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High-field superconductivity in alloyed MgB, thin films
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We investigated the effect of alloying on the upper critical fiellg for 12 MgB, films, in which disorder
was introduced by growth, carbon doping or He-ion irradiation, finding a signifiegntenhancement in
C-alloyed films, and an anomalous upward curvaturélg{T). Record high values dfi,* (4.2 ~35 T and
ch”(4.2)z51 T were observed perpendicular and parallel to dbeplane, respectively. The temperature
dependence dfl(T) is described well by a theory of dirty two-gap superconductivity. Extrapolation of the
experimental data td=0 suggests thatticz”(o) may approach the paramagnetic limit-of70 T.
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Discovery of superconductivity in MgBwith the critical ~ were produced by HPCVB with the addition of 75 sccm of
temperaturél,=39 K renewed interest in the effects in two- (CzH;),Mg to the H, carrier gas? Some films were dam-
gap superconductordb initio calculationd? showed that aged with 186 cm™, 2 MeV a-particles to controllably alter
MgB, has two weakly coupled gap$,(0)~7.2 meV and the scattering by irradiation point defeéfsThickness and
A,(0)=2.3 meV residing on disconnected sheets of theselemental compositions were determined by wavelength dis-
Fermi surface formed by in-plang, boron orbitalgo band  persive spectroscop§?DS) and Rutherford backscattering
and out-of-planep, boron orbitals(7 band. The two-gap SpectroscopyRBS), and film orientation and lattice param-
Eliashberg theoR? has explained many anomalies in tunnel- eters with a _four-(_:ircle X-ray dif_fractometer. Fi_Im parameters
ing, heat capacity, and electrodynamics of clean Mgigle ~ are summarized in Table I. Thicknedf our films ranged
crystals? However, the physics of two-gap MgRilloys de-  from 105 to 245 nm, except film | witd=540 nm. In some
termined by the multiple impurity scattering channels, andS@mples RBS detected through-thickness composition varia-
by the complex substitutional chemistry of MgERef. 5 is  tons, likely due to surface reactions.

: . . . Measurements oH(T) on samplesA,B,E,F,H,I,L
still poorly understood. The behavior of disordered Md8 ; c2 - .
particularly interesting because it exhibits enormous enY/er€ performed ina 33 T resistive magnet at the NHMFL in

hancement ofH, by nonmagnetic impuritie&:® well above Tallahassee. _Film re_sistan%H) were measured in p:_arallel_
estimate He,(0)=0.69T,H.,(T,) of one-gap theor§, and and perpendicular fields at a sweep rate of 1 T/min while

anomalous temperature-dependsigi anisotropy? Some of temperature was stabilized t610 mK. The measuring cur-

these features have been explained by two-gap Usad%?.m density] was varied between 10 and 100 A/gnDe-

equation&®tin which impurity scattering is accounted for fallef s\t]udi;géllgn/A:?ho;ved r:o Zgnl\l/lilcané cNhange R(H)
by the intraband electron diffusivitié3,, andD,, and inter- or 4<J< cnt. sampiest, M an were mea-

band scattering rate§,_andT . In this paper we address sured in the 300 ms 60 T pulsed facility at the LNC.MP in
the fundamental question on how far chlg, of MgB, be Toulouse, at a lock-in frequency of 40 KHz addvarying
actualy increased by disorder. We present high-field transpoﬁom S0 to 2,00 Alcn with no change irR(H). In all cases
measurements ofl,(T) for 12 MgB, films made by six ez Was defined b3R('j02):0-SR(Tc)- |
experimental groups using very different ways of introducing F19uré 1 showsdg,~(T) (&) andHe, (T) (b) for the lower
disorder. We show thakl, is radically increased in dirty Hc sample'sA,B,(.:,E,H,l,L,llvl,N. R(H) curves for filmA
films, andH,'(0) extrapolated tdH,~70 T for a C-alloyed ~are shown in the inset. Thd,"(T) data in Fig. 1a) fall into
film, comparable to the paramagnetic limiH,=1.84T, WO groups, one having.~32-37 K, with relatively low
=64 T for T,=35 K). H',, and H.(0)~10.5-15 T, while the lowefT, group
Our films were made by different deposition techniques(24—32 K) has ~50% largerH’;, and H(0)~17-22 T.
including pulsed laser depositigRLD),2*3molecular beam Hc,(0)' data in Fig. 1b) range from 18-40 T, with only
epitaxy (MBE),™* hybrid physical-chemical vapor deposition samplesB and L standing out. FilmB, with the lowestT,
(HPCVD),'®> sputtering!®'” and reactive evaporatidi. =24 K andH(0) with p,~85 Q) cm, has no anisotropy,
Growth was performed bin situ!4151718and ex situmeth-  while nontextured sample with p,~ 9.9 ©{) cm also has a
ods with post-annealing in Mg vap&#!® C-doped films low H.,(0)~22 T in spite of its higheT,=39.4 K. FilmE,
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TABLE I. Sample list with texture and lattice parameters derived from XRD, and chemical compositions deduced from WDS. Impurities
detected in amounts less than 1 at. % are not listg@O0 K) was obtained fronH,, measurement&s-grown values are given in paren-
theses ch” and chL values were extrapolated to 0 K, agdand D,/D, were deduced from the fit dfi;»(T) curves for all films.
(D,/D,<1 means that the data point scatter does not allow us to distinguish between finite afd, By so the fit was performed for
D,=0.)

