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Nonlinear Mie scattering from spherical particles
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A theoretical analysis of the second harmonic generation of light from spherical particles is presented that
unifies existing theories which are valid in the special cases of small particlg R@geigh limi), small
refraction index, radiation by nonlocal dipole and quadrupole moments. We study the angular distribution of
second harmonic using a nonlinear generalization of the linear Mie theory.
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I. INTRODUCTION neous layer of nonlinear material covering the sphw-
We describe second harmonic generati@HG) from though the size parameter in all three experimental works

spherical particles using a classical electrodynamics apO-8 Ref. 10,3.7-1.9 Ref. 7, and 1.3 Ref. 8, respectjesy
proach. Although it is well known that SHG response from Within the limits of validity of_ the Rayleigh apprOX|mat|_0n,_ it
centrosymmetric systems is forbidden within the electric di-VaS suggestédto use the Mie theory for a more quantitative
pole approximation there are at least three phenomena thdflysis—in the way already demonstrated by Ref. 5'11
allow for its experimental observation. Another approach suggested in the work of Dadggl.

The first is inversion symmetry breaking on the surface ofakes into account all tensor elements of the surface nonlin-
a sphere. This approach was initiated in the work by Ostling®" response of the sphere. The method was applied in the
Stampfli, and Bennemahmnd further developed in the pa- casé of small particle size parametées<1 corresponding
per by Dewitz, Hibner, and Bennemahiihe theory takes to the limit of Rayleigh scattering. The radiated SH field in
advantage of t,he nonliﬁear surface charge as a source of t direction ofn results from the nonlocal excitation of the
radiation. This stems from the analogy with the anharmonic€ ectric dipole and local excitation of the electric quadrupole
oscillator model where the oscillator strength of secondMoments
(third) harmonics oscillation is proportional to the square
(cube of the linear response oscillator strength. In other
words, the theory takes into account only tjag‘;’) tensor 32
element of the nonlinear resporisélthough it does not Q(n) = 16ma Egx2(n - £0)£0/5, Q)

fully account for the specific electronic properties of the ma- . . . .
terial on theab initio level, in particular its electronic reso- which in this case have a comparable strer{gi magnetic

nance structure, it has its power in predicting tregular dipole emission is forbidden because of the axial symmetry

distribution of the scattered field. The microscopic propertiesOf the system Here the incident electric field is taken as a

of the medium are accounted via the frequency dependerﬁ?oanne V;i\éeaﬁ:oﬁti%?étm% '_Phg]erg'rgﬁﬁfggm;hn?:é?ﬂ;aére
dielectric constant. The theory is a nonlinear extension oF ‘o P o prop

Mie scattering and works in a range of particle size param- descnbed. by the.quantl|t|e,sl and X2 Which can be ex
eters up toka~ 100 (ka=2ma/\, a being the radius of the pressed via the dielectric functions of the sphere, the inter-

- . . face, and the exterior regidn.
particle,A denoting the wavelengttwhere it becomes com- ' . . .
putationally costly. Thus, a good agreement with experi- The theory predicts the absence of the SHG signal in the

) . s - N
ments was found for third harmonic generation from waterforward dlrect_|on _and gives theka) sgalmg .Of th_e |r_1te
microdroplets with sizes from 8 to 32m56 A similar grated scattering intensity. The latter is obvious in view of

theory was built to explain the experiments with a refractionthe fact that the rgtardatlon of the e_Iectromagnetlc field
index of the scattering center close to urfifin this case it 2CT0Ss the sphere yields the nonlocal dipole moment propor-

. A . .
is possible to use a nonlinear analog of Rayleigh-Ganst-'onal to the(a/\)® where\ is the wavelength. This fact,

Debye(RGD) theory? that treats the electric fields inside and "€flécting @ very high sensitivity of the SHG signal to the

outside the sphere as identical and yields the polarization dticle size, was emphasized in the work of Brudny, Men-
(2w oza, and Mochaft:

i _ ) H K, . . .

