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The theory of paramagnetic limit of superconductivity in metals without an inversion center is developed.
There is, in general, the paramagnetic suppression of a superconducting state. The effect is strongly dependent
on field orientation with respect to crystal axes. The reason for this is that the degeneracy of electronic states
with opposite momentak and −k forming of Cooper pairs is lifted by magnetic fields, but for some field
directions this lifting can be small or even absent.

DOI: 10.1103/PhysRevB.71.012509 PACS numberssd: 74.20.2z, 71.18.1y, 73.20.At

Quite recently unconventional superconductors without
inversion symmetry CePt3Si sRef. 1d and UIr sRef. 2d have
been discovered. The former reveals superconductivity in an
antiferromagnetic state,3 while the second is a ferromagnetic
superconductor. The microscopic theory of superconductivity
in metals without inversion had been developed by
Edel’stein4 some long ago. The different aspects of the
theory of superconductivity in such type materials had been
discussed at about the same time5–7 and have been advanced
further in more recent publications.8–15 Finally, the general
symmetry approach to the superconductivity in the materials
with space parity violation has been developed.16,17

Particular attention has been attracted to the question
about paramagnetic limit in such type materials. This prob-
lem has been treated in two-dimensionals2Dd metal with
Rashba’s Hamiltonian11,13 and quite recently in three-
dimensionals3Dd metal18 by means of calculation of suscep-
tibility in a superconducting state. In other words, it was
done in the limit of a negligibly small magnetic field at finite
value of the order parameter. Being useful for establishing
the Knight shift, the susceptibility is not directly related to
the paramagnetic limit determination. The latter has to be
properly calculated in the limit of the negligibly small order
parameter at finite magnetic field. That was undertaken in the
paper by Frigeriet al.15

It occured that zero-temperature upper critical field in
polycrystalline CePt3Si is about 5 T;1 meanwhile the simple
estimation of paramagnetic limiting fieldHp=pTc/gÎ2mB
through the value of critical temperatureTc=0.75 K gives
Hp<1 T. This observation is incompatible with spin-singlet
pairing and rather signals the spin-triplet superconductivity.
The situation is even worse in UIr, where superconductivity
coexists with ferromagnetism. The big internal field in ferro-
magnetic metal moves apart the Fermi surfaces of the bands
filled by electrons with opposite spins, making the singlet
pairing impossible. On the other hand, it is known4 that the
simple division on spin-singlet and spin-triplet pairing states
does not work in the crystals without inversion.

Hence, the problem of the paramagnetic limit in super-
conductors without inversion deserves a special investigation
and it was undertaken in the paper by Frigeriet al.15 From
our point of view, this paper contains the inconsistency: After
the proper description of spinor electronic states in normal
metal without inversion, the authors introduce the supercon-

ducting pairing interaction in, as usual, BCS theory for the
crystals with inversion. So, they impose the pairing interac-
tion between the states which do not exist in normal state.
This point of view may be acquitted in the crystal with neg-
ligibly small spin-orbital coupling having no influence on the
pairing interaction, as it has been considered in the original
paper.4 However, in general, the assumption, that pairing
takes place between the states which are not modified by the
absence of the inversion center, is equivalent to the assump-
tion that typical for the metal without inversion an odd on
electronic momentum spin-orbital coupling is smaller than
superconducting critical temperatureTc. This point of incon-
sistency is absent in the papers,16,17 where the general sym-
metry approach to the problem of superconductivity in the
crystal without inversion has been developed. There was
shown in particular16 that the band splitting due to the lack of
inversion in CePt3Si cannot at all be considered as small.
Hence, from our point of view the problem of paramagnetic
limit raised in sRef. 15d must be reconsidered, and we do it
in the present paper.

It is shown that the paramagnetic suppression of a super-
conducting state in a crystal without an inversion centrum
certainly exists, and the effect is strongly dependent on field
orientation with respect to crystal axes. Whereas in general
the paramagnetic limiting field is roughly the same as in a
singlet superconductor, for some field directionsHp is very
large or even infinite. These are those directions where the
magnetic-field lifting of the degeneracy of electronic states
with opposite momentak and −k forming the Cooper pairs is
absent.

