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Thermodynamic properties of Fermi systems are investigated in the vicinity of a phase transition where the
effective mass diverges and the single-particle spectrum becomes flat. It is demonstrated that at very low
temperaturesT, the flattening of the spectrum is reflected in non-Fermi-liquid behavior of the inverse suscep-
tibility x−1sTd,Ta and the specific heatCsTd /T,T−a, with the critical indexa=2/3. In thepresence of an
external static magnetic fieldH, both these quantities are found to exhibit a scaling behavior, e.g.,x−1sT,Hd
=x−1sT,0d+T2/3FsH /Td, in agreement with available experimental data.
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Manifestations of non-Fermi-liquid(NFL) behavior ob-
served at extremely low temperaturesT in a number of
strongly correlated Fermi systems,1–10 notably3He films and
heavy-fermion metals, provide valuable clues to a fundamen-
tal microscopic understanding of these systems. This anoma-
lous behavior is commonly attributed to antiferromagnetic
spin fluctuations, and numerous strategies have been ad-
vanced(e.g., Ref. 11) based on integrating out all degrees of
freedom except spin fluctuations. However, the spin-
fluctuation model(SFM) is unable to reproduce the results of
precise measurements of the inverse spin susceptibility,
which, on the “metallic” side of the critical point, is found to
obeyx−1sTd,Ta with a critical indexa,1 (cf. Refs. 1, 10,
and 12). The SFM also fails to explain6,8,10,13 the scaling
exhibited byxsT,Hd in external, even tiny, static magnetic
fieldsH. Difficulties are likewise encountered for the thermal
expansion data.14 Moreover, the SFM falls short when con-
fronted with other generic features revealed by experiment,
most notably a divergence of the effective massM * srd at a
critical density r=r` and the emergence of NFL features
even before the critical point.1,3–5

We are therefore compelled to explore a different strategy,
in which NFL anomalies are attributed to fermionic degrees
of freedom and specifically associated with flattening of the
single-particle(sp) spectrumjspd in the immediate vicinity
of r`. Near this point, the Fermi-liquid(FL) formula
jFLspd=pFsp−pFd /M * srd must be supplemented by terms
nonlinear inp−pF, sincejFLsp;rd vanishes identically atr`.
Here we shall study consequences of the alteration ofjspd on
the “metallic” side of the phase transition. Importantly, as
argued below, the ratio of the dampinggs«d of single-particle
excitations to relevant energies« remains relatively small in
this regime. Accordingly, the Landau quasiparticle formalism
still applies.

We focus our attention on the real part of the ac spin
susceptibility xsT,v→0d, given by the familiar FL
formula15

xsT,rd = x0sT,rd/f1 − g0srdP0sT,rdg s1d

in terms of the polarizationP0, the Landau spin-spin inter-
actionx0=−mB

2P0 (wheremB is the Bohr magneton), and the

zeroth harmonicg0 of x0. To be definite, we treat the homo-
geneous three-dimensional(3D) case, with

P0sTd =E dnfjspdg
djspd

dv ; −
pF

2

p2T
E nsjdf1 − nsjdg

dp

dj
dj,

s2d

where nfjspdg=1/f1+expsjspd /Tdg−1 is the quasiparticle
momentum distribution anddv=2d3p/ s2pd3. While Eqs.(1)
and (2) are formally identical to familiar textbook formulas,
the functionP0sTd can differ profoundly from its FL realiza-
tion due to complicated behavior of the group velocity
djspd /dp in the momentum region whereujspdu.T, which
dominates the integration(2).

To proceed, we invoke the well-known expression15

]jspd
]p

=
p

M
+E fsp,p1d

]nfjsp1dg
]p1

dv1, s3d

connecting the spectrumjspd and the momentum distribution
nsjd through the Landau interaction functionfsp ,p1d. At T
=0, Eq. (3) implies that the effective massM* is related to
the first harmonicf1spF ,pFd of the interaction function by

M/M * sr,T = 0d = 1 −F1
0srd/3 ; Dsrd, s4d

in which F1
0srd= f1spF ,pFdN0 with N0=pFM /p2. Thus

M * sr ,T=0d diverges at the critical densityr`, where
Dsr`d=0, while at nonzero temperatures,M * sr` ,Td already
has a finite value.16 Its T dependence is found by expanding
relevant quantities on both sides of Eq.(3) in Taylor series,
thereby obtaining

dj/dp. pF/M * sr,Td + v2sp − pFd2/MpF s5d

with

M

M * sT,rd
= Dsrd +

M

3pF
E Fsf18pF

2 + 2f1pFdsp − pFd

+ S1

2
f 19pF

2 + 2f18pF + f1Dsp − pFd2G ]nfjspdg
]p

dp

p2 .

