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The well-known Bean critical state equations in general are not sufficient to describe the critical state of
type-II superconductors when the sample shape is not symmetric. We show how one can find the critical state
in superconductors of arbitrary shapes. Analyzing a simple example of nonsymmetry, we demonstrate that in
the general case, a perturbation of the current distribution in the critical state propagates into the sample
smoothly in a diffusive way. This is in contrast to the usual Bean critical state where the current distribution
changes abruptly at a narrow front.
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The concept of the critical state introduced by Charles
Bean1 is widely used to describe various physical phenom-
ena in the vortex phase of type-II superconductors, see, e.g.,
Refs. 2 and 3, and citations therein. According to Bean, in
the critical state of type-II superconductors with flux-line
pinning, the driving force of the currents flowing in this state
is balanced by the pinning force acting on the vortices. The
critical state is characterized by the component of the current
density flowingperpendicularto the flux lines, jc', since
only this component generates a driving force. It is assumed
in the critical-state theory that thisjc' is known, i.e., it is a
given function of the magnetic inductionB, jc'= jc'sBd, and
the problem of this theory is to find the appropriate distribu-
tion of the magnetic fields and currents in the critical state.
Below, to explain the physics with the least mathematical
complications, we shall imply the simplest form:jc'

=const., which is frequently used in practice, but an exten-
sion to the general case is straightforward. For simplicity, we
also assume that the magnetic fieldsH in the superconductor
considerably exceed the lower critical fieldHc1, and so we
may putB=m0H.

If in the critical state a current-density componentj i par-
allel to the local magnetic field is also generated, the magni-
tude of j i remains undefined, and one thus cannot, in general,
find the distributions of the magnetic fieldHsr d and current
densityj sr d in the critical state. Indeed, to solve the Maxwell
equations forH,

rotH = j , divH = 0, s1d

it is necessary to know the magnitude and direction of the
currentsj sr d in the sample.4 However, one has only thetwo
conditions

j' = jc', divj = 0, s2d

for threequantities:j', j i, and the angle defining the direc-
tion of j' in the plane normal toHsr d. Thus, the existing
critical-state theory based only on Eqs.s1d and s2d is not
complete.

The above Maxwell equations with conditionss2d can
provide the description of the critical state when the shape of
the superconductor is sufficiently symmetric and the external

magnetic field is applied along a symmetry axis, so that some
constraint on the directions of the currents is known in ad-
vance. For example, the direction of the currents is obvious
for a slab in an external magnetic field parallel to its surface.
For an infinitely long cylinder with an arbitrary cross section
in a magnetic field parallel to its axis, the currents flow per-
pendicular to this axis, and the critical state problem is
solved.2 Another completely solvable case is infinitely thin
flat superconductors,3 for which the currents can flow only in
the plane. However, in the case, e.g., of a thin rectangular
platelet offinite thickness in a perpendicular magnetic field,
the above critical-state equations are already incomplete for
determining the magnetic fields and currents in the critical
state.5,6

We emphasize that even forsimple experimental situa-
tions Eqs.s1d together with conditionss2d can be insufficient
for solving the critical-state problem. As an example that we
shall analyze below, consider an infinite slab of thicknessd.
Let this slab fill the spaceuxu, uyu,`, uzuød/2, and be in a
constant and uniform external magnetic fieldHasHa@Jc

; jc'dd directed along thez axis, i.e., perpendicularly to the
slab plane. Let then a constant fieldhaxsJc/2øhax!Had be
applied along thex axis, and after that the magnetic field
hayshay!Had is switched on in they direction. This critical
state problem is not fully defined. Indeed, the condition
divj =0 yields jz=0, i.e., the currents flow in thex-y planes.
Then, to describe the critical state, we may use the param-
etrization

j = jcsw,u,cd„coswszd,sinwszd,0…,

Hszd = Ha + hszd,

hszd = „hxszd,hyszd,0…,

wherejcsw ,u ,cd is the magnitude of the critical current den-
sity when a flux-line element is given by the anglesc andu,
tanc=hy/hx, tanu=shx

