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Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy
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We consider atomic force microscopy cantilevers tapping on samples and provide theoretical explanations
for main findings of numerical computations and experimental measurements k&t ab¢Phys. Rev. B66,
115409(2002] when the van der Waals force has only a secondary influence on their dynamics. To this end we
use the averaging method and an extended version of the subharmonic Melnikov method. Necessary compu-
tations for the subharmonic Melnikov method are performed numerically. An analytical framework to describe
nonlinear oscillations, including their stability and bifurcations, due to the Derjaguin-Muller-TogbidV )
force between the tip and sample surface when operating in tapping mode is given. Our model is basically the
same as the previous one of Lekal. although it does not include a parametric excitation term. Numerical
computation results are also given to demonstrate our theoretical results.
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I. INTRODUCTION which the tip-surface interaction is represented by the van
Atomic force microscopy (AFM) (Refs. 1 and P der Waals and DMT contact forces, includes not only exter-
with tapping (or intermittent contagtmode operatioh has n_al_exmtatlon bluzt also parametric excitation un_llke othe_r
been widely used in nanometer-scale characterization ofmilar models™'? Good agreements between their numeri-
surfaces, especially for soft materials such as polyrhtrs, €@ computations and experimental measurements for a
DNA moleculess and protein$. In the standard AFM,a  [reshly cleaved, highly oriented pyrolytic graphtHOPG
cantilever tip is excited at a frequency close to resonance argpMPI€ were found. In particular, they showed that four types
the sample is imaged while the forcing amplitude is con-Of Saddle-node bifurcations, at which a pair of stable
trolled to keep the oscillation amplitude at a fixed value. In@"d uUnstable periodic orbits are born in this context, occur

. : : . in their numerical computations and explained multiple
B e ot o oo, 5 e phenomens berved i thei experment. Thus, ter
i 9 result also shows that a single-degree-of-freedom oscillator
motion. with the van der Waals and DMT contact forces can

Early studies on the tapping AFM have revealed that inyepresent microcantilevers in the tapping mode AFM very

teresting “bistable” behavior occurs near the surface and thﬁrecisely.

tip exhibits hysteretic responses when the driving frequency | this paper we provide theoretical explanations for main
is swept up and down through the primary resonarftBais  findings of numerical computations and experimental mea-
phenomenon was explained as a result of an interaction of gurements in Ref. 18. To this end we use the averaging
harmonic oscillator with attractive and repulsive regions ofmethod®2! and an extended versi&nof the subharmonic
potential modeled by the van der Waals and Derjaguinielnikov method?* The approach of Nongt all® for the
Muller-Toporov (DMT) force§-12 or others?1®-15 and it  van der Waals potential also yields a similar result for one of
causes several artifactéThe nonlinear effects in dynamics the four saddle-node bifurcations since it occurs in the attrac-
of the simple models were investigated mainly through nu+ive region of potential. Necessary computations for the sub-
merical simulations and a few analytical studies based ohmarmonic Melnikov method are performed numerically as in
variants of the multiple scale or averaging metfgdhave Ref. 23. An analytical framework to describe nonlinear os-
been doné®!415These analytical techniques are valid only cillations, including their stability and bifurcations, due to
for weakly nonlinear systems and insufficient for the study ofthe DMT contact between the tip and sample surface when
the strongly nonlinear tapping mode. Through these reeperating in tapping mode is given. Our model is basically
searches, the former model, which has the van der Waals artde same as one of Ref. 18 but the parametric excitation term
DMT contact forces, is proven to be valid under a wide rangdas removed by treating the absolute displacement of the can-
of circumstances. Moreover, chaotic tip motions were ob-ilever. Numerical computation results are also given to dem-
served in numerical simulations of a single-degree-of-onstrate our theoretical results.
freedom oscillator model having an impact or hard wall con- The outline of this paper is as follows: In Sec. Il our
tact with sample surfacés. single-degree-of-freedom model is derived from a continua-
More recently, Leest al!® performed numerical analysis tion model of the microcantilever having tip-surface interac-
by a modern computation tool called1o,*® which was de-  tion represented by the van der Waals and DMT contact
veloped for numerical continuation and bifurcation analysisforces. The unperturbed system without the van der Waals,
of differential equations and is widely used in the communitydamping and external forcing terms is discussed in Sec. Ill.
of dynamical systems, although their analysis was limited tcAveraging and subharmonic Melnikov analyses are per-
the case in which the van der Waals force has only a secondermed in Secs. IV and V, respectively. In Sec. VI numerical
ary influence on the cantilever dynamics. Their model, incomputation results by the computer softwawero (Ref.
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v(t,0) =y, cosQt,

v'(t,0) =0v"(t,£) =v"(t,€) = 0. (6)