s6d

Here v2=−pF
3Mf 19 /6p2, f18=fdf1sp,pFd /dpgp=pF

, and f 19
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=fd2f1sp,pFd /dp2gp=pF
. The termv1srdsp−pFd, which pro-

vides the contributionv1srdsp−pFd2/2 to jspd, has been
dropped in writing Eq.(5), sincev1sr`d must vanish; other-
wise the functionjsp,r`d has the same sign below and above
the Fermi surface, and the Landau state becomes unstable
beforer reachesr`.

Equation(6) can be simplified using particle-number con-
servation, expressed approximately as

E fpFsp − pFd + sp − pFd2g
]nfjspdg

]p
dp= 0. s7d

Inserting this relation into Eq.(6), we have

M

M * sT,rd
= Dsrd − v2E sp − pFd2

pF
2

]nfjspdg
]p

dp. s8d

It is convenient to introduce the new variablest=2TM /pF
2,

x=jspd /T, and y=sp−pFdsv2/3MTpFd1/3, along with n
=s9v2/4d1/3 and

a =E
−`

`

y2sxdexs1 + exd−2dx. s9d

In these terms, Eq.(8) reduces to M /M * sT,rd=Dsrd
+nat2/3, while Eq. (5) becomes

djsp,T,rd
dp

=
pF

M
fDsrd + nt2/3sa + y2dg, s10d

which is recast as a relation betweenx andy,

x = yf3n−1Dsrdt−2/3 + 3a + y2g. s11d

Having solved Eqs.(11) and (9), the polarization operator
P0;−N0P0 is readily evaluated to yield

xsT,rd = mB
2N0P0sT,rd/f1 + G0srdDsrdP0sT,rdg, s12d

whereG0=g0pFM * sT=0d /p2 and

P0sT,rd =E
−`

` exs1 + exd−2

fa + y2sxdgnt2/3 + Dsrd
dx. s13d

In what follows, we address systems without ferromagnetic
ordering, noting that 1+G0.0 is sufficient for positivity of
the denominator of Eq.(12). In this case,P0sT,rd depends
crucially on the ratioT/ ur−r`u. When T drops to 0 while
holding ur−r`u fixed, one obtainsP0sT,rd=D−1srd and
hence xsT=0,rÞr`d=mB

2N0/ fDsrds1+G0dg,ur−r`u−1. In
the opposite case, one hasDsr`d=0 and calculations give
M /M * sT,r`d.0.5nt2/3 and P0sT,r`d=1.2n−1t−2/3. Thus
we arrive at

xsT,r`d = x0sT,r`d = 1.2mB
2N0n−1t−2/3, s14d

which implies that the critical indexa specifying the low-T
dependence of the inverse spin susceptibilityx−1sT,r`d is
2/3. It can be verified that the corresponding one-
dimensional(1D) and two-dimensional(2D) equations are
identical in form to Eqs.(11) and(9), derived here for the 3D
case.

The above treatment can be extended to other thermody-
namic properties, notably the specific heat

C = −
pF

2

p2 E jnsjdf1 − nsjdg
dp

dj

]

]T
S jsTd

T
Ddj. s15d

Manipulations similar to those applied toP0sT,rd yield

CsT,rd
T

= N0E
−`

` xfx − 2aysxdgexs1 + exd−2

fa + y2sxdgnt2/3 + Dsrd
dx, s16d

from which we infer that forT→0 the ratioCsTd /T has the
same NFL behavior as the spin susceptibility.

As a rule, in electron systems of solids there exist several
branches of the sp spectrumjspd that cross the Fermi sur-
face, with the effective mass diverging in only one or two of
these.(Conceivably, similar behavior occurs in 2D liquid
3He.) Other branches still contribute as Landau theory dic-
tates, providing additiveT-independent terms inxsTd and
CsTd /T. As a result, theT-dependent excessesDxsT,r`d and
DCsT,r`d /T exhibit theT−2/3 behavior implied by Eq.(14).

To ascertain the relevance of the basic result(14) to real
strongly correlated Fermi systems, we make use of available
data8–10 for the heavy-fermion metals YbRhsSi0.95Ge0.05d2

and CeRu2Si2, where theT-independent FL terms are rather
small. As seen in the left panel of Fig. 1, these data are well
reproduced by the proposed model. In 2D liquid3He, the FL
term in xsTd is significant. Accordingly, in this case we plot
results for the excessDxsTd, comparing theoretical predic-
tions with the experimental data1 at the two densitiesr
=0.036 Å−2 andr=0.052 Å−2 (Fig. 1, right panel).

