
Mechanical properties of carbon nanotubes with vacancies and related defects

M. Sammalkorpi,1,* A. Krasheninnikov,2 A. Kuronen,1 K. Nordlund,2 and K. Kaski1
1Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, 02015 HUT, Finland

2Accelerator Laboratory, University of Helsinki, P.O. Box 43, FIN 00014 University of Helsinki, Finland
(Received 15 March 2004; revised manuscript received 24 May 2004; published 14 December 2004)

Although as-grown carbon nanotubes have relatively few defects, defects can appear at the purification stage
or be deliberately introduced by irradiation with energetic particles or by chemical treatment when aiming at
the desired functionality. The defects, especially vacancies, give also rise to a deleterious effect—deterioration
of axial mechanical properties of nanotubes. By employing molecular dynamics simulations and continuum
theory we study how the Young’s modulus and tensile strength of nanotubes with vacancy-related defects
depend on the concentration of defects and defect characteristics. We derive an analytical expression, with
coefficients parametrized from atomistic computer simulations, which relates the Young’s modulus and defect
density in carbon nanotubes. We further show that the tensile strength and critical strain of single-walled
nanotubes decrease by nearly a factor of 2 if an unreconstructed vacancy is present. However, this deterioration
in the mechanical characteristics is partly alleviated by the ability of nanotubes to heal vacancies in the atomic
network by saturating dangling bonds.
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I. INTRODUCTION

Carbon nanotubes(CNTs) have extremely high axial
Young’s modulus of about 1 TPa(Refs.1–6) and tensile
strength approaching 60 GPa.1,7 These exceptional mechani-
cal properties along with low weight of CNTs and recent
improvements in their synthesis and purification techniques
make CNTs ideal candidates for reinforcement of various
materials, e.g., polymers.8–10 High stiffness and the tensile
strength of CNTs should also provide the mechanical stabil-
ity for electric nano-circuits formed by CNTs with covalent
inter-tube junctions.11

These outstanding mechanical characteristics hold for
nearly perfect CNTs. However, if CNTs have defects in the
atomic network, one can expect that due to their quasi-one-
dimensional atomic structure even a small number of defects
will result in some degradation12 of their characteristics. The
defects can appear at the stage of CNT growth and
purification,13,14 or later on during device or composite pro-
duction. Moreover, defects in CNTs can deliberately be cre-
ated by chemical treatment15 or by irradiation11,16–18 to
achieve the desired functionality.

As an example of this, defects are expected to increase
CNT adhesion to a polymer matrix,18,19 which should result
in improvements of the composite mechanical characteris-
tics. Likewise, defects may enhance the overall characteris-
tics of bundles of single-walled nanotubes(SWNTs) and
multi-walled nanotubes(MWNTs). In these structures the in-
teractions between intact nanotubes are governed by weak
van der Waals forces, so that the axial mechanical load is
carried only by the SWNTs at the rope perimeter20 or by the
outermost shell in MWNTs. Thus, creating strong defect-
mediated covalent bonds between SWNTs in
bundles16,17,21–24or between shells of MWNTs25 by, for ex-
ample, irradiation should provide load transfer to the inner
tubes(shells). On the other hand, irradiation will create not
only covalent bonds between the tubes but also defects in the
atomic network.

Very recent experiments24 on electron irradiation of car-
bon nanotube bundles followed by mechanical testing of the
bundle bending modulus(which is proportional to the
Young’s modulus) indicate that small dose irradiation gives
rise to a very large improvement in the mechanical properties
of irradiated bundles. This result was understood in terms of
irradiation-induced inter-tube links which provided load
transfer and correspondingly enhanced the shear modulus in-
side the bundle. However, high-dose irradiation resulted in
deterioration of mechanical characteristics due to accumula-
tion of the irradiation-induced damage, and specifically va-
cancies, in the nanotube atomic network.

In addition to linking the nanotubes by covalent bonds,
irradiation has experimentally been demonstrated to give rise
to complete welding11 and coalescence26 of nanotubes thus
opening new ways for electron/ion beam-assisted engineer-
ing of nano-circuits. The driving force for these structural
transformations was found to be the formation of vacancies
with chemically reactive dangling bonds followed by anneal-
ing of the damage in which the bonds were saturated. How-
ever, even spatially-localized irradiation will create defects
not only in the junction region, but also in the rest of the
system due to, e.g., sputtered carbon atoms. This will inevi-
tably result in deterioration of the mechanical stability of the
system.

Therefore, to understand the role of defects in mechanical
strength and to fully exploit the advantages potentially pro-
vided by the irradiation techniques, one should know how
vacancy-related defects influence the mechanical character-
istics of CNTs.

Although continuum methods27–29 work well for perfect
materials, they cannot directly be applied to nanotubes with
defects, as these methods assume the material to be perfect.
However, a combination of these methods and atomistic
simulations can be used for evaluating elastic properties of
nanotubes with defects, while only atomistic methods can be
employed for simulating the plastic behavior. In this paper,
by employing atomistic computer simulations and analytical
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continuum theory we study how the Young’s modulus and
tensile strength of CNTs depend on the concentration of
vacancy-related defects. Since single and multi-vacancies
might be present in post-processed nanotubes and because
vacancies are the most prolific defects to appear due to both
ion30 and electron31 irradiation, we concentrate on vacancies
and related defects.30–33 We consider only SWNTs as the
behavior of MWNTs with vacancies under axial load can
qualitatively be understood in terms of the data for SWNTs.
We derive an expression which can be used to calculate the
Young’s modulus of defective CNTs at an arbitrary vacancy
concentration. We also show that the ability of CNTs to heal
vacancies in the atomic network by saturating dangling
bonds partly alleviates the deterioration in their mechanical
characteristics.