Let us start from the description of normal state in the
crystal without an inversion centrum. For each band its
single-electron Hamiltonian has the form

H = «k
0 + aks, s1d

wherek is the wave vector,«k
0=«−k

0 is the even function ofk,
ak =−a−k is the odd pseudovectorial function ofk, and s
=ssx,sy,szd is the vector consisting of Pauli matrices. The
eigenvalues and eigenfunctions of this Hamiltonian are

«kl = «k
0 − luaku, s2d
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Clskd ~ S− akx + iaky

akz + luaku
D . s3d

So, we have obtained the band splitting andl=± is the band
index. As a result, there are two Fermi surfaces determined
by the equation

«kl = «F, s4d

which may of course have the degeneracy points or lines for
some directions ofk. The symmetry of directions of the dis-
persion laws«kl has to correspond to the crystal symmetry.
Particular attention, however, deserves to be given to the
operation of reflectionk to −k which creates the time-
reversed states.

By application of the operator of time inversionK̂
=−isyK0, whereK0 is the complex-conjugation operator, one
can see that the stateClskd and the state inversed in time

K̂Clskd~Cls−kd are degenerate. In other words, they cor-
respond to the same energy«kl=«−kl. So, the Fermi surfaces
in a crystal without an inversion center still have mirror sym-
metry. This is the consequence of time inversion symmetry.

Let us look now at the modifications which appear by the
application of an external magnetic field. It is known19 that
the field introduction in the Hamiltonian is made by the
Peierls’ substitutionk →k + s e

2"c
dfH ]

]k
g. Being interested in

paramagnetic influence on superconductivity and considering
only the field valuesmBH!«F, one can neglect the term with
magnetic field in the Peierls’ substitution and take into ac-
count only direct paramagnetic influence of magnetic field

H = «k
0 + aks − mk iHis, s5d

wheremk i =m−k i is the even tensorial function ofk. In the
isotropic approximationmi j =mBgdi j /2, whereg is gyromag-
netic ratio. The eigenvalues of this Hamiltonian are

«kl = «k
0 − luak − mk iHiu. s6d

It is obvious from here that the time-reversal symmetry is
lost «−klÞ«kl and the shape of the Fermi surfaces does not
obey the mirror symmetry.

If we have the normal one-electron state’s classification in
a crystal without inversion symmetry it is quite natural to
describe the superconductivity directly on the basis of these
states. So, the BCS Hamiltonian in the space homogeneous
case, which we discuss, looks as follows:

HBCS= o
k,l

jklakl
† akl +

1

2 o
k,k8,l,n

Vlnsk,k8da−k,l
† ak,l

† ak8,n a−k8,n,

s7d

wherel ,n=± are the band indices for the bands introduced
above and

jkl = «kl − m s8d

are the band energies counted from the chemical potential.
Due to the big difference between the Fermi momenta we

neglect by the pairing of electronic states from different
bands. The structure of theory is now very similar to the
theory of ferromagnetic superconductors with triplet
pairing.20 For Gor’kov equations in each band we have

sivn − jkldGlsk,vnd + DklFl
†sk,vnd = 1, s9d

sivn + j−kldFl
†sk,vnd + Dkl

† Glsk,vnd = 0, s10d

wherevn=pTs2n+1d are Matsubara frequencies. The equa-
tions for each band are only coupled through the order pa-
rameters given by the self-consistency equations,

Dkl = − To
n

o
k8

o
n

Vlnsk,k8dFnsk8,vnd. s11d

The superconductor Green’s functions are

Glsk,vnd =
ivn + j−kl

sivn − jkldsivn + j−kld − DklDkl
† , s12d

Flsk,vnd =
− Dkl

sivn − jkldsivn + j−kld − DklDkl
† . s13d

The energies of elementary excitations are given by

Ekl =
jkl − j−kl

2
±ÎS jkl + j−kl

2
D2

+ DklDkl
† . s14d

For simplicity, let us assume that we have pairing only in
one band:l=+. The treatment of the general case is similar
but more lengthy. There was shown in Ref. 17 that in the
case of crystals without inversion:sid Dk = tskdoihiwiskd,
wheretskd=−ts−kd is an odd phase factor;sii d a potential of
the pairing interaction is represented as an expansion over

tskdwisk̂d, where wisk̂d are the even basis functions of an
irreducible representation of the crystal point symmetry
group. For tetragonal crystal CePt3Si this group isC4v, and
for monoclinic crystal UIr it isC2. If we limited ourselves by
considering only one-dimensional representations when we

have V++sk ,k8d=Vtskdt*sk8dwsk̂dw*sk̂8d, then the equation
for critical temperature that is the linear version ofs11d has
in this case the form

