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We present a statistical study of silicon and oxygen neutral defects in a silica glass model. This work is
performed following two complementary approaches: first-principles calculations and empirical potential mo-
lecular dynamics. We show that the defect formation energies and structures are distributed and that the energy
distributions are correlated with the local stress before the defect formation. Combining defect energies cal-
culated from first principles and local stresses from empirical potential calculations in undefected silica, we are
able to predict the formation energy distributions in larger systems, the size of which precludes the use ofab
initio methods. Using the resulting prediction we will show that the cell size used in our modeling contains all
the formation energy fluctuations needed to describe a real glass.
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I. INTRODUCTION

Silicate-based compounds are common materials in a va-
riety of scientific and technological fields. One of the impor-
tant questions, still open, is their long-term evolution under
aging factors. The diffusion mechanisms are responsible for
this long-time behavior. As silicate-based compounds are
complex systems, and also as the involved time scale may
extend over thousand of years, the experiments are compli-
cated to analyze and in many cases impossible to perform
without accelerated aging. In this case, the interpretation of
the accelerated experiments, as well as their transposition to
the actual problems, rely on the modeling of the aging phe-
nomenon. In this context, numerical simulation appears as a
powerful tool for the understanding of the defect properties
and the diffusion processes, which allows then, in a multi-
scale simulation scheme, to understand the long-time behav-
ior. In particular, first-principles calculations, the direct ap-
plication domain of which is restricted to short times and
small sizes, open up the possibility to describe the primary
diffusion mechanisms.

This work focuses on a model of amorphous SiO2, chosen
as the simplest silicate-based material. It presents a first-
principles study on the neutral self-defects, which are the
defects coming from those chemical species present in the
material. A first and partial account of this work has been
already given.1 Following previous studies performed in
SiO2 crystalline phases2–8 and in the amorphous one,9,10 we
will focus on vacancies and intrinsic interstitials. It is known
that under high enough oxygen partial pressure the main dif-
fusion mechanism is mediated by molecular oxygen.11–13

But, at lower pressures or under irradiation, as in nuclear
glasses or in microelectronic devices, a complete knowledge

of defects and their evolution is needed. The reason for be-
ginning by studying neutral defects is twofold. First it is
difficult to detect experimentally the structures and concen-
trations of neutral defects, which lack an electric or magnetic
signature. Then, the estimation of their contribution to the
diffusion and their role as precursor of other defect types has
still to be clarified. Second, a recent work14,15on self-defects
in a-quartz has shown that in pure quartz, due to the value of
the electronic chemical potential, the charged defects should
not contribute too significantly to the diffusion, at least in the
range of usual experimental conditions. Of course these re-
sults obtained for quartz cannot be transposed directly to
silica glass without an analogous study for charged defects.
This will be the aim of a further publication.

The main difficulties in a numerical study of defects in an
ionocovalent glass are closely related to the disorder and to
the nature of the bonds implied in the defect structures. The
first difficulty comes from the generation of the glass model
itself. Indeed, as the glass properties depend on the quench
rate and on the subsequent annealing time, it is important to
quench then the melt at the slowest rate possible, in order to
have a glass model close to the actual structure of a silica
glass. Usingab initio methods the quench rate remains in
excess of 1015K/s, but within empirical potential molecular
dynamicssEPMDd the rate can be as low as 1011K/s, closer
to the experimental one of 105K/s. On the other hand, even
if the glassy state without defects is well described with em-
pirical potentials, we expect that the available empirical
models are completely unable to describe properly the ho-
mopolar bonds frequently involved in defect formation in
SiO2.

2–13 The third difficulty comes from the need of a com-
prehensive study on a large set of defect sites. As in a glass
all the defect sites are nonequivalent, the properties deduced
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from the calculations are strongly dependent on the com-
pleteness of the considered population. Nothing is knowna
priori about the minimal size of the population which will
represent the average and fluctuations of the property under
study in a real size glass. We choose anab initio technique
where the wave functions are projected onto a localized
pseudo–atomic orbitalssLCAOd basis. In most cases it is
possible with a relatively reduced number of basis vectors to
have an accurate description of ground states. The reduced
number of basis vectors results, of course, in a significant
gain in computational time. But the results have to be vali-
dated by anotherab initio approach, without the uncertainity
of the basis, to ensure the consistence of the calculations.
Indeed, the degree of completeness of the LCAO basis set
that is chosen is not knowna priori.

Our initial glass configuration was obtained by quenching
from a melt prepared using molecular dynamics with an em-
pirical interaction modelsEPMDd with fixed charges. Theab
initio calculations were performed using theSIESTA first-
principles code16,17based on density functional theorysDFTd
within the local density approximationsLDA d and LCAO
basis set.

In the first part of the paper we present the numerical
methods used as well as the main definitions. Then, in order
to provide a check for ourSIESTA calculations, we show a
comparison between results obtained with three first-
principles codessSIESTA, PWSCF, VASPd. We next present our
results obtained with theSIESTA code for defects in a 108-
atom silica model. As expected, at variance with SiO2 crys-
talline phases, the defect structures and formation energies
are noticeably scattered. The distribution is due to the struc-
tural disorder which induces the nonequivalence of defect
sites. We discuss how the formation energy dispersion is re-
lated mainly to local properties in the case of oxygen defects
and to medium range properties in the case of silicon defects.
In this context, we show that the origin of the formation
energy distribution stems from the local stress fluctuations.
Combining the formation energies calculated by first prin-
ciples and EPMD local stress calculations, one can construct
a simple model allowing one to extrapolate the formation
energies to larger systems. We then apply this model to
amorphous supercells containing 192 and 648 atoms, and we
prove that a 108-atom silica glass model is able to represent
correctly the defect formation energies and defect formation
energy fluctuations.

