High-field superconductivity in alloyed MgB₂ thin films

V. Braccini,¹ A. Gurevich,¹ J. E. Giencke,¹ M. C. Jewell,¹ C. B. Eom,¹ D. C. Larbalestier,¹ A. Pogrebnyakov,² Y. Cui,²

B. T. Liu,² Y. F. Hu,² J. M. Redwing,² Qi Li,² X. X. Xi,² R. K. Singh,³ R. Gandikota,³ J. Kim,³ B. Wilkens,³ N. Newman,³

J. Rowell,³ B. Moeckly,⁴ V. Ferrando,⁵ C. Tarantini,⁵ D. Marré,⁵ M. Putti,⁵ C. Ferdeghini,⁵ R. Vaglio,⁶ and E. Haanappel⁷

¹Applied Superconductivity Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA

²Pennsylvania State University, University Park, Pennsylvania 16802, USA

³Arizona State University, Tempe, Arizona 85287, USA

⁴Superconductor Technologies Inc., Sunnyvale, California 93111, USA

⁵University of Genoa/INFM-LAMIA, Genoa 16146, Italy

⁶University of Naples/INFM-Coherentia, Naples I-80125, Italy

⁷Laboratoire National des Champs Magnétiques Pulses, CNRS-UPS-INSA, Toulouse 31432, France

(Received 15 September 2004; published 6 January 2005)

We investigated the effect of alloying on the upper critical field H_{c2} for 12 MgB₂ films, in which disorder was introduced by growth, carbon doping or He-ion irradiation, finding a significant H_{c2} enhancement in C-alloyed films, and an anomalous upward curvature of $H_{c2}(T)$. Record high values of $H_{c2}^{\perp}(4.2) \approx 35$ T and $H_{c2}^{\parallel}(4.2) \approx 51$ T were observed perpendicular and parallel to the *ab* plane, respectively. The temperature dependence of $H_{c2}(T)$ is described well by a theory of dirty two-gap superconductivity. Extrapolation of the experimental data to T=0 suggests that $H_{c2}^{\parallel}(0)$ may approach the paramagnetic limit of ~70 T.

DOI: 10.1103/PhysRevB.71.012504

PACS number(s): 74.70.Ad, 74.25.Op, 74.78.Db

Discovery of superconductivity in MgB₂ with the critical temperature $T_c = 39$ K renewed interest in the effects in twogap superconductors. Ab initio calculations^{1,2} showed that MgB₂ has two weakly coupled gaps $\Delta_{\sigma}(0) \approx 7.2$ meV and $\Delta_{\pi}(0) \approx 2.3$ meV residing on disconnected sheets of the Fermi surface formed by in-plane p_{xy} boron orbitals (σ band) and out-of-plane p_z boron orbitals (π band). The two-gap Eliashberg theory^{2,3} has explained many anomalies in tunneling, heat capacity, and electrodynamics of clean MgB2 single crystals.⁴ However, the physics of two-gap MgB₂ alloys determined by the multiple impurity scattering channels, and by the complex substitutional chemistry of MgB_2 (Ref. 5) is still poorly understood. The behavior of disordered MgB₂ is particularly interesting because it exhibits enormous enhancement of H_{c2} by nonmagnetic impurities,^{6–8} well above estimate $H_{c2}(0) = 0.69T_c H'_{c2}(T_c)$ of one-gap theory,⁹ and anomalous temperature-dependent H_{c2} anisotropy.⁴ Some of these features have been explained by two-gap Usadel equations^{10,11} in which impurity scattering is accounted for by the intraband electron diffusivities D_{σ} and D_{π} , and interband scattering rates $\Gamma_{\sigma\pi}$ and $\Gamma_{\pi\sigma}$. In this paper we address the fundamental question on how far can H_{c2} of MgB₂ be actualy increased by disorder. We present high-field transport measurements of $H_{c2}(T)$ for 12 MgB₂ films made by six experimental groups using very different ways of introducing disorder. We show that H_{c2} is radically increased in dirty films, and $H_{c2}^{\parallel}(0)$ extrapolated to $H_p \sim 70$ T for a C-alloyed film, comparable to the paramagnetic limit $(H_p = 1.84T_c)$ =64 T for $T_c = 35 \text{ K}$).