We approximate the solution ¢b) satisfying the bound-
ary conditions(6) as

v(t,X) = v1(t) ¥y (X) + yg cOsQt, (7)
where ¢ (x) is the first mode of the linear problem
FIG. 1. Cantilever configuration. A +Elp" =0 )

19) are provided to be compared with the analytical resultginder the boundary conditions
gﬁeS;;sté(lj\/inagic\:/. \lenally, a summary and some comments v(t,0)=v'(t,0) = v"(t,€) =v"(t,€) =0 (9)
and given by

Il. ANALYTICAL MODEL Yn(X) = (sin vyx = sinhvyX) + N1(COSv1X — coshyyX).

Figure 1 shows our analytical model for a microcantilever (10
in tapping ”?Ode atomi_c forcg microsc_;opy. The ba§e of thq‘ﬂere v1~1.8751K is the least positive root of
beam is excited by a dither piezoelastic actuator with a con-
stant amplitudey, and constant frequendy so that its dis- cosyf coshy € =—1 (11
placement is given by, cos(t. d

We assume the van der Waals and DMT contacf"
forces between a spheftip ape® and a flat surfacésample _sinhy € +siny, €
in the tip-sample interaction in tapping mode AFM 17 coshwyl + cosuf
as in Refs. 11 and 18. Letbe the instantaneous tip-sample
separation and led, be the intermolecular distance. Fpr ~ Substituting(7) into (5) and using the Galerkin method, we

> a, the tip-sample interaction is given by the van der Waalsobtain

~ —1.3622. (12

force Ko
CR U1+ Swidy + wivy = ‘TAF(A—(Ullﬂl(f) +Yp cosQt))
p
F@=-—3, (1)
62> + Kk Qyo(Q cosQt + Sw; SinQ),
whereC is the Hamaker constant amlis the tip radius. For (13
z<a it is modeled by the DMT contact mecharftas Wherewlzvf\s’EI/pA is the first mode angular frequency,
CR 4 ~— =D/pAw;, and
Fo)=- o+ 3 R 2™ B e . ,
_ . . , ko= ya(€) f YA(x)dx= ,
where E. is the effective elastic modulus of the tip and 0 O (€)
sample and given by
¢ ¢
1 1-/7 1-42 ki = f 1 (x)dx f YA(x)dx. (14)
E-E YT E (3 0 0
* S
Let

with E (resp.E) the tip (resp. sampleelastic modulus and
(resp.vy) the tip (resp. samplePoisson coefficient. The ad- 1 v(t,x)
hesion force in the DMT theory is the resulting van der §—K[vl(t)¢/f1(€)+yo cos(it] = A (15

Waals force az=a, so that
and scale the time variable &s> wt. Then we can rewrite
AnRT = E: @4 (1Ias
6ag’ .
% B+ oE+ £+ 1(1-H = Hw)codot - fw),  (16)
wherel is the surface energy. Hence, the equation of motion h
for the microcantilever becomes where

pAv + Do + Elv"" == F(A - v(£))8(x - €), (5)

wherep, A, and{ are, respectively, the mass density, cross f()=— AA(?F(AD =
section, and length of the beam, aadis the tip-sample “1p
separation wheir =0. The deflectiorv satisfies the bound-

ary conditions, 17

o
2

—§+B(a—£)3’2 if {<a,

if (> a;
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TABLE |. Constant values of the cantilever and sample used in . B B B L
our computations. i ]
Quantity Value - .

