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Neutral self-defects in a silica model: A first-principles study
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We present a statistical study of silicon and oxygen neutral defects in a silica glass model. This work is
performed following two complementary approaches: first-principles calculations and empirical potential mo-
lecular dynamics. We show that the defect formation energies and structures are distributed and that the energy
distributions are correlated with the local stress before the defect formation. Combining defect energies cal-
culated from first principles and local stresses from empirical potential calculations in undefected silica, we are
able to predict the formation energy distributions in larger systems, the size of which precludes thalnse of
initio methods. Using the resulting prediction we will show that the cell size used in our modeling contains all
the formation energy fluctuations needed to describe a real glass.
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I. INTRODUCTION of defects and their evolution is needed. The reason for be-

Silicate-based compounds are common materials in a v&liNning by studying neutral defects is twofold. First it is
riety of scientific and technological fields. One of the impor- difficult to detect experimentally the structures and concen-
tant questions, still open, is their long-term evolution underrations of neutral defects, which lack an electric or magnetic

aging factors. The diffusion mechanisms are responsible fop/gnature. Then,. the estimation of their contribution to the
this long-time behavior. As silicate-based compounds aréilffusmn and their role as precursor of other defect types has

! o 5 -
complex systems, and also as the involved time scale ma till to be clarified. Second, a recent wétk®on self-defects

extend over thousand of years, the experiments are compl{h a-guartz has shown that in pure quartz, due to the value of

ted t | di ! ible t f e electronic chemical potential, the charged defects should
cated 1o analyze and In many Cases Impossibié 10 perioryyy oo ntripyte too significantly to the diffusion, at least in the
without accelerated aging. In this case, the interpretation

= ) " ange of usual experimental conditions. Of course these re-
the accelerated experiments, as well as their transposition 1Q,its obtained for quartz cannot be transposed directly to

the actual problems, rely on the modeling of the aging phesjjica glass without an analogous study for charged defects.
nomenon. In this Context, numerical simulation appears as ¢h|s will be the aim of a further pub”cation_
powerful tool for the understanding of the defect properties  The main difficulties in a numerical study of defects in an
and the diffusion processes, which allows then, in a multiionocovalent glass are closely related to the disorder and to
scale simulation scheme, to understand the long-time behavke nature of the bonds implied in the defect structures. The
ior. In particular, first-principles calculations, the direct ap-first difficulty comes from the generation of the glass model
plication domain of which is restricted to short times anditself. Indeed, as the glass properties depend on the quench
small sizes, open up the possibility to describe the primaryate and on the subsequent annealing time, it is important to
diffusion mechanisms. qguench then the melt at the slowest rate possible, in order to
This work focuses on a model of amorphous Si€hosen  have a glass model close to the actual structure of a silica
as the simplest silicate-based material. It presents a firsgglass. Usingab initio methods the quench rate remains in
principles study on the neutral self-defects, which are theexcess of 18K/s, but within empirical potential molecular
defects coming from those chemical species present in thdynamics(EPMD) the rate can be as low as'#R/s, closer
material. A first and partial account of this work has beento the experimental one of ¥/s. On the other hand, even
already giverl. Following previous studies performed in if the glassy state without defects is well described with em-
SiO, crystalline phasés® and in the amorphous ofé®we  pirical potentials, we expect that the available empirical
will focus on vacancies and intrinsic interstitials. It is known models are completely unable to describe properly the ho-
that under high enough oxygen partial pressure the main difmopolar bonds frequently involved in defect formation in
fusion mechanism is mediated by molecular oxydeq®  Si0,.>"*3The third difficulty comes from the need of a com-
But, at lower pressures or under irradiation, as in nucleaprehensive study on a large set of defect sites. As in a glass
glasses or in microelectronic devices, a complete knowledgall the defect sites are nonequivalent, the properties deduced
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from the calculations are strongly dependent on the com- @2_10_10 T T
pleteness of the considered population. Nothing is knawn 9 R O-‘O van Beest pot. — 1
priori about the minimal size of the population which will 31,10-10 L l'tpolynomial pot. ]
represent the average and fluctuations of the property under g 5 \ ’ g
study in a real size glass. We chooseaiminitio technique g 0F

where the wave functions are projected onto a localized = o .
pseudo—atomic orbitalLCAQO) basis. In most cases it is 35-1-10710 |- -
possible with a relatively reduced number of basis vectors to § T 1 ]
have an accurate description of ground states. The reduced 0?.-2~10‘1°

number of basis vectors results, of course, in a significant 051152253354455
gain in computational time. But the results have to be vali- Radial distance (A)

dated by anotheab initio approach, without the uncertainity

of the basis, to ensure the consistence of the calculations. fis 1 0.0 BKS potential and the polynomial repulsive
Indeed, the degree of completeness of the LCAO basis sgenial.

that is chosen is not knowa priori.

Ourinitial glass configuration was obtaineo_l by q.uenChingk/ariation of the atomic positions, which means that the
gf:ir:a?irﬂqtglr;g:ﬁ)%artr? :dté;’énng%c;lfv?tw?i;g)én;n;'rzz\g'?hzg emEPMD structure and the first-principles structure are really
initio calculations were performed using tlseSTA first- close to each other.
principles cod&1"based on density functional theal®FT) A. Optimized quench within the EPMD approach
within the local density approximatiofLDA) and LCAO The annealing steps by molecular dynamics were per-

basis set. :
ormed at constant number of particlbls constant volume

In the first part of the paper we present the numerica(/
methods used as well as the main definitions. Then, in ordef’ and constant temperatufig the so calledNVT ensemble

to provide a check for ouslESTA calculations, we show a of molecular d_ynamics. The temperature is_ m_aintair_led con-
comparison between results obtained Wi,th three firstStant by rescaling the particle velocities periodically, in order

principles code$SIESTA PWSCF, VASP). We next present our to get the requwgd Kinetic energy in _the standard way. The
results obtained with thelesTa code for defects in a 108- structural relaxation were obtained using a damped dynamics

atom silica model. As expected, at variance with S@Bys- on cell variables.

