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A theoretical analysis of the second harmonic generation of light from spherical particles is presented that
unifies existing theories which are valid in the special cases of small particle size(Rayleigh limit), small
refraction index, radiation by nonlocal dipole and quadrupole moments. We study the angular distribution of
second harmonic using a nonlinear generalization of the linear Mie theory.
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I. INTRODUCTION

We describe second harmonic generation(SHG) from
spherical particles using a classical electrodynamics ap-
proach. Although it is well known that SHG response from
centrosymmetric systems is forbidden within the electric di-
pole approximation there are at least three phenomena that
allow for its experimental observation.

The first is inversion symmetry breaking on the surface of
a sphere. This approach was initiated in the work by Östling,
Stampfli, and Bennemann1 and further developed in the pa-
per by Dewitz, Hübner, and Bennemann.2 The theory takes
advantage of the nonlinear surface charge as a source of the
radiation. This stems from the analogy with the anharmonic
oscillator model where the oscillator strength of second
(third) harmonics oscillation is proportional to the square
(cube) of the linear response oscillator strength. In other
words, the theory takes into account only thexzzz

s2vd tensor
element of the nonlinear response.3 Although it does not
fully account for the specific electronic properties of the ma-
terial on theab initio level, in particular its electronic reso-
nance structure, it has its power in predicting theangular
distributionof the scattered field. The microscopic properties
of the medium are accounted via the frequency dependent
dielectric constant. The theory is a nonlinear extension of
Mie scattering4 and works in a range of particle size param-
eters up toka,100 (ka=2pa/l, a being the radius of the
particle,l denoting the wavelength) where it becomes com-
putationally costly. Thus, a good agreement with experi-
ments was found for third harmonic generation from water
microdroplets with sizes from 8 to 32mm.5,6 A similar
theory was built to explain the experiments with a refraction
index of the scattering center close to unity.7,8 In this case it
is possible to use a nonlinear analog of Rayleigh-Gans-
Debye(RGD) theory9 that treats the electric fields inside and
outside the sphere as identical and yields the polarization as
P2v

i srd=xi jk
s2vdE jsrdEksrd. The second harmonic electric field

at the pointr is then obtained as a summation over the vol-
ume of the sphere using a Green’s function method

E2vsrd =
s2vd2

c2 E d3r8
eik2vur−r8u

ur − r8u
P2vsr8d, s1d

wherek2v
2 =s2vd2/c2«s2vd, « is the particle dielectric con-

stant. The integration can be analytically performed in the
case when the SHG source is confined to the thin homoge-

neous layer of nonlinear material covering the sphere.10 Al-
though the size parameter in all three experimental works
(0.8 Ref. 10, 3.7–1.9 Ref. 7, and 1.3 Ref. 8, respectively) lies
within the limits of validity of the Rayleigh approximation, it
was suggested10 to use the Mie theory for a more quantitative
analysis—in the way already demonstrated by Ref. 5.

Another approach suggested in the work of Dadapet al.11

takes into account all tensor elements of the surface nonlin-
ear response of the sphere. The method was applied in the
case of small particle size parameterska,1 corresponding
to the limit of Rayleigh scattering. The radiated SH field in
the direction ofn results from the nonlocal excitation of the
electric dipole and local excitation of the electric quadrupole
moments

p = 8pika3E0
2x1ks«0 · «0d/15, s2d

Qsnd = 16pa3E0
2x2sn · «0d«0/5, s3d

which in this case have a comparable strength(the magnetic
dipole emission is forbidden because of the axial symmetry
of the system). Here the incident electric field is taken as a
plane wave propagating in the direction ofk with polariza-
tion «0 and amplitudeE0.

12 The properties of the medium are
described by the quantitiesx1 and x2, which can be ex-
pressed via the dielectric functions of the sphere, the inter-
face, and the exterior region.13

The theory predicts the absence of the SHG signal in the
forward direction and gives theskad6 scaling of the inte-
grated scattering intensity. The latter is obvious in view of
the fact that the retardation of the electromagnetic field
across the sphere yields the nonlocal dipole moment propor-
tional to the sa/ld3 where l is the wavelength. This fact,
reflecting a very high sensitivity of the SHG signal to the
particle size, was emphasized in the work of Brudny, Men-
doza, and Mochan.14