2+hy
2d1/2Ha, while the current flows in

the direction defined by the anglew; all these angles gener-
ally depend onz. A dependence ofjc on the orientation of the
local H, jcsw ,u ,cd= jc' / f1−cos2sw−cdsin2 ug1/2,6 appears if
j c is not perpendicular to thisH. However, atHa@hax, hay,
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Jc, the fieldH is practically normal to thex-y planes where
the currents flowsu<0d, and we may putjcsw ,u ,cd= jc'.
With this parametrization, the equation divH =0 is satisfied
identically, while the Maxwell equation rotH = j reads

dhx

dz
= jc'sinw, s3d

−
dhy

dz
= jc'cosw, s4d

and one has onlytwo equations for thethreefunctionshxszd,
hyszd, wszd.

In real samples of nonsymmetric shape, adjacent flux
lines may be slightly rotated relative to each other in the
critical state. It is this rotation that generates a component of
the current along the magnetic field. The rotation of flux
lines can lead to their mutual cutting.2,7 Flux-line cutting
occurs when the component of the current density parallel to
the magnetic field,j i, exceeds some longitudinal critical cur-
rent densityjci. In this situation a vortex8 or a vortex array9

becomes unstable with respect to a helical distortion, and the
growth of this distortion leads to flux-line cutting. When both
j i and jc' are equal to their critical valuesjci and jc', re-
spectively, Clem’s double critical state7,10 occurs in the su-
perconductor. In this case, one has three conditions for the
three quantities, and Eqs.s1d are sufficient to describe the
double critical state. However, in many real situations,j i

doesnot reachjci, and flux cutting then doesnot occur in the
critical state. It is such situations that we consider here. In
particular, in the above example the projection of the current
density on the magnetic fieldswhich practically coincides
with thez axisd is negligible, and flux cutting does not occur.

We now show how the critical state problem can be
solved for superconductors of arbitrary shape. Let the critical
state be known at some moment of timet, i.e., one hasH
=Hsr dnsr d inside the superconductor where the magnitude of
the magnetic field,H, and the unit vectorn are both known
functions of the coordinatesr at some external magnetic field
Hastd. The current densityj sr d in the critical state follows
from the Maxwell equationj =rot(Hsr dnsr d), while the com-
ponent of the current density perpendicular to the magnetic
field is given by j '= j −nsnj d; jc'n'sr d. Here the last
equality defines the unit vectorn'. Let the external field

infinitesimallysand slowly11d change bydHa=Ḣadt. We now
shall find the new critical state at the new external magnetic
field Ha+dHa.

Under the change ofHa, the critical currents locally shift
the vortices in the direction12 of the Lorentz forcefj 3ng;
this shift generates an electric field directed along[n3 fj
3ng] = j ', i.e., along the vectorn'. Thus, we can represent
the electric fieldEsr d in the form E=n'e where the scalar
functionesr d is the modulus of the electric field. Note that in
contrast to the Bean assumption,13 the electric field generally
is not parallel to the total current densityj sr d. Using the
Maxwell equation

rotsen'd = − m0Ḣ , s5d

whereḢ ;]H /]t, and the equation

rotḢ =
] j

] t
, s6d

one can express the change of the magnetic fields and cur-
rents viaone scalarfunctionesr d. This function can be found
from the condition that in the critical state the absolute value
of j ' is a given function ofB, j'= jc'sBd, or in the differ-
ential form,

j ' ·
] j '

]t
= jc'sBdS ] jc'sBd

]B
· m0ḢD .

In our case whenjc'=const, this condition reads

j ' ·
] j '

] t
= 0.