Let us now examine the role of damping effects. When
evaluating thermodynamic properties, characteristic energies
« are of orderT. We estimate the dampinggs«,Td with the
help of the standard FL-theory formula,

FIG. 1. Left panel, bottom-left axes: Inverse magnetic suscepti-
bility of YbRhsSi0.95Ge0.05d2 as a function of temperature. Experi-
mental data of Ref. 9 are shown as short dashes; the solid curve is
the current prediction. Top-right axes: temperature dependence of
magnetic susceptibility of CeRu2Si2 in a magnetic field of 0.02 mT.
Experimental data of Ref. 8 are denoted by circles, and the theoret-
ical prediction by the dashed curve. Right panel: Spin susceptibility
excess, divided by the FL contribution to the spin susceptibility,
evaluated for3He films at two densities(indicated near the curves).
Experimental data from Ref. 1 appear as solid and open circles,
while solid curves trace the predictions of the current theory at
low T.
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gs« , Td , uGu2fM * sTdg3T2, s17d

containing the interaction amplitudeG and the effective mass
M*, which according to Eq.(10), depends onT asT−2/3. It is
important to recognize that the customary replacement17 of G
by the bare interactionV, although legitimate in ordinary
Fermi liquids, is erroneous in the limit of strong correlations.
The source of the error is the huge enhancement of the den-
sity of states, which suppressesG and makes its magnitude
quite insensitive to the bare interaction.18 To wit: summation
of ladder diagrams in the particle-hole channel givesG
=V/ f1+VNs0dg, whereNs0d,pFM* is the density of states;
henceG,N−1s0d in the limit Ns0dV@1. Inserting this result
into Eq. (17), we arrive at

gs« , Td/T , TM * sTd/pF
2 , t1/3 ! 1, s18d

affirming the applicability of FL theory to our problem.
Imposition of a static external magnetic fieldH brings

into play a new dimensionless parameterR=mBH /T and
opens another arena for testing the model. The function
nfjspdg entering Eq. (3) is then replaced byfn(j+spd)
+n(j−spd)g /2, wherenfj±spdg=f1+exp(jspd /T±R/2)g−1. In
turn, jspd is determined from Eq.(5), the effective mass
being the same for both spin directions at sufficiently weak
H. Proceeding as before, we find

M/M * sT,H,r`d = nt2/3asRd, s19d

where

asRd =
1

2
E y2sxdF ex+R/2

s1 + ex+R/2d2 +
ex−R/2

s1 + ex−R/2d2Gdx.

s20d

In the limit T→0 or equivalentlyR→`, the solution of Eq.
(20) takes the analytic formM * sT=0,H ,r`d,H2/3, con-
firming a result of Ref. 16. Thus at sufficiently low tempera-
tures, imposition of a static magnetic field satisfyingmBH
.T renders the effective massM * sT,H ,r`d finite, promot-
ing the recovery of the Landau FL theory. Along the same
lines, we may establish that at the critical densityr`, the
magnetic moment and ac spin susceptibility display a scaling
behavior, e.g.,

xACsT,H,r`d = mB
2N0n−1bsRdt−2/3, s21d

where

bsRd =
1

2
E F ex+R/2

s1 + ex+R/2d2 +
ex−R/2

s1 + ex−R/2d2G dx

asRd + y2sxd
.

s22d

Turning to the specific heat, and following the same path
as taken above forxsT,Hd at the critical point, we are led to
the expression

CsT,H,r`d/T = N0n−1csRdt−2/3, s23d

where

csRd =
1

2
E Ffsx + R/2d2 − 2sx + R/2dasRdysxdgex+R/2

s1 + ex+R/2d2

+
fsx − R/2d2 − sx − R/2dasRdysxdgex−R/2

s1 + ex−R/2d2 G dx

asRd + y2sxd
.

s24d

A scaling behavior of this kind has been discussed by Cole-
man and collaborators.6,12

