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Extracting the spectral density function of a binary composite withouta priori assumptions
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The spectral representation separates the contributions of geometrical arrangjep@agy) and intrinsic
constituent properties in a composite. The aim of this Brief Report is to present a numerical algorithm based on
the Monte Carlo integration and constrained least-squares methods to resolve the spectral density function for
a given system. The numerical method is verified by testing it on the well-known Maxwell Garnett expression.
Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields
significant microstructural information in improving our understanding of how microstructure influences the
macroscopic behavior of composites without any intricate mathematics.
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Theory of mixtures and their electrical properties have 1

attracted researchers to seek a relation between overall com- Ael/Ag— A= f gOI[L +&7 Ax] X, 1)

posite properties and intrinsic properties of the parts forming 0

the mixture(constituents and their spatial arrangement in- whereA is the complex and frequency dependent scaled per-

side the mixturé. Bergmar has proposed a mathematical mittivity, A ,=e,—&,, andx is the spectral parameter. The

way for representing the effective dielectric permittivityof ~ constantA depends on the concentration and structure of the

a binary mixture as a function of permittivities of its con- composite, it is related to the so-called “percolation

stituents,e; ande,, and an integral equation, which includes strength® and also known as the zeroth momé@fithe SDF

the geometrical contributions. It is calléite spectral density IS 9(x), and it is sought by the presented procedure. The SDF

representationSDR). After the introduction of nondestruc- satisfiesfg(x)dx=q and fxg(x)dx=q(1-q)/d,>*° whered

tive measurement techniques and systems, such &sthe geometrical dimension of the system. In the MG ap-

electricab or acoustic impedance spectroscéplye imped- ~ proximation, shape of the inclusions n, the principle term of

ance of materialgeither pure or compositecould be re- a depolarization tensor of a single ellipsoidal inclusion, in a

corded for various frequencies Then, the frequency could particulated binary composite can also be expressed as a

be used as a probe to obtain microstructural information wittyariable in complex permittivity of dilute and isotropic mix-

the application of the SDR:1 This can only be achieved if tures; i.e., needleliképrolatg inclusions parallel to the field

(i) no influence ofv on the geometrical arrangement of direction yield n<1/3, unidirectional cylindrical inclusions

phases is preseft,and(ii) the intrinsic properties of phases perpendicular to the field direction yielt=1/2, andoblate

are known as a function of. Numerica#~°and analytic&’  inclusions perpendicular to the field yieldsrl.}"18

approaches have been proposed to resolve the spectral den-The numerical procedure is briefly as followsfirst the

sity function (SDF for composites. Although numerical ap- integral in Eq.(1) is written in a summation form over some

proaches could be prefered over the analytical ones, whicRumber of randomly selected and fixeq, values, x;,

are empirical expressions and are not universal, they solve &[0, 1] with n less than the total number of experimental

nontrivial—ill-posed—inverse problef? Here, we apply a (known) data pointsAgq/A,; and Ax=1.

recently developed numerical mettdtb extract the SDF of . )

a binary mixture withous priori assumption as in analytical Aei/ Az = A= g1 +e7 Agx, ] TAX. (2)

SOIU_t'OnSI? " The _method IS bas_ed on the Monte Carlo Inte'This converts the nonlinear problem in hand to a linear one

gration hypoth_e5|s a_nd constrained Ie_ast-squ@elsSQ) al- with g, being the unknowns. Later, a C-LSQ is applied to get

gorithm. By using this procedure thg integration constant pefhe corresponding,gvalues:

comes continuous rather than discrete as in regulation

fellgorithms*?v9 First, the_ verification of the proposed method min Y [A-Kg,]?and g =0, (3)

is presented by considering the Maxwell GarndtG) ef-

fective dielectric functiort? Later, it is applied to the dielec- whereA is a column vector of the experimental data with the

tric data of a rock-and-brine systefhwhich has been also substracted constad A=A.,/A,;—A, andK is the kernel-

used in Refs. 5 and 6 to test their analytical expressions. matrix, K=[1 +si‘1Ajixn]‘1. In our model, we perform many
For a binary isotropic composite system with constituentC-LSQ minimization steps with new sets of randomly se-

permittivitiese; ande,, and concentrationd —q) andg, and  lectedx, values. The gvalues obtained are recorded in each

with an effective permittivitys,, the SDR is expressed'@s  step, which later build up the spectral density distribution g.
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FIG. 2. Calculated spectral density distributions, which corre-
FIG. 1. Parametric plot of the scaled mixture permittivity. The spond to delta sequences. The distributions are presented as error

symbols are the analytical model of the Maxwell Garnett equationpars. The spectral functions from left to right correspondgto
and the solid lines—) are the values calculated from the spectral ={0.95,0.7,0.5,0.3,0.05respectively. The correspondirigalcu-
functions obtained from the proposed numerical method. The semiated A values arg0.002, 0.012, 0.029, 0.064, 0.358espectively,
circles from large to small corresponds t»={0.95,0.7,0.5, for the considered concentrations. The dashed vertical (ines)
0.3,0.09, respectively. The inset is the enlargement of the valueshow the positions of the actual delta functions for the MG expres-
close to the origin fog,={0.05,0.30. sion. The graph is in logarithmic base 10.