II. GENERATION OF THE INITIAL AMORPHOUS
MODEL

The generation procedure is done in two steps. In the first
step a well relaxed amorphous structure is generated by melt-
ing and quenching a SiO2 crystalline polymorph using
EPMD. In the second one the resulting amorphous model is
relaxed by first principles using a conjugate gradient method.
This two-step procedure is needed to obtain amorphous
structures at a low CPU time costsEPMDd and a realistic
description of the binding, thanks to the first-principles ac-
count of the electronic contribution. An earlier work18 has
shown that the first-principles relaxation results in a small

variation of the atomic positions, which means that the
EPMD structure and the first-principles structure are really
close to each other.

A. Optimized quench within the EPMD approach

The annealing steps by molecular dynamics were per-
formed at constant number of particlesN, constant volume
V, and constant temperatureT, the so calledNVT ensemble
of molecular dynamics. The temperature is maintained con-
stant by rescaling the particle velocities periodically, in order
to get the required kinetic energy in the standard way. The
structural relaxation were obtained using a damped dynamics
on cell variables.

The van Beest–Kramer–van Santen19 sBKSd potential,
which is known to reproduce well the structural and vibra-
tional properties of silica at low temperatures, is chosen as
the empirical interaction model. However, at short distances
the BKS potential diverges attractively, as shown in Fig. 1,
precluding its use in its original form for molecular dynamics
at high temperature. To avoid this unphysical divergence it is
necessary to add a hard repulsive partsRPd acting only at
shorter distances. This treatment is a standard procedure.18,20

But, with this arbitrary addition, one has to check carefully
that the amorphous structures obtained are independent of it.
At high temperatures, where the atoms can be close enough
to feel the repulsive part, the structures are dependent on the
detailed form that is used. After the quench, the system may
keep a memory of its high-temperature behavior. It is, then,
necessary to control that we can define an optimized quench
proceduressee belowd, which allows us to recover a structure
free of artifacts due to this repulsive potential. We choose the
same polynomial formfsee Eq.s1dg for the hard repulsive
part sVRPd, of all the atomic pairssSi-Si, Si-O, and O-Od:

VRPsxd = Gsx − x0d4. s1d

The total potential energy is then

Vtotsxd = HVRPsxd for x ø x0,

VBKSsxd for x . x0,
J s2d

s3d

whereVBKS=qiqje2/r ij +Aije
−Bij ri j −Cij / r ij

6 is the BKS poten-
tial.

FIG. 1. O-O BKS potential and the polynomial repulsive
potential.
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Two parameters are necessary to adjust the hard repulsive
potential:x0 andG. The branching pointx0 is chosen as the
local maximum of the BKS potentialssee Fig. 1d. With this
choice, the temperature where the atoms no longer explore
the region governed by the repulsive part is the highest pos-
sible.

The optimized quench procedure proceeds then as fol-
lows.

s1d Melting of a crystalline SiO2 polymorph sb-
crystobalited and annealing the liquid at 7000 K.

s2d Quenching from the melt at a rate of 2.331014K/s
down to 3000 K.

s3d Annealing in theNVT ensemble at 3000 K until a
stationary regime is obtained.

s4d Quenching at a rate of 2.331014K/s down to 300 K.
s5d Annealing in theNVT ensemble at 300 K until the

convergence of the mean local stress is reached.
s6d Fast quench down to 0 K at zero external pressure.
We emphasize the importance of step 3, which is the one

that grants that the resulting glass is independent of the
choice of the repulsive part. Indeed, 3000 K is the tempera-
ture where the atoms do not have enough kinetic energy to
explore the region governed by the repulsive part, but still
can diffuse far enough to wipe out this influence accumu-
lated during steps 1 and 2. To check this, we choose to work
on a 648-atom supercell in order to compare the structural
propertiesspair correlation functions, angles distributions,
ring statistics, etc.d with earlier EPMD calculations.20–22 In
order to follow the structural evolutions we plot the instan-
taneous ring47 distribution in the sense of King.23 This par-
ticular ring statistics focuses on the smallest closed path
starting and ending at a particular silicon atom.

Let us recall that the defect-free SiO2 glass may be con-
sidered as a well connected network built on SiO4 tetrahedra
and that ring statistics is a powerful tool to describe the con-
nectivity of amorphous networks. The choice of ring statis-
tics as a tracer of the structural convergence is motivated by
the fact that it shows the topological changes related to the
break of Si-O bonds, free of the bond stretching signal, in
contrast to the instantaneous pair correlation function and
related short-range quantities. Another advantage is that ring
statistics is a more discriminant factor than pair correlation
functions. The local order, represented by the first peak in
pair correlation functions, in silica is always well defined and
thus cannot be used as discriminant. To extract information
about the medium range order it is necessary to look at the
shape and position of the rest of the peaks. However, it is not
possible, with the information given by these peaks to dis-
tinguish beetwen network distortions or network connectiv-
ity changes because they only give the distance distribution
with rotational symmetry. The evolution of these topological
changes is precisely what we are looking for. Many different
ways to count the rings exist in the literature,23–28 but what-
ever definition is used, having the same ring statistics is a
necessary condition to have the same structure.