The theory of SHG by the nonlocal dipole and quadrupole
excitations and their interference was extended by several
authors to include effects of disorder. Within the single scat-
tering and diffusion approximations, the angular distribution
of SHG intensity was studied in the three-dimensional(3D)
case of a suspension of small spherical particles confined
within a slab.15 It was found that the intensity varies with the
angleu between thez axis and the direction of the observa-
tion and the polar anglef as

PHYSICAL REVIEW B 70, 245434(2004)

1098-0121/2004/70(24)/245434(8)/$22.50 ©2004 The American Physical Society245434-1



I2v = x1
2F1su,fd + 4x2

2F2su,fd + 4x1x2F3su,fd, s4d

where F1su ,fd=sin2 u, F2su ,fd=sin2 u sin2 fs1
−sin2 u sin2 fd, F3su ,fd=cosu sin2 u sin2 f. The angular
scattering diagram shows two lobes in the forward direction
at cosu= ±0.22 for the realistic parameters ofx1 andx2 and
forbids SHG atu=0 in agreement with previous results.2,11

It is also interesting to compare the angular distribution of
the SHG intensity from the RGD theory10 with that of the
excitation of nonlocal dipole and local quadrupole
moments.15 Although they both agree about the absence of
SHG signal in the forward direction, the RGD theory yields
a considerably more complicated pattern with additional but
less pronounced lobes.

The nonlocal dipole and quadrupole are excited by a spa-
tial variation of the incident field within the sphere. In the
previous example the excitation was due to the variation of
the electric field on the wavelength scale. However, as has
been shown in Ref. 14, field variations with other length
scales can also give rise to the nonlinear response. In Ref. 14
SHG from a single sphere in the inhomogeneous longitudinal
field and a sphere placed above a semi-infinite inert dielectric
substrate with a flat surface was presented together with a
detailed discussion of the frequency dependence of the non-
linear response. In Ref. 16 the analysis was extended to ac-
count for the inhomogeneous transverse field which can be
applied to a composite medium made up of an array of par-
ticles illuminated by beams of finite cross section.17 The
equivalence of the two theories11,16 in the case of small non-
magnetic spheres excited by the field of a plane wave was
explicitly shown.

This paper is an effort to compare possible scenarios for
second harmonic generation from a centrosymmetric system
for different particle sizes(regimes of Rayleigh, Mie, and
geometric optics) and different materials(we develop the
theory which is valid in both regimes of small as well as
large refraction index). We assume that the microscopical
properties of the medium are knowna priori and are con-
tained in the frequency dependent dielectric function«svd
and in the tensor of the second-order nonlinear susceptibility
xs2vd. The dielectric function can in general be complex al-
lowing for the applicability of the theory to dielectrics as
well as to metals. Our goal is to describe the angular depen-
dence of the SHG intensity. The paper is organized as fol-
lows. In Sec. II we present the surface sheet model18 for the
dielectric sphere in vacuum. The calculation of the second
harmonic response comprises four steps:(i) solution of the
classical Mie problem of the light scattering by the sphere
resulting in (ii ) the second-order polarizationP2v

i

=xi jk
s2vdE jEk, and, consecutively, in the surface charge and the

surface current playing the roles of sources of the second
harmonic fields,(iii ) solution of the boundary problem in
order to find the fields from the known sources,(iv) resolv-
ing the angular distribution in the far-field approximation.
The theory is a generalization of the results of Ref. 2 for the
case when the local symmetry of the surface layer isC4v.

19

Thus, not only surface charges, but also currents contribute
to SHG. On the other hand, we extend the work of Dadapet
al.11 beyond the Rayleigh limit to the case of arbitrary sized

spheres. In Sec. III we apply our theory to study water drop-
lets with a size parameter fromka=0.001 to ka=200.0. We
assume that the local tensor of the second-order nonlinear
susceptibilityxi jk

s2vd is equal to zero except for thexzzz
s2vd ele-

ment. The angular distribution and intensity dependence of
SHG response on the particle size is analyzed.