E | ber of minimization | v shexi composite with spherical inclusiong=3 and n=1/3 in

bor a largeé number o mlntlrr]nlzatll\cﬂ)n ?ops,cac':ua y taX'St. Fig. 1. The graphs for the MG expression are semicircles. In
ecomes ~continuous—the ~Monte — Carlo  integrationyne figre, five different concentration levels are plottgd,
hypothesis—contrary to regularization meth8d<? In the -{0.05,0.3,0.5,0.7,0.95the inset shows the enlargement

presented analyses below, the total number of randomly s L ; : :
lectedx values are~25 000. Finally, the weighted distribu- G_(':]ose_ to the origin. The size and shift 3(Ae1/ A1) [which
is A in Eqg. (1)] of the semicircles are proportional to the

i 20
Eon of gri.v%rsusg " Ieat:; ?X)' AS ahremar.lt<r,] Macdon?}a 1,concentration of Phase 2. The presented numerical analyses

as explicitly shown that approaches with summation 0pen‘ormed on the MG data yield the solid linés-) in the
delta functions do not suffer from the limitation of ill-posed figure

inversion using complex-nonlinear least squares. Th - | in Eig. 2
Application of the numerical procedure to the MG expres- © C(_)rrespondmg(g). are p otted as error ba}rs N 9.
on a log-log scaldlogarithmic base 10 In the figure, the

; ; 5,10 ; _
sion shoyld yield delta sclaque'nééfor' 9(x).>"The .d|e|ec. expected locations of(g) from Eg.(5) are also shown with
tric function for a composite with arbitrary shaped mclusmnsdaShed vertical lineg - -). The gx)-distributions are ana-

MG composite is defined as lyzed by the Lévy distributiod? which generates a delta

ge= {1 +doA, [ (1 — A, +de Y. (4)  sequencé? The solid line(—) illustrate the appropriate
_ . _ Lévy distributions with expected values coinciding with
The resulting SDF is then a delta function, those of Eq.(5). Various parameters from the statistical
g(x) = g8 [x - (1 —g)/d]. (5) analyses and their expected values are presented in Table I.

The concentration values, calculated from the integration
We choose the following values for dielectric functions of of g(x) are within<<1% of the expected values for the higher
the phasess;=1-1(100qw)™ and e,=10-1(gqw)™ with  concentrations, and around5% for the lowest concentra-
w=2mv ande(=8.854 pF/m. A parametric plot of the imagi- tion. The localization parameter fog, which is the most
nary part of Ag1/A,; against its real part is plotted for a probable value, is calculated from the integrationxgtx)

TABLE |. Comparison between the results of the proposed numerical approach and those of the Lévy statistics and the given analytical
SDF of the MG expressions for various concentrations. The bars on the quantities indicate that they are calculated from the numerical results.

q Ch xP (1-g)/d° A? Aot q(1-q)° q(1-g)°
0.05 0.053 0.318 0.316 0.002 0.002 0.057 0.048
0.30 0.301 0.234 0.233 0.012 0.013 0.213 0.210
0.50 0.050 0.167 0.167 0.029 0.029 0.249 0.249
0.70 0.704 0.100 0.100 0.064 0.064 0.213 0.280
0.95 0.951 0.017 0.017 0.358 0.359 0.051 0.048

&Calculated using the resulting>g. Known from the definition of g()—integralfég(x)dx is equal to this value.

PThe localization parameter for the calculated Lévy distribution. The shape parameters and the amplitude of the Lévy distributions are
disregarded.

®Known from the definition of the SDF for the MG expression, E5). A value calculated before the numerical procedure using Hq.

dMeanA value calculated during each Monte Carlo integration step in the numerical procedut8).Eq.