We start with twob-crystobalite cristals of 648 atoms,
systemsA andB. We perform steps 1 and 2 for two different
repulsive potential intensitiesG1=1025 erg/cm4 for systemA
and G2=1023 erg/cm4 for systemB. In the third step we
switch the intensities, in order to relax the systemA when

usingG2 and the systemB when usingG1. If both systems
reach the same statistical equilibrium structure after some
relaxation time, then the independence of the choice of a
repulsive potential form is recovered. After approximatively
1 750 000 time steps, both systemssA andBd reach the same
time average ring statistics, as show in Fig. 2 where the
evolution for three-membered and five-membered48 rings is
plotted during the anneal at 3000 K. This convergence is also
observed for the other ring sizes. Thus independence from
the repulsive potential form is proved.

The procedure is quite insensitive to the choice of the
melting temperature in step 1, the quench rate in steps 2 and
4, and the relaxation temperature in step 5. Conversely, a
long relaxation at room temperature is necessary to ensure
that mean local stress convergence is achieved before the last
stepsstep 6d. The silica model built on this six-step quench
procedure exhibits a structure very close to the experimental
one, independently of which hard repulsive potential is cho-
sen.

B. Structure of the glass models generated by the optimized
quench procedure

Using the procedure described abovesSec. II Ad we gen-
erate three amorphous models of different size: 108, 192, and
648 atoms. The 108-atom model is used for the complete
first-principles study of point defects. In terms of local prop-

FIG. 2. Five-memberedsId and three-memberedsII d ring statis-
tics time evolution during the anneal at 3000 K.
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erties like mean first-neighbor distances, even with a rela-
tively small silica model, the agreement between the model
and the experimental data remains very goodsas shown in
Tables I and IId. In other words, the size dependence is neg-
ligible. But this is not the case, for instance, for ring statis-
tics, which describes medium range properties. The highest-
order rings decrease with increasing size of the system while
the five-membered rings per Si center increase, and the
three-, four-, and six-membered ring populations are almost
constantssee Table IIId. The size of the system, due to the
periodic boundary conditios, fixes the highest-order ring.
Five-membered rings are energetically more favorable29 than
three- or four-membered rings. The six-membered ring sta-
tistic seems to be almost constants<two six-membered rings
per Si centerd in EPMD silica models.20,22,30As we do not
know a priori the range of the defect formation energy, we
need larger-size silica models to perform a size dependency
study. The 192-atom model is, then, needed to check whether
the average and fluctuations of the defect formation energy is
well represented or not by the 108-atom model. Someab
initio calculationssoxygen vacancy formation energyd have
been performed for this model. Finally, the 648-atom model
which will be treated only classically, is used to extrapolate
the defect formation energies.

Looking at Tables I–III, we conclude that the optimized
quench procedure gives well connected amorphous net-
works, without two-membered ringssedge sharing tetrahe-
drad even for relatively larges648 atomsd system size. The
BKS potential, combined with the optimized quench proce-

dure, predicts the structure commonly postulated for ideal
amorphous silica.

C. The first-principles relaxation

For the first-principles part, we choose to use theSIESTA

code based on DFT-LDA, with Martin-Troullier pseudopo-
tentials to describe the core-valence electronic interaction.
SIESTA uses localized pseudo–atomic orbitals as a wave func-
tion basis. The atomic positions and cell parameters are re-
laxed using the conjugate gradient method. Given the large
supercell sizes108 and 192 atomsd, the Brillouin zone is
sampled at theG point only. The use ofSIESTA is motivated
by the fact that with a reduced basis set it is possible in some
cases to give accurate results at low computational effort.
Naturally, the search for reducing the computational time is
due to the need for a statistical study. As in a glass all the
defect sites are nonequivalent, one expects to have formation
energy distributions and also a distribution of structural pa-
rameters. In that context, it is important to study a large
number of defect sites. The basis set used is double-zeta
polarizedsp orbitals for silicon and oxygensbasis optimiza-
tion done by Angladaet al.34d.

To validate the accuracy of the basis set chosen, we have
compared theSIESTA results to two other first-principles
schemes, where the error due to the noncompleteness of the
basis set can be controlled. We used ab version35 of PWSCF

TABLE I. Mean angles and full width at half maximumsFWHMd in the EPMD amorphous models and
mean angles in the silica glass.

108 atoms 192 atoms 648 atoms Experiment

Si-Si-Si 107.7° 107.8° 107.5°

Si-Si-O 81.1° 85.8° 83.7°

O-Si-O 109.0° 109.3° 109.2° 109.4°sRef. 31d–109.7°sRef. 32d
FWHM 13° 15° 16°

Si-O-Si 153.5° 148.4° 148.9° 144°–152°sRef. 32d
FWHM 42° 27° 33°

O-O-O 96.1° 97.2° 97.0°

O-O-Si 82.1° 87.5° 84.9°

TABLE II. Mean first-neighbor distances and full width at half
maximum sFWHMd in the EPMD silica models and in the silica
glass.

108 atoms 192 atoms 648 atoms
Experiment
sRef. 33d

dsSi−SidsÅd 3.16 3.07 3.16 3.12

FWHM sÅd 0.28 0.21 0.23

dsSi−OdsÅd 1.60 1.61 1.60 1.62

FWHM sÅd 0.07 0.08 0.06

dsO−OdsÅd 2.61 2.76 2.58 2.65

FWHM sÅd 22 25 24

TABLE III. Ring statistics in the sense of KingsRef. 23d of the
EPMD silica models.