PZw(r)_XiJ’k E_Kr)E (). The second harmon_lc electric field The theory of SHG by the nonlocal dipole and quadrupole

at the pointr is then obtained as a summation over the vol- __ . . g

ume of the sphere using a Green’s function method excnatlons_and their mterferepce was _ex.tended _by several
authors to include effects of disorder. Within the single scat-

(2w)? 5 ,eikzw\r—r’\ , tering and diffusion approximations, the angular distribution
Ea(N="2 fd r = P2u(r'), (1) of SHG intensity was studied in the three-dimensio(a)

case of a suspension of small spherical particles confined

where k§w=(2w)2/czs(2w), ¢ is the particle dielectric con- within a slab*® It was found that the intensity varies with the

stant. The integration can be analytically performed in theangle # between the axis and the direction of the observa-

case when the SHG source is confined to the thin homogdion and the polar anglé as

p = 8mika’E3x:k(&g - £0)/15, 2)
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2w = XiF1(6,8) + 45F2(6,8) + dxaxoFa(6,¢),  (4) Incident _---1-- Scattered
wave
where F1(0, ¢)=sir? 6, F,(0, ¢)=sirf §sir? ¢(1
—sir? 9sir? ¢), F3(6,p)=cosésir? dsir? ¢. The angular
scattering diagram shows two lobes in the forward direction
at cosf==0.22 for the realistic parameters pf and y, and
forbids SHG atd=0 in agreement with previous resufts:

Itis also interesting to compare the angular distribution of
the SHG intensity from the RGD thedfywith that of the
excitation of nonlocal dipole and local quadrupole
moments'® Although they both agree about the absence of inc
SHG signal in the forward direction, the RGD theory yields X
a considerably more complicated pattern with additional but
less pronounced lobes.

The nonlocal dipole and quadrupole are excited by a spa-
tial variation of the incident field within the sphere. In the  FIG. 1. Scattering of light by a sphere. The sphere of radiiss
previous example the excitation was due to the variation otharacterized by the dielectric constants at fundamental and double
the electric field on the wavelength scale. However, as hatequencye(w), €(2w) respectively, and by the tensor of surface
been shown in Ref. 14, field variations with other lengthsecond-order nonlinear susceptibilj?).
scales can also give rise to the nonlinear response. In Ref. 14
SHG from a single sphere in the inhomogeneous longitudinaépheres. In Sec. Ill we apply our theory to study water drop-
field and a sphere placed above a semi-infinite inert dielectrifets with a size parameter frora=0.001 to ka=200.0. We
substrate with a flat surface was presented together with assume that the local tensor of the second-order nonlinear
detailed discussion of the frequency dependence of the no%usceptibilityxfi“’) is equal to zero except for t@i&z}) ele-

linear response. In Ref. 16 the analysis was extended to agnent. The angular distribution and intensity dependence of
count for the inhomogeneous transverse field which can beHG response on the particle size is analyzed.

applied to a composite medium made up of an array of par-

ticles illuminated by beams of finite cross sectidnThe Il. THEORY

equivalence of the two theori€d®in the case of small non- '

magnetic spheres excited by the field of a plane wave was The theory consists of a few steps as follows. First, we

explicitly shown. solve a problem of the electromagnetic field scattering by a
This paper is an effort to compare possible scenarios fosphergMie theory) in order to find electric fields close to its

second harmonic generation from a centrosymmetric systesurface. The geometry of the problem is shown in Fig. 1. We

for different particle sizegregimes of Rayleigh, Mie, and represent the electric and the magnetic fields as

geometric optics and different material§we develop the 1

theory which is valid in both regimes of small as well as E==> C(e)[a'(e,m)f(e')(kf)xe,m(6’,¢)

large refraction index We assume that the microscopical 2em

properties of the medium are knovenpriori and are con- - i

tained in the frequency dependent dielectric functigm) + albly VX FPKN X (6, )], (5)

and in the tensor of the second-order nonlinear susceptibility

x?®). The dielectric function can in general be complex al-

lowing for the applicability of the theory to dielectrics as

well as to metals. Our goal is to describe the angular depen- o _

dence of the SHG intensity. The paper is organized as fol- + BV X FPKNX, (6, 4)] (6)

lows. In Sec. Il we present the surface sheet middet the

dielectric sphere in vacuum. The calculation of the secondf! aCC‘?W'}“ IiEq(liO.SD iOf \?acksor?.o \iNe denote
harmonic response comprises four ste@psolution of the ~ C(6)=V4m(2€+1)i%; a'=d'(k), p'=g'k), and k' are con-
classical Mie problem of the light scattering by the sphereStants that depend orlutthe medium being c_onsﬂereMutsme
resulting in (i) the second-order polarizationP,, the sphere we hav&™'=w/c=k, while inside k"= ye(w)

