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The spectral representation separates the contributions of geometrical arrangementstopologyd and intrinsic
constituent properties in a composite. The aim of this Brief Report is to present a numerical algorithm based on
the Monte Carlo integration and constrained least-squares methods to resolve the spectral density function for
a given system. The numerical method is verified by testing it on the well-known Maxwell Garnett expression.
Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields
significant microstructural information in improving our understanding of how microstructure influences the
macroscopic behavior of composites without any intricate mathematics.
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Theory of mixtures and their electrical properties have
attracted researchers to seek a relation between overall com-
posite properties and intrinsic properties of the parts forming
the mixturesconstituentsd and their spatial arrangement in-
side the mixture.1 Bergman2 has proposed a mathematical
way for representing the effective dielectric permittivity«e of
a binary mixture as a function of permittivities of its con-
stituents,«1 and«2, and an integral equation, which includes
the geometrical contributions. It is calledthe spectral density
representationsSDRd. After the introduction of nondestruc-
tive measurement techniques and systems, such as
electrical3,4 or acoustic impedance spectroscopy,4 the imped-
ance of materialsseither pure or composited could be re-
corded for various frequenciesn. Then, the frequency could
be used as a probe to obtain microstructural information with
the application of the SDR.5–11 This can only be achieved if
sid no influence ofn on the geometrical arrangement of
phases is present,12 andsii d the intrinsic properties of phases
are known as a function ofn. Numerical8–10and analytical5–7

approaches have been proposed to resolve the spectral den-
sity function sSDFd for composites. Although numerical ap-
proaches could be prefered over the analytical ones, which
are empirical expressions and are not universal, they solve a
nontrivial—ill-posed—inverse problem.8,9 Here, we apply a
recently developed numerical method13 to extract the SDF of
a binary mixture withouta priori assumption as in analytical
solutions.5–7 The method is based on the Monte Carlo inte-
gration hypothesis and constrained least-squaressC-LSQd al-
gorithm. By using this procedure the integration constant be-
comes continuous rather than discrete as in regulation
algorithms.8,9 First, the verification of the proposed method
is presented by considering the Maxwell GarnettsMGd ef-
fective dielectric function.14 Later, it is applied to the dielec-
tric data of a rock-and-brine system,15 which has been also
used in Refs. 5 and 6 to test their analytical expressions.

For a binary isotropic composite system with constituent
permittivities«1 and«2, and concentrationss1−qd andq, and
with an effective permittivity«e, the SDR is expressed as16

De1/D21 − A =E
0

1

gsxdf1 + «1
−1D21xg−1dx, s1d

whereD is the complex and frequency dependent scaled per-
mittivity, Dab=«a−«b, and x is the spectral parameter. The
constantA depends on the concentration and structure of the
composite, it is related to the so-called “percolation
strength”6 and also known as the zeroth moment.8 The SDF
is gsxd, and it is sought by the presented procedure. The SDF
satisfiesegsxddx=q and exgsxddx=qs1−qd /d,2,6,10 where d
is the geometrical dimension of the system. In the MG ap-
proximation, shape of the inclusions n, the principle term of
a depolarization tensor of a single ellipsoidal inclusion, in a
particulated binary composite can also be expressed as a
variable in complex permittivity of dilute and isotropic mix-
tures; i.e., needlelikesprolated inclusions parallel to the field
direction yield n!1/3, unidirectional cylindrical inclusions
perpendicular to the field direction yieldn=1/2, andoblate
inclusions perpendicular to the field yield n<1.17,18

The numerical procedure is briefly as follows:13 first the
integral in Eq.s1d is written in a summation form over some
number of randomly selected and fixedxn values, xn
P f0,1g with n less than the total number of experimental
sknownd data points,De1/D21 andDx=1.

De1/D21 − A = o gnf1 + «1
−1D21xng−1Dx. s2d

This converts the nonlinear problem in hand to a linear one
with gn being the unknowns. Later, a C-LSQ is applied to get
the corresponding gn values:

min o fD − Kgng2 and gn ù 0, s3d

whereD is a column vector of the experimental data with the
substracted constantA, D=De1/D21−A, andK is the kernel-
matrix, K =f1+«i

−1D jixng−1. In our model, we perform many
C-LSQ minimization steps with new sets of randomly se-
lectedxn values. The gn values obtained are recorded in each
step, which later build up the spectral density distribution g.
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For a large number of minimization loops, actually thex-axis
becomes continuous—the Monte Carlo integration
hypothesis—contrary to regularization methods.8,9,19 In the
presented analyses below, the total number of randomly se-
lectedx values are,25 000. Finally, the weighted distribu-
tion of gn versusxn leads gsxd.20 As a remark, Macdonald19

has explicitly shown that approaches with summation of
delta functions do not suffer from the limitation of ill-posed
inversion using complex-nonlinear least squares.