Ring order 108 atoms 192 atoms 648 atoms

2 0 0 0

3 0.167 0.047 0.069

4 0.556 0.500 0.537

5 3.194 2.297 1.866

6 2.028 2.391 1.995

7 0.056 0.750 1.208

8 0 0.016 0.319

9 0 0 0.046

10 0 0 0
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within the LDA, with norm-conserving pseudopotentials and
an energy cutoff of 80 Ry. We have also performed calcula-
tions with VASP sRefs. 36–38d within the projector aug-
mented wavesPAWd approach,38 using an energy cutoff of
500 eVs,37 Ryd. The atomic positions and cell parameters
are relaxed by the conjugate gradient method. In theVASP

calculations, in the case of defective silica, the atomic posi-
tions are relaxed at constant volume.

As shown in Tables IV–VI, the densities and structures of
the silica models after the first-principles relaxation are very
close for all the methods used. Of course these results only
show that the basis is complete enough to give an accurate
description of the glass structure. In Sec. IV we compare the
three codes in the context of defect state calculations.

III. THE DEFECT STATE CALCULATIONS

The ground state energy of the system with one defect is
obtained by addingsinterstitialsd or removingsvacanciesd an
atom and relaxing the resulting structure, atomic positions,
and cell parameters by first principles. We perform ground
state energy calculations for all of the 72 oxygen vacancy
and interstitial sites, for all of the 36 silicon vacancy sites,
and for 84 silicon interstitial sites, using the same methods
and parameters as in the first-principles relaxation of the
nondefective silicasSec. II Cd. In the case of interstitial sili-
con the starting points of the extra silicon atom were chosen
at random among the centers of the rings of the structure.
120 such starting points have been selected, giving rise to 84
stable, or metastable, different configurations of the defect.

For the formation energy calculations we suppose that
SiO2 is in equilibrium with the O2 molecular gas, according
to the following reactions and equations:

Oxygen vacancy:

SiO2 − 1
2O2
 sSiO2dVO

,

Ef
VO

= Esupercell
VO

− sEsupercell−
1
2EsO2dd .

Oxygen interstitial:

SiO2 + 1
2O2
 sSiO2dIO,

Ef
IO = Esupercell

IO − sEsupercell+
1
2EsO2dd .

Silicon vacancy:

Sn − 1

n
DSiO2 + O2
 sSiO2dVSi

,

Ef
VSi

= Esupercell
VSi

− FSn − 1

n
DEsupercell+ EsO2dG .

Silicon interstitial:

Sn + 1

n
DSiO2 − O2
 sSiO2dISi

,

Ef
ISi

= Esupercell
ISi

− FSn + 1

n
DEsupercell− EsO2dG .

HereEf is the defect formation energy,Esupercellis the energy
of a perfect silica supercell containingn tetrahedra, and
Esupercell

V or I is the energy of the silica supercell with a point
defect, containing nown−1 or n+1 silicon/oxygen atoms,
depending on the defect being a vacancy or an interstitial.
The ground state energy of the oxygen molecule is calculated
with spin polarization.

IV. VALIDATION OF THE BASIS SET

In order to confirm that our LCAO basis set is reliable
also for the defect properties, we have calculated defect for-
mation energies ina-quartz as well as a few defects, three
for each of silicon and oxygen, on the same sites of the glass
model, with both approaches, the atomic and plane wave
bases.

In the case of the oxygen vacancy, there is a good agree-
ment beetwenSIESTA andPWSCF. Conversely, the formation
energies given byVASP are systematically higher by 0.2 eV
ssee Tables VII and VIII and Fig. 3d. We can,a priori, at-
tribute this systematic difference to two causes: the lack of
volume relaxation in ourVASP calculations or the different
first-principles approaches, PAW in the case ofVASP and
norm-conserving pseudopotentials in the cases ofSIESTA and
PWSCF, resulting in a different description of Si-O and Si-Si
bonds. Some calculations at constant hydrostatic pressure
with VASP have shown that the major contribution to this 0.2

TABLE IV. Density of the first-principles amorphous
models.

SIESTA PWSCF VASP

Density sg/cm3d 2.19 2.18 2.23

TABLE V. Mean angles in the first-principles amorphous
models.

SIESTA PWSCF VASP

Si-Si-Si 107.8° 108.6° 108.5°

Si-Si-O 86.2° 86.0° 86.0°

O-Si-O 109.0° 109.4° 109.4°

Si-O-Si 142.5° 145.1° 144.9°

O-O-O 98.4° 98.7° 98.4°

O-O-Si 87.0° 86.8° 86.8°

TABLE VI. Mean first-neighbor distances in the first-principles
amorphous models.

SIESTA PWSCF VASP

dsSi-SidsÅd 3.07 3.08 3.12

dsSi-OdsÅd 1.63 1.62 1.61

dsO-OdsÅd 2.75 2.73 2.63
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eV difference should come from the second cause, the de-
scription of the Si-O and Si-Si bonds. Indeed, the cohesive
energy of bulk silicon is lower in theVASP calculations and
the formation energy of silica is higher. This means that the
Si-O bond is more stable and the Si-Si bond is less stable
compared to theSIESTA andPWSCFcalculations. In the case
of oxygen vacancies, two Si-O bonds are broken and one
Si-Si bond is formed. As it is less favorable to break Si-O
bonds and to form Si-Si bonds in theVASP calculations than
in the SIESTA andPWSCFones, this gives a higher formation
energy of oxygen vacancies forVASP.

