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Critical state in type-Il superconductors of arbitrary shape
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The well-known Bean critical state equations in general are not sufficient to describe the critical state of
type-Il superconductors when the sample shape is not symmetric. We show how one can find the critical state
in superconductors of arbitrary shapes. Analyzing a simple example of nonsymmetry, we demonstrate that in
the general case, a perturbation of the current distribution in the critical state propagates into the sample
smoothly in a diffusive way. This is in contrast to the usual Bean critical state where the current distribution
changes abruptly at a narrow front.
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The concept of the critical state introduced by Charlesmagnetic field is applied along a symmetry axis, so that some
Bear! is widely used to describe various physical phenom-constraint on the directions of the currents is known in ad-
ena in the vortex phase of type-Il superconductors, see, e.giance. For example, the direction of the currents is obvious
Refs. 2 and 3, and citations therein. According to Bean, irfor a slab in an external magnetic field parallel to its surface.
the critical state of type-ll superconductors with flux-line For an infinitely long cylinder with an arbitrary cross section
pinning, the driving force of the currents flowing in this state in a magnetic field parallel to its axis, the currents flow per-
is balanced by the pinning force acting on the vortices. Theendicular to this axis, and the critical state problem is
critical state is characterized by the component of the currerdolved? Another completely solvable case is infinitely thin
density flowing perpendicularto the flux lines,j.,, since flat superconductorsfor which the currents can flow only in
only this component generates a driving force. It is assumethe plane. However, in the case, e.g., of a thin rectangular
in the critical-state theory that thjg, is known, i.e., itis a platelet offinite thickness in a perpendicular magnetic field,
given function of the magnetic inductid j., =j., (B), and the above critical-state equations are already incomplete for
the problem of this theory is to find the appropriate distribu-determining the magnetic fields and currents in the critical
tion of the magnetic fields and currents in the critical statestate>®
Below, to explain the physics with the least mathematical We emphasize that even faimple experimental situa-
complications, we shall imply the simplest fornj,,  tions Egs.(1) together with condition§2) can be insufficient
=const., which is frequently used in practice, but an extenfor solving the critical-state problem. As an example that we
sion to the general case is straightforward. For simplicity, weshall analyze below, consider an infinite slab of thickné:ss
also assume that the magnetic fieklsn the superconductor Let this slab fill the spacé|, |y| <, |z7<d/2, and be in a
considerably exceed the lower critical fiehtl;, and so we constant and uniform external magnetic fiettl(H,> J,
may putB=ugH. =j.,d) directed along the axis, i.e., perpendicularly to the
If in the critical state a current-density compongnpar-  slab plane. Let then a constant fidig,(J./2<h,<H,) be
allel to the local magnetic field is also generated, the magniapplied along thex axis, and after that the magnetic field
tude ofj, remains undefined, and one thus cannot, in generah, (h, <H,) is switched on in they direction. This critical
find the distributions of the magnetic field(r) and current  state problem is not fully defined. Indeed, the condition
densityj(r) in the critical state. Indeed, to solve the Maxwell divj =0 yieldsj,=0, i.e., the currents flow in they planes.
equations foH, Then, to describe the critical state, we may use the param-
) ) etrization
rotH =j, divH =0,

i =jc(@, 6,1 (cose(2),sine(2),0),
it is necessary to know the magnitude and direction of the 1=l 00 ¢ @

currentsj(r) in the samplé. However, one has only thvo H(@® =H,+h(z)
conditions a ’

