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We use a self-consistent statistical method to study formation of vacancies in rare-gas crystals at high
temperature. The vacancy formation energy is calculated by minimization of the relaxation energy of the
vacancy surrounding with respect to distribution parameters of atomic displacements for four coordination
spheres of the vacancy. An emphasis is placed on the analysis of the role the vibrational anharmonicity plays
in formation of defects in a crystal at high temperature. It is shown that the vacancy formation energy rapidly
falls as temperature approaches the melting point of the crystal. Assuming that the crystal melts as temperature
reaches the region of instability of the solid state, we compute the melting curve of Ar.
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In the present study we consider the formation of vacan-
cies in heavy rare-gas crystalssRGCsd in the high-
temperature range, where the anharmonicity of atomic vibra-
tions contributes substantially to the thermodynamic
properties of solids. The data on the value of the concentra-
tion of vacancies in solids, available in the literature, are
rather contradictory, especially, for high temperatures near
the melting point ssee, e.g., Refs. 1–4d. Examining the
mechanism of formation of vacancies is important to
understand the nature of melting of crystals. It is known
that normal melting is accompanied by rupture of a part of
interatomic bonds and by reduction of the coordination
number of atoms, while the average interatomic distance re-
mains practically unchanged. There is still a great deal to
learn about the physical mechanism responsible for the
breakdown of ordering of atoms in the crystal as temperature
increases.

The aim of this study is to elucidate the contribution
of the vibrational anharmonicity to the relaxation of medium
around a vacant site. As we demonstrate below, the
anharmonicity of atomic vibrations leads, in comparison
with a quasiharmonic crystal, to the accumulation of an
excess of the potential energy of interatomic interactions.
The excessive potential energy is released, when the medium
relaxes around a vacant site, thus reducing the formation
energy of the vacancy. Such energy lowering is especially
pronounced in the vicinity of the instability point of the
crystalline state associated with the vibrational
anharmonicity.5–7 As a result, one may expect that a phase
containing a large number of defects becomes thermody-
namically favorable.

To describe the relaxation of the medium around a vacant
lattice site and to calculate the vacancy formation energy,
we employ the self-consistent statistical method of calcula-
tion of thermodynamical properties of solids proposed
in Ref. 5. The method consists in derivation of the binary
distribution function of atomic displacements and a varia-
tional procedure of calculation of effective parameters of
the quasielastic bond of atoms. Our approach has much in
common with the well-known self-consistent phonon
theory,8–10 however, the variational procedure is simpler
in calculations and even allows one to obtain an analytical
representation of thermodynamic properties of the crystal

for certain temperature and pressure ranges. This approach
was successfully applied to compute thermal properties
and equation of state of the RGC, resulting in a good
agreement between the calculated and the experimental data
over wide ranges of temperature and pressure.5,6 It was
demonstrated5 that, in addition to the quantum and the
thermal contributions to smearing of the range of localization
of atoms, there is an additional correlative contribution
which, along with above factors, enhances the repulsion be-
tween neighboring atoms of the crystal. The analysis of
the theoretical model5 revealed that the contribution to the
potential energy of interatomic interaction due to the corre-
lations of atomic motion is almost completely compensated
at high temperature by the enhancement of interatomic repul-
sion due to the correlative smearing of the range of localiza-
tion of atoms. In other words, in the framework of the
present statistical model, the correlations of atomic displace-
ments do not contribute to the crystal potential energy at high
temperature. So, the motion of atoms of the crystal can be
considered uncorrelated. In this situation, to calculate the
average potential energy, one may represent the distribution
function of the crystal as a product of uncorrelated one-
particle functions. For example, if the pairwise interaction of
neighboring atoms of a RGC is approximated by the Morse
potential

usrd = Afe−2asr−R0d − 2e−asr−R0dg s1d

with the three parametersA, R0, anda, the distribution func-
tion of the atomn of a perfect crystal can be written in the
Gaussian form

fsqnd = C expS−
2a2c2qn

2

t
D , s2d

where qn is the displacement of the atom from its site,
t=T/A is the reduced temperature, andc is a dimensionless
effective parameter of the quasielastic bond of neighboring
atoms. Then Gibbs thermodynamic potentialF0 of the crys-
tal is expressed as5,6
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whereb=asR−R0d represents the reduced lattice expansion,
R is the nearest-neighbor distance,z=12 is the coordination
number,P is the external pressure,

L =
"a

ÎMA
s4d

is the de Boer parameter for the Morse potential,M and N
are the atomic mass and the total number of atoms.

