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We study the Josephson effect in a clean superconductor-ferromagnet-superconductor junction for arbitrarily
large spin polarizations. The Andreev reflection at a clean ferromagnet-superconductor interface is incomplete,
and Andreev channels with a large incidence angle are progressively suppressed with increasing exchange
energy. As a result, the critical current exhibits oscillations as a function of the exchange energy and of the
length of the ferromagnet and has a temperature dependence which deviates from the one predicted by the
quasiclassical theory.
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Current understanding of the superconductor-
ferromagnet-superconductorsSFSd Josephson effect is lim-
ited to small spin polarizations. In the case of conventional
superconductors, the Josephson current is due to the
Andreev1 conversion of singlet Cooper pairs into correlated
electrons and holes with opposite spins propagating coher-
ently in the ferromagnetic metal. Applying the Eilenberger
equations2 to a clean multichannelSFS junction, Buzdinet
al.3 have predicted that this nondissipative current oscillates
as a function of both the exchange energy splittingEex and
the lengthd of the ferromagnet, because of the mismatch
2Eex/"vF between the spin-up and spin-down Fermi wave
vectors. This quasiclassical result assumes that the Andreev
reflection is complete, as it is fully justified for weakly spin-
polarized ferromagnetic alloysEex!EF, EF being the Fermi
energy. First experimental evidence for such oscillating criti-
cal current has recently been reported in Nb-Cu-Ni-
Cu-Nb junctions.4 The so-calledp-phase state of aSFS
junction5 has also been observed using diffusive weak ferro-
magnetic alloys such as Cu1−xNix sRef. 6d or Pd1−xNix.

7–9

In the new field of spintronics, devices with high spin
polarization are used in order to manipulate spin polarized
currents. In the recently discovered half metalssHMsd, such
as CrO2 and La0.7Sr0.3MnO3, the current is completely spin
polarized because one spin subband is insulating. Ferromag-
netic elements Fe, Co, Ni, also exhibit quite large spin po-
larizations. Anticipating the interest for large spin polariza-
tions, de Jong and Beenakker10 have shown that in this case
the Andreev reflection is not complete at a clean
ferromagnet-superconductorsFSd interface, in contrast to the
case of a clean nonmagnetic normal metal-superconductor
sNSd interface. Even in the absence of impurity scattering,
normal reflection may occur because of the diagonal ex-
change potential barrier between the ferromagnet and the su-
perconductor. This suppression of the Andreev reflection af-
fects preferentially the channels with large transverse
momentum. As a result, the subgap conductance of a ballistic
FS contact decreases quasilinearly as a function of the spin
polarizationh=Eex/EF from twice the normal state conduc-
tancesh=0d to zerosh=1d, because of the progressive sup-
pression of the Andreev process. Using this principle, a
point-contact Andreev reflection technique has been devel-

oped in order to mesure directly the spin polarization of
materials,11,12such as La0.7Sr0.3MnO3, CrO2, NiFe, NiMnSb,
which were not easily accessible by spin resolved tunneling
spectroscopy.13 A huge amount of theoretical efforts has been
devoted to transport properties in a nanoscaleFScontact14–18

while few studies have considered the thermodynamical
properties ofFS heterostructures.19–21

