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Thermodynamics of MgB, described by the weak-coupling two-band BCS model
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Based on weak-coupling anisotropic BCS theory, the temperature dependence of energy gap and the specific
heat are evaluated for the MgBuperconductor, and the results are compared with experimental data. We
show that the weak-coupling anisotropic BCS theory describes thermodynamic experimental data with high
precision, 3—6%.
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A keen interest excited by discovery and experimental ) .. do’
investigation of a new higf, superconductor MgRis to a V(k, k") x(k )—V o Aox(k). 2
FUF

large extent associated with its dissimilarity to cuprate super-
conductors. The superconductivity of Mghs definitely a  Integration in Eq.(2) proceeds over the Fermi surface with
three-dimensional effect, whereas in cuprates it is presumdo=dS/8x° with dS being a differential area of the Fermi
ably two-dimensional(2D). Nevertheless, the superconduct- surface;vg=fdo/vg is the electron density of the state per
ing gap in MgB displays strong anisotropy. The most pre- spin at Fermi level. The functiog(k) is normalized as fol-

cise tunneling measurements by Gonnelliall give the lows:
value 2.6 for the ratio of the gaps at two conductivity bands. 2 _
On the other hand, the measured gaps are the same for the Ok =1. 3

tunneling in theab-plane and in thee-direction, indicating  The angular average valuX) is (X)=/Xdo/ve. The tem-

that they do not depend on direction within each piece of thgyerature dependent fact@(T) can be found from the or-

Fermi surface. _ _ _ ~_ thogonality condition:

An important problem is how strong is the interaction in
MgB,. First-principles calculatios? indicate that electron- Q( ) _ Xz(k)F<Q(T)X(k)) @)
phonon interaction is not weak and that the Eliashberg de- Q(T) T ’

scription is appropriate. However, anisotropy and interaction
were shown to influence thermodynamics oppositely. For ex?
ample, the anisotropy decreases the relative discontinuity of du

the specific heat at the transition poftwhereas the first F(x) = f > 5
correction due to interaction increase$ Besides, MgB is a Vet (exp\x tui+l)

very hard material with a high value of Debye frequency, The valueQ(0) is associated with the transition temperature
which usually correlates with a weak coupling. Therefore itT_ py the following relationship:

is nota priori clear what is more substantial in the case of Q0)

MgBs. = Ty — (12

The purpose of our work is to demonstrate that the aniso- Te yexp: (EInlx oD, ©
tropy effects are more substantial at least for thermodynami . ,
mel?aysurements We show that, as a matter of fact, thye we rey=e°=1.781072.. andC is Euler's constants. The spe-
coupling anisotropic BCS theory describes all known therCIfIC heatC(T) reads
modynamic experimental data including the temperature de- d Ak
pendence of the energy gap and specific heat with a high C(Mm= 2T\ MG
precision, 3—6%.

The main features of the anisotropic weak coupling BCSwhereG(x) = 2x[; cosi{2¢)F(x coshe)de.
model were elucidated in the early 1968-10the ultimate We now apply these formulas to MgBThe Fermi surface
result being the factorization of the gap of MgB, has twoo-type 2D cylindrical hole sheets and two

m-type three-dimensional tubular networfks:31617"We ac-
A(T,k) =Q(T)x(k), (1)  cept a simple model introduced first by Moskalettkand
Suhlet al,'® in which the interaction does not depend on the
which was experimentally verified by Zavaritskl.The  momentum inside each band, but only on the band index.
function of angley(k) is the eigenfunction of the interaction Thus it can be written as aX2 Hermitian matrixVy, (i,k
operatorV(k k") corresponding to the maximal eigenvalue =o, 7). The order parametdienergy gapin each band in
\;. It satisfies the linear homogeneous integral equation: such a model does not depend either on the momentum

where

()
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within each band and can be described by a 2D vector with 1

componentsA;,, A.. The validity of this simple model is 08 |

supported by the tunneling measurements of the energy gap, S sl

which displays the same values for two gaps indbeplane g ’

and in thec-direction. The normalized wave function of the S %4

Cooper pairsy, has the same property,(K)=x, x(K) 02t

=X. Wherey, and y, are two constants. We introduce an 0 . . . .
additional simplification assuming these constants to be real. 0 02 04 06 08 1

Let us denote the density of states in thend = bands as Tt

Vg, and ve,, respectively. Then the definition of an average

value (X) for any physical valueX, which does not change FIG. 1. The solid curve depicts the ratiQ(T)/Q(0) vs t