In a few cases for oxygen interstitials, the formation en-
ergy differences betweenSIESTA, PWSCF, andVASP may reach
0.5 eV. As is well established, SiO2 displays a large number
of local structural conformations, corresponding to rotations
of tetrahedrassee Stonehamet al.9d, which are metastable
with respect to the true ground state. The different relaxation
methods, i.e., different Hamiltonian and different conjugate
gradient algorithms, will stop the system in different meta-
stable positions. This is clearly observable in Fig. 4, where a
few points, in one or the other code, escape the one-to-one
linear relation. For instance, performing constrained relax-
ations around the silicon-silicon axis for one oxygen intersti-
tial displaying a formation energy of 1.38 eV, we found a
metastable minimum 0.91 eV higher.

For silicon vacancies, there is a good agreement between
the three codessTables VII and IXd. In silica, silicon vacan-
cies may exhibit three different equilibrium structures, all
involving O-O bonds. The comparison betweenSIESTA and
VASP sTable IXd for these three structures shows that the
LCAO basis reproduces theVASP results.

For silicon interstitials, where a Si-Si bond has to be
formed, we find, as well as in oxygen vacancies, a systematic
shift, of about 0.6 eV, betweenVASP formation energies and

the two other codessTables VII and IXd. Clearly, the Si-Si
bond in theVASP calculations is less favorable than inSIESTA

and PWSCF calculations. The origin of this underbinding of
silicon is certainly not in the PAW approachper se, but more
likely lies in the manner the projectors have been imple-
mented inVASP. To correct this peculiarity was not in the
scope of this work, as soon as the main goal to validate the
SIESTA basis was reached.

The energy discrepancies due to the relative noncomplete-
ness of the localized basis set chosen for theSIESTA calcula-
tions are smaller than the energy discrepancies due to
changes in first-principles scheme coming from small differ-
ences in the description of bonds. All those comparative cal-
culations show that the basis set chosen is complete enough
to give accurate results in the study of intrinsic neutral de-
fects in the silica. The rest of the study has been therefore
performed only with theSIESTA code.

V. NEUTRAL SELF-DEFECTS IN A 108-ATOM SILICA
GLASS

A. Oxygen defects

The structures of the neutral oxygen vacancies and inter-
stitials are found to be a Si-Si crystalline siliconlike bond
and a Si-O-O-Si peroxy bridge, respectively, as ina-quartz.8

The bond length and formation energies are distributed. Fig-

TABLE VII. Defect formation energies, in eV, in a 72-atom
a-quartz supercell, whereVO andIO refer, respectively, to oxygen
vacancy and oxygen interstitial, andVSi andISi to silicon vacancy
and silicon interstitial.

Defect type SIESTA PWSCF VASP

VO 5.58, 5.59s108 atomsd 5.58 5.80

IO 1.92, 1.80s108 atomsd 1.84

VSi 4.79 4.51 4.58

ISi 13.67 13.78 14.34

TABLE VIII. Oxygen formation energies, in eV, in a 108-atom
glass supercell; same notation as in Table VII.

Defect type SIESTA PWSCF VASP

VO 4.70 4.68 4.92

VO 5.70 5.73 5.95

VO 5.94 6.00 6.20

IO 1.62 1.86 1.75

IO 1.14 1.54 1.19

IO 1.31 1.25 1.31

FIG. 3. Formation energies of the oxygen vacancies in a 108-
atom silica glass,VASP versusSIESTA results. Fit parameters: slope
=1.005, intercept=0.25 eV, correlation coefficient=0.98.

FIG. 4. Formation energies of the oxygen interstitials in a 108-
atom silica glass,VASP versusSIESTA. Fit parameters: slope=1.028,
intercept=0.048 eV, correlation coefficient=0.85.
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ures 5 and 6 show the formation energies, which follow
Gaussian-like distributions.

The mean oxygen vacancy formation energy and standard
deviation are 5.44 eV and 0.3 eV, respectively. The mean
formation energy of the Gaussian fit is 5.52 eV with a stan-
dard deviation of 0.3 eV. The Si-Si bond length spans from
2.2 to 2.6 Å, with an average value of 2.36 Å. The mean
formation volume is −25.0 Å3.

The mean oxygen interstitial formation energy and stan-
dard deviation are 1.46 eV and 0.4 eV, respectively. The
mean formation energy of the Gaussian fit is 1.60 eV with a
standard deviation of 0.4 eV. The O-O bond length spans the
1.3 to 1.5 Å range, with an average value of 1.46 Å. The
mean formation volume is 6.6 Å3.

In silica, the average formation energy for the oxygen
defects is lower by 0.15 and 0.34 eV for the vacancies and
interstitials, respectively, than ina-quartz. The average Fren-
kel pair formation energy is then 0.5 eV smaller than in
a-quartz. However, these results gives a crucial information.
Even if the medium- and long-range structure between
quartz and silica glass is completely different, the structure
and the formation energy of oxygen defects are very close.
This can be understood only if the oxygen defect depends
mainly on the local order. Indeed, the local first-neighbor
order in silica glass is very well defined and very close to the
crystalline tetrahedral arrangement, giving rise to high inten-
sities of the pair correlation function first peak. In this pic-
ture, the distributions come from small deviations from the
local perfect order, as we shall see below.

B. Silicon defects

The neutral silicon defects have a more complicated be-
havior than the neutral oxygen defects, and display many
different equilibrium structures as shown in Table X, where
only atoms with coordination anomalies and their first neigh-
bors have been represented. In the case of the silicon vacan-
cies, due to the relatively limited samplings36 silicon vacan-
ciesd it is difficult to give a precise general behavior for the
formation energies. We observe three different structures: an
ozonyl bridge, a double peroxy bridge, and a single peroxy
bridge plus two nonbridging oxygens. The double peroxy
bridge corresponds to the structure of the neutral silicon va-
cancy ina-quartz. When it is formed, the ozonyl bridge is
the most stable structure with the smallest average formation
energys2.24 eVd. The mean formation energy for all struc-
tures is 3.80 eV, 0.7 eV smaller than ina-quartz,8,14,15 and
the mean formation volume is −1.88 Å3.