talline phases, the defect structures and formation energies The van Beest-Kramer-van SanferiBKS) potential,

are noticeably scattered. The distribution is due to the struc\f.vhICh is known to reproduce well the structural and vibra-

tural disorder which induces the nonequivalence of defec‘iIonal properties of silica at low temperatures, is chosen as

sites. We discuss how the formation energy dispersion is ret—ne grlzg'r'catl |r1tt_e|ra:th|on mOd?tl' thwclever, athshort .d'sé?ncfs
lated mainly to local properties in the case of oxygen defecti® potential diverges attractively, as shown In F1g. 2,

and to medium range properties in the case of silicon defect;@.reQIUding its use in its origi_nal erm for m_olecu!ar dynami_cs_
In this context, we show that the origin of the formation at high temperature. To avoid this unphysical divergence it is

energy distribution stems from the local stress fluctuationsn€cessary to add a hard repulsive F&E) acting only at

Combining the formation energies calculated by first IOrm_shorter distances. This treatment is a standard procééitfte.

ciples and EPMD local stress calculations, one can construcl:DEUt' with this arbitrary addition, one has to pheck carefully'

a simple model allowing one to extrapolate the formationthat _the amorphous structures obtained are independent of it.
energies to larger systems. We then apply this model t@‘t high temperat_ures, where the atoms can be close enough
amorphous supercells containing 192 and 648 atoms, and W fe_el the repulsw_e part, the structures are dependent on the
prove that a 108-atom silica glass model is able to represe tailed form that is used. After the quench, the system may

correctly the defect formation energies and defect formatiorll(eep a me;nory c;f |'|[sthh|?h-tempe(rjatfl_1re behavtl_or._ Itc'js’ then,h
energy fluctuations. necessary to control that we can define an optimized quenc

procedurgsee beloy, which allows us to recover a structure
free of artifacts due to this repulsive potential. We choose the

Il. GENERATION OF THE INITIAL AMORPHOUS same polynomial fornisee Eq.(1)] for the hard repulsive
MODEL part (Vgp), of all the atomic pairgSi-Si, Si-O, and O-@
The generation procedure is done in two steps. In the first Vrp(X) = G(Xx = Xp)*. (&8)]

step a well relaxed amorphous structure is generated by me

ing and quenching a SiOcrystalline polymorph using Iﬁ’he total potential energy is then

EPMD. In the second one the resulting amorphous model is Vre(X)  for X=X,
relaxed by first principles using a conjugate gradient method. Viot(X) = Viks(X) for x> x (2)
This two-step procedure is needed to obtain amorphous BKS o
structures at a low CPU time coEPMD) and a realistic 3)

description of the binding, thanks to the first-principles ac-
count of the electronic contribution. An earlier wéfkhas whereVBKS:qiqjeZIrij+Aije‘Biifii—Cij/rﬁ is the BKS poten-
shown that the first-principles relaxation results in a smaltial.
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Two parameters are necessary to adjust the hard repulsive 2.5 T T i
potential:x, and G. The branching poink, is chosen as the 24 -1 System A ——
local maximum of the BKS potentidbee Fig. 1. With this 23 System B ------
choice, the temperature where the atoms no longer explore
the region governed by the repulsive part is the highest pos-
sible.

The optimized quench procedure proceeds then as fol-
lows.

(1) Melting of a crystalline Si@ polymorph (8-
crystobalite and annealing the liquid at 7000 K.

(2) Quenching from the melt at a rate of X30"K/s
down to 3000 K.

(3) Annealing in theNVT ensemble at 3000 K until a 0 50000 100000 150000 200000
stationary regime is obtained. :

(4) Qli/encghing at a rate of 2:310“K/s down to 300 K. Time (1/2 f5)

(5) Annealing in theNVT ensemble at 300 K until the 0.5 T T
convergence of the mean local stress is reached. - 11 System A

(6) Fast quench dowrpt0 K atzero external pressure. 04 System B ------ —

We emphasize the importance of step 3, which is the one
that grants that the resulting glass is independent of the
choice of the repulsive part. Indeed, 3000 K is the tempera-
ture where the atoms do not have enough kinetic energy to
explore the region governed by the repulsive part, but still
can diffuse far enough to wipe out this influence accumu-
lated during steps 1 and 2. To check this, we choose to work
on a 648-atom supercell in order to compare the structural
properties(pair correlation functions, angles distributions, 0 50000 100000 150000 200000
ring statistics, et¢.with earlier EPMD calculation&?2? In .
order to follow the structural evolutions we plot the instan- Time (1/2 fs)
taneous rinfy distribution in the sense of King. This par-
ticular ring statistics focuses on the smallest closed pat
starting and ending at a particular silicon atom.

Let us recall that the defect-free Si@lass may be con- ) _
sidered as a well connected network built on Si€rahedra  USiNgG, and the systen when usingG,. If both systems
and that ring statistics is a powerful tool to describe the confeach the same statistical equilibrium structure after some
nectivity of amorphous networks. The choice of ring statis-"élaxation time, then the independence of the choice of a
tics as a tracer of the structural convergence is motivated bgpulsive potential form is recovered. After approximatively
the fact that it shows the topological changes related to thé 750 000 time steps, both systef#sandB) reach the same
break of Si-O bonds, free of the bond stretching signal, infime average ring statistics, as show in Fig. 2 where the
contrast to the instantaneous pair correlation function an@volution for three-membered and five-membéfeings is
related short-range quantities. Another advantage is that ringlotted during the anneal at 3000 K. This convergence is also
statistics is a more discriminant factor than pair correlatiorobserved for the other ring sizes. Thus independence from
functions. The local order, represented by the first peak ifhe repulsive potential form is proved. _
pair correlation functions, in silica is always well defined and ~ The procedure is quite insensitive to the choice of the
thus cannot be used as discriminant. To extract informatiofnelting temperature in step 1, the quench rate in steps 2 and
about the medium range order it is necessary to look at thé. and the relaxation temperature in step 5. Conversely, a
shape and position of the rest of the peaks. However, it is ndPNg relaxation at room temperature is necessary to ensure
possible, with the information given by these peaks to disthat mean local stress convergence is achieved before the last
tinguish beetwen network distortions or network connectiv-Step(step 6. The silica model built on this six-step quench
ity changes because they only give the distance distributioRrocedure exhibits a structure very close to the experimental
with rotational symmetry. The evolution of these topologicalone, independently of which hard repulsive potential is cho-
changes is precisely what we are looking for. Many differentSen-
ways to count the rings exist in the literatdfe?® but what-
ever definition is used, having the same ring statistics is a
necessary condition to have the same structure.