II. THEORY

The theory consists of a few steps as follows. First, we
solve a problem of the electromagnetic field scattering by a
sphere(Mie theory) in order to find electric fields close to its
surface. The geometry of the problem is shown in Fig. 1. We
represent the electric and the magnetic fields as

Ei =
1

2o
,,m

Cs,dfas,,md
i f,

sidskrdX,,msu,fd

+ aibs,,md
i = 3 f,

sidskrdX,,msu,fdg, s5d

cBi =
1

2o
,,m

Cs,dfbs,,md
i f,

sidskrdX,,msu,fd

+ bias,,md
i = 3 f,

sidskrdX,,msu,fdg s6d

in accordance with Eq.(10.57) of Jackson.20 We denote
Cs,d=Î4ps2,+1di,; ai =aiskd, bi =biskd, and ki are con-
stants that depend on the medium being considered. Outside
the sphere we havekout=v /c=k, while inside kin=Î«svd
3sv /cd=nk=k1, where we also introduce the complex re-
fraction index n. Here X,,msu ,fd are vector spherical
harmonics21 as defined in Ref. 20(Eq. 9.119). The indexi
refers to the incidentsi ; incd, the scatteredsi ;scd, or the
internalsi ; ind fields. The functionsf sid are different depend-
ing on the region we consider:f,

sinc,ind= j, (spherical Bessel
function of the first kind) and f,

sscd=h,
s1d (spherical Hankel

function of the first kind). Their definitions and properties can
be found in Sec. 8.46 of Ref. 22. The expansion coefficients
are determined by four boundary conditions

FIG. 1. Scattering of light by a sphere. The sphere of radiusa is
characterized by the dielectric constants at fundamental and double
frequencyesvd, es2vd respectively, and by the tensor of surface
second-order nonlinear susceptibilityxs2vd.
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n 3 sEsc+ Eincd = n 3 Ein, s7d

n · sDsc+ Dincd = n ·Din, s8d

n 3 sBsc+ Bincd = n 3 Bin, s9d

n · sBsc+ Bincd = n ·Bin, s10d

wheren=er is a vector normal to the surface. Solution of the
boundary value problem allows one to express coefficients of
scattered and inner fields via the incident field

bs,,md
sc

bs,,md
inc = * j,skrd

]

]r
frj ,sk1rdg − « j,sk1rd

]

]r
frj ,skrdg

« j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg*

r=a

,

as,,md
sc

as,,md
inc = * j,skrd

]

]r
frj ,sk1rdg − j,sk1rd

]

]r
frj ,skrdg

j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg*

r=a

,

bs,,md
in

bs,,md
inc = * j,skrd

]

]r
frh,

s1dskrdg − «h,
s1dskrd

]

]r
frj ,skrdg

« j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg*

r=a

,

as,,md
in

as,,md
inc = * j,skrd

]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,skrdg

j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg*

r=a

,

where bs,,1d
inc =−bs,,−1d

inc =−i, as,,1d
inc =as,,−1d

inc =1 and ainc=−binc

= i /k are coefficients obtained from the multipole expansion
of the plane wave[Eq. (10.55) of Jackson20].

In the second step of the calculation we determine the
sources of the second harmonic fields, namely the surface
charges and the surface currentjs, which are expanded in
terms of spherical harmonicsY,,msu ,fd [defined in Ref. 20,
Eq. (3.53)] and vector spherical harmonics

ssu,fd =
1

2o
,,m

s,,mY,,msu,fd,

jssu,fd =
1

2o
,,m

f j,,m
i X,,msu,fd + j,,m

' X,,msu,fd 3 ng.

In each point of the surface of the/ sphere theex, ey, ez unit
vectors of the local coordinate system point alongeu, ef, er
respectively. Assuming theC4v symmetry of the surface
layer19 the only nonzero nonlinear tensor elements arexzxx
=xzyy, xzzz, and xxzx=xyzy. According to the surface sheet
model, SHG takes place in a thin layer above the surface.
The second-order polarizationP2v is expressed via the elec-
tric field on the outer surface of the sphereEs

P2v
r = xzxxEs

u2
+ xzyyEs

f2
+ xzzzEs

r2
,

P2v
u = xxzxEs

rEs
u,

P2v
f = xyzyEs

rEs
f.