In this paper, we address the physics of the Josephson
effect in a clean multichannelSFSjunction in the range of
arbitrarily large spin polarization. We show how the Joseph-
son current is modified by the ordinary reflection induced by
the ferromagnet in the crossover from aSNS sh=0d to a
S/HM/ S junction sh.1d. With increasing exchange energy,
the Andreev reflection is suppressed for electrons propagat-
ing with a large incidence, so that the number of channels
contributing to the total current decreases. This reduction of
the number of “Andreev active channels” has furthermore a
subtle effect on the Josephson current: although theFS con-
ductance is always reduced whenh increases,10 the critical
current has a nonmonotonic behavior, depending on the
current-phase relationship of the suppressed channels. For
large spin polarizations, the oscillations of the critical current
depend separately on the productkFd and on the spin polar-
ization h. They are reduced and shifted with respect to the
predictions of the quasiclassical theory3 in which only a
single parameter, 2Eexd/ s"vFd=hkFd, is relevant. For small
spin polarizations, we naturally recover the quasiclassical re-
sults. In the HM limitEex→EF, the critical current vanishes
because the Andreev reflection is totally suppressed for all
the transverse channels. In addition, we study the tempera-
ture dependence of the critical current for different values of
the spin polarization and of the lengthd of the ferromagnet.
Our results are in agreement with those of Radovicet al.20

although they are not derived in the same way. They com-
pute the Josephson current in a ballisticSIFISdouble-barrier
junction with Fermi velocities mismatch, arbitrary large spin
polarization, and arbitrary transparencies of the barriers. We
have developed a much simpler formalism for the Josephson
current in the more restrictive case of fully transparent inter-
faces with no Fermi velocities mismatch. Our results can be
interpreted as a generalization of the quasiclassical result
where high-incidence trajectories have been removed.
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We consider a clean shortSFSjunction with a large num-
ber M of transverse channels and with a lengthd of the
ferromagnetic region much smaller than the coherence length
of the superconductorj0="vF /D0, whereD0 is theT=0 su-
perconducting gap. The itinerant ferromagnetism is de-
scribed within the Stoner model by an effective one body
potentialVssxd=−sEex which depends on the spin direction,
characterized bys= ±1. In the superconducting leads,
Vssxd=0. The superconducting pair potential isDsxd
= uDueix/2 in the left lead andDsxd= uDue−ix/2 in the right lead.
In the absence of spin-flip scattering, the Bogoliubov–de
Gennes equations split in two sets of independent equations
for the spin channelssu↑ ,v↓d and su↓ ,v↑d

SH0 + Vssxd Dsxd
Dsxd* − H0

* + Vssxd
DS us

v−s
D = esxdS us

v−s
D , s1d

where esxd is the quasiparticle energy mesured from the
Fermi energy.22 The kinetic part of the HamiltonianH0
=f−i"d/dx−qAsxdg2−EF /2m, with the effective mass of
electron and holem, is expressed in terms of the vector po-
tential Asxd, which is responsible for the phase differencex
between the leads, andEF="2kF

2 /2m is the Fermi energy.
The Fermi velocities are identical in both superconductors
and in the paramagnetic metal.

Because both the pair and the disorder potential are iden-
tically zero in the ferromagnet, the eigenvectors of Eq.s1d
are electrons and holes with plane wave spatial dependen-
cies. For a given transverse channel, the electron and hole
longitudinal wave vectorskns andhn−s, respectively, satisfy

"2kns
2

2m
+ En = EF + e + sEex,

"2hn−s
2

2m
+ En = EF − e − sEex, s2d

whereEn is the transverse energy of the channel. One may
label the transverse channels by an angleun which is the
incidence angle of the corresponding quasiparticle trajectory

En =
"2kF

2

2m
sin2 un = EF sin2 un. s3d

From Eq.s2d, one sees that an electron with incidenceun
cannot form an Andreev bound state with a hole ifEn
=EF sin2 un.EF−Eex. Therefore the electron is normally re-
flected as an electron with the same spin for angleun.uh

=arccosÎh. Such a process is insensitive to the supercon-
ducting phase and thus carries no Josephson current. In the
opposite caseun!uh, the Andreev reflection is complete and
supports a finite current. In the following, the former kind of
channel is referred to as “Andreev inactive” and the latter as
“Andreev active.”