We start with two B-crystobalite cristals of 648 atoms,
systemsA andB. We perform steps 1 and 2 for two different  Using the procedure described abd@ec. | A) we gen-
repulsive potential intensitieg8, =10%° erg/cnf for systemA  erate three amorphous models of different size: 108, 192, and
and G,=10% erg/cnf for systemB. In the third step we 648 atoms. The 108-atom model is used for the complete
switch the intensities, in order to relax the systdnwhen  first-principles study of point defects. In terms of local prop-

I T T I P I

Ring statistic

T

Ring statistic

h FIG. 2. Five-membered) and three-membere(dl ) ring statis-
tics time evolution during the anneal at 3000 K.

B. Structure of the glass models generated by the optimized
quench procedure

014116-3



MARTIN-SAMOS et al. PHYSICAL REVIEW B 71, 014116(2005

TABLE I. Mean angles and full width at half maximutFfWHM) in the EPMD amorphous models and
mean angles in the silica glass.

108 atoms 192 atoms 648 atoms Experiment
Si-Si-Si 107.7° 107.8° 107.5°
Si-Si-O 81.1° 85.8° 83.7°
0-Si-O 109.0° 109.3° 109.2° 109.4Ref. 3)-109.7°(Ref. 32
FWHM 13° 15° 16°
Si-O-Si 153.5° 148.4° 148.9° 144°-15(Ref. 32
FWHM 42° 27° 33°
0-0-0 96.1° 97.2° 97.0°
0-0-Si 82.1° 87.5° 84.9°

erties like mean first-neighbor distances, even with a reladure, predicts the structure commonly postulated for ideal
tively small silica model, the agreement between the modehmorphous silica.

and the experimental data remains very gdasl shown in

Tables | and Il. In other words, the size dependence is neg-

ligible. But this is not the case, for instance, for ring statis- C. The first-principles relaxation

tics, which describes medium range properties. The highest- £ he first-principles part, we choose to use $ESTA

order rings decrease with increasing size of the system whilg,4e hased on DFT-LDA. with Martin-Troullier pseudopo-

the five-membered rings per Si center increase, and theyniais to describe the core-valence electronic interaction.
three-, four-, and six-membered ring populations are almost -qa yses localized pseudo—atomic orbitals as a wave func-
constant(see Table I). The size of the system, due to the o hasis. The atomic positions and cell parameters are re-

periodic boundary conditios, fixes the highest-order ring,5yqq using the conjugate gradient method. Given the large
Five-membered rings are energetically more favordliten  ,,orcell size(108 and 192 atomsthe Brillouin zone is
three- or four-membered rings. The six-membered ring stagampled at tha point only. The use oBIESTAis motivated
tistic seems to be almost .c.onstzﬁﬁsttwoosg—srg]embered fNGS  py the fact that with a reduced basis set it is possible in some
per Si centerin EPMD silica model$>?2*°As we do not  5qes 1o give accurate results at low computational effort,
know a priori the range of the defect formation energy, We Naqrally, the search for reducing the computational time is
need larger-size silica models to perform a size dependencye (o the need for a statistical study. As in a glass all the
study. The 192-atom model is, then, needed to check whetheftet sites are nonequivalent, one expects to have formation
the average and fluctuations of the defect formation energy ignergy distributions and also a distribution of structural pa-
well represented or not by the 108-atom model. Sabe  ameters. In that context, it is important to study a large
initio calculations(oxygen vacancy formation enenghiave  nymper of defect sites. The basis set used is double-zeta
been performed for this model. Finally, the 648-atom mode,arizedsp orbitals for silicon and oxygetbasis optimiza-
which will be treated only classically, is used to extrapolate;yn, done by Angladat al3).

the defgct formation energies. . To validate the accuracy of the basis set chosen, we have
Looking at Tables I-ll, we conclude that the optimized oo pared thesiesTa results to two other first-principles

quench procedure gives well connected amorphous nek:pemes, where the error due to the noncompleteness of the

works, without two-membered ringedge sharing tetrahe- aqjs set can be controlled. We useg wersiord® of PWSCF

dra) even for relatively largg648 atom$ system size. The

BKS potential, combined with the optimized quench proce- . o .
P P q P TABLE lll. Ring statistics in the sense of Kin@Ref. 23 of the

TABLE Il. Mean first-neighbor distances and full width at half EPMD silica models.