Te p(40K)  Hi'  Hy' Mg B C O

Samples Substrate (K) (uQcm) (T) (T) g D,J/D, cA ad) at% at.% at.% at%
A epitaxiaf (000DAIL,O; 35 94) 13.5 33 0.045 0.12 3.516 3.047 29 53 10 8
B fiber-textured (000DAIL,O5 23.7 8656) 17 17 0.5 <1 28 57 7 8
C epitaxial 2 (000DAIL,O; 34 7 20.5 30 0.06 <1 3.52 3.08
D fiber-textured? (119srTio; 31 220 33 48 0.075 <1 3.547 37 32 14 17
E epitaxial SiC 415 1@®.9 12 345 3.511 3.107 30 57 2 11
F fiber-textured SiC 35 564 40 >74 0.045 <1 3.542 3.117 26 46 21 6
G fiber-textured SiC 35 250 28.2 555 0.045 0.065 3536 3.117 25 42 26
H epitaxiaf SiC 38 10.5 10.5 30 0.025 0.06 3.519 3.107 31 63 4 1
| untextured (000DAI,O3 32 564290 21.7 26.8 0.09 0.08
L no 00l texturefl  r-cut ALO; 39.4 9.92.89 108 214 0.025 0.07 32 65 1 1
M epitaxial (11DMgO 335 47 146 381 0095 0.1 3533 3036 24 41 28 6
N untextured (00DMgO  28.6 400 158 243 0.155 <1 33 5 5 9

aReference 16.
bReference 13.
‘Reference 15.
dReference 14.
®Reference 18.
fReference 12.
9Reference 17.

with highest T.=41.5 K and p,~0.4u{lcm as made creases as the interband scattering paramete(l’, .
(1.6 uQ cm when measured at the NHMFLrepresents +I"_)A/2mkgT, increases, wher€,=T.(g=0). In MgB, g
MgB; in the clean limitt* Although film E has the lowesp,, s small, andT, does not change much, everpifis signifi-
it exhibits the highesH,,'(T), even though Fig. (b) also  cantly increase@ The insensitivity ofT, to scattering makes
includes films with p,>500 10 cm but with lowerHg,' it possible to increaskl., in MgB, to a much greater extent
(film 1). Thus, there is no simple correlation betwggrand  than in one-gap superconductors by optimizing the diffusiv-
Hc,, because the global resistivity may be limited by poorit ratio D_/D,, as follows from the equations fét., andT,
intergrain connec_t|V|t§/2 while He, is controlled by intragrain i, 4 dirty two-gap superconduct8r
impurity scattering. The anisotropy parametey(T)
=H,,'/H " ranges from=3 for the lowestp, film E to ~1 2w(int+U,)(Int+U_) + (Ao + \)(Int+U,)
for the lowestT, textured filmB. For most films,»(T) tends
to decrease aﬁcdecreases, consistent with the behavior pre- * (o= A)(Int+U)=0, (1)
dicted for two-gap MgB with dirtier = band?®

Figure 2 showd,'(T) andH_,"(T) curves for the high- (} g) (}) _ 2lIntwint,+\p)
estH,, films F, G, andD, while the insets show the parallel- N5 t.) N5 )= Swin SV
field R(H) traces. By increasing the nominal carbon content
in the HPCVD films, resistivity rises from~1.6(E) to  where  t=T/T, te=Te/ Teo, Teo=T(g=0), w
564 (F) and 250u( cm (G), while T, only decreases t0 =Nyohrr-Norhror No= A2+ AN oA o) Y2 Ne =N oot N s A
35 K. However,H,," (0) increases from 12 TE) to 28(G) is 2X 2 matrix of BCS coupling constants. Heke=[(w_
and~40 T (F). FurthermoreH,'(0) rises from=35 T (E) ~ +TIN-=2\, o= 200l orl/1Qo,  Tu=Tpr2 Doy, wn
to 51 T(G) and more than 70 T in sampke while the an-  =(D,2D)mH/ ¢y, Qo=(w 2+T,2+2T_w )2, U,H,T)
isotropy parameter/(T)=H_,(T)/H,(T) decreases ap, =¥(1/2+hQ./2mkgT)-4(1/2), Q.=w,+I' 20, where
increases. Figure(@) presentd,(T) for sampleD, madeex  #(x) is the di-gamma function, andy is the flux quantum.
situ by PLD, which has high nominal @17 at. % and C  For Hllab, the in-plane diffusivities in Eq(1) should be
(14 at. % conten and showsH_,*(0)~33 T andH_,/(0)  replaced by{D@’D®]210 The evolution ofH(T) and T
~48 T. with g is shown in Fig. 3. For dirtym band (D,.<D,),

