare the
DOS of Al and of Al0.9Li 0.1 and Al0.8Li 0.2 alloys. The density
of states of pure Al shows pronounced deviations from the
free-electron-type behavior. The van Hove singularities near
−4.5, −2.7, and −1.0 eV arise from the critical points in the
band structure atL, X, and W symmetry points from the
Brillouin zone.68 The Fermi levelsEFd of Al is situated above
the W minimum. Thus we expect that a small amount of Li
addition—i.e., a small decrease in the number of electrons—
would shift the position ofEF towards theW singularity.
Indeed, we find that at 10% Li the Fermi level is located at
the W minimum, and with increasing Li concentrationEF is

moved towards theW maximum. Note that in spite of the
smearing effect of the disordered substitutional Li, at 20% Li
we still can identify the main DOS structures characteristic
of pure Al.

We illustrate the effect of lattice distortion on the DOS of
Al-Li alloys by considering the monoclinic distortion(7)
with «m=0.05. In insets I–III in Fig. 7 we compare the DOS
of fcc alloys with the DOS calculated for alloys having the
monoclinic structure. We find that the symmetry-lowering
monoclinic distortion leaves theX singularity almost un-
changed, whereas it slightly alters and shifts the position of
the W minimum to higher energies. As a result, we obtain
that the density of states at the Fermi level decreases with
monoclinic distortion in pure Al, increases in Al0.9Li 0.1, and
remains constant in Al0.8Li 0.2. Therefore, the band energy
contribution toDEs«md is negative in the case of Al, positive
for intermediate(approximately 5%–15%) Li concentrations,
and zero for,20% Li. This results in a maximum inc44 near
10 at. % Li (Fig. 2). A similar mechanism is responsible for
the concentration dependence of the tetragonal shear modu-
lus c8.

IV. CONCLUSIONS

Using the EMTO-CPAab initio total energy method we
have calculated the elastic properties of random Al-Li binary
alloys. Where comparison is possible good agreement is
found with the experimental data for both single-crystal and
polycrystalline elastic moduli. The most surprising result of
the present work is the small effect of the Madelung correc-
tion term on the calculated elastic properties, compared to
the one observed in the case of the enthalpy of formation.
This is a consequence of the error cancellation between the
total energies of slightly different structures involved in the
calculation of the elastic constants. Our results imply that the

FIG. 6. Theoretical Debye temperatures of Al-Li alloys calcu-
lated using the EMTO-CPA method(present results) and the LMTO
method(Ref. 60). The low-temperature experimental Debye tem-
perature for Al is from Ref. 65.

FIG. 7. Calculated density of state of fcc Al-Li alloys encom-
passing 0(solid line), 10 (dotted line) and 20(dashed line) at. % Li.
In the insets the fcc densities of states(solid lines), shown on en-
larged scales, are compared to the densities of states of a mono-
clinic structure(dashed lines) corresponding to the monoclinic de-
formation (7) with «m=0.05. Vertical dashed lines denote the
position of the Fermi level.
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screening around the impurities in metallic systems depends
on the type of the atoms[described by the net charge from
Eqs. (2) and (3)] and the average atomic radius, but shows
weak structural dependence. Using the EMTO-CPA method,
in combination with the SIM for the electrostatic contribu-
tions, we have investigated the origin of the peculiar concen-
tration dependence of the elastic constants of Al-Li random
alloys. We have found that the observed nonlinear effect of
Li addition on the elastic constants results from the particular
band structure of Al near the Fermi level.

Since the Al-Li system presents one of the most severe
tests for single-site CPA-based methods, the present finding
suggests that the EMTO-CPA method can safely be applied
to the ab initio determination of the elastic properties of
substitutional random alloys. The obtained overall good

agreement with experiment demonstrates the applicability of
the present quantum mechanical method for mapping the
elastic properties of random alloys against chemical compo-
sition.
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