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We consider atomic force microscopy cantilevers tapping on samples and provide theoretical explanations
for main findings of numerical computations and experimental measurements by Leeet al. [Phys. Rev. B66,
115409(2002)] when the van der Waals force has only a secondary influence on their dynamics. To this end we
use the averaging method and an extended version of the subharmonic Melnikov method. Necessary compu-
tations for the subharmonic Melnikov method are performed numerically. An analytical framework to describe
nonlinear oscillations, including their stability and bifurcations, due to the Derjaguin-Muller-Toporov(DMT)
force between the tip and sample surface when operating in tapping mode is given. Our model is basically the
same as the previous one of Leeet al. although it does not include a parametric excitation term. Numerical
computation results are also given to demonstrate our theoretical results.
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I. INTRODUCTION

Atomic force microscopy (AFM) (Refs. 1 and 2)
with tapping (or intermittent contact) mode operation3 has
been widely used in nanometer-scale characterization of
surfaces, especially for soft materials such as polymers,3,4

DNA molecules,5 and proteins.6 In the standard AFM,2 a
cantilever tip is excited at a frequency close to resonance and
the sample is imaged while the forcing amplitude is con-
trolled to keep the oscillation amplitude at a fixed value. In
spite of extensive experimental use of the tapping mode,
there is still a lack in our understanding of the observed tip
motion.

Early studies on the tapping AFM have revealed that in-
teresting “bistable” behavior occurs near the surface and the
tip exhibits hysteretic responses when the driving frequency
is swept up and down through the primary resonance.7,8 This
phenomenon was explained as a result of an interaction of a
harmonic oscillator with attractive and repulsive regions of
potential modeled by the van der Waals and Derjaguin-
Muller-Toporov (DMT) forces9–12 or others,8,13–15 and it
causes several artifacts.16 The nonlinear effects in dynamics
of the simple models were investigated mainly through nu-
merical simulations and a few analytical studies based on
variants of the multiple scale or averaging method20,21 have
been done.10,14,15These analytical techniques are valid only
for weakly nonlinear systems and insufficient for the study of
the strongly nonlinear tapping mode. Through these re-
searches, the former model, which has the van der Waals and
DMT contact forces, is proven to be valid under a wide range
of circumstances. Moreover, chaotic tip motions were ob-
served in numerical simulations of a single-degree-of-
freedom oscillator model having an impact or hard wall con-
tact with sample surfaces.17

More recently, Leeet al.18 performed numerical analysis
by a modern computation tool calledAUTO,19 which was de-
veloped for numerical continuation and bifurcation analysis
of differential equations and is widely used in the community
of dynamical systems, although their analysis was limited to
the case in which the van der Waals force has only a second-
ary influence on the cantilever dynamics. Their model, in

which the tip-surface interaction is represented by the van
der Waals and DMT contact forces, includes not only exter-
nal excitation but also parametric excitation unlike other
similar models.9–12 Good agreements between their numeri-
cal computations and experimental measurements for a
freshly cleaved, highly oriented pyrolytic graphite(HOPG)
sample were found. In particular, they showed that four types
of saddle-node bifurcations, at which a pair of stable
and unstable periodic orbits are born in this context, occur
in their numerical computations and explained multiple
jump phenomena observed in their experiment. Thus, their
result also shows that a single-degree-of-freedom oscillator
with the van der Waals and DMT contact forces can
represent microcantilevers in the tapping mode AFM very
precisely.

In this paper we provide theoretical explanations for main
findings of numerical computations and experimental mea-
surements in Ref. 18. To this end we use the averaging
method20,21 and an extended version22 of the subharmonic
Melnikov method.21 The approach of Nonyet al.15 for the
van der Waals potential also yields a similar result for one of
the four saddle-node bifurcations since it occurs in the attrac-
tive region of potential. Necessary computations for the sub-
harmonic Melnikov method are performed numerically as in
Ref. 23. An analytical framework to describe nonlinear os-
cillations, including their stability and bifurcations, due to
the DMT contact between the tip and sample surface when
operating in tapping mode is given. Our model is basically
the same as one of Ref. 18 but the parametric excitation term
is removed by treating the absolute displacement of the can-
tilever. Numerical computation results are also given to dem-
onstrate our theoretical results.