The Hey(T) curves in Fig. 2 have an upward curvature Hex(T) has an upward curvature at Iy while for dirtier o
inconsistent with the dirty limit one-gap thedtfor two-gap ~ band(D,>D,,) the upward curvaturél,(T) occurs neaf .
pairing, intraband scattering does not affégt but T. de-  Paramagnetic effects can be accounted for by replacing

(2)
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FIG. 1. chL(T) (a) and ch”(T) (b) for samplesA, B, C, E, H, % 30 E:‘n
I, L, M, andN. The lines are guides for the eye. Insets sHrii) - " Mesnetcten ()
for sampleA for T=2.1, 4.2, 8, 10, 15, 20, 22, 25, 30 (), and ] 20
T=2.47, 3.34, 4.2, 6.8, 10, 12, 15, 18.2, 20, 22, 25, 28, 3dK T
The R(H,)=0.9R, criterion used to determinkl, is shown as a
dashed line. 10
(112 +x) with Rey(1/2 +x+iugH,7kgT) in Eqg. (1), where 0
i 0 10 20 30 40
ug is the Bohr magneton. © T Kelvin

We used Eqg.1) and(2) to describe the observeédl,(T),
taking ab initio value$ \,,,=0.81, \,,=0.28, \,,=0.115, FIG. 2. H,,'(T) (triangleg and H ,*(T) (squares for films G
and\,,=0.09 as input parameters. Firgt,was calculated (a), F (b), andD (c). Insets show the ravR(H) traces forH | ab.
from Eq. (2) with the observed; and T,,=39 K. Next, we  Solid curves are calculated from Eq#) and(2) with fit parameters
calculatedD, from the observedor extrapolatefl H.,(0), given in Table I.
leaving the ratioD /D, as the only fit parameter determin- o ] . )
ing the shape oH(T). This procedure is based on a con- it would have a negligible effect ohle; in our films with
ventional assumption of the dirty limit theory that impurities Tc:35__39 K. _ o
only change the scattering rates, but not the coupling con- 1he fits describe well the observét,(T) curves in Fig.
stants\,,, or the partial densities of staté, andN,. Su- 2, |nd|cat|_ng thatvr_scatterlng is stronger thaﬂ‘scatterlng in
perconductivity in MgB is mostly due to the nearly two- all our highHc, films. The extrapolatecH,'(0) reaches
dimensionalc band for whichN,, is weakly dependent of ~55 T for film G and>70 T for film F.>* Remarkably, the
energy, so any small shift of the chemical potential due tdighestHc, values are attained for films with wedlk sup-
doping would not changhl,.. The self-consistency check of Pressions, and the three highetg films [48<H,,'(0)
this approach is that the shift &, due to impurities is weak, <70 T] greatly exceed theH,'(0) values reported for
and indeed, Egs(1) and (2) shows that even if the entire C-doped MgB single crystals(~35 T) (Refs. 25 and 26
shift of T, results from changes ®, andN,, due to doping, and C-doped filament82 T).2” We find that the very broad
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~0.15(=10 at. %9 and p,=50 uQlcm in MgB;,C,)-
single crystal$2% and filamentg/ this would indicate that
30 films with T, of 33-35 K havex~0.03-0.05 within the
< 5 MgB, grains.
k- As in sampled andG, thec axis is larger than the bulk
value in sampleD, which shows a high C content as well.
TEM study of film D showed buckling of theab plane$§
9 (perhaps due to strains induced by as-grown nanophase pre-
cipitateg, causing thec-axis lattice expansion. Furthermore,
lattice buckling results in strong scattering due to distur-
bance of thep, 7 orbitals, and thus dirtierr band (D,
<D,) necessary to account for the upward curvature of
0 He(T) in Figs. 2b) and 2c). In this scenario may also ex-
20 40 plain how C(which normally substitutes for Bcan result
T (K) both in the strong in-plane band scattering and out-of-
plane 7 scattering required for the observeét}, enhance-
FIG. 3. Heo(T) curves calculated from Eql) for D,,=0.0D,, ment. . . :
andg=0.01, 0.05, 0.2, 1, 1drom top to bottony. Inset showd.(g) In conclusion, we report extensive studle_s of the effect of
calculated from Eq(2) with A, taken from Ref. 3. disorder onH, of MgB, and show record highic, values,
which may approach the paramagnetic limit for C-doped
multiphase films with a relatively weak, suppression.

H_,(T.g)/H_,(0,0.01)
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