The first term in Eq.s3d determines the entropy part of
the free energy of vibrations of an atom of the crystal, the
second term represents the average potential energy of inter-
action of nearest neighbors. While the short-range interaction
of neighboring atoms is given by the Morse potential, the
long-range Van der Waals attractions,−r−6d between an
atom and the atoms other than its nearest neighbors is de-
scribed by the attractive part of the Lennard-Jones potential
with the parameters« and s. This interaction is taken into
account by the third term in Eq.s3d, with ûl =4.91 for the
RGC.11

The fourth term in Eq.s3d determines a contribution to
the free energy of the crystal due to the cubic anharmonicity
of collective atomic vibrations, evaluated in the second
order of the perturbation theory, witha3<2.31. This correc-
tion is rather small and contributes relatively little to the free
energys3d. However, its strong temperature dependence, es-
pecially in the vicinity of the melting point, is responsible for
the peculiar high-temperature behavior of a number of ther-
modynamic parameters, such as specific heat, thermal expan-
sion, Grüneisen parameter, etc.

Thermodynamic potentials3d is a function of reduced
temperaturet and external pressureP. Two internal crystal
parametersb and c, representing the lattice expansion and
the dimensionless effective quasielastic bond constant, are
considered as variational parameters minimizing the crystal
free energy at the given temperature and pressure. The tem-
perature range, where Eq.s3d holds, is determined by the
inequalityt@cL.

As in Ref. 5, the values of the parameters of the Morse
potentialA, R0, anda are determined to fit the experimental
values of the sublimation energy, the interatomic spacing,
and the bulk modulus of the RGC at zero temperature and
pressure. Incorporation of the long-range attraction of atoms
results in an additional compression of the lattice in compari-
son with the system with the nearest-neighbor interaction
only. Taking the compression into account is important in
examination of the vacancy structure. The values of the pa-
rametersA andR0 of the RGC determined in this model are

different from those obtained in Ref. 5, where the long-range
interatomic interaction was not considered. However, the
agreement of the thermodynamic properties and the equation
of state of the perfect RGC calculated within the present
model with the observed data is as good as in Refs. 5–7. The
values of the parametersA, R0, anda for the RGC are listed
in Table I together with the parameters of the Lennard-Jones
potential.11

As emphasized in Ref. 5, the drastic decrease of the equi-
librium value of the quasielastic bond parameterc0std as the
temperature approaches the melting point is an indicative of
the vicinity of the instability pointtc, where the free energy
minimum with respect to parameterc disappears. This insta-
bility is directly related to the vibrational anharmonicity,
manifesting itself in the attraction between phonons, which is
enhanced with temperature. As the system approaches the
critical temperaturetc, wheredc/dt →−`, the phonon con-
centrationn increases with an infinite rate,dn/dt → ` . As a
result, the system’s thermal susceptibility becomes anoma-
lously large, manifesting itself in a nonlinear rise of specific
heat, linear expansion coefficient, etc. For heavy RGCs we
obtain tc=0.71, and for Netc=0.65. The formation energy
of structure defects should also be sensitive to the proximity
to the instability point.

The appearance of a vacancy in the lattice results in
substantial distortion of the distribution of displacements
of atoms surrounding the vacancy. The presence of an empty
site primarily affects the atomic distribution in four coordi-
nation spheres of the vacancy. In fact, each atom of the first
coordination sphere has one broken bond. This results in
weakening of its repulsion in the direction of the vacant site,
which, in turn, leads to an elongation of the atomic distribu-
tion and a shift of the center of the distribution towards the
vacancy. Each atom of the second coordination sphere of the
vacancy is affected by the deformation of the atomic distri-
bution of four nearest neighbors of the vacancy, each atom of
the third coordination sphere is affected by two atoms, and,
finally, each atom of the fourth coordination sphere is af-
fected by one atom of the first coordination sphere of the
vacancy. For symmetry reasons, the distribution functions of
displacements of an atom belonging tonth coordination
sphere of the vacancy is symmetrical about the direction to
the vacancy and is written as

fsx,y,zd = Cn expH−
2a2

t
fcn1

2 x2 + cn2
2 sy2 + z2dgJ , s5d

wherecn1 andcn2 are the variational parameters that charac-
terize, respectively, the longitudinal and the transverse

TABLE I. Parameters of the Morse and Lennard-Jones poten-
tials for the RGC.

a sÅ−1d A sKd R0 sÅd s sÅd e sKd

Ne 2.04 38 3.15 2.74 36

Ar 1.63 117 3.83 3.4 121

Kr 1.52 172 4.09 3.65 164.5

Xe 1.38 226 4.46 3.98 232
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widths of the distribution. Thex axis is chosen to pass
through the sites of the atom and the vacancy.

