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The segregation of dopants whose electric charge is different from that of the parent ions and the formation
of a space-charge layer induce a local electric field in the grain-boundary region. Depending upon the valence
and local electrostatic potential, the charge carriers controlling diffusional creep can be either accumulated or
depleted in this space-charge layer, and the creep rate is enhanced or diminished accordingly. A model was
recently developed to examine the effects of a segregation-induced local electric field on the lattice-diffusional
creep of nanocrystalline ceramics for spherical grains. However, in order to obtain closed-form solutions, the
grain size was assumed to be much greater than the width of the space-charge layer in the existing analysis.
This assumption can become inappropriate for nanocrystalline materials as the grain size is reduced; thus, a
numerical method is used in the present study to resolve the existing equations without that assumption. Using
yttria tetragonal zirconia as an example, the difference between the existing approximate closed-form solutions
and the present numerical results is shown to be significant when the grain size is less than 50 nm.
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I. INTRODUCTION

Superplasticity of nanocrystalline ceramics has been the
subject of intensive research in the last decade,1,2 and the
deformation mechanism involves grain-boundary sliding ac-
commodated by lattice diffusion. The lattice-diffusional
creep model developed by Nabarro and Herring predicts that
the strain rate has a power law dependence on the mean grain
size with an exponent of −2sRefs. 3,4d. Hence, a decrease in
the grain size by one order of magnitude would lead to an
increase in the strain rate by two orders of magnitude, and
substantially enhanced superplasticity in nanocrystalline ce-
ramics is plausible. However, in order to suppress the grain
growth and to maintain the small grain size, dopants that
segregate to grain boundaries are added.5 A local electric
field is induced in the grain-boundary region because of dop-
ant segregation and the formation of a space-charge layer.
This local electric field inevitably affects the diffusion of
charge carriers that control diffusional creep.6–9 As a result,
the grain-size exponent dependence of strain rate can be dif-
ferent from the value of −2 and a decrease in the expected
creep rate of nanocrystalline ceramics may result.6–9

The space-charge theory was first postulated by Frenkel.10

Because of the different formation energies of point defects
in ionic crystals, the lattice discontinuitiesse.g., surfaces,
grain boundaries, and dislocation coresd may carry an elec-
tric charge resulting from the presence of excess ions of one
sign, and this charge is compensated by a space-charge layer
of the opposite sign adjacent to these lattice discontinuities.
An electrostatic potential difference between the lattice dis-
continuities and the bulk exists in the presence of the space-
charge layer which, in turn, induces the segregation of
charged dopants. For example, Ca2+ segregation in CaCl2-
doped-NaCl,11 Al3+ segregation in Al2O3-doped-MgO,11 Zr4+

segregation in ZrO2-doped-Al2O3,
7 Y3+ segregation in

Y2O3-doped-Al2O3,
12 and Y3+ segregation in yttria tetrago-

nal zirconiasYTZPd,8,9,12 as well as segregation of divalent
to pentavalent cationic dopants13 in 12Ce-TZP and 2Y-TZP
have been documented. Analyses of the charge distribution

in the space-charge layer are complex even for pure ionic
crystals. The relation between the electrostatic potential and
the charge density is governed by Poisson’s equation, and the
charge density is a function of both the formation energies of
point defectsse.g., anion and cation vacanciesd and the elec-
trostatic potential.10,14–17The solution for the charge distri-
bution is subject to the conditions of electrical neutrality in
the crystal and the minimum free energy that includes for-
mation energies of vacancies, the energy of bound vacancy
pairs, and the configurational entropy. When dopants are
added, dopant segregation depends not only on the electro-
static potential but also on the dipole and elastic inter-
actions.10,14–17 This dopant segregation affects the charge
distribution and modifies the electrostatic potential; thus, the
complexity of the problem can be envisioned.

In order to study how dopant segregation affects lattice-
diffusional creep, a simplified model was developed by Jam-
nik and Raj.6 First, the defect species were differentiated
between the one that accumulates in the space-charge layer
to produce the local electrostatic potential and the one that
controls lattice diffusion. Second, lattice diffusion was
treated as one-dimensional diffusion between two parallel
space-charge layers separated by a distance equivalent to the
grain size. In this case, depending upon the valence and local
electrostatic potential, the charge carriers controlling diffu-
sional creep can be either accumulated or depleted in the
space-charge region, and the creep rate is enhanced or dimin-
ished accordingly. For the enhanced case, the increase in
strain rate was found to be quite limited. However, for the
diminished case, the resistance was found to increase expo-
nentially and the grain-size exponent dependence of the
strain rate could change from −2 to −1sRef. 6d. Jamnik and
Raj’s model was subsequently expanded by Gómez-Garcíaet
al. by considering a three-dimensional geometry—i.e., a
spherical grain.9 However, in order to obtain closed-form
solutions, the assumption was made that the grain size is
much greater than the width of the space-charge layer. While
the width of the space-charge layer is related to Debye at-
tenuation length, it has been suggested that this width ranges
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from 2 to 10 nm by Gómez-Garcíaet al.9 and from 0.4 to 3
nm by Guo and Maier.18