maximum (FWHM) in the EPMD silica models and in the silica

glass. Ring order 108 atoms 192 atoms 648 atoms

. 2 0 0 0

Experiment 3 0.167 0.047 0.069

108 atoms 192 atoms 648 atoms(Ref. 33 4 0556 0.500 0537

d(Si-Si(A) 3.16 3.07 3.16 3.12 5 3.194 2.297 1.866

FWHM (A) 0.28 0.21 0.23 6 2.028 2.391 1.995

d(Si-0)(A) 1.60 1.61 1.60 1.62 7 0.056 0.750 1.208

FWHM (A) 0.07 0.08 0.06 8 0 0.016 0.319

d(0-0)(A) 2.61 2.76 2.58 2.65 9 0 0 0.046
FWHM (A) 22 25 24 10 0 0 0
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TABLE IV. Density of the first-principles amorphous TABLE VI. Mean first-neighbor distances in the first-principles

models. amorphous models.
SIESTA PWSCF VASP SIESTA PWSCF VASP
Density (g/crm) 2.19 2.18 2.23 d(Si-S)(A) 3.07 3.08 3.12
d(Si-0)(A) 1.63 1.62 1.61
d(0-0)(A) 2.75 2.73 2.63

within the LDA, with norm-conserving pseudopotentials and
an energy cutoff of 80 Ry. We have also performed calcula-

tions with vAsp (Refs. 36-38 within the projector aug- Oxygen interstitial
mented wavePAW) approacti® using an energy cutoff of o
500 eV (~37 Ry). The atomic positions and cell parameters Si0, + 30, = (Si0y)"",

are relaxed by the conjugate gradient method. Inther
calculations, in the case of defective silica, the atomic posi- £1°- g° _ (E + 150 ))
tions are relaxed at constant volume. f superceli” \Esupercel™ 2E(Y2) ).

As shown in Tables IV-VI, the densities and structures of  Sjlicon vacancy
the silica models after the first-principles relaxation are very
close for all the methods used. Of course these results only (”;1
show that the basis is complete enough to give an accurate n
description of the glass structure. In Sec. IV we compare the
three codes in the context of defect state calculations. VS S n-1

Ef = <_>Esupercell+ E(O) |.

)Si02 +0,= (Sio)Y”,

~ Esupercell™ n
lll. THE DEFECT STATE CALCULATIONS Silicon interstitial

The ground state energy of the system with one defect is (n ‘1

obtained by addinginterstitialg or removing(vacanciesan —)sio2 -0,= (Sioz)ls',
atom and relaxing the resulting structure, atomic positions, n
and cell parameters by first principles. We perform ground
state energy calculations for all of the 72 oxygen vacancy gS - g B {(E)E _E(©O )}
and interstitial sites, for all of the 36 silicon vacancy sites, f ~ Esupercell supercell 2 |-
and for 84 silicon interstitial sites, using the same methods
and parameters as in the first-principles relaxation of thdiereEs is the defect formation energifs perceiis the energy
nondefective silicaSec. Il Q. In the case of interstitial sili- Of @ perfect silica supercell containing tetrahedra, and
con the starting points of the extra silicon atom were chosefsupercen S the energy of the silica supercell with a point
at random among the centers of the rings of the structuredefect, containing nom-1 or n+1 silicon/oxygen atoms,
120 such starting points have been selected, giving rise to 8depending on the defect being a vacancy or an interstitial.
stable, or metastable, different configurations of the defect. The ground state energy of the oxygen molecule is calculated
For the formation energy calculations we suppose thawith spin polarization.
SiO, is in equilibrium with the @ molecular gas, according
to the following reactions and equations:
Oxygen vacancy IV. VALIDATION OF THE BASIS SET

0. -10. — (cio)V° In order to confirm that our LCAO basis set is reliable
Si0, = 50, = (SIO) ", :
also for the defect properties, we have calculated defect for-
N . mation energies irv-quartz as well as a few defects, three
E{" = Edpercei (Esupercei~ 3E(02). for each of silicon and oxygen, on the same sites of the glass
model, with both approaches, the atomic and plane wave
TABLE V. Mean angles in the first-principles amorphous bases.

models. In the case of the oxygen vacancy, there is a good agree-
ment beetwersiESTA and PwscCk Conversely, the formation
SIESTA PWSCF VASP energies given byAsp are systematically higher by 0.2 eV
- (see Tables VII and VIII and Fig.)3We can,a priori, at-
SI-SI-Si 107.8° 108.6° 108.5° tribute this systematic difference to two causes: the lack of
Si-Si-0 86.2° 86.0° 86.0° volume relaxation in ourAsp calculations or the different
O-Si-0 109.0° 109.4° 109.4° first-principles approaches, PAW in the casew&pP and
Si-O-Si 142.5° 145.1° 144.9° norm-conserving pseudopotentials in the casesesTAand
0-0-0 98.4° 98.7° 98.4° PWSCEF, resulting in a different description of Si-O and Si-Si
0-O-Si 87.0° 86.8° 86.8° bonds. Some calculations at constant hydrostatic pressure

with vasp have shown that the major contribution to this 0.2
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TABLE VII. Defect formation energies, in eV, in a 72-atom 6.5 T T
a-quartz supercell, wherdO andlO refer, respectively, to oxygen
vacancy and oxygen interstitial, ambi andlSi to silicon vacancy
and silicon interstitial.

VASP E; (eV)
(Va4
(W2
I

Defect type SIESTA PWSCF VASP >
5.6 -
VO 5.58, 5.59108 atomy 5.58 5.80 o
10 1.92, 1.80(108 atoms ~ 1.84 4.5 ' ' .
VSi 4.79 451 458 4.5 5 5.5 6 6.5
ISi 13.67 13.78 1434

SIESTA E; (eV)

FIG. 3. Formation energies of the oxygen vacancies in a 108-

eV_dlfference Shquld come fr(_)m the second cause, the _deoftom silica glassyasp versussiesTA results. Fit parameters: slope
scription of the Si-O and Si-Si bonds. Indeed, the cohesive ; 555 intercept=0.25 eV, correlation coefficient=0.98.

energy of bulk silicon is lower in theasp calculations and
the formation energy of silica is higher. This means that the s
Si-O bond is more stable and the Si-Si bond is less stablf'® WO other code(;Tab.Ies \./” and 13. Clearly, th? SI-Si
compared to thelESTA and PwscFcalculations. In the case ond in thevasp calculations is less favorable thanSESTA

of oxygen vacancies, two Si-O bonds are Broken and on@nd PwWsCF calculations. The origin of this underbinding of
Si-Si bond is formed. As it is less favorable to break Si—OS_IIICOn 1S cgrtalnly notin the PAW ?‘proamr s¢ but more
bonds and to form Si-Si bonds in thvasp calculations than likely I|e§ in the manner the_ projectors have been_ imple-
in the SIESTA and PWSCFones, this gives a higher formation mented INVASP. To correct this pecuhapty was not n the
energy of oxygen vacancies faasP scope of this work, as soon as the main goal to validate the