For finite H, the curve describingxACsT,Hd acquires a
maximum at some temperatureTP, as does the curve for
CsT,Hd /T at some temperatureTM. This behavior is associ-
ated with the suppression of the divergent NFL terms,T−2/3

in xsT,Hd and CsT,Hd /T and recovery of FL behavior at
static magnetic fields in which the Zeeman energy splitting
mBH exceedsT. Following Ref. 8, Fig. 2 presents the results
of numerical calculations of these quantities as functions of
the normalized temperaturesT/TP andT/TM. Demonstrably,
the model developed here reproduces the experimental scal-
ing behaviors of both the spin susceptibility8 of the heavy-
fermion metal CeRu2Si2 and the specific heat13 of the heavy-
fermion compound YbRhsSi0.95Ge0.05d2, without any
adjustable parameters. It should be emphasized that the
curves shown in Fig. 2 remain the same whether one is con-
sidering heavy-fermion metals or 2D liquid3He. This univer-
sality, a prediction of the proposed model, can be tested ex-
perimentally with the aid of an apparatus19 designed for

FIG. 2. (Color online) Top panels: Normalized magnetic suscep-
tibility xsT,Hd /xsTPd (top-left panel) and normalized magnetiza-
tion MsT,Hd /MsTPd (top-right panel) for CeRu2Si2 in magnetic
fields 0.20(squares), 0.39(triangles), and 0.94 mT(circles), plotted
against normalized temperatureT/TP (Ref. 8), whereTP is the tem-
perature at peak susceptibility. The solid curves trace the universal
behavior predicted by the present theory. Bottom panel: The nor-
malized ratioCsT,HdTM /CsTMdT for YbRhsSi0.95Ge0.05d2 in mag-
netic fields 0.05(squares), 0.1 (triangles), and 0.2 T(circles) vs the
normalized temperatureT/TM (Ref. 13), whereTM is the tempera-
ture at maximum ratioCsT,Hd /T. The solid curve shows the pre-
diction of our theory.
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measurement of thermodynamic properties of 2D liquid3He
in static magnetic fields.

It is seen from Eq.(2) that on the metallic side of the
phase transition, the NFL behavior(14) occurs in a density
intervalDr,r`t2/3 adjacent to the critical point. However, it
will be shown in a forthcoming article that on the insulating
side of the phase transition, the density range over which the
NFL term ,T−2/3 prevails is substantially larger,Dr
,r`t1/3.

Let us compare our results with those available within the
antiferromagnetic scenario.11 First, the proposed flattening
mechanism for NFL behavior adequately explains the low-T
data on the spin susceptibility, predictingx−1sTd,Ta in the
critical density region with a critical exponenta.2/3. The
spin-fluctuation model fails to providea,1. Second, the
flattening mechanism explains the scaling behaviorx−1

,TaFsH /Td of the spin susceptibility in static magnetic
fields, whereas such a scaling property does not arise in the
SFM. Third, within the model advanced here, FL behavior
can be recovered at lowT close to the critical point by im-
posing a tiny magnetic field satisfyingmBH.T. In the SFM
there is no such provision for reinstating Fermi-liquid theory.

Finally, we discuss the relevance of ferromagnetic fluc-
tuations to the NFL behavior, asserted in Refs. 8 and 10.
Experimental data for most heavy-fermion systems show no
evidence of ferromagnetism. The same is true for 2D liquid
3He.1,3 This implies that close to the critical point, the corre-
sponding Pomeranchuck stability condition15 1+G0srd.0 is
not violated, in spite of the divergence of the effective mass
at r=r` and the attendant vanishing ofgsr`d. The value of
G0 can be estimated from the Landau sum rule15 oLhFL / f1

+FL / s2L+1dg+GL / f1+GL / s2L+1dgj=0 by assuming all the
harmonics FL are finite exceptF1=F1

0M * / M .3M * / M.
The Landau sum rule is then satisfied providedG0.−0.75.
This value ofG0 gives rise to a marked enhancement of the
Sommerfeld ratio in the casemBH.T, boosting it to a value
,12 that changes little when the zeroth harmonicF0 is taken
into account. Even so, such an enhancement does not in itself
ensure the relevance of ferromagnetic fluctuations to the
NFL behavior. Indeed, dense 3D liquid3He, with G0.−0.8,
exhibits no deviations from FL-theory predictions asT→0.

In summary, we have studied the impact of flattening of
the single-particle spectrum on the spin susceptibilityxsTd
and the specific heatCsTd of strongly correlated Fermi sys-
tems. When the density approaches the critical value at
which the effective mass becomes infinite, Fermi-liquid
theory progressively fails as the deviant components inxsTd
andCsTd grow to dominance. We have explicated the corre-
sponding critical behavior of these components and derived a
universal relation between them. Finally, our analysis has
revealed the scaling behavior ofxsT,Hd and CsT,Hd /T in
the presence of an external magnetic fieldH. Numerical re-
sults based on this theoretical picture are in agreement with
experimental data on 2D liquid3He and several heavy-
fermion metals.
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