For nanocrystalline materials, the requirement that the
grain size be much greater than the width of the space-charge
layer would be violated. To remove this condition in the
analysis and to make the solutions applicable to nanocrystal-
line ceramics, the purpose of the present study is to resolve
the equations of Gómez-Garcíaet al. by using a numerical
method. First, the model of Gómez-Garcíaet al. is summa-
rized to provide a general background. Second, the equations
of Gómez-Garcíaet al. are resolved using a numerical
method. Finally, specific results are calculated for YTZP
nanocrystalline ceramics, and the results are compared with
those obtained from the approximate closed-form solutions.

II. SUMMARY OF THE MODEL
OF GÓMEZ-GARCÍA et al.

A spherical grain with radiusR is considered. The dopants
segregate to the grain boundary and a space-charge layer
with a width l is formed in the grain-boundary regionsFig.
1d. By assuming that the charge density is a constantr within
the layerR− l ø r øR and zero withinr =R− l, the electro-
static potentialV within the grain has been derived such that9

Vsrd =
rR2

6«
−

rsR− ld2

2«
+

rsR− ld3

3«R
+

rfR3 − sR− ld3g
3«0R

; Vint sfor r ø R− ld, s1ad

Vsrd =
rsR2 − r2d

6«
+

rsR− ld3

3«
S 1

R
−

1

r
D

+
rfR3 − sR− ld3g

3«0R
sfor R− l ø r ø Rd, s1bd

where r is the distance from the center of the grain, and«
and «0 are the dielectric constants of the material and
vacuum, respectively. The electrostatic potential in the re-
gion of r øR− l given by Eq.s1ad is uniform and is denoted
asVint.

In the presence of an electrostatic potential, the concen-
tration of the charge carriers,c, controlling diffusional creep
is modified such that

csrd = c0 expS− zefVsrd − Vintg
kT

D , s2d

wherec0 is the concentration in the region without segrega-
tion si.e., r øR− ld, z is the valence of the charge carrier,e is
the electron charge,k is the Boltzmann constants=8.6178
310−5 eV K−1d, andT is the temperature.

In the absence of an electrostatic potential, the constitu-
tive equation for creep by grain-boundary sliding accommo-
dated by lattice diffusion is3,4

«̇ = A
Gb

kT
S s

G
D2Sb

d
D2

D, s3d

where«̇ is the creep rate,A is an empirical constant,G is the
shear modulus,s is the uniaxial applied stress,b is the Bur-
gers vector,d is the grain sizes=2Rd, and D is the lattice
diffusion coefficient of the charge carrier. In the presence of
an electrostatic potential, the creep equation becomes9

«̇ = aA
Gb

kT
S s

G
D2Sb

d
D2

D, s4d

wherea is a factor that accounts for the concentration dis-
tribution of the charge carriers and is given by

a =
R2

2E
0

R c0

csrd
rdr

. s5d

BecauseVsrd given by Eq.s1bd is nonuniform, a closed-
form solution fora is unattainable when Eq.s1bd is substi-
tuted into Eqs.s2d and s5d. In order to obtain closed-form
solutions, two simplifications were made by Gómez-García
et al.: sid the grain radius was assumed to be much greater
than the width of the space-charge layer—i.e.,R@ l—andsii d
the distribution of electrostatic potential within the layer was
ignored and a mean valuekVl was used. Using the above
simplifications, the electrostatic potential atr =R—i.e.,
VsRd—and the mean electrostatic potential within the layer,
kVl, are9

VsRd =
rRl

«0
, s6ad

kVl = Vint −
rR2

6«
S l

R
D2

. s6bd

The parameterVsRd is meaningful because it is the electro-
static potential at the grain boundary and is a measurable
quantity.9,19 A constant value ofVsRd is considered by
Gómez-Garcíaet al. in their analysis. ExpressingkVl−Vint in
terms ofVsRd, it can be obtained that

FIG. 1. Schematic showing a spherical grain with a space-
charge layer.
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kVl − Vint

VsRd
= −

l

6«rR
, s7d

where«r =« /«0 is the relative dielectric constant. Replacing
Vsrd in Eq. s2d with kVl and combining Eqs.s2d, s5d, ands7d
yields

a =
1

1 +
4l

d
FexpS− zeVsRd

3«rkT

l

d
D − 1G . s8d

With the solution ofa given by Eq.s8d, the creep rate equa-
tion, Eq. s4d, is complete.