In a few cases for oxygen interstitials, the formation en-SIESTA basis was reached.. .
ergy differences betweenESTA, PWSCEandvasp may reach The energy dl_screpanqles due to the relative noncomplete-
0.5 eV As is well established’ S{@iis’plays a large number ness of the localized basis set chosen fordimsTA calcula-
of local structural conformations, corresponding to rotationd!ONS are Sma"ef. than the energy @screpanmes dge to
of tetrahedra(see Stoneharet al?), which are metastable changgs In f|rst-pr|_nc_|ples scheme coming from small_dlﬁer-
with respect to the true ground state. The different relaxatioff¢€S N the description of ponds. Al thosg comparative cal-
methods, i.e., different Hamiltonian and different conjugateCUIa_t'onS show that the b_aS|s set choser_1 |s_co_mplete enough
gradient algorithms, will stop the system in different meta-C gIve accurate results in the study of intrinsic neutral de-
stable positions. This is clearly observable in Fig. 4, where a(ec'}s n tZe S:I'Ca‘.tgr:ﬁ rest of thde study has been therefore
few points, in one or the other code, escape the one-to-orfeEformed only wi SIESTA code.
linear relation. For instance, performing constrained relax-
ations around the silicon-silicon axis for one oxygen intersti-
tial displaying a formation energy of 1.38 eV, we found a
metastable minimum 0.91 eV higher.

For silicon vacancies, there is a good agreement between
the three codegTables VII and IX. In silica, silicon vacan- ) )
cies may exhibit three different equilibrium structures, all _ The structures of the neutral oxygen vacancies and inter-
involving O-O bonds. The comparison betwegasTA and stitials are found to be a Si-Si crystalline siliconlike bond
VASP (Table 1X) for these three structures shows that the@nd a Si-O-O-Si peroxy bridge, respectively, asiguartz?
LCAO basis reproduces thesp results. The bond length and formation energies are distributed. Fig-

For silicon interstitials, where a Si-Si bond has to be
formed, we find, as well as in oxygen vacancies, a systematic 2.5 T T

V. NEUTRAL SELF-DEFECTS IN A 108-ATOM SILICA
GLASS

A. Oxygen defects

-
shift, of about 0.6 eV, betweevnsp formation energies and - §029”
% 9 o 090 255 -
TABLE VIII. Oxygen formation energies, in eV, in a 108-atom \: -
glass supercell; same notation as in Table VII. MR 15 R 2 =
<
&5 )
Defect type SIESTA PWSCF VASP :<>:: 1 ,(;% o o 1
Vo) 4.70 4.68 4.92 0.5 —r! : s
VO 5.70 5.73 5.95 0.5 1 1.5 2 2.5
VO 5.94 6.00 6.20 SIESTA E £ (eV)
10 1.62 1.86 1.75
10 1.14 1.54 1.19 FIG. 4. Formation energies of the oxygen interstitials in a 108-
10 1.31 1.25 1.31 atom silica glassyasp versussiesTA Fit parameters: slope=1.028,

014116-6
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TABLE IX. Silicon formation energies, in eV, in a 108-atom 0.35 T == T
glass supercell; same notation as in Table VII. 0.3 e N -
> : D
E 0.25 [~ / \\ =
Defect type SIESTA (eV) VASP (eV) 3 02 va X ]
@ : / \
Vsi 255 257 < 015 / sw e
e AY —
VSi 3.95 3.88 g 01 S/ N
VSi 5.68 5.69 0-03 B | S
ISi 12.03 12.63
. . 2 2.
ISi 11.56 12.47 0.5 1 1.5 5
ISi 12.54 12.84 Ef (eV)

FIG. 6. Formation energy distribution of intrinsic-oxygen inter-
stitial in a 108-atom silica glass. Parameters of the Gaussian fit:

ures 5 and 6 show the formation energies, which foIIowmean value=1.60 eV. standard deviation=0.4 eV.

Gaussian-like distributions.

The mean oxygen vacancy formation energy and standard
deviation are 5.44 eV and 0.3 eV, respectively. The mean . )
formation energy of the Gaussian fit is 5.52 eV with a stan- 1he neutral silicon defects have a more complicated be-
dard deviation of 0.3 eV. The Si-Si bond length spans fromPavior than the neutral oxygen defects, and display many

2.2 to 2.6 A, with an average value of 2.36 A. The meandifferent equilibrium structures as shown in Table X, where
formation volume is —25.0 & only atoms with coordination anomalies and their first neigh-

The mean oxygen interstitial formation energy and stanPors have been represented. In the case of the silicon vacan-

dard deviation are 1.46 eV and 0.4 eV, respectively. Th&ies, due to the relatively limited samplif86 silicon vacan-
mean formation energy of the Gaussian fit is 1.60 eV with &£i€S it is difficult to give a precise general behavior for the
standard deviation of 0.4 eV. The O-O bond length spans thformation energies. We observe three different structures: an
1.3 to 1.5 A range, with an average value of 1.46 A. The0Zonyl bridge, a double peroxy bridge, and a single peroxy
mean formation volume is 6.63A bridge plus two nonbridging oxygens. The double peroxy
In silica, the average formation energy for the oxygenbridge corresponds to the structure of the neutral silicon va-
defects is lower by 0.15 and 0.34 eV for the vacancies an§ancy ina-quartz. When it is formed, the ozonyl bridge is
interstitials, respectively, than im-quartz. The average Fren- the most stable structure with the smallest average formation
kel pair formation energy is then 0.5 eV smaller than in€nergy(2.24 e\). The mean formation energy fg{ﬁg struc-
a-quartz. However, these results gives a crucial informationtures is 3.80 eV, 0.7 eV smaller than inquartz,~**>and
Even if the medium- and long-range structure betweeri€ Mean formation volume is ~1.88°A
quartz and silica glass is completely different, the structure !N the case of silicon interstitials, the results are summa-
and the formation energy of oxygen defects are very closdiz€d in Table X, where we give the various structures and
This can be understood only if the oxygen defect dependg'€an formation energies as well as the probability of finding
mainly on the local order. Indeed, the local first-neighbor@ defect site with a particular structufgee also Figs. 7 and
order in silica glass is very well defined and very close to the?)- This probability is obtained from the number of defect
crystalline tetrahedral arrangement, giving rise to high intenintroduction sites giving the specific defect structure divided
sities of the pair correlation function first peak. In this pic- by the total number of introduction sites. In the case of va-
ture, the distributions come from small deviations from thec@ncies this last number is simply the number of tetrahedra;
local perfect order, as we shall see below. for interstitials it is the number of large cavities in the silica
model used as introduction points for the extra silicon and
giving rise to different defectfi.e., 84 sites as said above

B. Silicon defects

0.25 T T I By far the most probable structure is the Si-Si-O ligik),
o 02+ E A 4 where the silicon interstitial is inserted beetwen a Si-O bond,
B ’ \ as ina-quartz. Similarly to the oxygen interstitial case, local
3 015 A - minima exist around the Si-O defect axis. The energy differ-
3 01 k- \\ : | ences between them may reach 1 eV. More complicated and
= ’ - compact defect structures are also found; one of the most
005 - AN = interesting is the double-oxygen-vacancy-like structuife

0 | LSS The silicon interstitial is inserted on a Si-O bond and then the

45 5 5.5 6 6.5 silicon atom bonds to a neighboring silicon, stealing one of
: ) ’ its oxygens. This structure has the smallest formation energy,

Ef(eV) 11.52 eV on average, close to the formation energy of a

bivacancy. Indeed, using the mean formation energy of an

FIG. 5. Formation energy distribution of the oxygen vacancy inoXxygen vacancy, resulting from the Gaussian fit of Fig. 5, in

a 108-atom silica glass. Parameters of the Gaussian fitSec. V A, and neglecting the contribution of the interaction
mean value=5.52 eV, standard deviation=0.3 eV between vacancies, the average formation energy of a diva-
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TABLE X. Symbolic representatiofisilicon atoms(dark gray and oxygen atontlight gray)] of the
structure of silicon defects, where only atoms with coordination changes and their first neighborhood have
been plotted; average formation enerd¥;)); and structure probability of the silicon vacanci@9 and
interstitials(l).

Defect type Structure (Ep(eV) Probability (%)
-
V! e 5.86 39 %
s
V2 ¢ 3.30 53 %
V3 e 224 8 %
e ?‘b 12.54 83 %
P e
r § $ 11.52 5%
(2 .i’»‘ ®
P W ete 13.37 12 %

cancy amounts to 11.04 eV. In the other cases, summarize@sults point to the probable fact that the major contribution
by 12 in Table X, the inserted silicon produces a partial re-to the formation energy dispersions comes from variations of
construction in its neighborhood giving rise to three-local properties. The formation energy dispersion is likely to
coordinated oxygens. Their formation energies are, on avedepend on small deviations from the “perfect” first-neighbor
age, higher than the other two cag¢sand|?). The mean tetrahedral order. The question is then how to characterize
formation energy including all structures is 12.48 eV, 1.3 eVthese small deviations.
smaller than inx-quartzi® and the mean relaxation volume is ~ Conversely, the silicon defects show several different
-41.5 A3 structures. The mean formation energies corresponding to
these structures are quite distinct. This could be the signature
of a medium-range order dependence, typically second-
VI. DISCUSSION neighbor distances, ring statistics on the defect site, or simi-

In silica glass the medium- and long-range structures ar@r properties. However, as the most probable structures is

markedly different from those in quartz and so also is the?lWays the same as ia-quartz, we still expect to find a

environment seen by each defect site. Conversely, the shorrt‘?_l";‘]t'on betr\:v?en formaugln energ); a;]nd local glass structulre,
range structure, which means first-neighbor tetrahedra, i@"t hevertheless some blurring of the energy-structure rela-

well defined and close to the first-neighbor tetrahedral ordef®NShiP.
found in quartz or crystobaliteThe intrinsic oxygen defects A. Origin of the formation energy dispersion

have a single structure for each kind of defect type, the same As sketched ab the f i di .
as in a-quartz. Their formation energies are distributed ac- s skelched above, the formation energy - dispersion

cording to Gaussian distributions with a mean value close téhould depend on local structural fluctuations of undefected
the formation energy of oxygen defects irquartz. Both

0.2 i T T

014 ! P R >, _
& 0121 | :E‘ 0.15
':‘E 01 — h "c% 1
S 0.08 ~ 2 0
S 006 - & 005 -
[a W 0.04 - I s

0.02 - - 0

0 e 10 11
1 2 3 4 5 6 7 E; (V)

Ef (eV)
FIG. 8. Formation energy distribution of silicon self-interstitial

FIG. 7. Formation energy distribution of silicon vacancy in ain a 108-atom silica glass. Parameters of the Gaussian fit:
108-atom silica glass. mean value=5.52 eV, standard deviation=0.3 eV
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silica, more likely in the case of oxygen defects than in sili-

con defects. We have searched for a structure dependence of ~ Er= Ap(Ry) +s- (
the formation energies. We have investigated several struc-

tural parameters of the nondefective silica model, in particuwhere the double dot “” means a double index contraction,
lar, bond distances, Voronoi volumes, intra- and intertetraheand PH is the dipolar tensor within Hardy’s
dra angles, very strong ring statisti®sand the local stresses. approximatior?®4° defined as the tensor product of the

We have found a very clear dependence on the locaforces exerted by the defect on the reference sys${&g)):
stresses at the defect site before the introduction of the de-

fect. It is possible to construct a simple model based on the H IAP(Ry+9)
Kanzaki forces and the dipole tens8r! to fully explain p=- T as
this behavior.

The formation energy of a defect in a uniformly deformed The formation energy of a defect under a homogeneous glo-
system under the homogeneous deformatios bal strain is a linear function of the Hardy dipolar tensor and

the strain:
Er=[¢(Ry+s+Ug) + Ap(Ry+ S+ Ug) | — d(Ry+5) (4)

E;=Ap(Ry) — PM:e. (1)
whered is the potential energy function of the systeRg,are
the positions in the unstrained systesris the displacement To the same level of approximatioacould be rewritten as a
from the reference positions produced by the stré&n function of the stress tensor; then we get
=e-Ry), Uys is the variation of the displacement due to the A
defect, andA ¢ is the variation of the potential energy func- Ef=A¢(Ry) —-P":C 0, 12
tion of the system due to the introduction of the defect. Ex- . . .
pandinge ar)(l)undRmS to second order anfl¢ to first order where C is the elastic constant tensor andis the stress

in the defect perturbation tensor.
P ' In a glass, each local volume is strained in some way, with
d Pp(Ro+ s+ Uy
Ugg=0

“;Lf‘))) - AG(R)-Phe  (9)

) ® Ry. (10)
s=0

respect to the perfect tetrahedral order. To summarize, each
local volume indexed by is strained bye;. If we suppose

d Ugs that the dipolar tensor has a range smaller than the range of
Pd(Ry+ S+ Ug) homogeneity ofe;, the global .strain of Eq(11) may .be re-
+ Ugs - <—2d> “Ugs+ A(Ry + 9) placed by the local straig. This locale; may be rewritten as
J Ugs Ug=0 C1:q;, whereC is the elastic constant tensor angdis the
9 AG(Ry+ S+ Ug) |O_Cf’i| stress tensor in the !ocal space volume_ indexed, by
+ ( 0 d ) Ugs+ O(Ugs) (5) giving the following formation energy expression:
ds Ugss0 .
’ El= A¢(Ry) - P*:C Lo, (13)

where the dot product “-” means a single index contraction.
Under the assumption that By+s there is no net force in Equation(13) predicts a linear behavior between the forma-
the system since it is in equilibrium, and applying the equi-tion energies and the local stre€s.as a multiplicative factor
librium condition to the system, we obtain between the local strain and the local stress, may vary be-
tween each local volume, and this fact would be a source of
PH(Ry+ S+ Ugd IAG(Ry+ S+ Ugy) departure from the linear behavior of H4.3). .
T + Ju The local space volume where the local stress is calcu-
ds Ugs=0 ds ws=0 Jated can be chosen from the atomic scale up to the medium-
(6)  range scale, but one has to be careful about its size. Indeed,
if the region is larger than the range of the local stress fluc-

O:udS'(

and then tuations then the local stress will be averaged and the rel-

evant fluctuations will be lost. We choose to characterize

PP(Ry+s+Uuge |\t dAP(Ry+ S+ Ugd local stress fluctuations only on an atomic scale using the

Ugs=— T ' au ' definition of atomic stress tensor proposed by Vitek and
ds Ugs™0 ds uds=0 Egami#? based on the work of Martin and Co-worképg*

(7 The local stress calulations are performed using the em-
pirical interaction model. As the EPMD glass structure and

where[dA ¢p(Ry+s+Uge) / dugslgs=0 are the forces exerted by the first-principles structure are very close to each dther

the defect. Inserting Ed7) in the expansion of Eq4), the  (see also Secs. Il B and J\the EPMD atomic stress may be
formation energy may be written to second order in the deused as a measure of the local distortions. As we are inter-
fect perturbation as ested in the origin of the formation energy dispersions, even
if the absolute energy reference between EPMD and the first-
Ei=Ap(Ry+9). (8) principles methods is different, we expect that we get the
same energy variations due to local distortions of the first-

Expanding the right hand side of E@®) arounds, we get neighbor tetrahedral order.
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FIG. 9. Oxygen vacancy formation energies versus the initial FIG. 11. Silicon vacancy formation energies versus the initial
local stress. The correlation coefficient for the linear regression id0cal stress.
0.92.

approximations in the model, which is only of second order
Within the first-order approximation in strain, and assum-in defect-induced displacements, as well as from the nonlin-
ing pairwise interaction potentials, the atomic stress tensor i§arity implied in the breaking and/or formation of bonds.

written as In the case of silicon defects, the relation is also verified
but with higher dispersions, as shown in Figs. 11 and 12. In
1 [-2opep N the interstitial case we have used only the formation energies
af“*:ﬁ T+$ firf (14)  of silicon interstitials which belong to thé* group from

Table X. For vacancies the dispersion is so high that only a

wherer;; is the relative coordinate of particlesandj, P; is tendency may be. extracted from the relation pl'o_tted n Fig.

the conjugate momentum of partidleandf; is the forceN 11. As already pointed out above, the fact that silicon defects

and Q are the total particle numbér an(g the mean étomicexmbit different structures is the fingerprint that not only

volume, respectively. short-range factors are implied in the structure and formation
In the case of oxygen defects, shown in Figs. 9 and 10, w&Nergy variations.

plotted the formation energy of a defect at a given site as a

function of the atomic pressure before the defect cre_ation. B. System size convergence of the formation energy

The agreement between the results and the model is very distributions

good. The correlation coefficients of the linear fits are 0.92 h del sketched ab I | h

and 0.84 for the vacancies and the interstitials, respectivelgg r-:— e mobe S %tc ed a lcl)ve allows uls to extrapolate t I?

Clearly, the formation energy dispersions are related to d ae aV'h‘?f C.)d serve r?n sn;)all sys_tehm_; to larger onesaTo Vg"

viations from the perfect first-neighbor tetrahedral order. In atg t IS 1dea we avell' uilt, W'tl ,t T same procedure de-

the plots we have only taken into account the local pressures,CrIbeOI in Sec. II A, a stiica model including 192 atoms and

if to this local pressure we add an invariant representing-@iculated the formation energy of oxygen vacancies on 28

some local shear stress, then the dispersion in reduced. 42ancy sites. As shown in Fig. 13 the models for the 108-

deed, Eq.(13) is a relation between the formation energy 2(0M system and the 192-atom system exhibit the same slope

dispersion and the whole local stress tensor. But there stiftnd ¥ intércept. The extrapolation of the 192-atom linear

exists a residual dispersion which may come from intrinsicre_ngSSion to the comple_te vacancy si(28 vacancy sitgs
gives an average formation energy of 5.44 eV with a stan-

2.5 v T T ] 16 1 T T T T T
- 15 7
2~ 00 o7 ° =
o N o%/O ~ 4 C == 7]
T st O%;g&%w" ] T 13p  Sps et -
~ O < o - 12+ - o 7]
& % B %) -9
1 e . SIETH = .
05 A N B 18 L | ! L
30 40 50 60 70 80 90 30 40 50 60 70 80 90
Local pressure (GPa) Local pressure (GPa)

FIG. 10. Oxygen interstitial formation energies versus the initial ~ FIG. 12. Silicon interstitial formation energies versus the initial
local stress. The correlation coefficient for the linear regression igocal stress. The correlation coefficient for the linear regression is
0.84. 0.67.
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VII. CONCLUSION

] I | I

108 atoms © 7] . .
192 atoms . © In the context of the study of the long-term aging of silica

- glasses, we have performed a systematic study of neutral
self-defects in a silica glass model by first principles. Com-
bining empirical potential molecular dynamics and first-
principles calculations we successfully adjusted a procedure
L | L | allowing to obtain amorphous networks displaying a struc-
4 5 6 7 8 ture close to the experimental one, free of artefacts due to the
numerical generation of the glass model itself and at a low
Local pressure*V (eV) CPU time cost.
In order to determine the whole distribution of defect for-
FIG. 13. Oxygen vacancy formation energies versus the initiaknation energies and structures we needed a quick enough
local pressure for the 108-atom and 192-atom supercells, whisre  method for ground state calculations. We chose then a first-
the mean atomic volume. The corre_latlon coefficient for the I'nearprinciples method where the wave functions are projected
regression of the 192-atom system is 0.84. onto a localized pseudo—atomic orbital basis set. Reducing

the number of basis vectors is a way to reduce the computa-
dard deviation of 0.30, the same values for the average fokjonal effort. Of course, the results had to be compared to
mation energy and standard deviation as those for the 10&ther methods which do not suffer from the uncertainity due
atom silica(see Sec. VA The point to point mean error tq the basis set choice. We have compared plane wave basis
between the two linear regressi(08 atoms and 192 atoms  set codegpwscrFand vasp) and a localized pseudo—atomic
is 0.03 eV. _ _ orbital basis set codésiEsTa), showing that both methods
~ As far as oxygen vacancies are concerned, and Cons'dett_fﬂve the same results within an error that we attribute mainly
ing the errors of the model, the 108-atom silica supercelty gifferences in the first-principles scheme. These differ-
seems large enough for a good description of the mean defeghces result in small variations in silica formation energy, O
formation energy and its fluctuations. We expect that this igohesion, and silicon bulk cohesion.
also the case for oxygen interstitials which also show a close e have found that the defect formation energies and
correlation between local stress and formation energies.  structures are distributed. In the case of oxygen defeets
~ The stress dispersion in an even larger system, 648 atomgancies and interstitigisthe formation energy distribution is
is also in perfect agreement with this conclusion. The eXmainly due to local distortions which may be quantified us-
trapolated mean formation energy is found to be 5.40 €Mng the local stress. The relation between local stress and

E f (eV)
> w [« -3

BT UL O U1 =3 &1 0o

with a standard deviation of 0.26 eV. energy dispersion is linear according to E§i3). With this
model, we show, by comparing the results for different silica
C. Comparison with diffusion experiments sizes, that the 108-atom glass model is statistically represen-

A comparison of our results with experiments cannot bd@live, in terms of mean formation energy and formation en-
done directly. Indeed, the only information on defect forma-€7dY fluctuations, of oxygen defects in a silica glass. In the
tion energy values comes from the measure of activatio$@S€ Of silicon defects, as the induced displacements are im-
energies in diffusion experiments. Furthermore, looking afortant, the linear expansion is no longer valid. As discussed,
the results, the average migration barriers of neutral oxygel{!€ formation energy of silicon defects exhibits a stronger
defects have to be close to the migration barriers found ifff€Pendence on nonlocal properties than oxygen defects. A
a-quartz8 We already have shown that for oxygen defectslarger system is .probably needed to take into account accu-
the structures and formation energies are similar to those dately the formation energy fluctuations. However, the 108-
quartz and that this similarity comes from their very local atom silica model gives a first insight into the variety and the
character. We have already calculated some migration barrEN€rgy scales of defect types. For instance, it is clearly
ers for oxygen defects and these preliminary results are clos¥'0Wn that the average formation energy of silicon defects in
in energy and in migration path to the quartz results. In thé? Silica glass is definitively lower than in quartz.
homogeneous regime, where silica is in equilibrium with it-  €oncerning the comparison with diffusion experiments,
self, the activation energy for the network oxygen migrationOU" first migration results are in good agreement with the
is therefore expected to be about 4.6 eV, taking into accourffXPerimental migration activation energy for intrinsic oxy-
half of the mean formation energy of a Frenkel pair in silica9€"-
glass and the interstitial migration barrier in quarz of 1.2eV.

Using our preliminary results pointing to a migration barrier

of 1.4 eV, we find an activation energy of 4.8 eV. Both re- ACKNOWLEDGMENTS
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