The outline of this paper is as follows: In Sec. II our
single-degree-of-freedom model is derived from a continua-
tion model of the microcantilever having tip-surface interac-
tion represented by the van der Waals and DMT contact
forces. The unperturbed system without the van der Waals,
damping and external forcing terms is discussed in Sec. III.
Averaging and subharmonic Melnikov analyses are per-
formed in Secs. IV and V, respectively. In Sec. VI numerical
computation results by the computer softwareAUTO (Ref.
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19) are provided to be compared with the analytical results
of Secs. IV and V. Finally, a summary and some comments
are stated in Sec. VII.

II. ANALYTICAL MODEL

Figure 1 shows our analytical model for a microcantilever
in tapping mode atomic force microscopy. The base of the
beam is excited by a dither piezoelastic actuator with a con-
stant amplitudey0 and constant frequencyV so that its dis-
placement is given byy0 cosVt.

We assume the van der Waals and DMT contact
forces between a sphere(tip apex) and a flat surface(sample)
in the tip-sample interaction in tapping mode AFM
as in Refs. 11 and 18. Letz be the instantaneous tip-sample
separation and leta0 be the intermolecular distance. Forz
.a0 the tip-sample interaction is given by the van der Waals
force

Fszd = −
CR

6z2 , s1d

whereC is the Hamaker constant andR is the tip radius. For
zøa0 it is modeled by the DMT contact mechanics24 as

Fszd = −
CR

6a0
2 +

4

3
E*

ÎRsa0 − zd3/2, s2d

where E* is the effective elastic modulus of the tip and
sample and given by

1

E*
=

1 − n2

E
+

1 − ns
2

Es
s3d

with E (resp.Es) the tip (resp. sample) elastic modulus andn
(resp.ns) the tip (resp. sample) Poisson coefficient. The ad-
hesion force in the DMT theory is the resulting van der
Waals force atz=a0 so that

4pRG =
CR

6a0
2 , s4d

whereG is the surface energy. Hence, the equation of motion
for the microcantilever becomes

rAv̈ + Dv̇ + EIv99 = − F„D − vs,d…dsx − ,d, s5d

wherer, A, and, are, respectively, the mass density, cross
section, and length of the beam, andD is the tip-sample
separation whenF;0. The deflectionv satisfies the bound-
ary conditions,

vst,0d = y0 cosVt,

v8st,0d = v9st,,d = v-st,,d = 0. s6d

We approximate the solution of(5) satisfying the bound-
ary conditions(6) as

vst,xd = v1stdc1sxd + y0 cosVt, s7d

wherec1sxd is the first mode of the linear problem

rAv̈ + EIv99 = 0 s8d

under the boundary conditions

vst,0d = v8st,0d = v9st,,d = v-st,,d = 0 s9d

and given by

c1sxd = ssinn1x − sinhn1xd + l1scosn1x − coshn1xd.

s10d

Heren1<1.8751/, is the least positive root of

cosn1, coshn1, = − 1 s11d

and

l1 = −
sinhn1, + sinn1,

coshn1, + cosn1,
< − 1.3622. s12d

Substituting(7) into (5) and using the Galerkin method, we
obtain

v̈1 + dv1v̇1 + v1
2v1 = −

k0

rA
FsD − „v1c1s,d + y0 cosVt…d

+ k1Vy0sV cosVt + dv1 sinVtd,

s13d

wherev1=n1
2ÎEI /rA is the first mode angular frequency,d

=D /rAv1 and

k0 = c1s,dYE
0

,

c1
2sxddx =

4

,c1s,d
,

k1 =E
0

,

c1sxddxYE
0

,

c1
2sxddx. s14d

Let

j =
1

D
fv1stdc1s,d + y0 cosVtg <

vst,xd
D

, s15d

and scale the time variable ast°v1t. Then we can rewrite
(13) as

j̈ + dj̇ + j + fs1 − jd = gsvdcos„vt − usvd…, s16d

where

fszd =
4

v1
2rAD,

FsDzd =5−
a

z2 if z . a;

−
a

a2 + bsa − zd3/2 if z ø a,6
s17d

FIG. 1. Cantilever configuration.
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gsvd = g0
Îsk1v2 + 1d2 + sk1dvd2,

usvd = arctanS k1dv

k1v2 + 1
D

with a=a0/D, g0=y0/D and

k1 = k1c1s,d − 1 < 0.56598,

a =
2CR

3v1
2rAD3,

, b =
16E*

ÎDR

3v1
2rA,

. s18d

The parametersa andb represent the strength of the attrac-
tive and repulsive nonlinear interactions, respectively.