In the absence of a space-charge layer, the grain size ex-
ponent of the creep rate given by Eq.s3d is −2. It is of
interest to examine how the space charge affects the grain
size exponentp, which is defined as

p = S ] ln «̇

] ln d
D

s,T
. s9d

Substitution of Eqs.s4d and s8d into Eq. s9d yields

p = − 2 +

4l

d
F1 −

zeVsRd
3«rkT

l

d
GexpS− zeVsRd

3«rkT

l

d
D −

4l

d

1 +
4l

d
FexpS− zeVsRd

3«rkT

l

d
D − 1G .

s10d

III. ANALYSES

The solutions of Gómez-Garcíaet al. are valid whenR
@ l. However, for nanocrystalline materials, the condition
that R@ l will be violated as the grain size becomes smaller.
Out of this concern, the two simplifications used by Gómez-
Garcíaet al.are removed in the present study, and numerical
results are derived. Without those simplifications,VsRd and
kVl derived from Eq.s1bd are

VsRd =
r

3«0R
fR3 − sR− ld3g, s11ad

kVl =
3

R3 − sR− ld3E
R−l

R

Vsrdr2dr = Vint −
rhR5 − sR− ld5 − 5sR− ld2fR3 − sR− ld3g + 5sR− ld3fR2 − sR− ld2gj

10«fR3 − sR− ld3g
. s11bd

In this case,fVsrd−Vintg /VsRd and skVl−Vintd /VsRd become

Vsrd − Vint

VsRd
=

− RFsrd
«rfR3 − sR− ld3g2 , s12ad

kVl − Vint

VsRd
=

− 3RhR5 − sR− ld5 − 5sR− ld2fR3 − sR− ld3g + 5sR− ld3fR2 − sR− ld2gj
10«rfR3 − sR− ld3g2 , s12bd

where

Fsrd =
r2

2
+

sR− ld3

r
−

3sR− ld2

2
. s12cd

While kVl is given by Eq.s11bd, it is not used to derive the creep rate in the present study; instead, it is used to derive Eq.s12bd
and to check the accuracy of Eq.s7d. Also, it should be noted that an area integral instead of a volume integral was used by
Gómez-Garcíaet al. to derivekVl; however, in the limiting case ofR@ l ,kVl derived from the area and volume integrals are
the same.

Substituting Eqs.s2d and s12ad into Eq. s5d, the exact
solution for the factora can be derived, such that

a =
1

1 −
2l

R
+ S l

R
D2

+
2

R2E
R−l

R

Qsrdrdr

, s13d

where

Qsrd = expS − zReVsRdFsrd
«rfR3 − sR− ld3gkT

D . s14d

The integral in Eq.s13d can be solved numerically. However,
the exact closed-form solution can be obtained for the special
case ofR= l such that
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a =
zeVsRd

2«rkTF1 − expS− zeVsRd
2«rkT

DG sfor R= ld. s15d

While Eq. s13d shows the grain-size dependence ofa, Eq.
s15d shows thata is independent of the grain size atR= l if
VsRd is independent of the grain size. Equations15d also
serves as a checkpoint for the accuracy of the numerical
integral in Eq.s13d.

Substituting Eqs.s4d and s13d into Eq. s9d, it can be
shown that the grain-size exponent is

p = − 2 +aH−
2l

R
S1 −

l

R
D +

4

R2E
R−l

R

Qsrdrdr

− 2FQsRd − 1 +
l

R
GJ +

2azeVsRd
«rRfR3 − sR− ld3gkT

3E
R−l

R H ls− 3R2 + l2dFsrd
R3 − sR− ld3

+
3RsR− ldsR− l − rd

r
JQsrdrdr , s16d

whereFsrd ,a, andQsrd are given by Eqs.s12cd, s13d, and
s14d, respectively, andQsRd is Qsrd at r =R. The solution of
p from Eq. s16d requires numerical integration.