The surface density is thens=n ·P2v and the surface current
js=−2idvn3 sP2v3nd, whered is the thickness of the sur-
face layer where SHG takes place. In order to find the coef-
ficients of the expansions,,m and j,,m

i we reexpand the elec-
tric field on the surfaceEs= us«Ein

r er +Ein
u eu+Ein

fefdur=a in
terms of vector spherical harmonics as

Es = o
,,m

A,,m
s1d Y,,m

s1d + A,,m
s0d Y,,m

s0d + A,,m
s−1dY,,m

s−1d,

where the vector spherical harmonicsYJM
s1d ,YJM

s0d ;XJM ,YJM
s−1d

are defined[Ref. 23, Eq.(7.3.9)] as

YJM
s1d =Î J + 1

2J + 1
YJM

J−1 +Î J

2J + 1
YJM

J+1,

YJM
s0d = YJM

J ,

YJM
s−1d =Î J

2J + 1
YJM

J−1 +Î J + 1

2J + 1
YJM

J+1.

The coefficientsA,,m
s1d , A,,m

s0d , A,,m
s−1d can be found from the gen-

eral expression[Eq. (5)] for the electric field

A,,m
s1d =

1

2
Cs,d

i

ka
Udfrj ,snkrdg

dr
U

r=a

bs,,md
in

bs,,1d
inc , s11d

A,,m
s0d =

1

2
Cs,d j,snkad

as,,md
in

as,,1d
inc , s12d

A,,m
s−1d =

1

2
Cs,d

iesvdÎ,s, + 1d
ka

j,snkad
bs,,md

in

bs,,1d
inc . s13d

Using the orthogonality of the vector spherical harmonics

Y,,m
sl8d ·Y,,m

sld =0, if l8Þl and the propertiesn3Y,,m
s1d = iY,,m

s0d ,
n3Y,,m

s0d = iY,,m
s1d , andn3Y,,m

s−1d=0 we obtain

Es
u2

+ Es
f2

= o
,1,m1

o
,2,m2

A,1,m1

s1d A,2,m2

s1d Y,1,m1

s1d ·Y,2,m2

s1d

+ A,1,m1

s0d A,2,m2

s0d Y,1,m1

s0d ·Y,2,m2

s0d ,

Es
r2

= o
,1,m1

o
,2,m2

A,1,m1

s−1d A,2,m2

s−1d Y,1,m1

s−1d ·Y,2,m2

s−1d ,

Es
rsEs

u + Es
fd = i o

,1,m1

o
,2,m2

A,2,m2

s−1d A,1,m1

s0d Y,1,m1

s1d 3 Y,2,m2

s−1d

+ A,2,m2

s−1d A,1,m1

s1d Y,1,m1

s0d 3 Y,2,m2

s−1d .

Expressions for the coefficients of surface charge and current
are then given as
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s,,m = xzxx o
,1,m1

o
,2,m2

sA,1,m1

s1d A,2,m2

s1d C,1,m1,,2,m2,,,m
s1,1d

+ A,1,m1

s0d A,2,m2

s0d C,1,m1,,2,m2,,,m
s0,0d d

+ xzzzo
,1,m1

o
,2,m2

A,1,m1

s−1d A,2,m2

s−1d C,1,m1,,2,m2,,,m
s−1,−1d , s14d

j,,m
i = − 2ivdxxzx o

,1,m1

o
,2,m2

sA,1,m1

s1d A,2,m2

s−1d C,1,m1,,2,m2,,,m
s1,−1d

+ A,1,m1

s0d A,2,m2

s−1d C,1,m1,,2,m2,,,m
s0,−1d d. s15d

The coefficientsC,1,m1,,2,m2,,,m
sa,bd result from the expansion of

scalar (vector) products of the vector spherical har-
monics and comprise products of 6j s9jd coefficients and
two Clebsch-Gordan coefficients as is shown in the Appen-
dix. From their explicit expressions follow symmetry prop-
ertiesC,1,1,,2,1,,,2

sa,bd =C,1,−1,,2,−1,,,−2
sa,bd , unlessa=0,b=−1. In this

case the coefficients are antisymmetric with respect to the
change of sign of the angular momentum projections
C,1,1,,2,1,,,2

s0,−1d =−C,1,−1,,2,−1,,,−2
s0,−1d . Thus, the coefficients of the

surface charge expansion also are symmetrics,,2=s,,−2,
while the currentj,,±2

i has both symmetric and antisymmetric
parts.