Recently, we have performed detailed studies of the spec-
trum of a single channelSFS junction for arbitrarily large
exchange energies.23 Solving the Bogoliubov–de Gennes
equations, the spectrum is found to be strongly modified in
comparison to the quasiclassical spectrum24 because gaps
open atx=0 andx=p. However, due to a cancellation be-

tween the corrections associated to each anticrossing, the
current is almost unaffected up to very large spin polariza-
tions h<0.95. The region in which Andreev reflection and
ordinary reflection coexist is extremely small. As a result, the
Josephson current through a single channelSFSjunction is
given to great accuracy by the formula for perfect Andreev
reflection3

isx,kFd,h,un = 0d =
pD

f0
o

s=±1
sin

x + sa

2

3 tanhF D

2T
cosSx + sa

2
DG , s4d

for h,1 and it is zero forh.1. The parametera=sÎ1+h
−Î1−hdkFd is the phase shift accumulated between an elec-
tron and a hole located at the Fermi level during their propa-
gation on a lengthd.

In the present paper, we generalize this result to transverse
channels with finite angleun, in the more realistic case of a
finite width SFS junction. The crossover between Andreev
active and inactive channels occurs in a narrow window of
incidences in the vicinity ofuh=arccosÎh. Below this cut-
off, the current carried by a single Andreev active channel is

isx,kFd,h,und =
pD

f0
o

s=±1
sin

x + san

2

3 tanhF D

2T
cosSx + san

2
DG , s5d

and it is zero foruh.arccosÎh. In order to treat large ex-
change splitting, one has to take into account the exact band
structureshere a simple isotropic parabolic bandd and to ex-
press the phase shift between an electron and its Andreev
reflected hole by

an = kFd cosunSÎ1 +
h

cos2 un
−Î1 −

h

cos2 un
D , s6d

instead of using the linearized form

an =
hkFd

cosun
=

2Eexd

"vF cosun
. s7d

The transverse channels considered above are indepen-
dent becauseVssxd is translationaly invariant in the trans-
verse directions. Thus, the total current is the sum of the
currents carried by each of them. As we assume a large num-
ber of channels, the discrete sum overn can be replaced by
an integral over the angleu. Calculating the total current, one
has to restrict the integration over Andreev active levels only,
so that the angular integral has to be limited by the upper
cutoff uh=arccosÎh

Isx,kFd,hd =
kF

2S

2p
E

0

uh

du sinu cosu isx,kFd,h,ud, s8d

whereS is the cross section area of the ferromagnet.
This expression, together with Eqs.s5d and s6d, is the

central result of this Brief Report. It gives the Josephson
currentIsx ,kFd,hd of a cleanSFSjunction in the regime of
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arbitrarily large spin polarization. Examples of current-phase
relationships are shown in Fig. 1. In the limit of small polar-
izationh=Eex/EF→0, we recover the quasiclassical current-
phase relationship3 in which all the transverse channels con-
tribute becauseuh→p /2.

Increasing the spin polarization, we study how the critical
current evolves from the case of a weakly spin polarized
junction to theS/HM/ S junction. As shown in Fig. 2, the
critical current has a nontrivial oscillatory behavior as a
function of exchange splitting for a given length, namely, for
fixed kFd. The number of oscillations occuring during the
crossover from theSNS sh=0d to the S/HM/ S junction
sh=1d decreases whenkFd is lowered. In the limit of an
ultrasmall junctionkFd<1, there are no oscillations because
the phase shift in Eq.s6d tends to zero, and all transverse
channels carry the sameSNScurrent with maximal valuei0
=2pD /f0, where f0=h/e is the flux quantum. Conse-
quently, the reduction of the total current is only governed by
the upper cutoff in Eq.s8d:

Ic = Mi0s1 − hd =
pD

eRN
s1 − hd. s9d

This linear reduction of the current with increasing the ex-
change field is quite reminiscent of the almost linear reduc-

FIG. 1. Current-phase relationships at zero temperature fora
=p /4 obtained for several pairssh ,kFdd. In the quasiclassical ap-
proximation, the current is a function of the single parametera and
does not decrease with increasingh. The current is given in units of
I0=pD0/ seRNd.