1 A
Tip radius R=10 nm e r e 7
Cantilever cross-section area A=8.09x 10711 m? oor e |
Cantilever momentum of inertia 1=3.57x 10 m* % L o
e
Cantilever material density p=2300 kg/n¥ ,,‘fp 0 i P 1
Cantilever elastic modulus E=130 GPa L e i
Effective elastic modulus E.=10.2 GPa r T
First natural frequency f,=44 kHz 4L ]
Q faCtor Q=333 C |'/”| [ I I A R A | IR B A B B
Hamaker constant C=2.96x101°J -1 0.5 0 0.5 1
Intermolecular distance a,=3.8 A @ S
0.8 T e
Y) = Yo\ (k1 0” + )% + (k1 60)?, I i
0.6 - —
K10w ro ]
Ow) = arctar<1—2> - 1
K1 +1 @ - 4
~ 04 - -
with a=ay/A, y9=Yo/A and —~ - \ -
K1 = Ky (€) — 1~ 0.56598, o b \ b
2CR 16E. VAR [ ]
a:3w2AA3€’ :3w2A€' (18) 0 Lot e e Ly 1
1P 1P -1 05 0 0.5 1
The parameters and 8 represent the strength of the attrac- (b) &

tive and repulsive nonlinear interactions, respectively. ) )
In our computations, we use constant values of the micro- FIG. 2. Restoring force and potent|3aI of the unperturbed system

cantilever and sample in Table I, the data of which come(zo?erf_]ct’i;f =4.55x 10° anda=4.22x10"": (a) Restoring force(b)

from Ref. 18, and seA=90 nm as in that reference. For P '

these values we can estimate 7.55x 1077, 8=4.55x 107, _

5=0.03(=1/Q), and a=4.22x 10°3. Henceforth we reg_ard E=y, p=-E-Ty(1-9), (20)

a, 8, andy, as small parameters. Also, note thgé) =~ 0 if

8~0. In fact, 6(w)=0.0108 for our chosen parameter values/nere

whenw=1. Finally, we shift time a$—t+6(w)/w in (16) to 0 for ¢ > a;
. f = ' 21
obtain old) Bla-¢)*? for {<a. @D
é+ 5§+ E+f(1-¢) = y(w)coswt Note thatg is not small althougha, 6, Y(w)=0. In the

following we refer to(20) as theunperturbed systenHere
we do not mean by this terminology the system without non-
- , linear force(i.e., B=0). The unperturbed systeli20) is a
£=n, n=-§¢-f1-§-on+vwcoswt. (19  planar Hamiltonian system with a Hamiltonian function

The techniques used below are applicable only to smooth _ 12
systems, but Eq19) is not smooth. To justify our analyses, H(& 7) = Vol&) + 27 (22
we only have to introduce a small interval of length - whereV,(¢) is the potential given by
cluding the discontinuous poigt1-a and take the limit of

or as a first-order system

w—0. See also Sec. VI. In the following, we assume this 1, gf
treatment although we do not specifically state it. Vo(&) = 55 * o o(1 - g)d¢. (23
IIl. UNPERTURBED SYSTEM See Figs. 2 and 3 for the restoring force, potential, and phase

portrait of (20) with the parameter values. We see that there
When the parameters supposed to be small are zero, i.exist a center at the origin and a family of periodic orbits
a=vy=6=0, Eq.(19) becomes around it. It is shown in Ref. 25 that more complicated situ-
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FIG. 3. Phase portrait of the unperturbed systéxd) for
B=4.55x 10% anda=4.22x 1073,

ation occurs when the terms containiagare included, i.e.,
fo is replaced withf, in the unperturbed system.

We parametrize the family of periodic orbits by the
Hamiltonian energyh=0 and represent bg"(t), 7"(t)) the
periodic orbit having the Hamiltonian enerdgry Denote by
T" the period of (£"(t),7(t)), and let(&',0) and (£},0)
(§L:—\f%< §g) be two points at which the periodic orbit
crosses th&-axis in the phase plansee Fig. 4 Without a
loss of generality we can assume th&i(O):gf and

(T 2)=£0. From (20) and(22) we have

_d¢_
’”___

qt = 2h=Vo(9)

(24)

on (&(t), 7'(t)) for 0<t<T"/2. Rearranging24) and inte-
grating it yields

=
& V2(h=Vo(8)

(25)

for 0<t<T"/2. Hence,

n

FIG. 4. Definitions of the two pointg]' and & for a periodic
orbit.
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FIG. 5. Dependence of the angular frequefityon the energy
h for B=4.55x 10? anda=4.22x 1073,
dé

=2 J . —_—
g V2(h=Vo(9))

We can also compute its angular frequency(y= 27/ T".
We easily see that ii<(1-a)?/2, then the periodic orbit