IV. RESULTS

Specific results are calculated using materials properties
pertinent to YTZP in order to elucidate the essential trends.
In this case, the grain boundary carries a positive charge
resulting from the segregation of Y3+, and this positive
charge is compensated by a negative space-charge layer of
ionic defects of Y3+ substituting for Zr4+—i.e., YZr8 sRefs.
13,18d. Within the space-charge layer, the oxygen vacancies
are depleted and their contribution to the charge density can
be ignored.18 The charge carrier controlling creep is Zr4+ and
z=4. The materials properties arel =5 nm, «r =4.65, and
eVsRd=−1.5 eV.9 Also, unless noted otherwise,T=1200 °C
is used in the present calculation. The relative electrostatic
potentialfVsrd−Vintg /VsRd within the layer is shown in Fig.
2sad as a function of the relative positionr −sR− ld at differ-
ent grain sizes. The simplified result of Gómez-Garcíaet al.
fskVl−Vintd /VsRd given by Eq.s7dg is also included in Fig.
2sad for comparison. The relative positions ofr −sR− ld=0
and 5 nm correspond to the positions atr =R− l and R, re-
spectively. Atr =R− l, fVsrd−Vintg /VsRd=0 and it decreases
asr increases. Also, at the same relative position, the differ-
ence betweenVsrd and Vint increases as the grain size de-
creases. The corresponding relative concentration of Zr4+,
csrd /c0 and kcl /c0, are shown in Fig. 2sbd. At r =R− l,
csrd /c0=1 and it decreases asr increases. The charge carrier
controlling diffusion, Zr4+, is depleted in the space-charge
layer. Also, at the same relative position, Zr4+ is more de-
pleted as the grain size decreases. In order to check the ac-
curacy of the closed form solutions of Gómez-Garcíaet al.
fkVl−Vintg /VsRd defined by Eqs.s7d and s12bd is shown in

Fig. 3 as functions of the grain sized. The deviation between
these two curves becomes significant as the grain size is
decreased below 50 nm.

In the presence of space charge, the creep rate is modified
by multiplying a factora. This factor is a function of both
the grain size and temperature. The numerical and approxi-
mate closed-formed solutions fora given by Eqs.s13d and

FIG. 2. sad The relative electrostatic potentialsVsrd−Vintd /
VsRd and skVl−Vintd /VsRd and sbd the relative concentration of
Zr4+, csrd /c0 andkcl /c0, within the space-charge layer as functions
of the relative position,r −sR− ld, at different grain sizes.

FIG. 3. The relative electrostatic potentialskVl−Vintd /VsRd as a
function of grain size showing the comparison between the present
result and the result of Gómez-Garcíaet al.
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s8d as functions of grain size are shown, respectively, in Figs.
4sad and 4sbd at different temperatures. The difference be-
tween the present numerical result and the existing approxi-
mate closed-formed solution fora increases with the de-
crease in the grain size. Also, while Fig. 4sbd shows thata is
insensitive to the grain size only when the grain size is suf-
ficiently large, Fig. 4sad shows thata is insensitive to the
grain size when the grain size is either sufficiently large or
extremely smallse.g.,R approachesld. To check the accuracy
of numerical integration performed on Eq.s13d, the exact
closed-form solution fora at R= l given by Eq.s15d is also
shown in Fig. 4sad. The excellent agreement between Eqs.
s13d and s15d at R= l validates the accuracy of numerical
integration. It can be seen in Figs. 4sad and 4sbd that the
effects of space charge are enhanced if either the grain size
or temperature is decreased. It is of interest to examine the
range of temperature and grain size at which the creep rate is
decreased by a certain percentage. Taking 10%si.e., a=0.9d
as an example, the critical grain size at each temperature can
be obtained from the intersections between the curves and
the line ata=0.9 in Figs. 4sad and 4sbd. This critical grain
size as a function of temperature is shown in Fig. 5. By using
the assumption ofR@ l, this critical grain size is underesti-
mated by 5–6 nm in the temperature range of 1000–1500 °C.

The grain-size exponentsp given by Eqs.s10d ands16d as
functions of the grain size are shown in Fig. 6, and their

difference is evident. The exponentp is −2 when the grain
size is sufficiently large. This is consistent with experimental
values9,20,21 for submicron YTZP which are also shown in
Fig. 6. Both analyses indicate that the exponent increases
with decreasing grain size; however, the numerical result—
i.e., Eq. s16d—shows thatp goes through a maximum and
then rapidly decreases reaching a value of −2 atR= l. The
rationale forp=−2 at R= l is as follows. WhenR= l, Eqs.
s1ad ands1bd show thatVsrd−Vint becomes independent ofR.
Because the concentrationcsrd is a function ofVsrd−Vint fsee
Eq. s2dg, csrd also becomes independent ofR whenR= l. As
a result,a also no longer has a dependence onR when R
= l fsee Eq.s15dg. The slopes of the curves in Fig. 4sad are
zero atR= l si.e., atd=2l =10 nmd. In this case,p defined by
Eq. s9d is not influenced by the existence ofa in Eq. s4d
when R= l. Hence, when the grain is fully covered by the
space-charge layer, the grain-size exponentp is not influ-
enced by the existence of space charges and remains −2.