In our computations, we use constant values of the micro-
cantilever and sample in Table I, the data of which come
from Ref. 18, and setD=90 nm as in that reference. For
these values we can estimatea=7.55310−7, b=4.553102,
d=0.03s=1/Qd, and a=4.22310−3. Henceforth we regard
a, d, andg0 as small parameters. Also, note thatusvd<0 if
d<0. In fact,usvd=0.0108 for our chosen parameter values
whenv=1. Finally, we shift time ast° t+usvd /v in (16) to
obtain

j̈ + dj̇ + j + fs1 − jd = gsvdcosvt

or as a first-order system

j̇ = h, ḣ = − j − fs1 − jd − dh + gsvdcosvt. s19d

The techniques used below are applicable only to smooth
systems, but Eq.(19) is not smooth. To justify our analyses,
we only have to introduce a small interval of length 2m in-
cluding the discontinuous pointj=1−a and take the limit of
m→0. See also Sec. VI. In the following, we assume this
treatment although we do not specifically state it.

III. UNPERTURBED SYSTEM

When the parameters supposed to be small are zero, i.e.,
a=g=d=0, Eq.(19) becomes

j̇ = h, ḣ = − j − f0s1 − jd, s20d

where

f0szd = H0 for z . a;

bsa − zd3/2 for z ø a.
J s21d

Note that b is not small althougha, d, gsvd<0. In the
following we refer to(20) as theunperturbed system. Here
we do not mean by this terminology the system without non-
linear force (i.e., b=0). The unperturbed system(20) is a
planar Hamiltonian system with a Hamiltonian function

Hsj,hd = V0sjd + 1
2h2, s22d

whereV0sjd is the potential given by

V0sjd =
1

2
j2 +E

0

j

f0s1 − zddz. s23d

See Figs. 2 and 3 for the restoring force, potential, and phase
portrait of (20) with the parameter values. We see that there
exist a center at the origin and a family of periodic orbits
around it. It is shown in Ref. 25 that more complicated situ-

TABLE I. Constant values of the cantilever and sample used in
our computations.

Quantity Value

Tip radius R=10 nm

Cantilever cross-section area A=8.09310−11 m2

Cantilever momentum of inertia I =3.57310−23 m4

Cantilever material density r=2300 kg/m3

Cantilever elastic modulus E=130 GPa

Effective elastic modulus E* =10.2 GPa

First natural frequency f1=44 kHz

Q factor Q=33.3

Hamaker constant C=2.96310−19 J

Intermolecular distance a0=3.8 Å

FIG. 2. Restoring force and potential of the unperturbed system
(20) for b=4.553102 anda=4.22310−3: (a) Restoring force;(b)
potential.
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ation occurs when the terms containinga are included, i.e.,
f0 is replaced withf, in the unperturbed system.

We parametrize the family of periodic orbits by the

Hamiltonian energyhù0 and represent by(j̄hstd ,h̄hstd) the
periodic orbit having the Hamiltonian energyh. Denote by

Th the period of (j̄hstd ,h̄hstd), and let sjL
h ,0d and sjR

h ,0d
sjL

h =−Î2h,jR
hd be two points at which the periodic orbit

crosses thej-axis in the phase plane(see Fig. 4). Without a

loss of generality we can assume thatj̄hs0d=jL
h and

j̄hsTh/2d=jR
h . From (20) and (22) we have

h =
dj

dt
= Î2„h − V0sjd… s24d

on (j̄hstd ,h̄hstd) for 0ø tøTh/2. Rearranging(24) and inte-
grating it yields

t =E
jL
h

j dj

Î2„h − V0sjd…
s25d

for 0ø tøTh/2. Hence,

Th = 2E
jL
h

jR
h dj

Î2„h − V0sjd…
. s26d

We can also compute its angular frequency byVh=2p /Th.
We easily see that ifhø s1−ad2/2, then the periodic orbit

(j̄hstd ,h̄hstd) is a response of the linear part of(20) so that
Th=2p andVh=1. Forh. s1−ad2/2 we obtain

Th = 2sp − thd + 2E
1−a

jR
h dj

Î2„h − V0sjd…
, s27d

whereth=arccos(s1−ad /Î2h). The dependence ofVh on h is
plotted in Fig. 5. Here we used(27) and numerically com-
puted the integral in(27) using the functionNINTEGRATE of
the computer softwareMATHEMATICA .26

IV. AVERAGING ANALYSES

We return to the forced system(19). Using the averaging
method,20 we describe its dynamics. Introduce a small pa-

rameter e such that 0,e!1 and seta=eā, d=ed̄, and
g0=eḡ0. We will choosee=1310−2 in our concrete numeri-
cal calculations below. Assume thatv2−1=Osed and set
en=v2−1.