(Eh(t),ﬁh(t)) is a response of the linear part (#0) so that
Th=27 andQ"=1. Forh> (1-a)2/2 we obtain

& d

1-a V2(h = V()
where'=arcco$(1-a)/+2h). The dependence 61" onh is
plotted in Fig. 5. Here we use@7) and numerically com-

puted the integral i27) using the functiorNINTEGRATE of
the computer softwarslATHEMATICA .26

(26)

(27)

IV. AVERAGING ANALYSES
We return to the forced syste(i9). Using the averaging
method?® we describe its dynamics. Introduce a small pa-
rameter e such that 6<e<1 and seta=ea, 6=€6, and
Yo=€Yo. We will choosee=1x 1072 in our concrete numeri-
cal calculations below. Assume tha?-1=0(e) and set
ev=w?-1.
A. Case of maxé(t)<l-a
We first consider the case of mait) <1l-a. Let

E=rcoqut+¢), n=-rowsinwt+¢). (28)

Substituting(28) into (19) and performing the averaging pro-
cedure for the resulting equation, we obtain

= g[_ﬁ = Yolky + 1) sings],

ar
(1 _ r2)3/2

where we used the relatian=1+0(¢). If the averaged sys-
tem (29) has a hyperbolic equilibrium, then the original sys-

r¢:§ —r - - Yo(ky+ Decosep |, (29)

245419-4
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FIG. 6. Graph ofy(po) for @=7.55x 10°° and 6=3.

tem (19) has a hyperbolic periodic orbit near it. Moreover,
the periodic orbit in(19) has the same stability type as the
corresponding equilibrium i29).

Let (r,¢)=(rg, o) be an equilibrium in(29). Then

_ETO _%(Kl + 1)Sin ¢O =0
ar _
— o~ (1_—%3,2 = Yo(k1 +1)COShy = 0 (30)
o)

Eliminating ¢ in (30) and settingo=(1-r3)*?, we have

a?

;) =Ykt % (3D)
Denote the left-hand side af31) by g(p). Differentiating
9(p) yields

1-gh| B2 220
p

4a? 6a
—5———252p
p> P

2a ba

_),,+

o

—(p) =-2p”+ (
p
(32)

We easily see that if there exists a value wofsuch that
d(p) has a maximum or minimum, say ai=pq, i.e.,
(dg/dp)(pe) =0, then

@ 3a\? (4% 6a2
Xp) =57 2| 7% 252130 >0.
Po  Po Po 0
(33

See Fig. 6 for the graph of(py). Thus, fora=7.55x 107°

and§:3, Eq. (33) holds if pp<p«=0.13. Moreover, there
are two values ofy such that(dg/dp)(pg)=0, which are

given by
1 a 3a
vi=-2—{—(—2- )—\X(Po)} (34)
Po Po Po

Suppose thatg(p) has a minimum atp=p, and
[vo(k1+1)12<g(po). Then there exist no root ¢81) and no
eqU|I|br|um of the averaged systeni29) such that
ro=~V1-p2 p5. If vy, is increased so thdtyo(x;+1)12>g(po),
then two equilibria 0{29) and hence harmonic orbits ¢£9)

PHYSICAL REVIEW B 70, 245419(2004)

P

(Yot

FIG. 7. Creation of two equilibria of the averaged systg9)
near a minimum of(p).

with r = \J'Tpg are createdsee Fig. 7. Similarly, wheng(p)
has a maximum ap=p, and[ yy(x;,+1)]>>g(po), two har-
monic orbits withr = \/rpg are created ify, is decreased so
that [ y5(x;+1)12<g(po). Thus, we see that a saddle-node
blfurcatlori21 occurs wherw=wv, and y,= \,g(po)/(K1+ 1) for
1-(1-a)*< po<p-.

The stability of an equilibrium i29) and hence the as-
sociated approximate harmonic orbit {49 can be deter-
mined by the Jacobian matrix aR9) at the equilibrium

(r1¢)=(r0!¢0)1

- yCoSdy
LY Y ’
5 C0S¢y  — Sindgy
0 o

3ar 0 (39)

(1 5/2

N m

where y=19y(k;+1). The equilibrium and harmonic orbit
are stable(resp. unstable if the matrix (35 has only
eigenvalues with negative real paresp. an eigenvalue
with a positive real payt?? When one of the eigenvalues
has the null real part, their stability is critical and a
saddle-node bifurcation occurs if special restriction or sym-
metry does not exist as in our situation. After a simple cal-
culation, we easily see that it is stableesp. unstableif
(dg/dp)(p) <O [resp.(dg/dp)(p)>0].