Our films were made by different deposition techniques including pulsed laser deposition (PLD),^{12,13} molecular beam epitaxy (MBE),¹⁴ hybrid physical-chemical vapor deposition (HPCVD),¹⁵ sputtering,^{16,17} and reactive evaporation.¹⁸ Growth was performed by *in situ*^{14,15,17,18} and *ex situ* methods with post-annealing in Mg vapor.^{12,13} C-doped films

were produced by HPCVD¹⁵ with the addition of 75 sccm of $(C_6H_7)_2Mg$ to the H_2 carrier gas.¹⁹ Some films were damaged with 10^{16} cm⁻², 2 MeV α -particles to controllably alter the scattering by irradiation point defects.²⁰ Thickness and elemental compositions were determined by wavelength dispersive spectroscopy (WDS) and Rutherford backscattering spectroscopy (RBS), and film orientation and lattice parameters with a four-circle x-ray diffractometer. Film parameters are summarized in Table I. Thickness *d* of our films ranged from 105 to 245 nm, except film I with *d*=540 nm. In some samples RBS detected through-thickness composition variations, likely due to surface reactions.

Measurements of $H_{c2}(T)$ on samples A, B, E, F, H, I, Lwere performed in a 33 T resistive magnet at the NHMFL in Tallahassee. Film resistance R(H) were measured in parallel and perpendicular fields at a sweep rate of 1 T/min while temperature was stabilized to ~10 mK. The measuring current density J was varied between 10 and 100 A/cm². Detailed study of film A showed no significant change in R(H)for 4 < J < 4000 A/cm². Samples G, M and N were measured in the 300 ms 60 T pulsed facility at the LNCMP in Toulouse, at a lock-in frequency of 40 kHz and J varying from 50 to 200 A/cm² with no change in R(H). In all cases H_{c2} was defined by $R(H_{c2})=0.9R(T_c)$.

Figure 1 shows $H_{c2}^{\perp}(T)$ (a) and $H_{c2}^{\parallel}(T)$ (b) for the lower H_{c2} samples A, B, C, E, H, I, L, M, N. R(H) curves for film A are shown in the inset. The $H_{c2}^{\perp}(T)$ data in Fig. 1(a) fall into two groups, one having $T_c \approx 32-37$ K, with relatively low H'_{c2} and $H_{c2}(0) \sim 10.5-15$ T, while the lower T_c group (24–32 K) has $\approx 50\%$ larger H'_{c2} and $H_{c2}(0) \sim 17-22$ T. $H_{c2}(0)^{\parallel}$ data in Fig. 1(b) range from 18–40 T, with only samples B and L standing out. Film B, with the lowest $T_c \approx 24$ K and $H_{c2}(0)$ with $\rho_n \sim 85 \ \mu\Omega$ cm, has no anisotropy, while nontextured sample L with $\rho_n \sim 9.9 \ \mu\Omega$ cm also has a low $H_{c2}(0) \sim 22$ T in spite of its higher $T_c = 39.4$ K. Film E,

TABLE I. Sample list with texture and lattice parameters derived from XRD, and chemical compositions deduced from WDS. Impurities detected in amounts less than 1 at. % are not listed. $\rho_n(40 \text{ K})$ was obtained from H_{c2} measurements (as-grown values are given in parentheses). H_{c2}^{\parallel} and H_{c2}^{\perp} values were extrapolated to 0 K, and g and D_{π}/D_{σ} were deduced from the fit of $H_{c2}(T)$ curves for all films. $(D_{\pi}/D_{\sigma} \ll 1 \text{ means that the data point scatter does not allow us to distinguish between finite and zero <math>D_{\pi}/D_{\sigma}$, so the fit was performed for $D_{\pi}=0.$)