A. Case of maxt j„t…,1−a

We first consider the case of maxt jstd,1−a. Let

j = r cossvt + fd, h = − rv sinsvt + fd. s28d

Substituting(28) into (19) and performing the averaging pro-
cedure for the resulting equation, we obtain

ṙ =
e

2
f− d̄r − ḡ0sk1 + 1d sinfg,

rḟ =
e

2
F− nr −

ār

s1 − r2d3/2 − ḡ0sk1 + 1dcosfG , s29d

where we used the relationv=1+Osed. If the averaged sys-
tem (29) has a hyperbolic equilibrium, then the original sys-

FIG. 3. Phase portrait of the unperturbed system(20) for
b=4.553102 anda=4.22310−3.

FIG. 4. Definitions of the two pointsjL
h and jR

h for a periodic
orbit.

FIG. 5. Dependence of the angular frequencyVh on the energy
h for b=4.553102 anda=4.22310−3.

KAZUYUKI YAGASAKI PHYSICAL REVIEW B 70, 245419(2004)

245419-4



tem (19) has a hyperbolic periodic orbit near it. Moreover,
the periodic orbit in(19) has the same stability type as the
corresponding equilibrium in(29).

Let sr ,fd=sr0,f0d be an equilibrium in(29). Then

− d̄r0 − ḡ0sk1 + 1dsinf0 = 0,

− nr0 −
ār0

s1 − r0
2d3/2 − ḡ0sk1 + 1dcosf0 = 0. s30d

Eliminating f0 in (30) and settingr=s1−r0
2d1/2, we have

s1 − r2dSd̄2 + n2 +
2ān

r3 +
ā2

r6D = ḡ0
2sk1 + 1d2. s31d

Denote the left-hand side of(31) by gsrd. Differentiating
gsrd yields

dg

dr
srd = − 2rn2 + S2ā

r2 −
6ā

r4 Dn +
4ā2

r5 −
6ā

r7 − 2d̄2r.

s32d

We easily see that if there exists a value ofn such that
gsrd has a maximum or minimum, say atr=r0, i.e.,
sdg/drdsr0d=0, then

xsr0d ; S ā

r0
2 −

3ā

r0
4 D2

+ 2S4ā2

r0
4 −

6ā2

r0
6 − 2d̄2r0

2D . 0.

s33d

See Fig. 6 for the graph ofxsr0d. Thus, for ā=7.55310−5

and d̄=3, Eq. (33) holds if r0,r* <0.13. Moreover, there
are two values ofn such thatsdg/drdsr0d=0, which are
given by

n± = −
1

2r0
F− S ā

r0
2 −

3ā

r0
4 D ± Îxsr0dG . s34d

Suppose thatgsrd has a minimum at r=r0 and
fg0sk1+1dg2,gsr0d. Then there exist no root of(31) and no
equilibrium of the averaged system(29) such that
r0<Î1−r0

2. If g0 is increased so thatfg0sk1+1dg2.gsr0d,
then two equilibria of(29) and hence harmonic orbits of(19)

with r <Î1−r0
2 are created(see Fig. 7). Similarly, whengsrd

has a maximum atr=r0 and fg0sk1+1dg2.gsr0d, two har-
monic orbits withr <Î1−r0

2 are created ifg0 is decreased so
that fg0sk1+1dg2,gsr0d. Thus, we see that a saddle-node
bifurcation21 occurs whenn=n± andg0=Îgsr0d / sk1+1d for
Î1−s1−ad2,r0,r* .