B. Case of maxé(t)>1-a

We next consider the case of mak)>1-a. We assume
that max &(t) ~1-a and ser =1-a+€*u in (28). Note that
é=(1-a+e’u)coqwt+¢)>1-a when wt+dpe[-¢,, b,

where
1-a 2u
= A4 +O(4.
1—a+el’2u> € l1-a (€

(36)

b= arcco{

Substituting(28) into (19) and performing the averaging pro-
cedure for the resulting equation, we obtain

=3[~ 8(1-a) - yo(xy + Dsin ],

245419-5
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¢ € E + ZV’E Buz ’ o \\ I I I /] 1
=—|—-v- A /
2 (a2-a)%? =(1-a%? F
Yoy + 1) -
- ————— C0S¢|. 3 = / -
T, Cosd (37) s
S J
Here we note that by36) | y
1 (% 4, 3 € 2 5 / I
— (eY2u cos¢)®? cosgpdp = — u? + O(?) 2F 1
21 ¢, m V1l-a g
(38) -4 2 4
since cosp=1+0(¢?) when ¢ is small. _ | turcati for th
Let (u, ¢)=(U, d) be an equilibrium in37). Then FIG. 8. Approx'lmate sad_d e-node bi u_rcatlon curves for the
- forced system(19) in the (v,7g)-plane for @=7.55x 105, §=3,
- 8(1-a) — yy(ky + 1)sin gy =0, B=4.55x 10%, anda=4.22x 10°3. The solid and dashed curves rep-
resent the analytical results obtained by the analyses of Secs. IV A
a + 2\’5 U2 Yok + 1) cosd=0 and IV B, respectively.
(@2-a)* m(1-a%¥""° 1-a 0

different stability, exist in(19) if condition (42) holds.
(39 One of them satisfies mait)<1l-a and the other

From the first equation of39) we obtain ¢y=—¢. or  Max &(t)>1-a. Such a pair of harmonic orbits do not exist

— 1+ ¢, Where if the opposite inequality holds if#2). Hence, a saddle-node
_ bifurcation of harmonic orbits i119) occurs near the param-
| &81-a) eter values satisfyin43).
¢-= arc3|r(%(K1+ 1)> (40) In Fig. 8 we show two approximate saddle-node bifurca-

. _ . tion curves obtained by the analyses of Secs. IV A and IV B
with the range of arcsin chosen Bsm/2,7/2]. Using the  in the (v, y,)-plane. The results of Secs. IV A and IV B are

second equation af39) and(40), we have plotted as solid and dashed curves, respectively, although
(1 -a)%? = they are very close each other in the regionvef0. These
g- — ( 7 saddle-node bifurcations correspond to three of four types of
V2B (a2-a) saddle-node bifurcations observed near the primary reso-
Yot D\ — nance by Leet al:'® Noncontact harmonic orbits are born at
+ \/< 701 L A ) - 52> =0, (41)  the first type denoted by “SN2” in Ref. 18, and tapping har-

monic orbits are born at the second and third types denoted

where the upper or lower sign is chosen depending ofY “SN1"and “"SN4,” respectively, in Ref. 18. The remain-

whethergy=—g. or ¢o=—m+ .. Hence, if der one denoted l_)y “SN3” in Ref. 1_8 and observed rel_atively
o _ away from the primary resonance is detected by a different
_ a _ \/ Yolky +1) 2_52 4p  Method in the next section,
v= (a2 -a))3? - 1-a . (42 Figure 9 shows the dependence on the detuning parameter
o ) v of ry and ¢ for €=0.01 andy,=2.09, which corresponds
then there are two equilibria i87). Moreover, if to yo=1.9 nm in the main experimental and numerical ex-
— = 2 ample of Leeet al!® Here we setr,=1-a+e2, for the
_ a _ Yo(ky+1) P ]
v=- 7+ -5, (43 result of Sec. IV B. See also Figs. 10 and 11.
(a(2 -a)) 1-a

then two equilibria appear, i.e., a saddle-node bifurcation oc- V. SUBHARMONIC MELNIKOV ANALYSIS
curs. The stability of the equilibrium can be determined by
the Jacobian matrix of37). Thus, we show that they are
stable(resp. unstableif uycos¢y>0 (resp<0).