=x 2’ EIEX and, consecutively, in the surface charge and the< (@/c)=nk=ky, where we also introduce the complex re-
surface current playing the roles of sources of the seconffaction index n. Here X,n(6,4) are vector spherical
harmonic fields,(iii) solution of the boundary problem in harmonics® as defined in Ref. 20Eq. 9.119. The indexi
order to find the fields from the known sourcés) resoly-  'efers to the incidenti =inc), the scatteredi =sc), or the

ing the angular distribution in the far-field approximation. internal(i=in) fields. The functiong"” are different depend-
The theory is a generalization of the results of Ref. 2 for théng on the region we considef'"*™ =j, (spherical Bessel
case when the local symmetry of the surface laye€4s'®  function of the first king and ffsc):hil) (spherical Hankel
Thus, not only surface charges, but also currents contributiinction of the first kingd Their definitions and properties can
to SHG. On the other hand, we extend the work of Daglap be found in Sec. 8.46 of Ref. 22. The expansion coefficients
al.'* beyond the Rayleigh limit to the case of arbitrary sizedare determined by four boundary conditions

inc

1 : :
0B, = 5 2 C(O)Ib{ m Y (KN X (6, 0)
€,m
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n X (Esc+ Ein() =n X Ej,, (7) Przw = szxEsBZ + Xznyg52 + XzzzEgzi
n- (Dsc+ Din() =n- Dina (8) P2w = szxE;Eg
n X (BSC+ Binc) =n X Bir‘l! (9) Pg’w = XyzyE;Eg)

(10) The surface density is thern=n-P,, and the surface current
js=—2idwn X (P,, X n), where§ is the thickness of the sur-

wheren=g, is a vector normal to the surface. Solution of the face layer where SHG takes place In order to find the coef-

boundary value problem allows one to express coefficients dicients of the expansionr , andje mWe reexpand the elec-

n- (Bsc+ Binc) =n- Bina

scattered and inner fields via the incident field tric field on the surfaceE = (sE er+Eme,9+Eme(',’)|r —5 in
terms of vector spherical harmonics as
kr)—[rj ¢(kqr kqr rjo(kr
b el ) [J€(1)] Sle(l) [Je( )] E = EA Y+ A NO + ATV,

inc ’
(€m) i Zrrp( — K1 i
gje(klr)ar [rhé(kn)] =" kn) (?r[” dlar)] where the vector spherical harmonie§y, Y% =Xyy, Y\

are definedRef. 23, Eq.(7.3.9] as

o Tk (kan] = than) i (k)] = 2Ly Yik
(€ _ ATCRAPTAET

inc !

A j€<k1r>5[m§”<kr)] - h%”(kr);[rj lkyr)]

r=a

r=a Y50 = Y
0 k)2 ® k)] - eh® k0 -Z[rj (k)] D EEERVISY
bie,m) _ oar o Yom = J+1 JM 2J+1
inc 9 9 ’
m sjg(klr)a—[rhﬂfl)(kr)] - hﬁ,l)(kr)a—[rj (kD)1 The coefficientsA!", A(O) AlY can be found from the gen-
' r r=a eral expressmrﬂEq (5)] for the electric field
a J 1 i drjnkn]| bl
S — DL AL = Zcp)— ¢ ( 11
Al e(kr)ar[rhe (kn]-=hy (kr)ar[fle(kr)] m=5 ( )ka dar by (11
At Ir 1 9. ,
M elkan) S I k0] = W kn) =L ekar)] . an
4 o Afm=5C(0](nka)—c=, (12)
where b}, =-bi° =-i, ai*y=a’ =1 and a"=-g"° (€,)

=i/k are coefficients obtained from the multipole expansion
of the plane wavéEq. (10.55 of Jacksoff]. - 1) Ie(w)\€(€ +1),
In the second step of the calculation we determine the A, 2 ( ) ka jen ka) inc ° (13
sources of the second harmonic fields, namely the surface 1)
charges and the surface currefy, which are expanded in Using the orthogonality of the vector spherical harmonics

terms of spherical harmonicg, (6, ¢) [defined in Ref. 20, Y(A) YN =0, if N £ and the propertle$1><Y(1) =iy

Eq. (3.53] and vector spherical harmonics ¢m (o) M D) 1 _ e
Q. (3.53] P n><Y =Y andn><Y =0 we obtain
1 & _ (1) (1)
o(6,¢) = _2 U'e,me,,m(ev ?), Es + E¢ E E A€l my 52 m2Y€1 my Y‘zmz
2€,m €1,my €o,my

(0) (0) (0)
+A A€2 mzY Y€2 M,

js(9,¢) 22 [J mXEm(‘9 ¢)+]€mx€m(0 ¢) X I’l] (-1) ( 1) (-1 (-1)
m 2 E Aelml €2m2Y€lml'Y€2,m2'

In each point of the surface of the/ sphere &ee,, €, unit ta.my C2:mp

vectors of the local coordinate system point al@yge,, € - D A© D 1
respectively. Assuming th&€,, symmetry of the surface E(EJ+ED)=i > X Aty m A m Yeom X Yi,m,
layer® the only nonzero nonlinear tensor elements gasg Cumy fo,my

=Xzyy Xzza @Nd Xyz= Xyzy According to the surface sheet + A( 1) A({l leE‘f(i),ml % Y%—zlng

model, SHG takes place in a thin layer above the surface.
The second-order polarizatid®y,, is expressed via the elec- Expressions for the coefficients of surface charge and current
tric field on the outer surface of the sphdtg are then given as
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— (1) (1) (1,2)
T¢m= Xzxx E 2 (Afl,mlAfz,mZC€l,m1,€2,m2,€,m

€1.my £o,mp

(0) (0) (0,0
+A€1,m1A€2,m2 €1,m1,€2,m2,€,m)

-1) A1) ~(-1,-
+Xzzzz 2 Agl,gwlA(e ) Cgl,ml,]{)iz,mz,{’,w

m
22
€1,m €p,my

(14)

il — o 1 -1 1,-1)
Jem="— 21 0 SXxzx 2 2 (A(fl),mlA(fz,r)nZC%l,ml),éz,mz,e,m

€1,my €o,my
(0) -1) ~(0,-1)
+ A€1,m1A(€2,m2C€1,ml,€2,m2,€,m) . (15)

i (a.B)
The coefficientsC; ", ¢ m, .
scalar (vecton products of the vector spherical

monics and comprise products of @j) coefficients and

¢+ m result from the expansion of

two Clebsch-Gordan coefficients as is shown in the Appen-
dix. From their explicit expressions follow symmetry prop-

ertiesC'®?)

—cl@p - - i
t10,102=C 10,142 UNlessa=0,8=-1.In this

case the coefficients are antisymmetric with respect to th
change of sign of the angular momentum projection

Cit,100="Cote -1 Thus, the coefficients of the

surface charge expansion also are symmeirig=oy
while the currenfy .,

parts.

The third step of the calculation is very similar to the first
one. We find the second harmonic fields from the knownt
surface charge and the current by solving a boundary condi-

tion problem
n X (Eou=Ein) =0, (16)
N - (Doyt= Din) = o, (17)
n X (Hou=Hin) =Js, (18)
n - (Boy— Bin) =0. (19

Calculations show that only thi¢ component of the surface
current contributes to the results. The solution is given by

_ Je(Kqr) ]H
¢, m C(e) . €,m»

jebkar) e k)] = Y k)01 (k)]
(20)

out - k
O egCONE(E +1)

i )]
8 J J em
ejlkar)—[rhP(kn)] = P (k) —[rj (k)]

(21)

har-

o2~
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in _ ikypeoC
¢,m C(€)

hi" (kr) |
. I Dy I Jem
(J((klr)g[rh{’ (kn)]-hy (kr)g[”{’(klr)]>

(22)

X

ok
£CONE(C+1)

in _
¢,m~

d
E[rh%”(kr)]

X P P T¢m-
(sje(klr)g[rh?)(kr)] - h%“(kr)E[rj((klr)])

(23

From the symmetry of the surface charge it follows that
05=By,, for the AY =A%+ A% we introduce symmet-
ric and antisymmetric parts.

Last, we determine the angular distribution of the in-

tensities in the far-field approximation. We use the

has both symmetric and antisymmetric asymptotic expansion of the Hankel functidiisy. (8.451.3

of Ref. 22: h{P(kr)~(-)*1%e"/kr and its derivative:
(1/r)a/ar[rh;1)(kr)]~—(—i)‘e"“/r. BecauseE[ , is propor-
ional toh®(kr)/kr it decays faster than t /and therefore is
not relevant, thus, we consider orl} , andEZ,, projections

g =t &(Bomi_d[rh%kr)] Ne
2 a0 VE(E + 1) Emkr dr a0
+ A2 (k) —r;fg‘) ,
s 1 &(Bomﬂrhﬂkrn MYem
2 em=+2,0 V(€ + 1) My dr sin @