Application of the numerical procedure to the MG expres-
sion should yield delta sequences22 for gsxd.5,10 The dielec-
tric function for a composite with arbitrary shaped inclusions
MG composite is defined as

«e = «1h1 + dqD21fs1 − qdD21 + d«1g−1j. s4d

The resulting SDF is then a delta function,

gsxd = qd fx − s1 − qd/dg. s5d

We choose the following values for dielectric functions of
the phases:«1=1−ıs100«0vd−1 and «2=10−ıs«0vd−1 with
v=2pn and«0=8.854 pF/m. A parametric plot of the imagi-
nary part of De1/D21 against its real part is plotted for a

composite with spherical inclusionssd=3 and n=1/3d in
Fig. 1. The graphs for the MG expression are semicircles. In
the figure, five different concentration levels are plotted,q
=h0.05,0.3,0.5,0.7,0.95j, the inset shows the enlargement
close to the origin. The size and shift inRsDe1/D21d fwhich
is A in Eq. s1dg of the semicircles are proportional to the
concentration of Phase 2. The presented numerical analyses
performed on the MG data yield the solid liness—d in the
figure.

The corresponding gsxd are plotted as error bars in Fig. 2
on a log-log scaleslogarithmic base 10d. In the figure, the
expected locations of gsxd from Eq. s5d are also shown with
dashed vertical liness- - -d. The gsxd-distributions are ana-
lyzed by the Lévy distribution,21 which generates a delta
sequence.22 The solid line s——d illustrate the appropriate
Lévy distributions with expected values coinciding with
those of Eq.s5d. Various parameters from the statistical
analyses and their expected values are presented in Table I.
The concentration values,q̄, calculated from the integration
of gsxd are within,1% of the expected values for the higher
concentrations, and around,5% for the lowest concentra-
tion. The localization parameter forx, which is the most
probable value, is calculated from the integration ofxgsxd

TABLE I. Comparison between the results of the proposed numerical approach and those of the Lévy statistics and the given analytical
SDF of the MG expressions for various concentrations. The bars on the quantities indicate that they are calculated from the numerical results.

q q̄a x̄b s1−qd /dc Ain
d Aout

e qs1−qde qs1−qdc

0.05 0.053 0.318 0.316 0.002 0.002 0.057 0.048

0.30 0.301 0.234 0.233 0.012 0.013 0.213 0.210

0.50 0.050 0.167 0.167 0.029 0.029 0.249 0.249

0.70 0.704 0.100 0.100 0.064 0.064 0.213 0.280

0.95 0.951 0.017 0.017 0.358 0.359 0.051 0.048

aCalculated using the resulting gsxd. Known from the definition of gsxd—integrale0
1gsxddx is equal to this value.

bThe localization parameter for the calculated Lévy distribution. The shape parameters and the amplitude of the Lévy distributions are
disregarded.
cKnown from the definition of the SDF for the MG expression, Eq.s5d. A value calculated before the numerical procedure using Eq.s1d.
dMeanA value calculated during each Monte Carlo integration step in the numerical procedure, Eq.s3d.
eCalculated using the resulting gsxd andx values. Known from the definition of gsxd—the values is equal to the integrale0

13xgsxddx.

FIG. 1. Parametric plot of the scaled mixture permittivity. The
symbols are the analytical model of the Maxwell Garnett equation,
and the solid liness—d are the values calculated from the spectral
functions obtained from the proposed numerical method. The semi-
circles from large to small corresponds toq2=h0.95,0.7,0.5,
0.3,0.05j, respectively. The inset is the enlargement of the values
close to the origin forq2=h0.05,0.30j.

FIG. 2. Calculated spectral density distributions, which corre-
spond to delta sequences. The distributions are presented as error
bars. The spectral functions from left to right correspond toq
=h0.95,0.7,0.5,0.3,0.05j, respectively. The correspondingscalcu-
latedd A values areh0.002, 0.012, 0.029, 0.064, 0.358j, respectively,
for the considered concentrations. The dashed vertical liness- - -d
show the positions of the actual delta functions for the MG expres-
sion. The graph is in logarithmic base 10.
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and from the statistical analysis. The estimated localization
parametersx̄ are within,1% of the actual values of the MG
analytical expression.5,10 The product of the concentrations
qs1−qd or the integration ofxgsxd calculated have also very
good agreement with those values expected from the defini-
tions of the SDR. Observe thatx̄/ s1−q̄d yields the shape
factor n for the spherical inclusions in the considered MG
model. Finally,A~qm with m=5/2, which follows from the
Archie’s relation.5,24