The equilibria withuy>0 in (37) correspond to approxi-
mate harmonic orbits i119). However, we cannot immedi-
ately obtain a similar statement for the equilibria with
Up=0 in (37). An approach to treat this problem precisely is their existence and saddle-node bifurcations. See Ref. 22 for
to use the approach stated at the end of Sec. Il and perform a ; :

: S . the proofs and details of this method.
higher-order approximation. Fortunately, we can obtain al- . — e _
most the same statement without such a troublesome treat- AS in Sec. IV, we setx=ea, 6=€4, and yo=€y,, Where
ment as follows. 0<e<l1l. We compute the 1/1th subharmonic Melnikov

From the above analyses of this section we conclude thafunctions,M"(to) andL"(t,), for the unperturbed periodic or-
for e>0 sufficiently small, a pair of harmonic orbits having bit (£'(t), 7"(t)) as

We next analyze harmonic orbits in the forced system
(199 when maxé&(t)>1-a, without assuming that
max &é(t)=1-a and w=1. Our approach used here is an
extended versidi of the subharmonic Melnikov methdd.
Using the extended method, we can easily analyze the sta-
bility of periodic orbits and their Hopf bifurcations as well as

245419-6
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101 T T . W1 T ]
1 b . Lr o
<:'—__——_ Q\:
o099 / 1 =o0»r ]
098 [ . 0.98 |- ] FIG. 9. Dependence of the ap-
proximate harmonic orbit on the
P P T T, Py 1) P T TP B detuning  parameter »  for
» 715 45 4 135 (b)' 12 125 13 7=2.00 when =0.01, a=7.55
v v X107, B=4.55x 102, 5=3, and
1.1

— a=4.22x 103 (a) and(b) ampli-
1 tuderg; (c) and(d) phaseg,. The
] [ ] solid and dashed curves represent

] ] 1 stable and unstable orbits,
] B ] respectively.
<
] Lt ;
1.18 |- -
12 Lo — -2.01 e L —
-1.5 -1.45 -1.4 -1.35 1.2 1.25 1.3
() v (d) v
™ _
M"(to) = f 7O 57'(1) + Y w)cosw(t + to) dt
0 T T T T ]
= - N w)Ah)sin oty - 5B(h), 2 .
% 1_5 -_ -
JE— B [
L"(to) = - 6T" <0, (44) 2t
where y(w) =(k,0?+1)%,, the primary resonance condition os _/
T'=27/w holds and Tk
0 1 1 M | 1
Th @ 0.95 1 105 1.1 115
Ah) = | 7 (t)sinwtdt,
0
0B T T T
‘ ;
!
i o
L 2
0025 - ‘.l - .
= !
|
| L
-3
00T \/ 09 I0|95”'I;””105””11””115
| .IIIII\IIII.IIIIIIIII._ (b) . . a). . .
09 0.95 ! ® 105 L1 L13 FIG. 11. Dependence of the approximate harmonic orbit on the

angular frequency for 1,=0.0209 whenw=7.55x 1077, 3=4.55
FIG. 10. Approximate saddle-node bifurcation curves for thex 10?, 6=0.03, anca=4.22x 1073: (a) Peak-to-peak amplitudéh)
forced system(19) in the (w,7y)-plane for a=7.55x107,

phaseg,. The solid and dashed curves represent stable and unstable
B=4.55x 10, 5=0.03, anda=4.22x 102,

orbits, respectively.
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B(h) = f AP oT. (45)
0

Here we used the fact thaj'(t) is an odd function oft.
Noting that

70 = \2h sint (46)
for 0<t<=—7" and utilizing the relationg24) and(25), we
obtain
2\e’%
w’-1

+cos?' sinw(m— ]

& [
+2 sin| Q
1-a

B(h) = h[2(7 - ") + sin 27"] + 2f

1-a

A(h) [w sin 7' cosw(m— 7")

&
f ’,d—L + 77— 7h:| )dfl,
1-a V2(h=Vy(§))

B

V2(h=V(§)dé.