=T/ T, for the two-band model; the dashed curve is the same value

within each band reads for the standardisotropig BCS theory.
= +
<x> X(TC()' X7TC’77’ (8) C(T) _
where ¢, and c, are statistical weights of the bands Cn(T) = ColelYo) * Cal c(yr)
=vgl ve andc,=vg,/ vg, ve=ve,+ ve,. The general normal- ) ) )
ization condition Eq(3) for this model reads L 12 [CoXol aYo) + Coxala(Ya)] (13
., 7L3) coXymoo) + CoxarnYn)
XoCo+ XoC,= 1. O hereCu(T)=yT | - _
n(T)=9T is the specific heat for the normal metal,
Equation(6) can be written explicitly as follows: Yo=m/2y Alt Xy Xavw @Nd y,=m/27q/tx/ Xa._The func-
tions r; are defined by integrals;(x)=/"=g;(Vx?+y?)dy, i
% _ l, (10 a, b, ¢, whereg; read:
Te YXav ) 1
GalX) = S5
where ya,= Xf'q’xj‘;cﬂ. We assume the values=0.44 and 2 cosf(x)
¢,=0.56 as found from density-functional theory calcula- 2 (tanh 1 1
tions in Refs. 12, 13, and 16. The second fitting parameter is gp(X) = ( X_ >_,
T.. There is no experimental discrepancy on this value, and it 1473)\ x  coshx/x?
is commonly accepted to be.=~ 39 K. One additional fitting
parameter for the two-band theory is the ratoy,/ x,.. We 6 X2
have extracted it from the tunneling gap measuremes 9e(x) = 2 cosk x’ (14

trapolating them to zero temperature:
For technical details related to this calculation see Mishonov

0= Xol Xr=2.54. (11)  etal;*8the functionsy; were introduced and graphically pre-
sented in Ref. 19.
Equations(9) and (11) allow us to determiney, and y. The jump of the specific heat at reads(cf. Refs. 5 and

separately: x,=é/Vc,6°+c,=1.38; and y,=1/Vc,8°+c,  14):
=0.54. According to the weak-coupling theory, the rafio

2 2.2
must be the same at any temperature. This crucial condition AC(Ty) _ 12 (XoCo+ XxCr) _ (15
is satisfied in the tunneling experiméntith all experimental Cn(To)  7L3) xic,+xic,
precision.

gor the data specified earlier, we findC(T.)/Cy\(T.)
=0.874. It agrees with the high precision measurements by
Bouquetet al2® with about 3% precision. In Fig. 3 the ratio

For the temperature dependence of the gap in the BC
two-band model, we find from Ed4):

-Inq=X§F(WX“q)C(T+XiF<M>CW- (12 8
YXal YXat P,
6 | R S
Here q(t)=Q(t)/Q(0) and t=T/T.. F(x) is defined by Eq. s t ‘x‘“
(5). The graph of the function(t) is shown in Fig. 1 by the Eaf
solid curve. The dashed curve in Fig. 1 represefitsin the <' 5 i
isotropic single-gap modelstandard BCS modgl The I
graphs of the energy gaps,=Q(t)x, and A =Q(t) x,, ver- 0 :
susT/T, are shown in Fig. 2 together with the experimental 0 02 04 06 08 1
datal which agree with theory within the limits of experi- ¢
mental uncertainty. FIG. 2. The solid curve is the theoretical graph/gf vs T/Tg;
The specific heat in the two-band model is given by thethe dashed curve is the same fior; “+” and “X” represent ex-
following equation directly stemming from E¢7): perimental data by Gonnelt al. (Ref. 1).
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25 Let us start from the assumption supported by experiments
that the gap does not vary within each band. The in-band
2+ . . ..
- isotropy of the gap could be a result of sufficiently strong
\HE 15+ i in-band scattering. At the scattering time-101%s, i.e., at
Q the residual resistance larger thar®Q cm, the energy gap
S_ 1r = becomes isotropic. However, the ratio of the gaps for differ-
os | | ent bands still remains bigger than 2 indicating that the in-
’ terband scattering must be much weaker. It should be empha-
0 sized that it is the density of states which becomes isotropic,
0 02 04 06 08 1 12 whereas the order parameter remains anisotropic unless the

T/T, loffe-Regel limit 7ec~ 1 of the scattering rate is reach&d.
The tunneling experiment measures just the density of state.
FIG. 3. The solid curve is the theoretical graph of the specific  The second question is why the weak-coupling model
heat for the two band MgBvs t=T/T; the circles are the exper?- gives such high accuracy. Two different aspects must be en-
mental data due to Bouquet al. (Ref. 20; and the dashed curve is |ightened. First, the separability of variables for the order
the theoretical plot of the specific heat given by the isotropic Bcsparameter even in the framework of the weak-coupling ap-

theory. proximation, has the precision of the weak coupling con-

C(T)/C\(T) versusT/T, is plotted. The solid curve is the Stant, i.e.[In(A/wp)]™~0.3. For the case of the two-band

prediction of the two-band weak coupling theory; the dotsmodel such a crude estimate can be checked more accurately

are experimenta| data by BOUQL(Hta'.,ZO Courteous|y sent to by direct solution of the nonlinear matrix equation for the

us by the authors. The theoretical grapiT)/Cy versus €nergy gap. It has following form:

T/T. agrees well with the experimental data everywhere ex- 1

cept for a range of low temperatufé T.=<0.2. The discrep- A= ViiGiA; [— - f(ﬂAj)] , (16)

ancy most probably is caused by a relatively small variation j Ay

of the gap within one band. The specific heat at low tempera- o .

ture is proportional teemin'", whereas the tunneling mea- Where i, j take valueso, = and f(x)=/Z.(tanhu/u

surements give the value of the gap along the direction of tanhu*+x%/yu?+x?)du. Its solution can be found as a su-

the tunneling. Given the value of discrepancy, we can estiperposition of two normalized eigenstates of the correspond-

mate the variation of the gap\—Ap,~0.1-0.19,In2  ing linear equationA;=Q,¥,;+Q_V_;. In our calculations

~3.3-4.2 K. It is about 8-12% of the value of the smallerwe used only one of them¥’, corresponding to the larger

gap. eigenvalue\,. Such an approximation is justified when the
Another group of available experimental thermodynamicsecond eigenvaluk. is much less than., even ifi, is not

data relates to magnetic properties: the energy gaps in exteyery small. Indeed, the symmetrized matkxwith matrix

nal magnetlc fiel¢! and the dependence of the second C““'elements?/i-:\fgvi- can be represented &:)\+|+><+|

cal field on temperatur® The dependence dfi, on tem- | ! )

; i ) N_|—){—|. This representation shows that\at=0 the opera-
perature was considered theoretically in the framework of the ~| A P P

anisotropic BCS model by two groups of autdré based tor V is separable, and the solution of nonlinear equaidi
on the classical approach by Helfand and Wertheftnein- 'S factorlzabIeA:Q(;')\If+. The equationn_=0 is equivalent
fortunately, a consistent solution of these problems at anje DetV=V,V,.~V7,=0. Though such a fine tuning of pa-
temperature between 0 afd requires much more detailed rameters seems improbable, our numerical calculations dem-
knowledge about the Fermi surface. For example, to reach @nstrate that the ratin_/\, and the thermal variation of the
satisfactory convergence Miranévet al23 were forced to fatio A;/A, remain small (about 3% even at
introduce 11 different parameters characterizing the FermPetV/(C,Vy,+¢,V,)?~+0.2. Thus the experimental facts
surface and electron interaction. It is clear that our reafeem to indicate that one of the two eigenvalues is signifi-
knowledge of the Fermi surface is too poor for such a socantly smaller than the other. Such a situation occurred ear-
phistication. Dahm and Schopghlapplied a simplified lier in a band calculation for higfi; superconductors’:*®
model of the Fermi surface as consisting of a torus and cyl- The second aspect mentioned in the preamble is that the
inder characterized by four parameters only and assumed BCS approximation itself has a low precision and should be
plausible variational procedure introducing one more paramsubstituted by the Eliashberg formalism. The numerical cal-
eter. As it could be expected from the results by Miraneti  culations by Golubovet al? indicate that the Eliashberg
al., the number of parameters is too small to ensure a reaveight function is very small in a broad range of low energy
sonable precision. Indeed, a satisfactory agreement with th@nd has rather sharp peaks in the range of 800-1000 K. This
experiment in Ref. 24 is reached at the expense of a rathé$ an unusual situation. Leavens and Carb8ttensidered
exotic choice of parameter. Summing up, the magnetic propan extended Eliashberg weight functiefF(w) centered at
erties can not be described by such an elementary theory &8luésw~ wy much larger than the superconducting energy
described above two-band BCS model and require a muc@apA(0). They argued on the basis of numerical calculations
more sophisticated approach even in the weak coupling aghat in this case the functioA(w) varies very weakly ato
proximation. <wy and then rapidly changes sign. They even modeled
Let us discuss why this simplified theory works so well. A(w) by the step function. Their arguments seem to be cor-

012514-3



BRIEF REPORTS PHYSICAL REVIEW F1, 012514(2009

rect for the considered case as well. Then it is obvious thalar conclusion on thede facto applicability of the weak-

by integrating in the range of high frequency, it is possible tocoupling two-band model to MgB A new element in our

obtain the BCS-like equations with a renormalized, not smalBrief Report is the analysis of the question why this approxi-

interaction between electrons with momenta on the Fermiation works.

surface. Though such an explanation is plausible, further

study of the Eliashberg equation with a model weight is We are thankful to Dr. A. Junod and to Dr. R. Gonnelli for

highly desirable. sending us original experimental data of their works. This
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