Samples	Substrate	<i>Т</i> _с (К)	$ \rho_n(40 \text{ K}) $ $ (\mu\Omega \text{ cm}) $	${H_{c2}}^{\perp}$ (T)	$\begin{array}{c} H_{c2}^{ \parallel} \\ (\mathrm{T}) \end{array}$	g	D_{π}/D_{σ}	c (Å)	a (Å)	Mg at. %	B at. %	C at. %	O at. %
A epitaxial ^a	(0001)Al ₂ O ₃	35	9(4)	13.5	33	0.045	0.12	3.516	3.047	29	53	10	8
B fiber-textured ^a	(0001)Al ₂ O ₃	23.7	86(56)	17	17	0.5	≪1			28	57	7	8
C epitaxial ^{*a}	(0001)Al ₂ O ₃	34	7	20.5	30	0.06	≪1	3.52	3.08				
D fiber-textured*b	(111)SrTiO ₃	31	220	33	48	0.075	≪1	3.547		37	32	14	17
E epitaxial	SiC	41.5	1.6(0.4)	12	34.5			3.511	3.107	30	57	2	11
F fiber-textured ^c	SiC	35	564	40	>74	0.045	≪1	3.542	3.117	26	46	21	6
G fiber-textured ^c	SiC	35	250	28.2	55.5	0.045	0.065	3.536	3.117	25	42	26	6
H epitaxial ^c	SiC	38	10.5	10.5	30	0.025	0.06	3.519	3.107	31	63	4	1
I untextured ^d	(0001)Al ₂ O ₃	32	567(290)	21.7	26.8	0.09	0.08						
L no 001 textured ^e	r-cut Al ₂ O ₃	39.4	9.9(2.8)	10.8	21.4	0.025	0.07			32	65	1	1
M epitaxial ^f	(111)MgO	33.5	47	14.6	38.1	0.095	0.1	3.533	3.036	24	41	28	6
N untextured ^g	(001)MgO	28.6	400	15.8	24.3	0.155	≪1			33	53	5	9

^aReference 16.

^bReference 13.

^cReference 15.

^dReference 14.

eReference 18.

^fReference 12.

^gReference 17.

with highest T_c =41.5 K and $\rho_n \sim 0.4 \ \mu\Omega$ cm as made (1.6 $\mu\Omega$ cm when measured at the NHMFL) represents MgB₂ in the clean limit.²¹ Although film *E* has the lowest ρ_n , it exhibits the highest $H_{c2}^{\parallel}(T)$, even though Fig. 1(b) also includes films with $\rho_n > 500 \ \mu\Omega$ cm but with lower H_{c2}^{\parallel} (film *I*). Thus, there is no simple correlation between ρ_n and H_{c2} , because the global resistivity may be limited by poor intergrain connectivity²² while H_{c2} is controlled by intragrain impurity scattering. The anisotropy parameter $\gamma(T) = H_{c2}^{\parallel}/H_{c2}^{\perp}$ ranges from ≈ 3 for the lowest ρ_n film *E* to ≈ 1 for the lowest T_c textured film *B*. For most films, $\gamma(T)$ tends to decrease as *T* decreases, consistent with the behavior predicted for two-gap MgB₂ with dirtier π band.¹⁰

Figure 2 shows $H_{c2}^{\parallel}(T)$ and $H_{c2}^{\perp}(T)$ curves for the highest H_{c2} films F, G, and D, while the insets show the parallel-field R(H) traces. By increasing the nominal carbon content in the HPCVD films, resistivity rises from ~1.6 (*E*) to 564 (*F*) and 250 $\mu\Omega$ cm (*G*), while T_c only decreases to 35 K. However, $H_{c2}^{\perp}(0)$ increases from 12 T (*E*) to 28 (*G*) and ≈ 40 T (*F*). Furthermore, $H_{c2}^{\parallel}(0)$ rises from ≈ 35 T (*E*) to 51 T (*G*) and more than 70 T in sample *F*, while the anisotropy parameter $\gamma(T)=H_{c2}^{\parallel}(T)/H_{c2}^{\perp}(T)$ decreases as ρ_n increases. Figure 2(c) presents $H_{c2}(T)$ for sample *D*, made *ex situ* by PLD, which has high nominal O (17 at. %) and C (14 at. %) content⁸ and shows $H_{c2}^{\perp}(0) \approx 33$ T and $H_{c2}^{\parallel}(0) \approx 48$ T.