Taking into account the definition ofj ' and using the iden-
tities

Hṅ = Ḣ − sn · Ḣdn,

Hṅ · j = Ḣ · j ',

j · n = sn · rotndH,

we arrive at an equation foresr d,

n' · frot rotsen'd − sn · rotndrotsen'dg = 0. s7d

Continuity of the magnetic field on the surface of the super-
conductor,S, yields the boundary condition

− rot†esr Sdn'sr Sd‡

= m0Ḣa +E fR 3 rot rotfesr 8dn'sr 8dgg
4pR3 dr 8, s8d

wherer S is a point on the surfaceS, R; r S−r 8, R= uRu, and
the integration is carried out over the volume of the sample.
The right-hand side of this boundary condition expresses

m0Ḣ on the surface of the superconductorsbut reaching from
outsided with the use of the Biot-Savart law. If in the critical
state of the superconductor there are also boundaries at
which the direction of the critical currents changes discon-
tinuously or which separate regions withj'= jc' from re-
gions with j =0,14 the functionesr d has to vanish at these
boundaries. Otherwise, the electric fielden' would be dis-
continuous there.

After determining the functionesr d, one can find the new

critical stateHsr d+dHsr d using the definitiondHsr d=Ḣdt
and Eq.s5d. We emphasized that the new critical state de-
pends only on the previous stateHsr d and on the change of

the external fielddHa=Ḣadt. The dependence ondHa fol-

lows from the proportionality ofe, Ḣ, ]j ' /]t to Ḣa, which
results from the linearity of Eqs.s5d–s8d. Note that in agree-
ment with the meaning of the critical state, the new state will
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be the same for different sweep rates of the external mag-

netic field, Ḣa, since it depends only on theproduct Ḣadt
=dHa. On the other hand, the electric fielde plays an auxil-
iary role in the above description since it is proportional to

Ḣa rather than todHa. The presented description also shows
that the critical state generally depends on the history of its
creation. In other words, it depends not only on the final
value of the external magnetic fieldHa but also on the se-
quence of stepsdHa that lead to this value.

The above approach, which is in essence the generaliza-
tion of the appropriate analyses used for a slab,10,15 can be
summed up as follows: we add to the static equationss1d the
quasistatic Maxwell equations5d. It is known4 that for this
set of the equations to be solvable, it has to be supplemented
by some lawEsj d. We introduce this law from well-known
physical ideas: at any givenj andB sdetermined by the pre-
vious critical stated, thedirection of E follows from the for-
mulaE=fB3vg wherev is the vortex velocity caused by the
Lorentz forcefj 3Bg. As to themagnitudeof E, it is found
from the condition thatuj 'u= jc'. In fact, this condition may
be interpreted as a current-voltage law withuEu=e=0 at j'

, jc' ande→` at j'. jc', which is usually implied in the
description of the ideal critical state.11

Recently,16,17 a variational principle was put forward to
describe the critical state in superconductors. In deriving this
principle Badía and López used Eqs.s1d and s5d and a
current-voltage law withuEu=0 at j , jc and uEu→` at j
. jc. However, the physical idea on thedirectionof the elec-
tric field was not incorporated in their theory. For some situ-
ations this leads to contradiction with existing concepts.8,9 In
particular, in their so-called isotropic model with
H-independentj c, the electric fieldE is parallel to j , and
hence a nonzeroE alongH appears even for an infinitesimal
longitudinal component ofj , i.e., flux cutting occurs without
any thresholdjci.

To illustrate the obtained results, we now consider the
example mentioned above. In the case of the slab, Eq.s7d for
the electric fielde takes the form

e9 − sw8d2e= 0, s9d

wherew8;]w /]z ande9;]2e/]z2. For the anglew we ob-
tain from Eqs.s5d and s6d

m0jc'

] w

] t
= 2e8w8 + ew9. s10d

These equations complement Eqs.s3d and s4d, and now we
havefour equations for four functions. The boundary condi-
tions to Eqs.s3d, s4d, s9d, ands10d at z=d/2 are

hx = hax, hy = haystd, s11d

secoswd8 = − m0
dhaystd

dt
, sesinwd8 = 0, s12d

or equivalently, conditionss12d, which follow from formula
s8d, can be rewritten in the form

e8 = − m0
dhaystd

dt
cosw, ew8 = m0

dhaystd
dt

sinw. s13d

Taking into account the symmetry of the problem,18 it is
sufficient to solve Eqs.s3d, s4d, s9d, and s10d in the region
0øzød/2. At z=0, where the direction of the currents
changes discontinuously, one has the additional condition for
e,

es0d = 0. s14d

Since after switching onhax, the critical currents flow in the
y direction, we have the following initial state for Eq.s10d:

wsz,t = 0d = p/2, s15d

where the momentt=0 corresponds to the beginning of
switching onhay.