The stability of an equilibrium in(29) and hence the as-
sociated approximate harmonic orbit in(19) can be deter-
mined by the Jacobian matrix of(29) at the equilibrium
sr ,fd=sr0,f0d,

e

21 − d̄ − ḡ cosf0

−
3ār0

s1 − r0
2d5/2 +

ḡ

r0
2 cosf0

ḡ

r0
sinf0 2 , s35d

where ḡ= ḡ0sk1+1d. The equilibrium and harmonic orbit
are stable(resp. unstable) if the matrix (35) has only
eigenvalues with negative real parts(resp. an eigenvalue
with a positive real part).21 When one of the eigenvalues
has the null real part, their stability is critical and a
saddle-node bifurcation occurs if special restriction or sym-
metry does not exist as in our situation. After a simple cal-
culation, we easily see that it is stable(resp. unstable) if
sdg/drdsrd,0 [resp.sdg/drdsrd.0].

B. Case of maxt j„t….1−a

We next consider the case of maxt jstd.1−a. We assume
that maxt jstd<1−a and setr =1−a+e1/2u in (28). Note that
j=s1−a+e1/2udcossvt+fd.1−a when vt+fP f−fe ,feg,
where

fe = arccosS 1 − a

1 − a + e1/2u
D = e1/4Î 2u

1 − a
+ Ose3/4d.

s36d

Substituting(28) into (19) and performing the averaging pro-
cedure for the resulting equation, we obtain

u̇ = 1
2f− d̄s1 − ad − ḡ0sk1 + 1dsinfg,

FIG. 6. Graph ofxsr0d for ā=7.55310−5 and d̄=3.

FIG. 7. Creation of two equilibria of the averaged system(29)
near a minimum ofgsrd.

NONLINEAR DYNAMICS OF VIBRATING… PHYSICAL REVIEW B 70, 245419(2004)

245419-5



ḟ =
e

2
F− n −

ā

„as2 − ad…3/2 +
2Î2

ps1 − ad3/2bu2

−
ḡ0sk1 + 1d

1 − a
cosfG . s37d

Here we note that by(36)

1

2p
E

−fe

fe

se1/2u cosfd3/2 cosfdf =
e

p
Î 2

1 − a
u2 + Ose3/2d

s38d

since cosf=1+Osf2d whenf is small.
Let su,fd=su0,f0d be an equilibrium in(37). Then

− d̄s1 − ad − ḡ0sk1 + 1dsinf0 = 0,

− n −
ā

„as2 − ad…3/2 +
2Î2

ps1 − ad3/2bu0
2 −

ḡ0sk1 + 1d
1 − a

cosf0 = 0.

s39d

From the first equation of(39) we obtain f0=−f* or
−p+f* , where

f* = arcsinS d̄s1 − ad
ḡ0sk1 + 1d

D s40d

with the range of arcsin chosen asf−p /2 ,p /2g. Using the
second equation of(39) and (40), we have

u0
2 −

ps1 − ad3/2

2Î2b
Sn +

ā

„as2 − ad…3/2

±ÎS ḡ0sk1 + 1d
1 − a

D2

− d̄2D = 0, s41d

where the upper or lower sign is chosen depending on
whetherf0=−f* or f0=−p+f* . Hence, if

n . −
ā

„as2 − ad…3/2 7ÎS ḡ0sk1 + 1d
1 − a

D2

− d̄2, s42d

then there are two equilibria in(37). Moreover, if

n = −
ā

„as2 − ad…3/2 7ÎS ḡ0sk1 + 1d
1 − a

D2

− d̄2, s43d

then two equilibria appear, i.e., a saddle-node bifurcation oc-
curs. The stability of the equilibrium can be determined by
the Jacobian matrix of(37). Thus, we show that they are
stable(resp. unstable) if u0 cosf0.0 sresp.,0d.

The equilibria withu0.0 in (37) correspond to approxi-
mate harmonic orbits in(19). However, we cannot immedi-
ately obtain a similar statement for the equilibria with
u0ø0 in (37). An approach to treat this problem precisely is
to use the approach stated at the end of Sec. II and perform a
higher-order approximation. Fortunately, we can obtain al-
most the same statement without such a troublesome treat-
ment as follows.

From the above analyses of this section we conclude that,
for e.0 sufficiently small, a pair of harmonic orbits having

different stability, exist in (19) if condition (42) holds.
One of them satisfies maxt jstd,1−a and the other
maxt jstd.1−a. Such a pair of harmonic orbits do not exist
if the opposite inequality holds in(42). Hence, a saddle-node
bifurcation of harmonic orbits in(19) occurs near the param-
eter values satisfying(43).