Ji=ler, divi=0, 2 h(2) = (h«(2),hy(2),0),

for three quantities:j ,, j,, and the angle defining the direc- wherejc(¢, 6,¢) is the magnitude of the critical current den-
tion of j, in the plane normal td1(r). Thus, the existing sity when a flux-line element is given by the angleand 6,
critical-state theory based only on Eqd) and (2) is not  tang=h,/h,, tang=(hZ+h)*H,, while the current flows in
complete the direction defined by the anglg all these angles gener-
The above Maxwell equations with conditioi®) can  ally depend orz. A dependence gf, on the orientation of the
provide the description of the critical state when the shape oocalH, j(¢, 0, ) =], /[1-cod(¢-y)sir? 61128 appears if
the superconductor is sufficiently symmetric and the external. is not perpendicular to thisl. However, atH,> hy,, hy,
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J., the fieldH is practically normal to the-y planes where rot(en ) = — u-H 5
the currents flom#=0), and we may pui (¢, 8, ¥ =j., . _ (en,) Hort ®
With this parametrization, the equation Hiv0 is satisfied whereH=¢H/4t, and the equation

identically, while the Maxwell equation rdt=] reads

-
rotH = —, 6
. ot (6)
4z =jcising, (3)  one can express the change of the magnetic fields and cur-

rents viaone scalarfunctione(r). This function can be found
from the condition that in the critical state the absolute value
of j | is a given function o, j, =j.,(B), or in the differ-

dh, _. ential form
- Ehx =]c.COSQ, (4) ’
z : .
Y N (B) djc.(B) o H
and one has onljwo equations for thehreefunctionsh,(2), Jo 7 et gg Mo
hy(2), ¢(2). . . L
In real samples of nonsymmetric shape, adjacent flutn our case wher, =const, this condition reads

lines may be slightly rotated relative to each other in the Jj
critical state. It is this rotation that generates a component of I a_tL =0.

the current along the magnetic field. The rotation of flux
lines can lead to their mutual CUttlﬁg Flux-line CUtting Tak|ng into account the definition in and using the iden-
occurs when the component of the current density parallel tgties

the magnetic fieldj,, exceeds some longitudinal critical cur- _ _

rent densityj. In this situation a vortékor a vortex arra¥ Hr=H- (v -H)wp,

becomes unstable with respect to a helical distortion, and the
growth of this distortion leads to flux-line cutting. When both

jy andj., are equal to their critical valueg, andj.,, re-
spectively, Clem’s double critical st&t¥ occurs in the su- _
perconductor. In this case, one has three conditions for the jrv=(v-rowH,

three quantities, and Eq§l) are sufficient to describe the we arrive at an equation fa(r),

double critical state. However, in many real situatiofs,

doesnotreachjy, and flux cutting then doasot occur in the n, -[rotrotlen,) - (v - row)rot(en )] =0. (7)
critical state. It is such situations that we consider here. |
particular, in the above example the projection of the curren
density on the magnetic fielhich practically coincides

Hiy-j=H-j,,

ontinuity of the magnetic field on the surface of the super-
conductor,S, yields the boundary condition

with the z axis) is negligible, and flux cutting does not occur. -rofe(rgn, (r9]
We now show how the critical state problem can be ) ,
solved for superconductors of arbitrary shape. Let the critical . [R X rotrofe(r)n . (r")]]
_lLOHa"' 47TR3 dr ’ (8)

state be known at some moment of timed.e., one had
=H(r)»(r) inside the superconductor where the magnitude of . . . R
e magnet e, and the nt vecow are ot knoan IS 5 P 0 Sioek B2 RO e
functions of the coordinatasat some external magnetic field The ri %t—hand side of this boundarv condition e reszeé
H,(t). The current density(r) in the critical state follows © ng : : u y It ) xp

from the Maxwell equatiofi=rot(H(r)(r)), while the com- moH on the surface of the superconductbut reaching from

ponent of the current density perpendicular to the magnetigutside) with the use of the Biot-Savart law. If in the critipal
field is given by, =j-»(vj)=j.,n,(r). Here the last state of the superconductor there are also boundaries at

equality defines the unit vectar, . Let the external field Which the direction of the critical currents changes discon-
tinuously or which separate regions with=j., from re-
ions with j=0,* the functione(r) has to vanish at these
oundaries. Otherwise, the electric fiedd, would be dis-
continuous there.
After determining the functioe(r), one can find the new

infinitesimally (and slowly!) change bysH ,=H ,&t. We now
shall find the new critical state at the new external magneticg
field H, + 6H .