In the case of silicon interstitials, the results are summa-
rized in Table X, where we give the various structures and
mean formation energies as well as the probability of finding
a defect site with a particular structuressee also Figs. 7 and
8d. This probability is obtained from the number of defect
introduction sites giving the specific defect structure divided
by the total number of introduction sites. In the case of va-
cancies this last number is simply the number of tetrahedra;
for interstitials it is the number of large cavities in the silica
model used as introduction points for the extra silicon and
giving rise to different defectssi.e., 84 sites as said aboved.
By far the most probable structure is the Si-Si-O linksI1d,
where the silicon interstitial is inserted beetwen a Si-O bond,
as ina-quartz. Similarly to the oxygen interstitial case, local
minima exist around the Si-O defect axis. The energy differ-
ences between them may reach 1 eV. More complicated and
compact defect structures are also found; one of the most
interesting is the double-oxygen-vacancy-like structuresI2d.
The silicon interstitial is inserted on a Si-O bond and then the
silicon atom bonds to a neighboring silicon, stealing one of
its oxygens. This structure has the smallest formation energy,
11.52 eV on average, close to the formation energy of a
bivacancy. Indeed, using the mean formation energy of an
oxygen vacancy, resulting from the Gaussian fit of Fig. 5, in
Sec. V A, and neglecting the contribution of the interaction
between vacancies, the average formation energy of a diva-

TABLE IX. Silicon formation energies, in eV, in a 108-atom
glass supercell; same notation as in Table VII.

Defect type SIESTA seVd VASP seVd

VSi 2.55 2.57

VSi 3.95 3.88

VSi 5.68 5.69

ISi 12.03 12.63

ISi 11.56 12.47

ISi 12.54 12.84

FIG. 5. Formation energy distribution of the oxygen vacancy in
a 108-atom silica glass. Parameters of the Gaussian fit:
mean value=5.52 eV, standard deviation=0.3 eV

FIG. 6. Formation energy distribution of intrinsic-oxygen inter-
stitial in a 108-atom silica glass. Parameters of the Gaussian fit:
mean value=1.60 eV, standard deviation=0.4 eV.
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cancy amounts to 11.04 eV. In the other cases, summarized
by I3 in Table X, the inserted silicon produces a partial re-
construction in its neighborhood giving rise to three-
coordinated oxygens. Their formation energies are, on aver-
age, higher than the other two casessI1 and I2d. The mean
formation energy including all structures is 12.48 eV, 1.3 eV
smaller than ina-quartz,15 and the mean relaxation volume is
−41.5 Å3.

VI. DISCUSSION

In silica glass the medium- and long-range structures are
markedly different from those in quartz and so also is the
environment seen by each defect site. Conversely, the short-
range structure, which means first-neighbor tetrahedra, is
well defined and close to the first-neighbor tetrahedral order
found in quartz or crystobalite.6 The intrinsic oxygen defects
have a single structure for each kind of defect type, the same
as in a-quartz. Their formation energies are distributed ac-
cording to Gaussian distributions with a mean value close to
the formation energy of oxygen defects ina-quartz. Both

results point to the probable fact that the major contribution
to the formation energy dispersions comes from variations of
local properties. The formation energy dispersion is likely to
depend on small deviations from the “perfect” first-neighbor
tetrahedral order. The question is then how to characterize
these small deviations.

Conversely, the silicon defects show several different
structures. The mean formation energies corresponding to
these structures are quite distinct. This could be the signature
of a medium-range order dependence, typically second-
neighbor distances, ring statistics on the defect site, or simi-
lar properties. However, as the most probable structures is
always the same as ina-quartz, we still expect to find a
relation between formation energy and local glass structure,
with nevertheless some blurring of the energy-structure rela-
tionship.

A. Origin of the formation energy dispersion

As sketched above, the formation energy dispersion
should depend on local structural fluctuations of undefected

TABLE X. Symbolic representationfsilicon atomssdark grayd and oxygen atomslight graydg of the
structure of silicon defects, where only atoms with coordination changes and their first neighborhood have
been plotted; average formation energyskEfld; and structure probability of the silicon vacanciessVd and
interstitialssId.

FIG. 7. Formation energy distribution of silicon vacancy in a
108-atom silica glass.

FIG. 8. Formation energy distribution of silicon self-interstitial
in a 108-atom silica glass. Parameters of the Gaussian fit:
mean value=5.52 eV, standard deviation=0.3 eV
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silica, more likely in the case of oxygen defects than in sili-
con defects. We have searched for a structure dependence of
the formation energies. We have investigated several struc-
tural parameters of the nondefective silica model, in particu-
lar, bond distances, Voronoi volumes, intra- and intertetrahe-
dra angles, very strong ring statistics,28 and the local stresses.

We have found a very clear dependence on the local
stresses at the defect site before the introduction of the de-
fect. It is possible to construct a simple model based on the
Kanzaki forces and the dipole tensor,39–41 to fully explain
this behavior.