In Fig. 8 we show two approximate saddle-node bifurca-
tion curves obtained by the analyses of Secs. IV A and IV B
in the sn ,ḡ0d-plane. The results of Secs. IV A and IV B are
plotted as solid and dashed curves, respectively, although
they are very close each other in the region ofn,0. These
saddle-node bifurcations correspond to three of four types of
saddle-node bifurcations observed near the primary reso-
nance by Leeet al.:18 Noncontact harmonic orbits are born at
the first type denoted by “SN2” in Ref. 18, and tapping har-
monic orbits are born at the second and third types denoted
by “SN1” and “SN4,” respectively, in Ref. 18. The remain-
der one denoted by “SN3” in Ref. 18 and observed relatively
away from the primary resonance is detected by a different
method in the next section.

Figure 9 shows the dependence on the detuning parameter
n of r0 andf0 for e=0.01 andḡ0=2.09, which corresponds
to y0<1.9 nm in the main experimental and numerical ex-
ample of Leeet al.18 Here we setr0=1−a+e1/2u0 for the
result of Sec. IV B. See also Figs. 10 and 11.

V. SUBHARMONIC MELNIKOV ANALYSIS

We next analyze harmonic orbits in the forced system
(19) when maxt jstd.1−a, without assuming that
maxt jstd<1−a and v<1. Our approach used here is an
extended version22 of the subharmonic Melnikov method.21

Using the extended method, we can easily analyze the sta-
bility of periodic orbits and their Hopf bifurcations as well as
their existence and saddle-node bifurcations. See Ref. 22 for
the proofs and details of this method.

As in Sec. IV, we seta=eā, d=ed̄, and g0=eḡ0, where
0,e!1. We compute the 1/1th subharmonic Melnikov
functions,Mhst0d andLhst0d, for the unperturbed periodic or-

bit (j̄hstd ,h̄hstd) as

FIG. 8. Approximate saddle-node bifurcation curves for the

forced system(19) in the sn ,ḡ0d-plane for ā=7.55310−5, d̄=3,
b=4.553102, anda=4.22310−3. The solid and dashed curves rep-
resent the analytical results obtained by the analyses of Secs. IV A
and IV B, respectively.
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Mhst0d =E
0

Th

h̄hstdf− d̄h̄hstd + ḡsvdcosvst + t0dgdt

= − ḡsvdAshdsinvt0 − d̄Bshd,

Lhst0d = − d̄Th , 0, s44d

where ḡsvd=sk1v2+1dḡ0, the primary resonance condition
Th=2p /v holds and

Ashd =E
0

Th

h̄hstdsinvtdt,

FIG. 9. Dependence of the ap-
proximate harmonic orbit on the
detuning parameter n for
ḡ0=2.09 when e=0.01, ā=7.55

310−5, b=4.553102, d̄=3, and
a=4.22310−3: (a) and (b) ampli-
tuder0; (c) and(d) phasef0. The
solid and dashed curves represent
stable and unstable orbits,
respectively.

FIG. 10. Approximate saddle-node bifurcation curves for the
forced system (19) in the sv ,g0d-plane for a=7.55310−7,
b=4.553102, d=0.03, anda=4.22310−3.

FIG. 11. Dependence of the approximate harmonic orbit on the
angular frequencyv for g0=0.0209 whena=7.55310−7, b=4.55
3102, d=0.03, anda=4.22310−3: (a) Peak-to-peak amplitude;(b)
phasef0. The solid and dashed curves represent stable and unstable
orbits, respectively.
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Bshd =E
0

Th

fh̄hstdg2dt. s45d

Here we used the fact thath̄hstd is an odd function oft.
Noting that

h̄hstd = Î2h sin t s46d

for 0ø tøp−th and utilizing the relations(24) and(25), we
obtain

Ashd = −
2Î2h

v2 − 1
fv sinth cosvsp − thd

+ costh sinvsp − thdg

+ 2E
1−a

jR
h

sinSVhFE
1−a

j1 dj

Î2„h − V0sjd…
+ p − thGDdj1,

Bshd = hf2sp − thd + sin 2thg + 2E
1−a

jR
h

Î2„h − V0sjd…dj.

s47d

It is easy to numerically computeAshd and Bshd like the
period of the unperturbed periodic orbits,Th, in (27).

Noting that dVh/dh.0 (see Fig. 5) and applying the ex-
tended theory of Ref. 22, we can prove the following results:

(i) If

ḡ0

d̄
.