The third step of the calculation is very similar to the first
one. We find the second harmonic fields from the known
surface charge and the current by solving a boundary condi-
tion problem

n 3 sEout − Eind = 0, s16d

n · sDout − Dind = s, s17d

n 3 sHout − H ind = js, s18d

n · sBout − Bind = 0. s19d

Calculations show that only thej i component of the surface
current contributes to the results. The solution is given by

A,,m
out =

ikm0c

Cs,d
j,sk1rd

j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg

j,,m
i ,

s20d

B,,m
out =

k

«0Cs,dÎ,s, + 1d

3

]

]r
frj ,sk1rdg

« j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdg

s,,m,

s21d

A,,m
in =

ik1m0c

Cs,d

3
h,

s1dskrd

S j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdgD j,,m

i ,

s22d

B,,m
in =

k1

«0Cs,dÎ,s, + 1d

3

]

]r
frh,

s1dskrdg

S« j,sk1rd
]

]r
frh,

s1dskrdg − h,
s1dskrd

]

]r
frj ,sk1rdgDs,,m.

s23d

From the symmetry of the surface charge it follows that
B,,2

out=B,,−2
out , for the A,,m

out =A,,m
+out+A,,m

−out we introduce symmet-
ric and antisymmetric parts.

Last, we determine the angular distribution of the in-
tensities in the far-field approximation. We use the
asymptotic expansion of the Hankel functions[Eq. (8.451.3)
of Ref. 22]: h,

s1dskrd,s−id,+1eikr /kr and its derivative:
s1/rd] /]rfrh,

s1dskrdg,−s−id,eikr / r. BecauseEout
r is propor-

tional tohs1dskrd /kr it decays faster than 1/r and therefore is
not relevant, thus, we consider onlyEout

u andEout
f projections

Eout
u = −

1

2 o
,,m=±2,0

Cs,d
Î,s, + 1d

SB,,m
out i

kr

dfrh,
s1dskrdg
dr

]Y,,m

]u

+ A,,m
outh,

s1dskrd
mY,,m

sinu
D ,

Eout
f =

1

2i
o

,,m=±2,0

Cs,d
Î,s, + 1d

SB,,m
out i

kr

frh,
s1dskrdg
dr

mY,,m

sinu

+ A,,m
outh,

s1dskrd
]Y,,m

]u
D .

We substitute asymptotic expansions, skip the overall factor
eikr / ikr, use the symmetry of the expansion coefficients and
representation of the spherical harmonics in terms of Leg-
endre polynomialsY,,0su ,fd=Îs2,+1d /4pP,scosud and
Y,,±2su ,fd=Îs2,+1d /4pKs,dP,

2scosude±2if, where Ks,d
=1/Îs,−1d,s,+1ds,+2d in order to obtain

Eout
u = −

1

2o
,=1

Cs,ds− id,

Î,s, + 1d
Î2, + 1

4p
S ]P,

0scosud
]u

B,,0
out

+ 2Ks,d
]P,

2scosud
]u

B,,2
out coss2fd

+
4Ks,dP,

2scosud
sinu

fA,,2
−out coss2fd + iA,,2

+out sins2fdgD ,

s24d
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Eout
f =

1

2i
o
,=1

Cs,ds− id,

Î,s, + 1d
Î2, + 1

4p
S4iKs,dP,

2scosud
sinu

3B,,2
out sins2fd +

]P,
0scosud
]u

A,,0
+out + 2Ks,d

]P,
2scosud
]u

3fA,,2
+out coss2fd + iA,,2

−out sins2fdgD . s25d

Finally, we outline the numerical algorithm based on the
theory

• Find coefficients of the surface electric fieldEs expan-
sion [Eqs.(11)–(13)].

• Compute the surface charges and the currentjs using
Clebsch-Gordan algebra[Eqs.(14), (15)].

• Find coefficients of the SH electric fieldEout expansion
[Eqs.(20), (21)].

• Compute the angular dependence of SHG according to
Eqs.(24) and (25).