Y
+ AN (kr) (;Zm)'

We substitute asymptotic expansions, skip the overall factor
ek/ikr, use the symmetry of the expansion coefficients and
representation of the spherical harmonics in terms of Leg-
endre polynomialsY, o(0, ¢)=+/(2¢+1)/47P,(cosd) and
Y120, $)=1\(2¢+1) /47K (€)PZ(cosh)e? ¢, where K(¢)
=1/\/(£-1)€(€+1)(£+2) in order to obtain
Y4
Ly COCD

[2¢ + 1( dPY(cos#) o
205 Vee+1) V 4n a6 P

dP?(cos )

E¢9_

out ™

+ 2K (€) B cog2¢)

N 4K (€)P?(cosb)

o [A;%" cod2¢) + iA}f’ZUtsin(2¢)]> ,

(24)
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s CO)(=i)' [2¢+ 1(4iK(e)P§(coso)
M2 Vee+1) V4w sin 6

9P%(cos# 9P?(cosd
XBS sin(2¢) + —e( )Afg%”‘+ 2K(€)—€( )
' 30 : J6
X[A;%" cog2¢) + iAg?zutsin(2¢)]) . (25)

Finally, we outline the numerical algorithm based on the /%3‘5
theory k

 Find coefficients of the surface electric fidld expan-
sion [Egs.(1D)—13)].

» Compute the surface chargeand the currenjs using
Clebsch-Gordan algebi&qgs.(14), (15)].

 Find coefficients of the SH electric fiel,; expansion
[Egs.(20), (2D)]. 7

e Compute the angular dependence of SHG according tc 20
Egs.(24) and(25).

D
K
5

FIG. 2. (Color onling Angular distribution of the SHG intensity
for water droplets as a function of particle size parameter laying
within the range 0.00& ka<5.0. At each value oka the angular

We study the angular distribution and the intensity ofdistribution is normalized, so that the maximum value is unity. At
SHG radiated in a unit solid angle for different sizes of par-!‘a” 1.0 the distrib_ution starts to vary with the_particle size indicat-
ticles. Water droplets of the size parameter ranging froni"d that the Rayleigh theory ceases to be valid.
ka=10"3 to ka=200.0 with n(w)=1.326-1.250-10i and o ) _ N _
n(2w)=1.350-1.580-10i [complex refraction index ap- Ward and backward direction&ig. 4. Their position varies
proximately corresponds to the wavelength of incident lightSightly with the particle size within the limits 5% 6,
A=800 nm(Ref. 24] are considered. The number of signifi- =20°, 160°<6,<175°. Radiation in the strict forward
cant terms in the multipole expansigEgs.(11)~(13)] varies =0° and backwardd=180° directions is prohibited at any
depending on the value & For ¢ >kathe terms decrease Value of ka as can be seen from Eq&4) and (25) [
rapidly, whereas for¢ <ka they have comparable ampli- ¢P¢(C0S6)/36=3Pi(coso)/96=Pi(cos6)/sin =0 at 6=0,

tudes. Only th@Y(ZZZ;») tensor element is assumed to be non-7_T]' At Iar_ge values (_)1ka the SH inten_sity exhibits oscilla-
zero. The theory is valid in the regime of small particle sized!ons, which may be |nt-erpreted asa kind of shape resonance
(ka<1, Rayleigh limiy as well as for large particles. In the _phenor_nenaﬂg. 5. A similar behgylor has a]so begn four_1d
indn the linear case, where the position of the intensity maxima
Is approximately given bykan(w)-1]=#/2(2p+1) (p
intege).?® There is, however, an important difference com-
pared to the linear case. In the linear case shape resonance

phenomena are greatly suppressed for the experimental ob-

Ill. NUMERICAL RESULTS

independent on the size parametEig. 2), the integrated
intensity grows asP, (ka) ~ (ka)® (Fig. 3), in agreement
with Ref. 11. For reference, we report the snialexpan-
sion of the first few coefficients of the SH electric fietg,;

[Egs.(20), (21)] servation due to the presence of dominating forward scatter-
e ing. In the SHG case the oscillations in the angular distribu-
BOU — g' nz(w))(zzz (ka)* —
1,0~ 7\ 2 2 2 ' 4 -
7 [n(w) + 2][2n%(w) + 3][n"(20) + 2] 10°F =" ~(ka)® ]

out _ i nz((’-’)Xzzz . 4
B20% \ Tom[n(w) + 2P2n2(20) + 3] <2

| 9 n*(w)x
BoS=—/— = i(ka)*.

22 207 [n?(w) + 2][2n%(2w) + 3] (ka)
This shows that in the lowest order k& the SH radiation
results from the excitation of dipole and quadrupole mo- pthb—— 1

. 0 2 4 6 8 10

ments, which have a comparable strength, as has been shown Particle size parameter (ka)
in Ref. 11. The scaling of the SH power should be contrasted
with the linear Rayleigh scattering, which is known to scale  FiG. 3. Integrated SH intensitp,,,(ka). At small particle size

as P,(ka)~ (ka)*. Increasing the particle size parameterparameter the Rayleigh theory is valid, yielditig)® scaling. In-
(ka>10) leads to two well pronounced maxima in the for- tensity is normalized so thd,,(1.0)=1.0.
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compute the SHG response of water droplets with size pa-
rameters up toka=200.0. The analysis shows two pro-
nounced SHG intensity peaks in the forward and backward
direction. Their position slightly depends on the particle size.
At low values of the size parameter the theory reduces to the
well known Rayleigh limit! where the peaks merge together
forming one lobe. The integrated intensity depends strongly
on the particle size, fulfillingka)® scaling at smalka.

The theory in this paper treats the case of Mie scattering
from a single particle. Thus for a disordered medium, such as
a colloidal suspension of particles, it is restricted to a de-
scription of the dilute regime. In this case the mean distance
between particles is greater than the absorption length for
photons and the scattering events can be considered as inde-
pendent. However, it is also of interest to study nonlinear
optical processes in disordered systems in the high-density
regime where coherent interferences among the particles be-
come important. The generalization of our theory to this case
will be a subject of a future work.

FIG. 4. (Color onling Angular distribution of the SHG intensity
for water droplets as a function of particle size paramé2er ka
<20.0 corresponding to the transition regime between Rayleigh
and Mie theories.

APPENDIX: EXPANSIONS OF THE PRODUCTS
OF VECTOR SPHERICAL HARMONICS

We use the Clebsch-Gordan series for the scalar product
of vector spherical harmonics Ref. 2@FEgs. (7.3.100,
tion can in fact be revealed with a higher precision provided7.3.103)]
the laser radiation is monochromatic enough. If, on the other
hand, one uses short laser pulses an averaging over a fre—YljllMl-YﬁjMfE (= 1)l2tart
quency interval is required which would lead to the smooth- L

ening of the angular distribution shown in Fig. 5. \/(le +1)(23,+ 1)(2L, + 1) (2L, + 1)
X
4m(2L+1)
IV. CONCLUSIONS AND OUTLOOK
) Ly Lo L Co M Y
In conclusion, we have developed a theory of second har- J, 3 1| ThOOTIMILM, LM

monic generation by dielectric spheres of arbitrary size and

refraction index. The surface sheet model which assume4hereCyl, 5.y, is the Clebsch-Gordan coefficient, afylis
inversion symmetry breaking on the surface of the sphere hate § symbol. Similarly, one can expand the vector product
been employed. A numerical algorithm has been applied tef vector spherical harmonics using thg $/mbol

FIG. 5. (Color onling Angular distribution
of the SHG intensity for water droplets at
large values of particle size parameter50.0
<ka<200.0.

Particle size parameter (ka)

Angle (degree)
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. |3 (20, +1)(20,+ 1)
Ylillml X YIJ_§M2 =1 \/57(231 +1)(23,+ 1)(2L + (2L, + 1) C€1 m,, {’2 m,,6m= Am(20 + 1) g?oezo 2Tm1€2m21
L1
X213 L 1(C OLZOCJl MM ZYle
Tl

3|
Clmtmum= \ 5| V(2 + D@61 = D(E)(262 - 1)

The coefflmemcecl“f] Ly «m IS expressed as a product gf 6 ’{31 0,-1 1‘
9 bol dt CIb h-Gord fficient
(9j) symbols and two Clebsch-Gordan coefficients )i, 6,-1 1 Cgf—loez—lo
¢ ¢ 1]
et V(0 + (26 - Do+ 1)(26,+ 1)
cxy :(_1)— ’e ¢ ]
£1,my,0o,M,,¢,m \m 1 6-11
X1l €+1 1 Cgf—10€2+10
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