II. COMPUTATIONAL METHODS

In our simulations, we used the classical molecular dy-
namics (MD) method34 with the reactive analytical bond-
order potential model parametrized by Brenner.35 This model
has widely been used in CNT simulations and a good agree-
ment with the results obtained byab initio methods have
been reported.36,37 The Berendsen temperature control
method38 was employed to describe the energy exchange
with the heat bath. In our simulations of tensile strength we
increased the onset of the interaction cut-off from
1.7 Å to 2.05 Å in order to avoid, at least partially, the
overestimation of the force required to break a bond.39 Other
details of specific simulations are discussed in the corre-
sponding sections.

III. CONTINUUM MODEL FOR COMPUTING YOUNG’S
MODULUS

In this section we derive an analytical expression for the
Young’s modulus of CNTs which can be used to estimate the
Young’s modulus as a function of the defect density. Then, in
Sec. IV we fit the coefficients in the expression to reproduce
the results of MD simulations at certain defect concentra-
tions.

A. Homogeneous material

The elastic energyEs«d of a body stretched in one direc-
tion can be written as

Es«d =
1

2
Y0AL«2 = g«2, s1d

whereY0 is the Young’s modulus of the homogeneous body,
A is the cross section,L is the length and« is the strain. The
coefficientg can be determined by fitting it to reproduce the
Es«d curve calculated through atomistic simulations. Then
the Young’s modulus can be expressed in terms ofg as

Y0 =
2g

AL
. s2d

Because of the tubular structure of the SWNT there is an
ambiguity in determining the cross-section areaA of the

nanotube. Formally the area can be written asA=2prt,
wherer is the tube radius andt the graphene layer thickness,
leading to a Young’s modulusY0=2g /2prtL. However, the
thicknesst is not well defined because the layer is mono-
atomic. Therefore we employ a definition of Young’s modu-
lus in which the normalization is not per unit cross sectional
area but per unit cross sectional length:

Ys0 =
2g

2prL
=

g

prL
. s3d

B. Defective body

In the continuum treatment we divide the system of length
L into N sections. As will be shown, the outcome is indepen-
dent of the division details but it may help to visualize the
division by splitting the tube intoN sections of equal length,
for example nanotube unit cells. We assume here that the
division can be made in such a way that each section con-
tains no more than one defect, i.e., for the defect concentra-
tion being relatively low. Each sectioni is characterized by
its defect typeai. The number of sections with defecta is
denoted byma and the total number of different defect types
is M. Further, each defect typea is characterized by its
Young’s modulusYa and section lengthLa. Defect typea
=0 stands for an intact tube section and thusL0 denotes the
length of an elementary section without defects.

The total tube length can now be expressed either in terms
of defect types or in terms of sections as follows:

L = o
a=0

M

maLa = o
i=1

N

Lai
. s4d

Analogously to Eq.(1) the elastic energy of a stretched
defective body divided intoN sections can be written as

E =
1

2
YAL«2 = o

i=0

N
1

2
Yai

ALai
«i

2, s5d

whereY is the Young’s modulus of the whole body andYai
,

Lai
and «i are Young’s modulus, the equilibrium length and

the strain of sectioni, respectively. When stretched, the strain
for the whole body can be written as«=soi=0

N ,i −Ld /L or for
each section as«i =s,i −Lai

d /Lai
, where ,i is the stretched

length of sectioni. Consequently, the stretching force is

F = −
YA

L
So

i=0

N

,i − LD , s6d

or, as the force acts equally on each of the sections(analo-
gously to a system of springs in series),

F = −
Yai

A

Lai

s,i − Lai
d. s7d

By multiplying both sides of the latter equation byLai
/Yai

L
we get
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F
Lai

Yai
L

= −
A

L
s,i − Lai

d. s8d

Finally, by summing over all the sections and applying Eq.
(4) we arrive at

F = − So
i=0

N Lai

Yai
L
D−1

A

L
So

i=0

N

,i − LD . s9d

Then from the comparison to Eq.(6) we obtain the Young’s
modulus of the whole body as

Y = So
i=0

N Lai

Yai
L
D−1

⇔
1

Y
= o

i=0

N Lai

Yai
L

. s10d

This can be further simplified to the following form:

Y0

Y
= o

a=0

M
maLa

L

Y0

Ya

, s11d

where the terms corresponding to similar defect sections
have been combined and the summation now goes over the
M different defect types(a=0 refers to intact tube sections).
The expression relates the linear defect concentrationna

=ma /L and Young’s modulus by

Y0

Y
=

m0L0

L
+ o

a=1

M

naLa

Y0

Ya

. s12d

Now remembering thatYs0/Ys=Y0/Y and expressing the to-
tal length of intact sections as the difference between the
total length and the length of the defective sections[m0L0
=L−oa=1

M maLa, