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Effects of dopant segregation on lattice-diffusional creep of nanocrystalline ceramics

C. H. Hsueh and P. F. Becher
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
(Received 16 September 2004; published 26 January)2005

The segregation of dopants whose electric charge is different from that of the parent ions and the formation
of a space-charge layer induce a local electric field in the grain-boundary region. Depending upon the valence
and local electrostatic potential, the charge carriers controlling diffusional creep can be either accumulated or
depleted in this space-charge layer, and the creep rate is enhanced or diminished accordingly. A model was
recently developed to examine the effects of a segregation-induced local electric field on the lattice-diffusional
creep of nanocrystalline ceramics for spherical grains. However, in order to obtain closed-form solutions, the
grain size was assumed to be much greater than the width of the space-charge layer in the existing analysis.
This assumption can become inappropriate for nanocrystalline materials as the grain size is reduced; thus, a
numerical method is used in the present study to resolve the existing equations without that assumption. Using
yttria tetragonal zirconia as an example, the difference between the existing approximate closed-form solutions
and the present numerical results is shown to be significant when the grain size is less than 50 nm.
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[. INTRODUCTION in the space-charge layer are complex even for pure ionic

Superplasticity of nanocrystalline ceramics has been th%:ystals. The relation between the electrostatic potential and
subject of intensive research in the last decatland the he charge density is governed by Poisson’s equation, and the
deformation mechanism involves grain-boundary sliding ac_chgrge density is a fl,!nctlon of bqth the formatlon energies of
commodated by lattice diffusion. The lattice-diffusional PNt defectse.g., anion and cation vacandiesd the elec-
creep model developed by Nabarro and Herring predicts thdfoStatic potentiat>i4-1"The solution for the charge distri-
the strain rate has a power law dependence on the mean gr Htion is subject to thg .cond|t|ons of electrical neutrahty in
size with an exponent of —Refs. 3,4. Hence, a decrease in the .crystal and the minimum free energy that includes for-
the grain size by one order of magnitude would lead to ar{m"t'on energies of vacancies, the energy of bound vacancy

increase in the strain rate by two orders of magnitude, angalrs, and the configurational entropy. When dopants are

substantially enhanced superplasticity in nanocrystalline ce-dded’ dopant segregation depends not only on the electro-
y Perp y y “static potential but also on the dipole and elastic inter-

ramics is plausible. However, in order to suppress the graifjqng10.14-17 Thjg dopant segregation affects the charge
growth and to maintain the small grain size, dopants thafjisyipytion and modifies the electrostatic potential; thus, the
segregate to grain boundaries are adtédlocal electric complexity of the problem can be envisioned.
field is induced in the grain-boundary region because of dop- | order to study how dopant segregation affects lattice-
ant segregation and the formation of a space-charge layefiffusional creep, a simplified model was developed by Jam-
This local electric field inevitably affects the diffusion of nik and Raf First, the defect species were differentiated
charge carriers that control diffusional créepAs a result, petween the one that accumulates in the space-charge layer
the grain-size exponent dependence of strain rate can be dils produce the local electrostatic potential and the one that
ferent from the value of —2 and a decrease in the expectecontrols lattice diffusion. Second, lattice diffusion was
creep rate of nanocrystalline ceramics may resdlt. treated as one-dimensional diffusion between two parallel
The space-charge theory was first postulated by Fréfikel. space-charge layers separated by a distance equivalent to the
Because of the different formation energies of point defectgrain size. In this case, depending upon the valence and local
in ionic crystals, the lattice discontinuiti€®.g., surfaces, electrostatic potential, the charge carriers controlling diffu-
grain boundaries, and dislocation coresay carry an elec- sional creep can be either accumulated or depleted in the
tric charge resulting from the presence of excess ions of ongpace-charge region, and the creep rate is enhanced or dimin-
sign, and this charge is compensated by a space-charge layshed accordingly. For the enhanced case, the increase in
of the opposite sign adjacent to these lattice discontinuitiesstrain rate was found to be quite limited. However, for the
An electrostatic potential difference between the lattice disdiminished case, the resistance was found to increase expo-
continuities and the bulk exists in the presence of the spaceientially and the grain-size exponent dependence of the
charge layer which, in turn, induces the segregation oftrain rate could change from -2 to {Ref. 6. Jamnik and
charged dopants. For example,?Caegregation in Cagl  Raj's model was subsequently expanded by Gémez-Gatcia
doped-NaCHk! AlI%* segregation in AO;-doped-MgO! Zr**  al. by considering a three-dimensional geometry—i.e., a
segregation in Zr@doped-AbO;,’ Y3* segregation in spherical grairf. However, in order to obtain closed-form
Y ,05-doped-ALO;,*2 and Y3* segregation in yttria tetrago- solutions, the assumption was made that the grain size is
nal zirconia(YTZP),2%12as well as segregation of divalent much greater than the width of the space-charge layer. While
to pentavalent cationic dopahtdn 12Ce-TZP and 2Y-TZP the width of the space-charge layer is related to Debye at-
have been documented. Analyses of the charge distributiorenuation length, it has been suggested that this width ranges
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In the presence of an electrostatic potential, the concen-
tration of the charge carriers, controlling diffusional creep
is modified such that

c(r)=cy exp( L il ZG{Vig_— Vim]) , (2)

Space-Charge Layer

wherec, is the concentration in the region without segrega-
tion (i.e.,r<R-1), zis the valence of the charge carrieiis
the electron chargek is the Boltzmann constar{t=8.6178
X 107° eV K™), andT is the temperature.

In the absence of an electrostatic potential, the constitu-
tive equation for creep by grain-boundary sliding accommo-
dated by lattice diffusion fs*

Gb( o \?(b\?
e=A—|=]|3]D, 3
FIG. 1. Schematic showing a spherical grain with a space- kT\G d

charge layer. . ) o )
wheree is the creep ratéd is an empirical constanG is the
shear modulusy is the uniaxial applied stresb,is the Bur-
gers vectord is the grain sizg=2R), andD is the lattice
edif'fusion coefficient of the charge carrier. In the presence of
gaé1 electrostatic potential, the creep equation becdmes

from 2 to 10 nm by Gémez-Garcgt al? and from 0.4 to 3
nm by Guo and Maiet®

For nanocrystalline materials, the requirement that th
grain size be much greater than the width of the space-char
layer would be violated. To remove this condition in the Gb 2/p)\2
analysis and to make the solutions applicable to nanocrystal- e= aA—(£> (—) D, (4)
line ceramics, the purpose of the present study is to resolve kT\G/ \d
the equations of Gomez-Garoga al. by using a numerical ) , .
method. First, the model of Gémez-Garefaal. is summa- where « is a factor that accounts for the concentration dis-
rized to provide a general background. Second, the equatioffgoution of the charge carriers and is given by
of Gémez-Garciaet al. are resolved using a numerical

method. Finally, specific results are calculated for YTZP QZL. (5)
nanocrystalline ceramics, and the results are compared with R ¢
those obtained from the approximate closed-form solutions. 2 0 %rdr

II. SUMMARY OF THE MODEL

. - BecauseV(r) given by Eqg.(1b) is nonuniform, a closed-
OF GOMEZ-GARCIA et al.

form solution for« is unattainable when Ed1b) is substi-

A spherical grain with radiuR is considered. The dopants tuted into Eqs.(2) and (5). In order to obtain closed-form
segregate to the grain boundary and a space-charge layg®lutions, two simplifications were made by Gomez-Garcia
with a width| is formed in the grain-boundary regidfig. €t al: (i) the grain radius was assumed to be much greater
1). By assuming that the charge density is a congtamithin  than the width of the space-charge layer—ie 1—and(ii)
the layerR-I<r=<R and zero withinr=R-I, the electro- the distribution of electrostatic potential within the layer was
static potentiaV/ within the grain has been derived such that ignored and a mean valu¢/) was used. Using the above
simplifications, the electrostatic potential at=R—i.e.,

V(r) = p_R2 - p(R-1)? + p(R-1? + p[R° - (R-1°] V(R)—and the mean electrostatic potential within the layer,
6e 2¢e 3eR 3R V), aré
=V (forr<R-1), (1a) RI
VR ==, (6a)
V(r)_p(Rz—rz) +p(R—I)3<1_1) %o
- 6e 3¢ R r 5
_(R-])® _y. _PR(L
+ —p[R3 (R-1)7] (forR-1<r<R), (1b) V)= Vin 6e <R> ' (6b)
380R

wherer is the distance from the center of the grain, and The paramete¥(R) is meaningful because it is the electro-
and g, are the dielectric constants of the material andstatic potential at the grain boundary and is a measurable
vacuum, respectively. The electrostatic potential in the requantity>!® A constant value ofV(R) is considered by
gion of r<R-1 given by Eq.(1a) is uniform and is denoted Goémez-Garci&t al.in their analysis. Expressingy) - Vi in

as Vi terms ofV(R), it can be obtained that

014115-2



EFFECTS OF DOPANT SEGREGATION ON LATTICE- PHYSICAL REVIEW B 71, 014115(2005

(V) = Vit | (am 8)
= - , 7 = . 9
VR 65R @ P=\omnd/, - ©
Substitution of Eqs(4) and(8) into Eq. (9) yields
wheree,=¢/¢q is the relative dielectric constant. Replacing _
V(r) in Eq. (2) with (V) and combining Eqs2), (5), and(7) 4—'{ _ze_\.(R)I_} ;;(L\'(R)l—> _4
; d 3g,kT d 3g,kT d/ d
yields p=-2+
4% p(—ze\,(R) I ) J
1+—|exp ———=|-1
1 d 3e,kT d
= . 8
U] [-zewR) | ® (10
1O ekt o) 7t
& Ill. ANALYSES

_ The solutions of Gomez-Garci al. are valid whenR
With the solution ofe given by Eq.(8), the creep rate equa- >|. However, for nanocrystalline materials, the condition
tion, Eq.(4), is complete. thatR>| will be violated as the grain size becomes smaller.
In the absence of a space-charge layer, the grain size e®ut of this concern, the two simplifications used by Gémez-
ponent of the creep rate given by E@) is -2. It is of  Garciaet al. are removed in the present study, and numerical
interest to examine how the space charge affects the graiesults are derived. Without those simplificatio$R) and

size exponenp, which is defined as (V) derived from Eq(1b) are
|
- P rm3_(p_q3
V(R) = 3goR[R (R=17, (113
__ 3 (¥ 20 p{R® = (R=1)°=5(R- IR~ (R-1)*] + 5(R- ) [R° - (R-1)]}
QD"R&%R—03L4V“”dr_Mm_ 10:[R° - (R-1)%] - (11
In this case[V(r) =V, ]/V(R) and ({V)-Vi,)/V(R) become
V(r) = Vine _ - RF(r)
VR elR-R-DF (122
M) =V _ =3R[R° = (R-1)*-5(R- )R- (R-1)*]+5(R- )¥R*- (R-1)*]} (12b)
VR 10e,[R® - (R-1)°P? '
where
2 —_1\3 —_1\2
Fm:%+mr0_%i0_ (120

While (V) is given by Eq(11b), it is not used to derive the creep rate in the present study; instead, it is used to deliV2dEq.

and to check the accuracy of EJ). Also, it should be noted that an area integral instead of a volume integral was used by
Gomez-Garciat al. to derive(V); however, in the limiting case dk>1,(V) derived from the area and volume integrals are
the same.

Substituting Egs(2) and (129 into Eg. (5), the exact - zRe\(R)F(r)
solution for the facto can be derived, such that Q(r) = ex e [R—(R-1KT) (14)
1
T A (1 2 (R B
1-7* (ﬁ) TR . Q(r)rdr The integral in Eq(13) can be solved numerically. However,
the exact closed-form solution can be obtained for the special
where case ofR=I such that
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zeMR = ‘-
a= M _)Ze\(R) (for R=1). (15 S F
2¢,kT| 1 - ex;(—) ;§ 002 -
2¢,KT 1 C
While Eq. (13) shows the grain-size dependenceagfEqg. 5'0‘04 - d=10nm
(15 shows thatx is independent of the grain size Rt if g . C - 100 am
V(R) is independent of the grain size. Equatitib) also 2 0061 N
serves as a checkpoint for the accuracy of the numerical ~§-oog:_ —  Eq.(122a)
integral in Eq.(13). 8§ F —— EO
Substituting Eqgs.(4) and (13) into Eqg. (9), it can be § _013
shown that the grain-size exponent is s F
2I | 4R D‘().]2-||||||||||||||||||||||||-
- Bl IV T 0 1 2 3 4 5
p=-2+a R(l R) + R2 Rl Q(r)rdr @ Relative position, —(R-I) (nm)
1
| IIIIIIIIIIIIIIIIIII_
—Z{Q(R) - 1+|—} + 23aze\(R) 3 [ =100 nm b
R eRIR* = (R-1)7]kT $ osC [T < T T T 1
XJR {|(— 3R2 + [2)F(r) A = N o 3
= = 3 S osl
| R-(R-1)3 £ %o )
= e —— — — -_— —_—— —_— — -
3R(R-1H(R-1-r 8 - =25 nm ]
+ ( X )}Q(r)rdr, (16) g 0'4_‘ g
r R ]
g L ]
whereF(r),a, andQ(r) are given by Egs(120), (13), and K 02 — — — — = — N
(14), respectively, an@(R) is Q(r) atr=R. The solution of LT gr;:::_g:rrda N
p from Eqg. (16) requires numerical integration. '+ IFEETE I A IS ]
0 1 2 3 4 5

C

Relative position, r—(R-!) (nm)
IV. RESULTS

ii | lculated usi ial . FIG. 2. (a) The relative electrostatic potentidV(r)—Vi,)/
Specific results are calculated using materials propertle§(R) and ((V)=V,)/V(R) and (b) the relative concentration of

pertment to YTZP in (_)rder to elumdate. the essenpal trendsZr4+’ c(r)/cy and(c)/c,, within the space-charge layer as functions
In this case, the grain boundary carries a positive charggg the relative positiont - (R-1), at different grain sizes.

resulting from the segregation of3Y, and this positive

charge is compensated by a negative space-charge layer pig. 3 as functions of the grain sizk The deviation between
ionic defects of ¥* substituting for Zt*—i.e., Y5, (Refs.  these two curves becomes significant as the grain size is
13,18. Within the space-charge layer, the oxygen vacancieglecreased below 50 nm.

are depleted and their contribution to the charge density can In the presence of space charge, the creep rate is modified
be ignored® The charge carrier controlling creep is*Zand by multiplying a factora. This factor is a function of both
z=4. The materials properties ate5 nm, ,=4.65, and the grain size and temperature. The numerical and approxi-
eM(R)=-1.5 eV? Also, unless noted otherwis&=1200 °C  mate closed-formed solutions far given by Eqs.(13) and

is used in the present calculation. The relative electrostatic

potential[V(r) = Vi, J/V(R) within the layer is shown in Fig. 0 T T T T
2(a) as a function of the relative positian-(R-1) at differ-
ent grain sizes. The simplified result of Gomez-Gastial.
[((V)=Vin)/V(R) given by Eq.(7)] is also included in Fig. 002
2(a) for comparison. The relative positions of(R-1)=0
and 5 nm correspond to the positionsratR-1 andR, re-
spectively. Atr=R-I, [V(r)-Vi,J/V(R)=0 and it decreases
asr increases. Also, at the same relative position, the differ-
ence betweerV(r) andV;, increases as the grain size de- 005
creases. The corresponding relative concentration &f, Zr
c(r)/cy and {c)/cy, are shown in Fig. @). At r=R-I,
c(r)/cy=1 and it decreases asncreases. The charge carrier 007 Ll L
controlling diffusion, Zf*, is depleted in the space-charge ! 100
layer. Also, at the same relative position,*Zis more de-
pleted as the grain size decreases. In order to check the ac- FIG. 3. The relative electrostatic potent{@V/)—Vi,)/V(R) as a
curacy of the closed form solutions of GOmez-Garefal.  function of grain size showing the comparison between the present
[((V)=Vinl/V(R) defined by Eqs(7) and (12b) is shown in  result and the result of Gémez-Garefaal.
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FIG. 5. The critical grain size for=0.9 as a function of tem-
perature showing the comparison between the present numerical
result and the analytical result of Gomez-Garefal.

difference is evident. The exponeptis —2 when the grain
size is sufficiently large. This is consistent with experimental
value$-2921 for submicron YTZP which are also shown in
Fig. 6. Both analyses indicate that the exponent increases
with decreasing grain size; however, the numerical result—
i.e., Eq.(16)—shows thatp goes through a maximum and
then rapidly decreases reaching a value of —Rat. The
rationale forp=-2 atR=l is as follows. WherR=I, Egs.
®» 10 Grain size, d (o) 100 (1a) and(1b) show thatv(r) -V, becomes independent Bf
’ Because the concentratiofr) is a function ofV(r) -V, [see
FIG. 4. The creep rate modification factaras a function of Eq. (2)], c(r) also becomes independentRfwhenR=I. As
grain size at temperatures 1000, 1100, 1200, 1300, 1400, and result,a also no longer has a dependence Ravhen R

Strain rate factor, o

RTINS [N TN T N T ST S [ TN T N RN |

0 1 1 1 1 I N |

1500 °C showinda) the present numerical result, H4.3), with the =] [see Eq.(15)]. The slopes of the curves in Fig(a} are
present exact analytical resultRel, Eq. (15), and(b) the existing  zero atR=| (i.e., atd=21=10 nm. In this casep defined by
approximate result, Eq8). Eq. (9) is not influenced by the existence afin Eq. (4)

(8) as functions of grain size are shown, respectively, in Figs‘."’hen R=I. Hence, when the grain is fully covered by the

4(a) and 4b) at different temperatures. The difference be-SPace-charge layer, the grain-size exporgns not influ-
tween the present numerical result and the existing approxnced by the existence of space charges and remains —2.
mate closed-formed solution far increases with the de- Although considerable effort has been dedicated to char-
crease in the grain size. Also, while Figb%shows thatvis ~ acterizing the creep of nanocrystalline ceramics, large dis-
insensitive to the grain size only when the grain size is sufcrepancies in the experimental data exist because the samples
ficiently large, Fig. 4a) shows thata is insensitive to the are not fully dense, impurities are present, or significant
grain size when the grain size is either sufficiently large or
extremely smalle.g.,R approacheb). To check the accuracy
of numerical integration performed on E@L3), the exact
closed-form solution fow at R=I given by Eq.(15) is also
shown in Fig. 4a). The excellent agreement between Egs.

Present work
----- Present work 1050 °C
— — =~ G6mez-Garcia et al.

[ 5]
LELELELEN LA

~

s’

(13) and (15) at R=I validates the accuracy of numerical ® Ref[9] )
integration. It can be seen in Figs(at and 4b) that the o Ref.[22]1050°C
effects of space charge are enhanced if either the grain size . Re? (20]

O Ref.[21]

or temperature is decreased. It is of interest to examine the

range of temperature and grain size at which the creep rate is

decreased by a certain percentage. Taking 1084 «=0.9

as an example, the critical grain size at each temperature can

be obtained from the intersections between the curves and -

the line ate=0.9 in Figs. 4a) and 4b). This critical grain 19 i '1(')0 EE—

size as a function of temperature is shown in Fig. 5. By using Grain size, d (nm)

the assumption oR>1, this critical grain size is underesti-

mated by 5—6 nm in the temperature range of 1000—1500 °C. FIG. 6. The grain size exponerg, as a function of grain size
The grain-size exponenfsgiven by Eqs(10) and(16) as  showing the comparison between the present numerical result and

functions of the grain size are shown in Fig. 6, and theirthe analytical result of Gémez-Garaga al.