III. NUMERICAL RESULTS

We study the angular distribution and the intensity of
SHG radiated in a unit solid angle for different sizes of par-
ticles. Water droplets of the size parameter ranging from
ka=10−3 to ka=200.0 with nsvd=1.326−1.250·10−7i and
ns2vd=1.350−1.580·10−9i [complex refraction index ap-
proximately corresponds to the wavelength of incident light
l=800 nm(Ref. 24)] are considered. The number of signifi-
cant terms in the multipole expansion[Eqs.(11)–(13)] varies
depending on the value ofka. For ,.ka the terms decrease
rapidly, whereas for,!ka they have comparable ampli-
tudes. Only thexzzz

s2vd tensor element is assumed to be non-
zero. The theory is valid in the regime of small particle sizes
(ka,1, Rayleigh limit) as well as for large particles. In the
former case the angular distribution of SH intensity remains
independent on the size parameter(Fig. 2), the integrated
intensity grows asP2vskad,skad6 (Fig. 3), in agreement
with Ref. 11. For reference, we report the small-ka expan-
sion of the first few coefficients of the SH electric fieldEout
[Eqs.(20), (21)]

B1,0
out =Î24

p

n2svdxzzz

fn2svd + 2gf2n2svd + 3gfn2s2vd + 2g
skad4,

B2,0
out =Î 3

10p

n2svdxzzz

fn2svd + 2g2f2n2s2vd + 3g
iskad4,

B2,2
out = −Î 9

20p

n2svdxzzz

fn2svd + 2g2f2n2s2vd + 3g
iskad4.

This shows that in the lowest order ofka the SH radiation
results from the excitation of dipole and quadrupole mo-
ments, which have a comparable strength, as has been shown
in Ref. 11. The scaling of the SH power should be contrasted
with the linear Rayleigh scattering, which is known to scale
as Pvskad,skad4. Increasing the particle size parameter
ska.10d leads to two well pronounced maxima in the for-

ward and backward directions(Fig. 4). Their position varies
slightly with the particle size within the limits 5°,u1
,20°, 160°,u2,175°. Radiation in the strict forwardu
=0° and backwardu=180° directions is prohibited at any
value of ka as can be seen from Eqs.(24) and (25) [
]P,

0scosud /]u=]P,
2scosud /]u=P,

2scosud /sinu=0 at u=0,
p]. At large values ofka the SH intensity exhibits oscilla-
tions, which may be interpreted as a kind of shape resonance
phenomena(Fig. 5). A similar behavior has also been found
in the linear case, where the position of the intensity maxima
is approximately given bykafnsvd−1g=p /2s2p+1d (p
integer).25 There is, however, an important difference com-
pared to the linear case. In the linear case shape resonance
phenomena are greatly suppressed for the experimental ob-
servation due to the presence of dominating forward scatter-
ing. In the SHG case the oscillations in the angular distribu-

FIG. 2. (Color online) Angular distribution of the SHG intensity
for water droplets as a function of particle size parameter laying
within the range 0.001,ka,5.0. At each value ofka the angular
distribution is normalized, so that the maximum value is unity. At
ka,1.0 the distribution starts to vary with the particle size indicat-
ing that the Rayleigh theory ceases to be valid.

FIG. 3. Integrated SH intensityP2vskad. At small particle size
parameter the Rayleigh theory is valid, yieldingskad6 scaling. In-
tensity is normalized so thatP2vs1.0d=1.0.
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tion can in fact be revealed with a higher precision provided
the laser radiation is monochromatic enough. If, on the other
hand, one uses short laser pulses an averaging over a fre-
quency interval is required which would lead to the smooth-
ening of the angular distribution shown in Fig. 5.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a theory of second har-
monic generation by dielectric spheres of arbitrary size and
refraction index. The surface sheet model which assumes
inversion symmetry breaking on the surface of the sphere has
been employed. A numerical algorithm has been applied to

compute the SHG response of water droplets with size pa-
rameters up toka=200.0. The analysis shows two pro-
nounced SHG intensity peaks in the forward and backward
direction. Their position slightly depends on the particle size.
At low values of the size parameter the theory reduces to the
well known Rayleigh limit11 where the peaks merge together
forming one lobe. The integrated intensity depends strongly
on the particle size, fulfillingskad6 scaling at smallka.

The theory in this paper treats the case of Mie scattering
from a single particle. Thus for a disordered medium, such as
a colloidal suspension of particles, it is restricted to a de-
scription of the dilute regime. In this case the mean distance
between particles is greater than the absorption length for
photons and the scattering events can be considered as inde-
pendent. However, it is also of interest to study nonlinear
optical processes in disordered systems in the high-density
regime where coherent interferences among the particles be-
come important. The generalization of our theory to this case
will be a subject of a future work.