€Calculated using the resulting>g andx values. Known from the definition of(g)—the values is equal to the integrﬁﬂj?,xg(x)dx.
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FIG. 3. Parametric plot of the scaled rock-and-brine permittiv- 2
ity. The symbolg) are the experimental data of Ref. 15. The chain _12}
line (- - -) is the results for the assumptions as Refs. 5 and 6, and : . .
corrected for temperature and salinity. The sdkg) and dashed 6 7 8 9 10
(- - -) lines are results obtained by two different water and compos- log(e)
ite ohmic conductivitesg5=0.85 S/m ando2=0.041 S/m(—), o
and 02:0 85 S/m and%=0.038 S/m(- - -) FIG. 4. Measurede symbols are the digitized data from Rej. 6
. -=0. .

and recalculated dielectric permittivitfR(e,) and alternating
and from the statistical analysis. The estimated localizatiorurrent conductivityo.=J(eeeow). The chain line(- - -) is the re-
parameters are within<1% of the actual values of the MG sults obtained with the same assumptions as Refs. 5 and 6 had. The
analytical expressionl® The product of the concentrations line legends are the same as in Fig. 3. The graph is in logarithmic
g(1-q) or the integration okg(x) calculated have also very base 10.

good agreement with those values expected from the defini-. . L
tions of the SDR. Observe that (1-q) yields the shape with such an approach. The analytical SDF of Ref. 6 is dis-

factor n for the spherical inclusions in the considered MGpIayed with the thick chain liné- - ) as a comparison. The

. o = . analytical expression has been valuable to give limits for the
model. Finally,Accg™ with m=5/2, which follows from the spectral parametex. However, in the case of Kenyon's

i K i ’24 . . . .
Archie’s relation? datd® it overestimates the upper limit and could not model

We also test our numerical procedure on a rock-and-bring, . "< \h-SDF at lowk values. The two spectral parameters
composite systertf, which was studied by various resolved from the sharp sub-SDF distributions at

f;::]edr:)tﬁss S;zgg:xelegltrgsd'sggs'zz ddar:aegiﬂ :;’Aloﬁgngér?ooz{o.om,0.04 yield concentrationgg={0.023,0.11} from
y values were u ! Jgdx=q, respectively. The ratia/(1-q) might be used to

step, the number of Monte Carlo loops wa§00. The ex- Bredict the shape of pores, i.e., needlelike with4/23 and

pressions in Refs. 5 and 6 are employed to calculate th . ) i a
dielectric function of the brine with the ohmic conductivity spherlcgl with r=4/11 for the .SUb SDF at={0.004,0.0%,
respectively. The sub-SDF situated at lowvalues, @x)

of waters9=0.85 S/m. The relative permittivity of the rock . i .
72 P y «x1, results in a very small concentratign107°), and its

is taken to be constant without any imaginary pagt:7.5. o , . .
The resulting scaled dielectric quantity in E€L) is pre- Presence indicates that continuous percolating paths exist in
ghe pore structure, which may involve sodium ions. The es-

sented in Fig. 3. Similar to Fig. 1, a semicircle-like shape is, , o
observed. The first analysis with the above considerationdMated zeroth momerd is 0.058, which is lower than that
given by Stroudet al®

results in an unsatisfactory calculateg as presented with
the chain line(- - -) in Fig. 4. The low frequency sidéw
<30 MH2) of the real permittivity has large discrepancies.
The experience of the author regarding dielectric data analy- or
ses suggests that the measured values at low frequencies do
not particularly satisfy the Kramers-Kronig relatiols3
Consequently, application of the Kramers-Kronig relations 27

1t

yields lower effective composite ohmic conductivity than the % 3
original data, which wag?=0.055 S/m. Therefore two dif- =
ferent conductivities,ag={0.041,0.038 S/m, which result T -4y
in better agreements between numerical and experimental 5
values, are adopted.

In Fig. 5 the obtained(x) are presented with error bars. It i
is striking that two very distinct peaks are extracted whatever -7
the initial considerations are for the conductivities. Tlig)g -6

can be divided into three sub-SDFs, which are located
aroundx={~0,0.004,0.04 It is clear that the original data i, 5. Calculated spectral density distributions. The distribu-
can in a first attempt be modeled by two SDFs as delta sjons are displayed as error bars. The lines represent the appropriate

quences(MG expressiong %1125 without any sophisticated fitted Lévy distributions, and their legends are the same as in Fig. 3.
mathematics. However, the sub-SDF at lowvalues (x  The thick chain line is the SDF(g) of Ref. 6. The graph is in

<107%) with g(x)<x* dependence would not be obtained logarithmic base 10.
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As a concluding remark, an effective numerical method isthat it can resolve unique SDF, which could indeed be used
presented to extract the SDF of a binary composite system. to obtain valuable microstructural information regarding the
is tested on both “ideal” and measured dielectric data focomposite and its constituents in various research fields, in
composites. The proposed method not only extracts the SDwhich impedance spectroscopy is used for characterization
it also yields volume fractions and effective shapes of conof materials, such as, polymeric, pharmaceutical, biological,
stituents even if they are not known in advance. It is showrbuilding, colloidal, porous, etc.
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