Although considerable effort has been dedicated to char-
acterizing the creep of nanocrystalline ceramics, large dis-
crepancies in the experimental data exist because the samples
are not fully dense, impurities are present, or significant

FIG. 4. The creep rate modification factora as a function of
grain size at temperatures 1000, 1100, 1200, 1300, 1400, and
1500 °C showingsad the present numerical result, Eq.s13d, with the
present exact analytical result atR= l, Eq. s15d, andsbd the existing
approximate result, Eq.s8d.

FIG. 5. The critical grain size fora=0.9 as a function of tem-
perature showing the comparison between the present numerical
result and the analytical result of Gómez-Garcíaet al.

FIG. 6. The grain size exponent,p, as a function of grain size
showing the comparison between the present numerical result and
the analytical result of Gómez-Garcíaet al.
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grain growth occurs during creep. However, recent data9 for
fully dense YTZP of 50 nm grain size at 1200 °C found ap
value of −1.4 that is also included in Fig. 6 for comparison.
In addition, data for YTZP with 80% relative density and 35
nm initial grain size show ap value of −1.3 when deforming
in tension at 1050 °C; however, the grain size grows to 75
nm during the test.22 As the data in Ref. 22 probably are
influenced by grain growth and the porosity effect, the data
with a grain-size error-bar are shown in Fig. 6 to reflect this
grain growth. UsingT=1050 °C, the numerical result of Eq.
s16d is also shown.

V. CONCLUDING REMARKS

Considering a spherical grain, Gómez-Garcíaet al. devel-
oped a model recently to examine the effects of segregation-
induced space charge on lattice-diffusional creep of nano-
crystalline ceramics.9 In order to obtain closed-form
solutions, they used the condition that the grain radius be
much greater than the width of the space-charge layersi.e.,
R@ ld in solving constitutive equations. Because this condi-
tion can become invalid for nanocrystalline ceramics, the
constitutive equations of Gómez-Garcíaet al. are resolved
numerically in the present study without assumingR@ l. For
yttria tetragonal zirconia, the difference between the existing
approximate closed-form solutions and the present numerical
results is found to be significant when the grain size is less
than 50 nm. However, when the width of the space-charge
layer, l, becomes comparable to the grain radiusR, some
issues remained to be improved in the analyses. First, a uni-
form charge distribution in the space-charge layer is assumed
in modeling. Theoretically, this charge density is a function
of not only the defect formation energy but also the electro-
static potential. Because the electrostatic potential is nonuni-
form in the space-charge layer, a more rigorous analysis
should take account of the nonuniform charge distribution.
Second,l is known to decrease with increasing temperature;
however, it is unclear howl depends on the grain size. When
a larger l is used in calculations, the creep resistance be-
comes stronger.9 Third, Gómez-Garcíaet al. suggested a
constant electrostatic potential at the grain boundary—i.e.,
eVsRd=−1.5 eV. In this case, the electrostatic potential in the
region without segregation,Vint, described by Eq.s1ad has a
finite value that is a function of the grain size. Based on Eqs.
s1ad ands11ad, Vint is plotted as a function of the grain size in
Fig. 7sad. It can be seen thatVint is less thanVsRd and be-
comes closer toVsRd as the grain size increases. Because the
electric field in the grain-boundary region is dictated by the
electrostatic potential difference across the space-charge
layer, VsRd−Vint is plotted as a function of the grain size in
Fig. 7sbd. It can be seen thatVsRd−Vint is ,0.16 V in the
limiting case ofR→ l and it decreases and approaches zero
as the grain size increases. Without experimental verification,
it is unclear whether the result shown in Fig. 7sbd is reason-
able. However, it was suggested by Guo and Maier18 that the

electrostatic potential at the grain boundary with respect to
the bulk is,0.3 V for YTZA at 500 °C. Increasing the elec-
trostatic potential differenceVsRd−Vint used in calculations
would lead to an increase in the creep resistance. Finally, the
concentration of the charge carriers,c, controlling creep is
described by Eq.s2d. In this case, depletion of the charge
carriers,c, within the space-charge layer would elevate the
concentration in the region without segregation,c0. Hence, a
more rigorous analysis should consider conservation of
charge carriers.
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regation,Vint, andsbd the electrostatic potential difference across the
space-charge layer,VsRd−Vint, as functions of grain sized for
VsRd=−1.5 V.
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