(47)

It is easy to numerically computd(h) and B(h) like the
period of the unperturbed periodic orbit}, in (27).
Noting that d2"/dh>0 (see Fig. 5 and applying the ex-

tended theory of Ref. 22, we can prove the following results:

(i) If
B(h)
(k10 + DIA)]’

%

(48)

1)

then M"(t,) has two simple zerog=t, and 7/ w—-t,, and
there are two harmonic orbi{g;(t), 7:1(t)) and (&(t), (1)),
which exist near (£'(t-to),7'(t-tp)) and (&"(t+7/w

+1y), 7(t+ 7/ w+1y)), respectively, where /2<wt,
< /2 and
1 SB(h
tp=—— arcsi A) (49)
w Y w)A(h)

(see Theorem 3.1 of Ref. 2ZThus, the phase of these har-
monic orbits can be approximately estimated¢as wt, or
—m— wtp.

(i) The harmonic orbit(&;(t), ,(t)) is stable(resp. un-
stablg and (&,(t), 7,(t)) is unstable(resp. stablgif A(h)
<0 [resp.A(h)>0].2"

(iii) Near

Yo___ BW
5 (k®+ ]AD)

% (50)
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curves are very close to each other in the regiomef1.

In Fig. 11 we show the dependence on the angular fre-
guencyw of the peak-to-peak amplitude and phasdor the
approximate harmonic orbits, along with their stability, for
v=0.0209, which corresponds tg=1.9 nm and was cho-
sen in the main experimental and numerical examples of Lee
et al*® Here the peak-to-peak amplitude is estimatedras 2
2(1-a-€"2uy) and &h-¢& for the analyses of Secs. IV A,
IV B, and V, respectively, wherd is given as a root of
QM=w. We see that our theory not only qualitatively but also
quantitatively explains their numerical and experimental re-
sults very well[cf. Figs. Z2c) and 2d), and Fig. 10 of Ref.

18.

VI. NUMERICAL CONTINUATION AND BIFURCATION
ANALYSES

We demonstrate the above theoretical results by numerical
continuation and bifurcation analyses hyTo.'® A compu-
tation similar to those given in Ref. 18 was first performed.
In the computation, to avoid complicated treatments due to
its nonsmoothness @ta [see Eq(17)], the functionf was
replaced by

f.(0)
-2 if ¢>a+pu
é,z My
=9 —;Jrﬁ(a—é)w if {<a-u;

- % +kg({—a-w)d+ky({—a-u)? otherwise,

\
(52)

whereu is a small value and

_ a(3u? - 9au + 2a)
27 da%a- i

1
k:—aZ 3_3a3 2+2 3/2+3a4
3 8a2(a _ ,LL)3,LL3/2[ Bu Bu ap Bur

- Baaut?-ag]. (52)

We havef({)=f,({) except the small intervala—u,a+ u)
and f(9)=f,(¢) and f'({)=f, () at {=atu. We set
©=1x107in our computations.

Figure 12 shows the dependence on the angular frequency
o of the peak-to-peak amplitude for the numerically com-

puted harmonic orbits, along with their stability, for

v=0.0209. We find a fairly good agreement between the

in the parameter space, a saddle-node bifurcation occurs amaeoretical result of Fig. X&) and numerical result of Fig.

the periodic orbitg(&(t), (1)), j=1,2, are born(see Theo-
rem 4.1 of Ref. 22

12. On the other hand, we could not succeed in continuation
of the saddle-node bifurcations yT0 except for noncon-

Figure 10 shows the approximate saddle-node bifurcatiotact harmonic orbits. To compute other saddle-node bifurca-
curves obtained in the previous and present sections, in th@n curves numerically, the following boundary value prob-
(w,yo)-plane. The result of Sec. V is plotted as a solid curvelem was treated.
while ones of Secs. IV A and IV B are plotted as dashed and Denote ¢=¢; and =7, for {&<l-a and é=¢, and
dotted curves, respectively. Note that the dashed and dotteg= 7, for £>1-a. Let t=T, be the time wher¥(t) crosses

245419-8
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D.9 0.95 1

FIG. 12. Numerically computed peak-to-peak amplitude for the

forced system(19) when y,=0.0209, 5=0.03, a=7.55x 107/, S
=4.55x 107, anda=4.22x 1073, Here the functiorf was replaced
by f, in (51) with u=1x107.