Bshd
sk1v2 + 1duAshdu

, s48d

then Mhst0d has two simple zeros,t= t̄0 and p /v− t̄0, and
there are two harmonic orbits(j1std ,h1std) and(j2std ,h2std),
which exist near (jhst− t̄0d ,h̄hst− t̄0d) and (jhst+p /v

+ t̄0d ,h̄hst+p /v+ t̄0d), respectively, where −p /2øvt̄0
øp /2 and

t̄0 = −
1

v
arcsinS d̄Bshd

ḡsvdAshd
D s49d

ssee Theorem 3.1 of Ref. 22d. Thus, the phase of these har-
monic orbits can be approximately estimated asf0=vt̄0 or
−p−vt̄0.

(ii ) The harmonic orbit(j1std ,h1std) is stable(resp. un-
stable) and (j2std ,h2std) is unstable(resp. stable) if Ashd
,0 fresp.Ashd.0g.27

(iii ) Near

ḡ0

d̄
=

Bshd
sk1v2 + 1duAshdu

, s50d

in the parameter space, a saddle-node bifurcation occurs and
the periodic orbits(j jstd ,h jstd), j =1,2, are bornssee Theo-
rem 4.1 of Ref. 22d.

Figure 10 shows the approximate saddle-node bifurcation
curves obtained in the previous and present sections, in the
sv ,g0d-plane. The result of Sec. V is plotted as a solid curve
while ones of Secs. IV A and IV B are plotted as dashed and
dotted curves, respectively. Note that the dashed and dotted

curves are very close to each other in the region ofv,1.
In Fig. 11 we show the dependence on the angular fre-

quencyv of the peak-to-peak amplitude and phasef0 for the
approximate harmonic orbits, along with their stability, for
g0=0.0209, which corresponds toy0<1.9 nm and was cho-
sen in the main experimental and numerical examples of Lee
et al.18 Here the peak-to-peak amplitude is estimated as 2r0,
2s1−a−e1/2u0d and jR

h −jL
h for the analyses of Secs. IV A,

IV B, and V, respectively, whereh is given as a root of
Vh=v. We see that our theory not only qualitatively but also
quantitatively explains their numerical and experimental re-
sults very well[cf. Figs. 2(c) and 2(d), and Fig. 10 of Ref.
18].

VI. NUMERICAL CONTINUATION AND BIFURCATION
ANALYSES

We demonstrate the above theoretical results by numerical
continuation and bifurcation analyses byAUTO.19 A compu-
tation similar to those given in Ref. 18 was first performed.
In the computation, to avoid complicated treatments due to
its nonsmoothness atz=a [see Eq.(17)], the functionf was
replaced by

fmszd

=5
−

a

z2 if z . a + m;

−
a

a2 + bsa − zd3/2 if z ø a − m;

−
a

z2 + k3sz − a − md3 + k2sz − a − md2 otherwise,
6

s51d

wherem is a small value and

k2 =
as3m2 − 9am + 2a2d

4a2sa − md3m
,

k3 =
1

8a2sa − md3m3/2fa2bm3 − 3a3bm2 + 2am3/2 + 3a4bm

− 6aam1/2 − a5bg. s52d

We havefszd= fmszd except the small intervalsa−m ,a+md
and fszd= fmszd and f8szd= fm8 szd at z=a±m. We set
m=1310−5 in our computations.

Figure 12 shows the dependence on the angular frequency
v of the peak-to-peak amplitude for the numerically com-
puted harmonic orbits, along with their stability, for
g0=0.0209. We find a fairly good agreement between the
theoretical result of Fig. 11(a) and numerical result of Fig.
12. On the other hand, we could not succeed in continuation
of the saddle-node bifurcations byAUTO except for noncon-
tact harmonic orbits. To compute other saddle-node bifurca-
tion curves numerically, the following boundary value prob-
lem was treated.