The $H_{c2}(T)$ curves in Fig. 2 have an upward curvature inconsistent with the dirty limit one-gap theory.⁹ For two-gap pairing, intraband scattering does not affect T_c , but T_c de-

creases as the interband scattering parameter $g = (\Gamma_{\sigma\pi} + \Gamma_{\pi\sigma})\hbar/2\pi k_B T_{c0}$ increases, where $T_{c0} = T_c(g=0)$. In MgB₂ g is small, and T_c does not change much, even if ρ_n is significantly increased.²³ The insensitivity of T_c to scattering makes it possible to increase H_{c2} in MgB₂ to a much greater extent than in one-gap superconductors by optimizing the diffusivity ratio D_{π}/D_{σ} , as follows from the equations for H_{c2} and T_c in a dirty two-gap superconductor¹⁰

$$2w(\ln t + U_{+})(\ln t + U_{-}) + (\lambda_{0} + \lambda_{i})(\ln t + U_{+}) + (\lambda_{0} - \lambda_{i})(\ln t + U_{-}) = 0,$$
(1)

$$\psi\left(\frac{1}{2} + \frac{g}{t_c}\right) - \psi\left(\frac{1}{2}\right) = -\frac{2\ln t_c(w\ln t_c + \lambda_0)}{2w\ln t_c + \lambda_0 + \lambda_i},\tag{2}$$

where $t=T/T_{c0}$, $t_c=T_c/T_{c0}$, $T_{c0}=T_c(g=0)$, $w = \lambda_{\sigma\sigma}\lambda_{\pi\pi}-\lambda_{\sigma\pi}\lambda_{\pi\sigma}$, $\lambda_0=(\lambda_-^2+4\lambda_{\sigma\pi}\lambda_{\pi\sigma})^{1/2}$, $\lambda_{\pm}=\lambda_{\sigma\sigma}\pm\lambda_{\pi\pi}$, λ_{mn} is 2×2 matrix of BCS coupling constants. Here $\lambda_i=[(\omega_-+\Gamma_-)\lambda_-2\lambda_{\sigma\pi}\Gamma_{\pi\sigma}-2\lambda_{\pi\sigma}\Gamma_{\sigma\pi}]/\Omega_0$, $\Gamma_{\pm}=\Gamma_{\sigma\pi}\pm\Gamma_{\pi\sigma}$, $\omega_{\pm}=(D_{\sigma}\pm D_{\pi})\pi H/\phi_0$, $\Omega_0=(\omega_-^2+\Gamma_+^2+2\Gamma_-\omega_-)^{1/2}$, $U_{\pm}(H,T)=\psi(1/2+\hbar\Omega_{\pm}/2\pi k_B T)-\psi(1/2)$, $\Omega_{\pm}=\omega_++\Gamma_+\pm\Omega_0$, where $\psi(x)$ is the di-gamma function, and ϕ_0 is the flux quantum. For $\mathbf{H} \| ab$, the in-plane diffusivities in Eq. (1) should be replaced by $[D^{(ab)}D^{(c)}]^{1/2}$.¹⁰ The evolution of $H_{c2}(T)$ and T_c with g is shown in Fig. 3. For dirty π band $(D_{\pi}\ll D_{\sigma})$, $H_{c2}(T)$ has an upward curvature at low T, while for dirtier σ band $(D_{\pi}\gg D_{\sigma})$ the upward curvature $H_{c2}(T)$ occurs near T_c . Paramagnetic effects can be accounted for by replacing

FIG. 1. $H_{c2}^{\perp}(T)$ (a) and $H_{c2}^{\parallel}(T)$ (b) for samples A, B, C, E, H, I, L, M, and N. The lines are guides for the eye. Insets show R(H) for sample A for T=2.1, 4.2, 8, 10, 15, 20, 22, 25, 30 K (a), and T=2.47, 3.34, 4.2, 6.8, 10, 12, 15, 18.2, 20, 22, 25, 28, 32 K (b). The $R(H_{c2})=0.9R_n$ criterion used to determine H_{c2} is shown as a dashed line.