1 = −VTo
n

o
k

w*sk̂dwskd
sivn − jkds− ivn − j−kd

. s15d

It is clear from here and from Eqs.s6d and s8d that the
coherence between the normal-metal states and states with
Green’s functionsG0sk ,vnd and G0s−k ,−vnd is broken by
magnetic field. The oppositely directed momentak and −k
on the Fermi surface have a different length. Hence, the mag-
netic field will suppress superconductivity, which means that
the critical temperature will be a decreasing function of mag-
netic field. It is also clear that it will be an anisotropic
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function of the field orientation with respect to crystallo-
graphic directions.

For tetragonal crystal CePt3Si one can take as the simplest
form of gyromagnetic tensor mi j =mBfg'sx̂ix̂j + ŷiŷjd

+giẑiẑjg /2 and the pseudovector functionak =asẑ3kd
+bẑkxkykzskx

2−ky
2d. The latter is chosen following the discus-

sion in the paper by Samokhin.18 Then for the normal metal-
energy of excitations we have

jk = «k
0 −ÎSaky +

g'

2
mBHxD2

+ Sakx −
g'

2
mBHyD2

+ Sbkxkykzskx
2 − ky

2d −
gi

2
mBHzD2

. s16d

As a result of simple calculations nearTc we obtain

TcsHd = TcH1 −
7zs3dmB

2

32p2Tc
2 (ag'

2 sHx
2 + Hy

2d + bgi
2Hz

2) + …J ,

s17d

that looks like similar to usual superconductivity with singlet
pairing. Herea and b are coefficients of the order of unity.

Their exact values depend on the particular form ofwsk̂d
functions in pairing interaction as well on the particular form
of ak.

On the other hand, let as assume that due to some particu-
lar reason coefficientb is small. Then for the field direction
H =Hẑ for mBgiH@bkF

5 we have for the excitation energy

jk = j0
k −Îsakyd2 + sakxd2 + Sgi

2
mBHzD2

, s18d

that is now the even function of the wave vectorjk =j−k, and
the equation for the critical temperature is

1 = −VTo
n
E dj Nj=0sk̂d

dSk̂

SF

w*sk̂dwskd
sivn − jds− ivn − jd

.

s19d

Here we can first integrate over the energy variablej
and then over the Fermi suface. After the first integration
the magnetic-field dependence disappears from the
equation and we obtain the standard BCS formulaTc
=s2g /pde exps−1/gd for critical temperature determination.

So, the suppression of critical temperature by magnetic field
is saturated at finite value, which differs from its value at
H=0 due to field variation of the density of states and pairing
interaction atj=0.

These results can be, in principle, valid for any direction
of magnetic field if paramagnetic interaction exceeds a spin-
orbital splittingumiHiu. uau. Of course, the superconductivity
in the region of the large fields still exists ifg is positive on
the Fermi surfacej=0. Thus, at large fields the situation is
similar to what we have in the superconductors with triplet
pairing.

We have demonstrated that the paramagnetic suppression
of a superconducting state in a crystal without an inversion
centrum certainly exists, and the effect depends on field ori-
entation with respect to crystal axes. The paramagnetic sup-
pression of superconductivity takes place due to magnetic-
field lifting of the degeneracy of electronic states with
opposite momentak and −k forming the Cooper pairs. For
some directions of fields the degeneracy is recreated. That is
why the paramagnetic limit of superconductivity in the crys-
tals without inversion can be, in principle, absent.

The similar conclusions have been obtained in the paper
by Frigeriet al.15 on the assumption of negligibly small band
splitting. So, our main result is the development of proper
theoretical treatment of the paramagnetic limitations of su-
perconductivity in noncentrosymmetric metals with large
band splitting.

I am indebted to K. Samokhin who pointed out to me an
incorrect choice of pseudovectorak in the first version of the
article.
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