FIG. 2. Zero-temperature critical currentIcshd as a function of
h=Eex/EF for different lengths of the ferromagnet,kFd=1,5,10.
The current is given in units ofI0=pD0/ seRNd.

FIG. 3. Zero-temperature critical currentIcshd as a function of
kFd sthick linesd, for different values of the spin polarizationh. As
h increases, the exact current deviates from the quasiclassical esti-
matesdashed linesd. The current is given in units ofI0=pD / seRNd.

FIG. 4. sad Critical current as a function of the spin polarization
h at T=0.9Tc. It vanishes for particular values of the spin polariza-
tion, when the junction undergoes a 0-p transition. I0sTd
=pDsTd2/ s4eRNTcd is the critical current for aSNSjunction. sbd
Critical current fin units of I0=pD0/ seRNdg as a function of the
reduced temperatureT/Tc for values of h corresponding to the
maxima ofsad. scd Critical current as a function ofT/Tc for differ-
ent values ofh corresponding to the 0-p transitions. All curves
correspond to a short junction withkFd=10.
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tion obtained in Ref. 10 for the conductance of aFS
nanocontact.25 The total number of transport channelsM
=kF

2S/4p is large and determines the small normal state re-
sistanceRN=h/ s2e2Md of the heterojunction. The natural
unit for the critical current isI0=pD /eRN, namely, the one of
a short cleanSNSjunction.

Figure 3 represents the critical current as a function of the
length d of the ferromagnetic region, for different spin po-
larizations. We find that the oscillations are reduced and
shifted with respect to the quasiclassical calculation. There
are two reasons for these deviations. First, trajectories with
large incidence are progressively suppressed. Second, the
phase shift between electrons and holes for a given channel
fEq. s6dg depends on the particular band structure and differs
from the linearized versionan=hkFd/cosun. For larged, the
oscillations decay slowly at zero temperature. In real situa-
tions, they are expected to be severely reduced whend ex-
ceeds the thermal lengthLT="vF /T or the phase coherence
lengthLfsTd.

We finally consider the effect of a finite temperature
on the critical current. We have adopted the BCS
temperature dependence of the order parameterDsTd
=D0 tanhs1.74ÎTc/T−1d, and the exchange energy is as-
sumed to be temperature independent. ForT<Tc, Fig. 4sad
shows that the critical current oscillates with the spin polar-
ization h and cancels out for some values ofh. In this tem-
perature range, the current-phase relationship is sinusoidal
Isxd= Ic sinx and the current vanishes identically whenIc is
zero. These cancellations are associated to transitions be-

tween the zero-phase state and thep state of the junction.
For fixed parameterskFd andh, the critical current decreases
monotonously with increasing temperatureT, as shown in
Figs. 4sbd and 4scd. This temperature dependence is very
sensitive to the spin polarization. For polarizations corre-
sponding to 0-p transitions,IcsTd decreases exponentially
with temperaturefFig. 4scdg, whereas a much more slower
decrease is obtained for the local maxima of the critical cur-
rent fFig. 4sbdg.

We have studied the Josephson current of a cleanSFS
junction for arbitrary large spin polarizations. The two physi-
cal effects involved are the reduction of the number of active
levels participating in the Andreev process and the use of the
nonlinearized band structure. In any experiment with strong
ferromagnetic elements or nearly half metallic compounds,
the critical current oscillations should be affected by these
effects. First, the oscillations depend separately on the spin
polarizationh and on the productkFd instead of the single
combinationhkFd as suggested by the quasiclassical theory.
Secondly, when the temperature is increased from zero to the
critical temperature, the local minima of the current are more
strongly suppressed than the local maxima. The present re-
sults were obtained with a quadratic dispersion relation. In
order to compare quantitatively our predictions with experi-
ments, one should use the actual band structure of the mate-
rial.
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