The formation energy of a defect in a uniformly deformed
system under the homogeneous deformatione is

Ef = ffsR0 + s+ udsd + DfsR0 + s+ udsdg − fsR0 + sd s4d

wheref is the potential energy function of the system,R0 are
the positions in the unstrained system,s is the displacement
from the reference positions produced by the strainss
=e ·R0d, uds is the variation of the displacement due to the
defect, andDf is the variation of the potential energy func-
tion of the system due to the introduction of the defect. Ex-
pandingf aroundR0+s to second order andDf to first order
in the defect perturbation,

Ef = S ] fsR0 + s+ udsd
] uds

D
uds=0

·uds

+ uds·S ]2fsR0 + s+ udsd
] uds

2 D
uds=0

·uds+ DfsR0 + sd

+ S ] DfsR0 + s+ udsd
] uds

D
uds=0

·uds+ Osuds
2 d s5d

where the dot product “·” means a single index contraction.
Under the assumption that atR0+s there is no net force in
the system since it is in equilibrium, and applying the equi-
librium condition to the system, we obtain

0 = uds·S ]2fsR0 + s+ udsd
] uds

2 D
uds=0

+ S ] DfsR0 + s+ udsd
] uds

D
uds=0

s6d

and then

uds= − S ]2fsR0 + s+ udsd
] uds

2 D
uds=0

−1

·S ] DfsR0 + s+ udsd
] uds

D
uds=0

,

s7d

wheref]DfsR0+s+udsd /]udsguds=0 are the forces exerted by
the defect. Inserting Eq.s7d in the expansion of Eq.s4d, the
formation energy may be written to second order in the de-
fect perturbation as

Ef = DfsR0 + sd. s8d

Expanding the right hand side of Eq.s8d arounds, we get

Ef = DfsR0d + s ·S ] DfsR0d
] s

D = DfsR0d − PH:e s9d

where the double dot “:” means a double index contraction,
and PH is the dipolar tensor within Hardy’s
approximation,39,40 defined as the tensor product of the
forces exerted by the defect on the reference systemshR0jd:

PH = − S ] DfsR0 + sd
] s

D
s=0

^ R0. s10d

The formation energy of a defect under a homogeneous glo-
bal strain is a linear function of the Hardy dipolar tensor and
the strain:

Ef = DfsR0d − PH:e. s11d

To the same level of approximation,e could be rewritten as a
function of the stress tensor; then we get

Ef = DfsR0d − PH:C−1:s, s12d

where C is the elastic constant tensor ands is the stress
tensor.

In a glass, each local volume is strained in some way, with
respect to the perfect tetrahedral order. To summarize, each
local volume indexed byi is strained byei. If we suppose
that the dipolar tensor has a range smaller than the range of
homogeneity ofei, the global strain of Eq.s11d may be re-
placed by the local strainei. This localei may be rewritten as
C−1:si, whereC is the elastic constant tensor andsi is the
local stress tensor in the local space volume indexed byi,
giving the following formation energy expression:

Ef
i = DfsR0d − PH:C−1:si . s13d

Equations13d predicts a linear behavior between the forma-
tion energies and the local stress.C, as a multiplicative factor
between the local strain and the local stress, may vary be-
tween each local volume, and this fact would be a source of
departure from the linear behavior of Eq.s13d.

The local space volume where the local stress is calcu-
lated can be chosen from the atomic scale up to the medium-
range scale, but one has to be careful about its size. Indeed,
if the region is larger than the range of the local stress fluc-
tuations then the local stress will be averaged and the rel-
evant fluctuations will be lost. We choose to characterize
local stress fluctuations only on an atomic scale using the
definition of atomic stress tensor proposed by Vitek and
Egami,42 based on the work of Martin and Co-workers.43,44

The local stress calulations are performed using the em-
pirical interaction model. As the EPMD glass structure and
the first-principles structure are very close to each other18

ssee also Secs. II B and IVd, the EPMD atomic stress may be
used as a measure of the local distortions. As we are inter-
ested in the origin of the formation energy dispersions, even
if the absolute energy reference between EPMD and the first-
principles methods is different, we expect that we get the
same energy variations due to local distortions of the first-
neighbor tetrahedral order.
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Within the first-order approximation in strain, and assum-
ing pairwise interaction potentials, the atomic stress tensor is
written as

si
ab =

1

2V
S− 2Pi

aPi
b

mi
+ o

j

N

f ij
ar ij

bD s14d

wherer ij is the relative coordinate of particlesi and j , Pi is
the conjugate momentum of particlei, and f ij is the force.N
and V are the total particle number and the mean atomic
volume, respectively.

In the case of oxygen defects, shown in Figs. 9 and 10, we
plotted the formation energy of a defect at a given site as a
function of the atomic pressure before the defect creation.
The agreement between the results and the model is very
good. The correlation coefficients of the linear fits are 0.92
and 0.84 for the vacancies and the interstitials, respectively.
Clearly, the formation energy dispersions are related to de-
viations from the perfect first-neighbor tetrahedral order. In
the plots we have only taken into account the local pressure;
if to this local pressure we add an invariant representing
some local shear stress, then the dispersion in reduced. In-
deed, Eq.s13d is a relation between the formation energy
dispersion and the whole local stress tensor. But there still
exists a residual dispersion which may come from intrinsic

approximations in the model, which is only of second order
in defect-induced displacements, as well as from the nonlin-
earity implied in the breaking and/or formation of bonds.

In the case of silicon defects, the relation is also verified
but with higher dispersions, as shown in Figs. 11 and 12. In
the interstitial case we have used only the formation energies
of silicon interstitials which belong to theI1 group from
Table X. For vacancies the dispersion is so high that only a
tendency may be extracted from the relation plotted in Fig.
11. As already pointed out above, the fact that silicon defects
exhibit different structures is the fingerprint that not only
short-range factors are implied in the structure and formation
energy variations.