the axisé=1-a from the above]i.e., 7(Ty) <0] and lett
=Ty+T; be the time wherg(t) crosses the axié=1-a from
the below[i.e., 7(Ty+T4)>0]. In addition, assume that

does not cross the axé=1-a at other times, and shift the

time for (&1, 1) and(&,, 7,) such that
§1(00=&(T) =60 =1-a,

7(T1) = 772(0) > 0. (53
We have
.§1 =M,
M=t s omt w)cose(t+ Ty (54
and
;fz =72,
- a 312
772-‘52*‘?‘/3(3—14'52) — o
+ y(w)cosw(t + To+Ty). (55)
For a harmonic orbit 0of19) we have
&0 =&T-T), 7(0)=n(T-Ty, (56)

PHYSICAL REVIEW B 70, 245419(2004)

(1: R —

0.025F

%

0.@ -

FIG. 13. Numerically computed saddle-node bifurcation curves
for the forced systend19) in the (w, yo)-plane fora=7.55x 1077,
B=4.55x 1%, 6=0.03, anda=4.22x 1073,

DP = ®y(T - Ty Dy(Ty). (58)

If DP has a unit eigenvalue for some parameter values, then
a saddle-node bifurcation occurs at the parameter values.
Hence, to obtain a saddle-node bifurcation curve, we only
have to continue the parameter values such thathas a
unit eigenvalue. Such a computation can also be performed
easily byauTo.

Figure 13 shows saddle-node bifurcation curves numeri-
cally computed by this approach, along with one obtained by
a numerical continuation of saddle-node bifurcations for
noncontact harmonic orbits {19) with f=f . In Fig. 13, for
the left and right branches of saddle-node bifurcations, we
observe cusp bifurcatiorf3,at which two saddle-node bifur-
cation curves meet.

An excellent agreement between the theoretical result of
Fig. 10 and numerical result of Fig. 13 is found except the
cusp bifurcation. To treat the cusp bifurcations analytically,
we need a sophisticated analysis as in Refs. 22 and 28.

VII. CONCLUDING REMARKS

We have theoretically explained main findings of numeri-
cal computations and experimental measurements byetee
al'® The analytical tools used here were the averaging
method®?! and an extended versitof the subharmonic
Melnikov methoc?? In our numerical computations by the
computer softwarauto,'® we also reproduced the main nu-
merical results of Ref. 18 and, furthermore, succeeded in

whereT=2m/w. Thus, we can reduce the problem of com- continuation of saddle-node bifurcations by treating a non-

puting a harmonic orbit of the forced systeth9) to the
boundary value problem fqb4) and(55) under the bound-
ary conditions(53) and (56).

Define the Poincaré mapP:R?>— R? as

(£1(0),71(0)) = (&(T=Tp), AT - Ty)), (57)

linear boundary value problem. A fairly good agreement be-
tween the analytical and numerical results was found. Our
results indicate that numerical and experimental observations
by Leeet all® will be still valid for much wider parameter
regions.

Here we only considered the same situation as ete

where (&,(1), 7.(1) and (&(1), 7)) are, respectively, solu- al. 18 so that the tip-sample separation wAs 90 nm and

tions of (54) and(55) satisfying(53). Let ®4(t) and®,(t) be

relatively large. Consequently, the influence of the van der

the fundamental matrices of the variational equations aboutvaals force on the dynamics of the microcantilever was so

the solutions of54) and(55), such thaid,(0) and®,(0) are

small that we could treat it as a small perturbation in the

the 2Xx 2 identity matrix. Then the Jacobian matrix of the equation of motion. In the practical operating regime of tap-

Poincaré map can be computed as

ping mode AFM the tip-sample separation is further small.

245419-9
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Hence, we expect the performance of the tapping mode AFNnd desirable for further progress of this attractive and excit-
can be improved by using a regime in which the van deiing field. Dynamical systems thedfymust also be useful in
Waals force is a primary influence on the dynamics of mi-this context.
crocantilevers. Detailed analyses for bifurcations and chaos
in such a regime are desired and given elsewFere.

As we have seen here, “nonlinearity” is essential in un- ACKNOWLEDGMENTS
derstanding the dynamics of microcantilevers in tapping
mode AFM. It is plausible that “nonlinearity” plays an im-  The author thanks Dr. Hirohisa Tamagawa for helpful dis-
portant role in other aspects of nanotechnology. So bettezussions and Dr. Petri Piiroinen for useful advice on drawing
understandings of such nonlinear phenomena will be helpfuFig. 13.
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