Denote j=j1 and h=h1 for j,1−a and j=j2 and
h=h2 for j.1−a. Let t=T0 be the time whenjstd crosses
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the axisj=1−a from the above[i.e., hsT0d,0] and let t
=T0+T1 be the time whenjstd crosses the axisj=1−a from
the below [i.e., hsT0+T1d.0]. In addition, assume thatj
does not cross the axisj=1−a at other times, and shift the
time for sj1,h1d and sj2,h2d such that

j1s0d = j1sT1d = j2s0d = 1 −a,

h1sT1d = h2s0d . 0. s53d

We have

j̇1 = h1,

ḣ1 = − j1 +
a

s1 − j1d2 − dh1 + gsvdcosvst + T0d s54d

and

j̇2 = h2,

ḣ2 = − j2 +
a

a2 − bsa − 1 +j2d3/2 − dh2

+ gsvdcosvst + T0 + T1d. s55d

For a harmonic orbit of(19) we have

j1s0d = j2sT − T1d, h1s0d = h2sT − T1d, s56d

whereT=2p /v. Thus, we can reduce the problem of com-
puting a harmonic orbit of the forced system(19) to the
boundary value problem for(54) and (55) under the bound-
ary conditions(53) and (56).

Define the Poincaré map21 P:R2→R2 as

„j1s0d,h1s0d… ° „j2sT − T1d,h2sT − T1d…, s57d

where(j1std ,h1std) and (j2std ,h2std) are, respectively, solu-
tions of (54) and(55) satisfying(53). Let F1std andF2std be
the fundamental matrices of the variational equations about
the solutions of(54) and(55), such thatF1s0d andF2s0d are
the 232 identity matrix. Then the Jacobian matrix of the
Poincaré map can be computed as

DP = F2sT − T1dF1sT1d. s58d

If D P has a unit eigenvalue for some parameter values, then
a saddle-node bifurcation occurs at the parameter values.21

Hence, to obtain a saddle-node bifurcation curve, we only
have to continue the parameter values such that DP has a
unit eigenvalue. Such a computation can also be performed
easily byAUTO.

Figure 13 shows saddle-node bifurcation curves numeri-
cally computed by this approach, along with one obtained by
a numerical continuation of saddle-node bifurcations for
noncontact harmonic orbits in(19) with f = fm. In Fig. 13, for
the left and right branches of saddle-node bifurcations, we
observe cusp bifurcations,21 at which two saddle-node bifur-
cation curves meet.

An excellent agreement between the theoretical result of
Fig. 10 and numerical result of Fig. 13 is found except the
cusp bifurcation. To treat the cusp bifurcations analytically,
we need a sophisticated analysis as in Refs. 22 and 28.

VII. CONCLUDING REMARKS

We have theoretically explained main findings of numeri-
cal computations and experimental measurements by Leeet
al.18 The analytical tools used here were the averaging
method20,21 and an extended version22 of the subharmonic
Melnikov method.21 In our numerical computations by the
computer softwareAUTO,19 we also reproduced the main nu-
merical results of Ref. 18 and, furthermore, succeeded in
continuation of saddle-node bifurcations by treating a non-
linear boundary value problem. A fairly good agreement be-
tween the analytical and numerical results was found. Our
results indicate that numerical and experimental observations
by Leeet al.18 will be still valid for much wider parameter
regions.

Here we only considered the same situation as Leeet
al.,18 so that the tip-sample separation wasD=90 nm and
relatively large. Consequently, the influence of the van der
Waals force on the dynamics of the microcantilever was so
small that we could treat it as a small perturbation in the
equation of motion. In the practical operating regime of tap-
ping mode AFM the tip-sample separation is further small.

FIG. 12. Numerically computed peak-to-peak amplitude for the
forced system(19) when g0=0.0209,d=0.03, a=7.55310−7, b
=4.553102, anda=4.22310−3. Here the functionf was replaced
by fm in (51) with m=1310−5.

FIG. 13. Numerically computed saddle-node bifurcation curves
for the forced system(19) in the sv ,g0d-plane fora=7.55310−7,
b=4.553102, d=0.03, anda=4.22310−3.
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Hence, we expect the performance of the tapping mode AFM
can be improved by using a regime in which the van der
Waals force is a primary influence on the dynamics of mi-
crocantilevers. Detailed analyses for bifurcations and chaos
in such a regime are desired and given elsewhere.25

As we have seen here, “nonlinearity” is essential in un-
derstanding the dynamics of microcantilevers in tapping
mode AFM. It is plausible that “nonlinearity” plays an im-
portant role in other aspects of nanotechnology. So better
understandings of such nonlinear phenomena will be helpful

and desirable for further progress of this attractive and excit-
ing field. Dynamical systems theory21 must also be useful in
this context.
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