B. System size convergence of the formation energy
distributions

The model sketched above allows us to extrapolate the
behavior observed on small systems to larger ones. To vali-
date this idea we have built, with the same procedure de-
scribed in Sec. II A, a silica model including 192 atoms and
calculated the formation energy of oxygen vacancies on 28
vacancy sites. As shown in Fig. 13 the models for the 108-
atom system and the 192-atom system exhibit the same slope
and y intercept. The extrapolation of the 192-atom linear
regression to the complete vacancy sitess128 vacancy sitesd
gives an average formation energy of 5.44 eV with a stan-

FIG. 9. Oxygen vacancy formation energies versus the initial
local stress. The correlation coefficient for the linear regression is
0.92.

FIG. 10. Oxygen interstitial formation energies versus the initial
local stress. The correlation coefficient for the linear regression is
0.84.

FIG. 11. Silicon vacancy formation energies versus the initial
local stress.

FIG. 12. Silicon interstitial formation energies versus the initial
local stress. The correlation coefficient for the linear regression is
0.67.
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dard deviation of 0.30, the same values for the average for-
mation energy and standard deviation as those for the 108-
atom silica ssee Sec. V Ad. The point to point mean error
between the two linear regressions108 atoms and 192 atomsd
is 0.03 eV.

As far as oxygen vacancies are concerned, and consider-
ing the errors of the model, the 108-atom silica supercell
seems large enough for a good description of the mean defect
formation energy and its fluctuations. We expect that this is
also the case for oxygen interstitials which also show a close
correlation between local stress and formation energies.

The stress dispersion in an even larger system, 648 atoms,
is also in perfect agreement with this conclusion. The ex-
trapolated mean formation energy is found to be 5.40 eV
with a standard deviation of 0.26 eV.

C. Comparison with diffusion experiments

A comparison of our results with experiments cannot be
done directly. Indeed, the only information on defect forma-
tion energy values comes from the measure of activation
energies in diffusion experiments. Furthermore, looking at
the results, the average migration barriers of neutral oxygen
defects have to be close to the migration barriers found in
a-quartz.8 We already have shown that for oxygen defects
the structures and formation energies are similar to those of
quartz and that this similarity comes from their very local
character. We have already calculated some migration barri-
ers for oxygen defects and these preliminary results are close
in energy and in migration path to the quartz results. In the
homogeneous regime, where silica is in equilibrium with it-
self, the activation energy for the network oxygen migration
is therefore expected to be about 4.6 eV, taking into account
half of the mean formation energy of a Frenkel pair in silica
glass and the interstitial migration barrier in quarz of 1.2 eV.8

Using our preliminary results pointing to a migration barrier
of 1.4 eV, we find an activation energy of 4.8 eV. Both re-
sults are in good agreement with the experimental
measurement45 of 4.7 eV. This agreement strengthens our
confidence in the predictive power of our calculations of for-
mation energies. An exhaustive description of migration bar-
riers will be the aim of a further study.

VII. CONCLUSION

In the context of the study of the long-term aging of silica
glasses, we have performed a systematic study of neutral
self-defects in a silica glass model by first principles. Com-
bining empirical potential molecular dynamics and first-
principles calculations we successfully adjusted a procedure
allowing to obtain amorphous networks displaying a struc-
ture close to the experimental one, free of artefacts due to the
numerical generation of the glass model itself and at a low
CPU time cost.

In order to determine the whole distribution of defect for-
mation energies and structures we needed a quick enough
method for ground state calculations. We chose then a first-
principles method where the wave functions are projected
onto a localized pseudo–atomic orbital basis set. Reducing
the number of basis vectors is a way to reduce the computa-
tional effort. Of course, the results had to be compared to
other methods which do not suffer from the uncertainity due
to the basis set choice. We have compared plane wave basis
set codessPWSCFand VASPd and a localized pseudo–atomic
orbital basis set codesSIESTAd, showing that both methods
give the same results within an error that we attribute mainly
to differences in the first-principles scheme. These differ-
ences result in small variations in silica formation energy, O2
cohesion, and silicon bulk cohesion.

We have found that the defect formation energies and
structures are distributed. In the case of oxygen defectssva-
cancies and interstitialsd, the formation energy distribution is
mainly due to local distortions which may be quantified us-
ing the local stress. The relation between local stress and
energy dispersion is linear according to Eq.s13d. With this
model, we show, by comparing the results for different silica
sizes, that the 108-atom glass model is statistically represen-
tative, in terms of mean formation energy and formation en-
ergy fluctuations, of oxygen defects in a silica glass. In the
case of silicon defects, as the induced displacements are im-
portant, the linear expansion is no longer valid. As discussed,
the formation energy of silicon defects exhibits a stronger
dependence on nonlocal properties than oxygen defects. A
larger system is probably needed to take into account accu-
rately the formation energy fluctuations. However, the 108-
atom silica model gives a first insight into the variety and the
energy scales of defect types. For instance, it is clearly
shown that the average formation energy of silicon defects in
a silica glass is definitively lower than in quartz.

Concerning the comparison with diffusion experiments,
our first migration results are in good agreement with the
experimental migration activation energy for intrinsic oxy-
gen.
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FIG. 13. Oxygen vacancy formation energies versus the initial
local pressure for the 108-atom and 192-atom supercells, whereV is
the mean atomic volume. The correlation coefficient for the linear
regression of the 192-atom system is 0.84.
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