We also test our numerical procedure on a rock-and-brine
composite system,15 which was studied by various
scientists.5,6 The dielectric dispersion data had 31 points, 30
randomly selectedx values were used in each Monte Carlo
step, the number of Monte Carlo loops was,800. The ex-
pressions in Refs. 5 and 6 are employed to calculate the
dielectric function of the brine with the ohmic conductivity
of waters2

0=0.85 S/m. The relative permittivity of the rock
is taken to be constant without any imaginary part,«1=7.5.
The resulting scaled dielectric quantity in Eq.s1d is pre-
sented in Fig. 3. Similar to Fig. 1, a semicircle-like shape is
observed. The first analysis with the above considerations
results in an unsatisfactory calculated«e as presented with
the chain lines- · -d in Fig. 4. The low frequency sidesv
,30 MHzd of the real permittivity has large discrepancies.
The experience of the author regarding dielectric data analy-
ses suggests that the measured values at low frequencies do
not particularly satisfy the Kramers-Kronig relations.13,23

Consequently, application of the Kramers-Kronig relations
yields lower effective composite ohmic conductivity than the
original data, which wasse

0=0.055 S/m. Therefore two dif-
ferent conductivities,se

0=h0.041,0.038j S/m, which result
in better agreements between numerical and experimental
values, are adopted.

In Fig. 5 the obtained gsxd are presented with error bars. It
is striking that two very distinct peaks are extracted whatever
the initial considerations are for the conductivities. The gsxd
can be divided into three sub-SDFs, which are located
aroundx=h,0,0.004,0.04j. It is clear that the original data
can in a first attempt be modeled by two SDFs as delta se-
quencessMG expressionsd10,11,25 without any sophisticated
mathematics. However, the sub-SDF at lowx values sx
,10−3d with gsxd~x−1 dependence would not be obtained

with such an approach. The analytical SDF of Ref. 6 is dis-
played with the thick chain lines- · -d as a comparison. The
analytical expression has been valuable to give limits for the
spectral parameterx. However, in the case of Kenyon’s
data15 it overestimates the upper limit and could not model
the sub-SDF at lowx values. The two spectral parameters
resolved from the sharp sub-SDF distributions atx
=h0.004,0.04j yield concentrationsq=h0.023,0.111j from
egdx=q, respectively. The ratiox/ s1−qd might be used to
predict the shape of pores, i.e., needlelike with n.4/23 and
spherical with n.4/11 for the sub-SDF atx=h0.004,0.04j,
respectively. The sub-SDF situated at lowx values, gsxd
~x−1, results in a very small concentrations,10−5d, and its
presence indicates that continuous percolating paths exist in
the pore structure, which may involve sodium ions. The es-
timated zeroth momentA is 0.058, which is lower than that
given by Stroudet al.5

FIG. 3. Parametric plot of the scaled rock-and-brine permittiv-
ity. The symbolss•d are the experimental data of Ref. 15. The chain
line s- · -d is the results for the assumptions as Refs. 5 and 6, and
corrected for temperature and salinity. The solids—d and dashed
s- - -d lines are results obtained by two different water and compos-
ite ohmic conductivites;s2

0=0.85 S/m andse
0=0.041 S/ms—d,

ands2
0=0.85 S/m andse

0=0.038 S/ms- - -d. FIG. 4. Measureds• symbols are the digitized data from Ref. 6d
and recalculated dielectric permittivityRs«ed and alternating
current conductivityse=Js«e«0vd. The chain lines- · -d is the re-
sults obtained with the same assumptions as Refs. 5 and 6 had. The
line legends are the same as in Fig. 3. The graph is in logarithmic
base 10.

FIG. 5. Calculated spectral density distributions. The distribu-
tions are displayed as error bars. The lines represent the appropriate
fitted Lévy distributions, and their legends are the same as in Fig. 3.
The thick chain line is the SDF gsxd of Ref. 6. The graph is in
logarithmic base 10.
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As a concluding remark, an effective numerical method is
presented to extract the SDF of a binary composite system. It
is tested on both “ideal” and measured dielectric data for
composites. The proposed method not only extracts the SDF,
it also yields volume fractions and effective shapes of con-
stituents even if they are not known in advance. It is shown

that it can resolve unique SDF, which could indeed be used
to obtain valuable microstructural information regarding the
composite and its constituents in various research fields, in
which impedance spectroscopy is used for characterization
of materials, such as, polymeric, pharmaceutical, biological,
building, colloidal, porous, etc.
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