In agreement with the general considerations given above,
it follows from Eq. s10d ande~dhay/dt that the anglew is a

FIG. 1. Profiles of the angle of currentswszd, magnitude of
electric field eszd stopd, and magnetic field componentshxszd
sdashed linesd, hyszd ssolid linesd sbottomd in the critical states of
the slab described by Eqs.s3d, s4d, and s9d–s15d; hax=1.1 andhay

=0.01, 0.04, 0.1, 0.2, 0.35, 0.5, 0.7, 1, 1.4, 2, 4. We start athay

=0 with hxszd=hax−1+z, hyszd=0, andfszd=p /2. Herez is in units
d/2, hx andhy in units jc'd/2=Jc/2, ande in unitsm0sdhay/dtdd/2.
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function of z and hay rather than ofz and t. In fact, this
equation describeswszd in the sequence of the critical states
developed in the process of increasinghay. The solution of
equationss3d, s4d, s9d, ands10d, with conditionss11d–s15d is
shown in Fig. 1. Interestingly, whenhay increases, theother
componentof the magnetic field,hx, penetrates further into
the slabfat hay,Jc; jc'd, hxszd almost coincides withhaxg,
and the anglew tends top. In other words, with increasing
hay the initial critical state for the componenthx relaxes,
while the critical state forhy is developed. Note that we
should arrive at a different critical state withw=p /2
+arctanshay/haxd if the x and y components of the external
field were increased simultaneouslyfhaystd /haxstd=constg
from zero to the same valueshax, hay,Jc. Thus, the depen-
dence of the critical state on its prehistory is clearly seen
even in this simple example.

Figure 1 also reveals the following two interesting fea-
tures of the critical state:sad The visible penetrating front of
hy reaches the center of the slab whenhay is still less than
Jc/2, the field of full penetration in the Bean case.sbd The
change of the anglewsz,hayd hasdiffusive character. This is
in stark contrast to the usual Bean critical state, in which any
change of the current direction occurs inside a narrow front.

Interestingly, Eqs.s3d, s4d, s9d, and s10d are applicable
also to a number of other physical problems if the boundary
and initial conditions are changed appropriately. In particu-
lar, these equations also describe the usual Bean critical state
in the slab, corresponding to adiscontinuoussolution wszd.
Using these equations, one can also investigate the low-
frequency response of the slab to acircularly polarized ac

field applied in the plane of the sample perpendicularly to the
large magnetic fieldHa.

19 It is clear from the data of Fig. 1
that this response will differ from the response to a linearly
polarized ac field, for which the analysis based on the usual
Bean model is applicable. These equations also enable one to
consider the vortex-shaking effect:20 If the field Ha is not
uniform in the plane of the slab, and thus a sheet currentJ
flows in it, a small ac field applied along the current leads to
a continuous drift of vortices in the directionfJ3Hag. It
turns out that Eqs.s3d, s4d, s9d, ands10d have a solution that
reproduces this result of Ref. 20, obtained there by a differ-
ent method using geometrical arguments.

In summary, we have extended the critical-state theory to
the general case when the sample is not sufficiently symmet-
ric, or when the external field is not along a symmetry axis or
its direction changes in some complex manner. In such situ-
ations the currents in the critical state need not be perpen-
dicular to the local magnetic fields, and alongitudinal com-
ponentof the currents with respect to these fields exists in
the superconductor. When the magnitude of the longitudinal
current densityj i does not exceed some critical valuejcisBd,
the critical state can be found using our Eqs.s5d–s8d. Such a
state, in general, essentially differs from the usual Bean criti-
cal state. In other words, the Bean state is only aspecial case
of the general critical state. When the componentj i reaches
jci in the samplesor in part of its volumed, Clem’s double
critical state develops there.7,10
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