 $\psi(1/2+x)$ with $\operatorname{Re}\psi(1/2+x+i\mu_BH_2\pi k_BT)$ in Eq. (1), where μ_B is the Bohr magneton.

We used Eqs. (1) and (2) to describe the observed $H_{c2}(T)$, taking *ab initio* values³ $\lambda_{\sigma\sigma} = 0.81$, $\lambda_{\pi\pi} = 0.28$, $\lambda_{\sigma\pi} = 0.115$, and $\lambda_{\pi\sigma} = 0.09$ as input parameters. First, g was calculated from Eq. (2) with the observed T_c and T_{c0} =39 K. Next, we calculated D_{σ} from the observed (or extrapolated) $H_{c2}(0)$, leaving the ratio D_{π}/D_{σ} as the only fit parameter determining the shape of $H_{c2}(T)$. This procedure is based on a conventional assumption of the dirty limit theory that impurities only change the scattering rates, but not the coupling constants λ_{mn} , or the partial densities of states N_{σ} and N_{π} . Superconductivity in MgB2 is mostly due to the nearly twodimensional σ band for which N_{σ} is weakly dependent of energy, so any small shift of the chemical potential due to doping would not change N_{σ} . The self-consistency check of this approach is that the shift of T_c due to impurities is weak, and indeed, Eqs. (1) and (2) shows that even if the entire shift of T_c results from changes of N_{σ} and N_{π} due to doping,

FIG. 2. $H_{c2}^{\parallel}(T)$ (triangles) and $H_{c2}^{\perp}(T)$ (squares) for films *G* (a), *F* (b), and *D* (c). Insets show the raw *R*(*H*) traces for $H \parallel ab$. Solid curves are calculated from Eqs. (1) and (2) with fit parameters given in Table I.

it would have a negligible effect on H_{c2} in our films with $T_c=35-39$ K.

The fits describe well the observed $H_{c2}(T)$ curves in Fig. 2, indicating that π scattering is stronger than σ scattering in all our high- H_{c2} films. The extrapolated $H_{c2}^{\parallel}(0)$ reaches ≈ 55 T for film G and >70 T for film $F.^{24}$ Remarkably, the highest H_{c2} values are attained for films with weak T_c suppressions, and the three highest- H_{c2} films [48<H $_{c2}^{\parallel}(0)$ <70 T] greatly exceed the $H_{c2}^{\parallel}(0)$ values reported for C-doped MgB₂ single crystals (~35 T) (Refs. 25 and 26) and C-doped filaments (32 T).²⁷ We find that the very broad

FIG. 3. $H_{c2}(T)$ curves calculated from Eq. (1) for $D_{\pi}=0.03D_{\sigma}$ and g=0.01, 0.05, 0.2, 1, 10 (from top to bottom). Inset shows $T_c(g)$ calculated from Eq. (2) with λ_{mn} taken from Ref. 3.

range of ρ_n (~1-600 $\mu\Omega$ cm) does not directly manifest itself in the atomic-scale scattering that actually determines H_{c2} , because current-blocking extended defects²² control the measured resistivity. TEM on a C-doped HPCVD (Ref. 19) film has shown that a small portion of C is doped into the Mg(B_{1-x}C_x)₂ columnar nanograins, which have larger *c* and *a* lattice constants than the pure MgB₂. The rest of the C goes into the grain boundaries, consisting of highly resistive amorphous phases. Because T_c is depressed to zero at *x* ~0.15 (≈ 10 at. %) and $\rho_n \geq 50 \ \mu\Omega$ cm in Mg(B_{1-x}C_x)₂ single crystals^{25,26} and filaments,²⁷ this would indicate that films with T_c of 33–35 K have $x \sim 0.03-0.05$ within the MgB₂ grains.