Grain-size exponent, p
<)
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grain growth occurs during creep. However, recent tma -1.45 —T
fully dense YTZP of 50 nm grain size at 1200 °C foung a

value of —1.4 that is also included in Fig. 6 for comparison. 15
In addition, data for YTZP with 80% relative density and 35
nm initial grain size show @ value of —1.3 when deforming

in tension at 1050 °C; however, the grain size grows to 75
nm during the test? As the data in Ref. 22 probably are
influenced by grain growth and the porosity effect, the data
with a grain-size error-bar are shown in Fig. 6 to reflect this
grain growth. Usingr =1050 °C, the numerical result of Eq. 165
(16) is also shown.

Electrostatic potential (V)

V. CONCLUDING REMARKS L e
. . . . @ Grain size, d (nm)

Considering a spherical grain, Gomez-Gaetial. devel- 02 I I
oped a model recently to examine the effects of segregation- C ! ]
induced space charge on lattice-diffusional creep of nano- - .
crystalline ceramic®. In order to obtain closed-form 0.15 D ]
solutions, they used the condition that the grain radius be ¢ [ i
much greater than the width of the space-charge layer, S - .
R>1) in solving constitutive equations. Because this condi- >f 01l _
tion can become invalid for nanocrystalline ceramics, the = C ]
constitutive equations of Gomez-Garada al. are resolved = - ]
numerically in the present study without assumitg 1. For 005 - ]
yttria tetragonal zirconia, the difference between the existing [ ]
approximate closed-form solutions and the present numerical - .
results is found to be significant when the grain size is less 010' Lo '1'o|o . 10'00

than 50 nm. However, when the width of the space-charge ®)
layer, I, becomes comparable to the grain radRissome

issues remained to be improved in the analyses. First, a uni- FIG. 7. (a) The electrostatic potential in the region without seg-
form charge distribution in the space-charge layer is assume@gation Vi, and(b) the electrostatic potential difference across the
in modeling. Theoretically, this charge density is a functionspace-charge layel/(R)-V,,, as functions of grain sizel for

of not only the defect formation energy but also the electroV(R)=-1.5 V.

static potential. Because the electrostatic potential is nonuni-

form in the space-charge layer, a more rigorous analysig|ectrostatic potential at the grain boundary with respect to
should take account of the nonuniform charge distributionhe pulk is~0.3 V for YTZA at 500 °C. Increasing the elec-
Second] is known to decrease with increasing temperatureirostatic potential differenc®¥(R)-V,, used in calculations
however, it is unclear howdepends on the grain size. When yyoid lead to an increase in the creep resistance. Finally, the
a largerl is used in calculations, the creep resistance begoncentration of the charge carriets, controlling creep is
comes strongét. Third, Gomez-Garcizet al. suggested a gescribed by Eq(2). In this case, depletion of the charge
constant electrostatic potential at the grain boundary—i.egayriers, ¢, within the space-charge layer would elevate the
eM(R)=-1.5 eV. In this case, the electrostatic potential in thesgncentration in the region without segregatian,Hence, a

region without segregatiot,, described by Eq(1a) has & more rigorous analysis should consider conservation of
finite value that is a function of the grain size. Based on Eqsegharge carriers.

(1a and(11a), Vi, is plotted as a function of the grain size in
Fig. 7(a). It can be seen that;, is less thanV(R) and be-
comes closer t&(R) as the grain size increases. Because the
electric field in the grain-boundary region is dictated by the The authors thank Dr. I. Kosacki and Dr. J. H. Schneibel
electrostatic potential difference across the space-charger reviewing this article. This research was jointly spon-
layer, V(R) -V, is plotted as a function of the grain size in sored by the U.S. Department of Energy, Division of Mate-
Fig. 7(b). It can be seen tha¥(R)-V,y is ~0.16 V in the rials Sciences and Engineering, Office of Basic Energy Sci-
limiting case ofR—1| and it decreases and approaches zere@nces, and the Heavy Vehicle Propulsion Materials Program,
as the grain size increases. Without experimental verificatiorQffice of FreedomCAR and Vehicle Technology Program un-
it is unclear whether the result shown in Figb)is reason- der Contract no. DE-AC05000R22725 with UT-Battelle,
able. However, it was suggested by Guo and Méigwat the  LLC.

Grain size, d (nm)
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