APPENDIX: EXPANSIONS OF THE PRODUCTS
OF VECTOR SPHERICAL HARMONICS

We use the Clebsch-Gordan series for the scalar product
of vector spherical harmonics Ref. 23[Eqs. (7.3.100),
(7.3.101)]

YJ1M1

L1 ·YJ2M2

L2 = o
L

s− 1dJ2+L1+L

3Îs2J1 + 1ds2J2 + 1ds2L1 + 1ds2L2 + 1d
4ps2L + 1d

3HL1 L2 L

J2 J1 1
JCL10L20

L0 CJ1M1J2M2

LM YLM ,

whereCJ1M1J2M2

LM is the Clebsch-Gordan coefficient, and{} is
the 6j symbol. Similarly, one can expand the vector product
of vector spherical harmonics using the 9j symbol

FIG. 4. (Color online) Angular distribution of the SHG intensity
for water droplets as a function of particle size parameters2,ka
,20.0d corresponding to the transition regime between Rayleigh
and Mie theories.

FIG. 5. (Color online) Angular distribution
of the SHG intensity for water droplets at
large values of particle size parameters150.0
,ka,200.0d.
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YJ1M1

L1 3 YJ2M2

L2 = iÎ 3

2p
s2J1 + 1ds2J2 + 1ds2L1 + 1ds2L2 + 1d

3o
JL 5J1 L1 1

J2 L2 1

J L 1
6CL10L20

L0 CJ1M1J2M2

LM YJM
L .

The coefficientC,1,m1,,2,m2,,,m
sa,bd is expressed as a product of 6j

s9jd symbols and two Clebsch-Gordan coefficients

C,1,m1,,2,m2,,,m
s1,1d =

s− 1d,1+,2+,

Î4ps2, + 1d

3FÎs,1 + 1ds2,1 − 1ds,2 + 1ds2,2 − 1d

3H,1 − 1 ,2 − 1 ,

,2 ,1 1
JC,1−10 ,2−10

, 0

+ Îs,1 + 1ds2,1 − 1ds,2ds2,2 + 1d

3H,1 − 1 ,2 + 1 ,

,2 ,1 1
JC,1−10 ,2+10

, 0

+ Îs,1ds2,1 + 1ds,2 + 1ds2,2 − 1d

3H,1 + 1 ,2 − 1 ,

,2 ,1 1
JC,1+10 ,2−10

, 0

+ Îs,1ds2,1 + 1ds,2ds2,2 + 1d

3H,1 + 1 ,2 + 1 ,

,2 ,1 1
J

3C,1+10 ,2+10
, 0 GC,1m1,2m2

,m ,

C,1,m1,,2,m2,,,m
s0,0d =

s− 1d,1+,2+,

Î4ps2, + 1d
s2,1 + 1ds2,2 + 1d

3H,1 ,2 ,

,2 ,1 1
JC,10,20

,0 C,1m1,2m2

,m ,

C,1,m1,,2,m2,,,m
s−1,−1d =Îs2,1 + 1ds2,2 + 1d

4ps2, + 1d
C,10,20

,0 C,1m1,2m2

,m ,

C,1,m1,,2,m2,,,m
s1,−1d =Î 3

2p3Îs,1 + 1ds2,1 − 1ds,2ds2,2 − 1d

35,1 ,1 − 1 1

,2 ,2 − 1 1

, , 1
6C,1−10 ,2−10

, 0

+ Îs,1 + 1ds2,1 − 1ds,2 + 1ds2,2 + 1d

35,1 ,1 − 1 1

,2 ,2 + 1 1

, , 1
6C,1−10 ,2+10

, 0

+ Îs,1ds2,1 + 1ds,2ds2,2 − 1d

35,1 ,1 + 1 1

,2 ,2 − 1 1

, , 1
6C,1+10 ,2−10

, 0

+ Îs,1ds2,1 + 1ds,2 + 1ds2,2 + 1d

35,1 ,1 + 1 1

,2 ,2 + 1 1

, , 1
6C,1+10 ,2+10

, 0 4C,1m1,2m2

,m ,

C,1,m1,,2,m2,,,m
s0,−1d =Î 3

2p
s2,1 + 1d3Îs,2ds2,2 − 1d

35,1 ,1 − 1 1

,2 ,2 − 1 1

, , 1
6C,10,2 −10

, 0

+ Îs,2 + 1ds2,2 + 1d

35,1 ,1 + 1 1

,2 ,2 + 1 1

, , 1
6C,10,2+10

, 0 4C,1m1,2m2
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