As in samples *F* and *G*, the *c* axis is larger than the bulk value in sample *D*, which shows a high C content as well. TEM study of film *D* showed buckling of the *ab* planes⁸ (perhaps due to strains induced by as-grown nanophase precipitates), causing the *c*-axis lattice expansion. Furthermore, lattice buckling results in strong π scattering due to disturbance of the $p_z \pi$ orbitals, and thus dirtier π band $(D_{\pi} \ll D_{\sigma})$ necessary to account for the upward curvature of $H_{c2}(T)$ in Figs. 2(b) and 2(c). In this scenario may also explain how C (which normally substitutes for B) can result both in the strong in-plane σ band scattering and out-ofplane π scattering required for the observed H_{c2} enhancement.

In conclusion, we report extensive studies of the effect of disorder on H_{c2} of MgB₂ and show record high H_{c2} values, which may approach the paramagnetic limit for C-doped multiphase films with a relatively weak T_c suppression.

Work at UW was supported by NSF under MRSEC Grant No. DMR-0079983, work at Penn State was supported under ONR Nos. N00014-00-1-0294 (X.X.X.) and N0014-01-1-0006 (J.M.R.), by NSF under Grants Nos. DMR-0306746 (X.X.X. and J.M.R.), DMR-9876266 and DMR-9972973 (Q.L.), and work at Arizona State University was supported under ONR No. N00014-02-1-0002. The NHMFL user facility is supported by NSF.

- ¹A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. **87**, 087005 (2001).
- ²H. J. Choi *et al.*, Nature (London) **418**, 758 (2002).
- ³A. A. Golubov *et al.*, J. Phys.: Condens. Matter 14, 1353 (2002);
 A. Brinkman *et al.*, Phys. Rev. B 65, 180517(R) (2002).
- ⁴P. C. Canfield and G. W. Crabtree, Phys. Today **56**, 34 (2003); P. C. Canfield, S. L. Bud'ko, and D. K. Finnemore, Physica C **385**, 1 (2003).
- ⁵R. Cava, H. W. Zandbergen, and K. Inumare, Physica C **385**, 8 (2003).
- ⁶V. Ferrando et al., Phys. Rev. B 68, 094517 (2003).
- ⁷F. Bouquet *et al.*, Physica C **385**, 192 (2003).
- ⁸A. Gurevich et al., Supercond. Sci. Technol. 17, 278 (2004).
- ⁹N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 288 (1966).
- ¹⁰A. Gurevich, Phys. Rev. B **67**, 184515 (2003).
- ¹¹A. A. Golubov and A. E. Koshelev, Phys. Rev. B 68, 104503 (2003).
- ¹²V. Ferrando et al., Supercond. Sci. Technol. 16, 241 (2003).

- ¹³C. B. Eom *et al.*, Nature (London) **411**, 558 (2001).
- ¹⁴J. Kim et al., IEEE Trans. Appl. Supercond. 13, 3238 (2003).
- ¹⁵X. Zeng *et al.*, Nat. Mater. **1**, 35 (2002).
- ¹⁶S. D. Bu *et al.*, Appl. Phys. Lett. **81**, 1851 (2002).
- ¹⁷R. Vaglio, M. G. Maglione, and R. Di Capua, Supercond. Sci. Technol. **15**, 1236 (2002).
- ¹⁸B. Moeckly (unpublished).
- ¹⁹A. V. Pogrebnyakov et al., Appl. Phys. Lett. 85, 2017 (2004).
- ²⁰R. Gandikota *et al.* (unpublished).
- ²¹A. V. Pogrebnyakov et al., Appl. Phys. Lett. 82, 4319 (2003).
- ²²J. M. Rowell, Supercond. Sci. Technol. **16**, R17 (2003).
- ²³I. I. Mazin *et al.*, Phys. Rev. Lett. **89**, 107002 (2002).
- ²⁴Given the limited field range in our experiments we used Eqs. (1) and (2) without paramagnetic terms. Analysis of paramagnetic effects will be given elsewhere.
- ²⁵ T. Masui, S. Lee, and S. Tajima, Phys. Rev. B **70**, 024504 (2004);
 E. Ohmichi *et al.*, J. Phys. Soc. Jpn. **73**, 2065 (2004).
- ²⁶S. Lee et al., Physica C 397, 7 (2003).
- ²⁷R. H. T. Wilke et al., Phys. Rev. Lett. 92, 217003 (2004).