Under the change dfl ,, the critical currents locally shift
the vortices in the directidf of the Lorentz forcej X v]; » ) o .
this shift generates an electric field directed algmg<[j ~ Ccritical stateH(r)+6H(r) using the definitionsH(r)=H ét
X v]]=]j,, i.e., along the vecton . Thus, we can represent and Eq.(5). We empha_5|zed that the new critical state de-
the electric fieldE(r) in the formE=n e where the scalar PENds only on the previous statr) and on the change of

functione(r) is the modulus of the electric field. Note that in the external fieldsH,=H,dt. The dependence ofH, fol-
contrast to the Bean assumptibithe electric field generally lows from the proportionality ok, H, dj , /ét to H,, which

is not parallel to the total current densijyr). Using the results from the linearity of Eq$5)—(8). Note that in agree-
Maxwell equation ment with the meaning of the critical state, the new state will
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be the same for different sweep rates of the external mag

netic field, H,, since it depends only on thgroduct H 4t
=6H,. On the other hand, the electric fieddplays an auxil-
iary role in the above description since it is proportional to

H, rather than tasH,. The presented description also shows
that the critical state generally depends on the history of it
creation. In other words, it depends not only on the finalo
value of the external magnetic field, but also on the se-
guence of stepsH , that lead to this value. s
The above approach, which is in essence the generaliz™
tion of the appropriate analyses used for a faly,can be
summed up as follows: we add to the static equatidnshe
quasistatic Maxwell equatiofb). It is knowrt that for this
set of the equations to be solvable, it has to be supplemente
by some lawE(j). We introduce this law from well-known
physical ideas: at any givgnandB (determined by the pre-
vious critical statg thedirection of E follows from the for-
mulaE=[B X v] wherev is the vortex velocity caused by the

1.8¢

1.6F

14k

1.2F
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hay =0.01,0.04,0.1,02,
0.35,05,07,1,14,2,4

Lorentz force[j X B]. As to themagnitudeof E, it is found
from the condition thalj ,|=j.,. In fact, this condition may
be interpreted as a current-voltage law wjiij=e=0 atj |
<j.,. ande—w atj, >j.,, which is usually implied in the
description of the ideal critical staté.

Recently!®17 a variational principle was put forward to <
describe the critical state in superconductors. In deriving thi:

principle Badia and L6pez used Eq4d) and (5) and a
current-voltage law withE|=0 at j<j. and |[E| - at |
> j.. However, the physical idea on tld@ection of the elec-

tric field was not incorporated in their theory. For some situ-

ations this leads to contradiction with existing concégtin

particular, in their so-called isotropic model with

H-independent, the electric fieldE is parallel toj, and

hence a nonzerg alongH appears even for an infinitesimal
longitudinal component df, i.e., flux cutting occurs without

any threshold .

>
<

z

FIG. 1. Profiles of the angle of currents(z), magnitude of
electric field e(z) (top), and magnetic field components,(z)
(dashed lines hy(2) (solid lineg (bottom in the critical states of

To illustrate the obtained results, we now consider thgne sjap described by Eqe), (4), and (9)—(15); h,,=1.1 andh,,

example mentioned above. In the case of the slab(Bdor
the electric fielde takes the form

e”—(QD,)Zezo, (9)
where ¢’ = do/ 9z and € = #°e/ 9z°. For the anglep we ob-
tain from Eqgs.(5) and (6)

H aQD ! ! /"
,uolclz=2€ o' +ep. (10

These equations complement E¢3). and (4), and now we
havefour equations for four functiond’he boundary condi-
tions to Egs(3), (4), (9), and(10) atz=d/2 are

he=hae hy=hay(), (11)

dhy(t
(ecosg)’ = —Mo—ay(—)

at (esing)’ =0, (12

or equivalently, condition$12), which follow from formula
(8), can be rewritten in the form

=0.01, 0.04, 0.1, 0.2, 0.35, 0.5, 0.7, 1, 1.4, 2, 4. We stafat
=0 with hy(2) =h,—1+2, hy(2)=0, and¢(2) = 7/ 2. Herezis in units
d/2,hyandhy in unitsj, d/2=J./2, ande in units ug(dh,,/dt)d/2.