The change of the distribution of the atomic displace-
ments causes a change of the energy of interaction between
the atoms around the vacancy and with the atoms of
their own surrounding. For example, the change of interac-
tion between the atoms of the vacancy’s first coordination
sphere is

DU = A
z1z11

2 FexpS− 2b1 +
t

4c11
2 +

3t

4c12
2 D

− 2 expS− b1 +
t

16c11
2 +

3t

16c12
2 D

− expS− 2b0 +
t

c0
2D + 2 expS− b0 +

t

4c0
2DG , s6d

where z11=4 is the number of common neighbors of

both vacancy and one of the atoms of its first coordination
sphere,b0 is the equilibrium value of the parameter of lattice
expansion calculated for a perfect solid,b1=asR11−R0d, R11

is the distance between the vacant site and one of its
neighbors shifted towards the vacancy. Similar to Eq.s6d,
we should take into account the changes of the average
potential energy of interaction of all the atoms belonging to
the first, second, third, and fourth coordination spheres
of the vacancy with their own nearest neighbors. In addition
to the change of the potential energy of interatomic interac-
tion, the total change of the crystal free energy due to the
vacancy formation includes the change of the entropy term
given by

DFs = Ato
n=1

4

zn lnFcn1cn2
2

c0
3 G , s7d

wherezn is the number of atoms innth coordination sphere
of the vacancy.

To obtain the free energy of the medium relaxation,
we minimize the total change of the crystal free energy
with respect to parameterscn1, cn2, and b1. The sum of
the free energy of the medium relaxation and the work
required to remove an atom from a lattice site constitutes the
free energygv of the vacancy formation. In Fig. 1 we plotted
the temperature dependence of the free energy of the
vacancy formation in solid Ar at zero pressure. In the same
plot we show the curve computed within the quasiharmonic
model without regard for the cubic anharmonicity contribu-
tion to the free energy. The comparison of these curves
suggests that it is the vibrational cubic anharmonicity that is
responsible for the dramatic decrease of the vacancy forma-
tion energy near the melting point. To understand the reason
for such behavior ofgv, let us compare the average potential
energy of interatomic interaction calculated for both
quasiharmonic and anharmonic perfect crystalssFig. 2d. Fig-
ure 2 demonstrates that the cubic anharmonicity gives rise to
the accumulation of an excess of the potential energy of the
perfect crystal near the instability temperature. Generation of
the structure defects breaks the translational symmetry of the
crystal, and the relaxation brings the medium around the
defects out of the instability region. The accumulated energy

FIG. 1. The free energy of the vacancy formation in solid Ar
at zero pressure calculated up to the instability point. Curve 1
was obtained in the quasi-harmonic approximation taking into
account the relaxation of atoms of four coordination spheres of the
vacancy. Curves 2 and 3 were computed within the model with the
cubic anharmonicity taken into account, including the relaxation of
atoms of two and four coordination spheres of the vacancy,
respectively.

FIG. 2. Average potential energy per atom of solid Ar calculated
within the quasiharmonic modelsdotted lined and taking the cubic
anharmonicity into accountssolid lined.

FIG. 3. Melting curve of Ar. Experimental values are from Refs.
12 and 13.
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excess is released through the medium relaxation and
reduces the defect formation energy. Therefore, defects of
structure svacancies, dislocations, etc.d in an anharmonic
crystal should be treated as centers of relaxation of the
excessive potential energy. The next conclusion is that,
since the defect formation energy in the anharmonic crystal
tends to zero as temperature increases, the phase with a
high concentration of defects becomes thermodynamically
favorable. It seems natural to identify the new phase with a
liquid.

The above argument allows one to conclude that the melt-
ing temperature of the RGC is directly related to the tem-
perature ranget→tc, where the system approaches the point
of the instability of the crystalline state. In Fig. 3 we show
the melting curve of Ar calculated from the condition that the
system reaches the instability point.

The discrepancy between the theoretical and the observed
values at high pressure seems, to our opinion, to be attributed
to a more complicated mechanism of creation of the structure
defects in a compressed medium, that may result in peculiar
behavior of the melting curves of various substances at high
pressures.14,15

The character of behavior of the system near the instabil-
ity region can be investigated experimentally by x-ray
studies of the mean-square displacement of atoms of the
crystal, which, within the present approach, is in the inverse
proportion to the square of the quasielastic module and de-
pends on the correlative broadening of the width of the
atomic distribution

kq2l
R2 =

3t

4c0
2stdsaRd2gt

. s8d

Heregt<0.77 is the total correlation smearing of the region
of localization of an atom att=tc ssee Ref. 5d. On the other
hand, Eq.s8d equals the square of the Lindemann parameter
d. Our calculation givesdstcd=0.098 at P=0, in a good
agreement with the Lindemann criterion for the RGC,16

while the quasiharmonic model givesdstcd<0.081.
In summary, our studies of the formation of vacancies in

the RGC allow us to conclude that a steep decrease of the
vacancy formation energy near the instability point of the
crystalline state is directly related to the enhancement of the
vibrational anharmonicity at high temperature. As vacancies
appear, the accumulated potential energy excess is released
through the relaxation of the medium around a vacancy, fa-
voring a reduction of the vacancy formation energy. It should
be noted that the vibrational anharmonicity should manifest
itself also in the formation of the dislocation structure of the
crystal and, thus, affect substantially the high-temperature
strength and creep properties of crystals. It seems natural to
suppose that the evolution of the solid state instability is
related to the premelting effects in crystals.17
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