dh,(t dh,(t
e=- ,uo—a?cow, ep' = Mo—g#sin e. (13

Taking into account the symmetry of the probléit is
sufficient to solve Egs(3), (4), (9), and(10) in the region
0=<z=<d/2. At z=0, where the direction of the currents
changes discontinuously, one has the additional condition for
€

e(0)=0. (14

Since after switching oh,,, the critical currents flow in the
y direction, we have the following initial state for EGLO):

o(zt=0)=7/2, (15)
where the moment=0 corresponds to the beginning of
switching onh,.

In agreement with the general considerations given above,
it follows from Eq.(10) andexdh,,/dt that the anglep is a
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function of z and h,, rather than ofz andt. In fact, this field applied in the plane of the sample perpendicularly to the
equation describeg(2) in the sequence of the critical states large magnetic field,.'° It is clear from the data of Fig. 1
developed in the process of increasing. The solution of  that this response will differ from the response to a linearly
equationg3), (4), (9), and(10), with conditions(11)<(15) is  polarized ac field, for which the analysis based on the usual
shown in Fig. 1. Interestingly, whelm,, increases, thether ~ Bean model is applicable. These equations also enable one to
componenbf the magnetic fieldh,, penetrates further into consider the vortex-shaking effeétif the field H, is not
the slablat h,y~J;= ., d, hy(2) almost coincides withn,,],  uniform in the plane of the slab, and thus a sheet curdent
and the anglep tends to. In other words, with increasing flows in it, a small ac field applied along the current leads to
hay the initial critical state for the componetht, relaxes, @ continuous drift of vortices in the directidd X H,]. It
while the critical state forh, is developed. Note that we turns out that Eq43), (4), (9), and(10) have a solution that
should arrive at a different critical state witb=x/2  reproduces this result of Ref. 20, obtained there by a differ-
+arctarth,y/h,,) if the x andy components of the external ent method using geometrical arguments.
field were increased simultaneousf¥,y(t)/ha,(t)=consi In summary, we have extended the critical-state theory to
from zero to the same valudsg,, h,~ J.. Thus, the depen- the general case when the sample is not sufficiently symmet-
dence of the critical state on its prehistory is clearly seerfiC, OF when the external field is not along a symmetry axis or
even in this simple example. its direction changes in some complex manner. In such situ-
Figure 1 also reveals the following two interesting fea-2lONS the currents in the critical state need not be perpen-
tures of the critical statga) The visible penetrating front of glc?r?é%rt(t)? ttﬁg L%ﬁ?égg%fﬁ'?g's%g; ?g?ﬁﬂe‘gglﬂ%asl g?(ir:t_s N
gy/rzea}[%geﬁ eﬁzeoﬁgﬁe{)gett? ztif)lgt;n\/m??éZasr:”::ziii _trr;]aen the superconductor. When the magnitude of the longitudinal
/2, L o X
change of the angle(z, h,y) hasdiffusive characterThis is current density, does not exceed some critical vallgB),

. " ; . the critical state can be found using our EG8—(8). Such a
in stark contrast to the usual Bean critical state, in which an¥ate. in general, essentially differs from the usual Bean criti-

change of the current direction occurs inside a narrow fronte5| state. In other words. the Bean state is onbpecial case

Interestingly, Eqs(3), (4), (9), and (10) are applicable f the general critical state. When the componigreaches
also to a number of other physical problems if the boundar o in the sample(or in part of its volumg Clem’s double
and initial conditions are changed appropriately. In particU<yitical state develops thefe®

lar, these equations also describe the usual Bean critical state

in the slab, corresponding todiscontinuoussolution ¢(z). This work was supported by the German Israeli Research
Using these equations, one can also investigate the lowsrant Agreement(GIF) No. G-705-50.14/01 and by the
frequency response of the slab tcciacularly polarized ac  INTAS Project No. 01-2282.
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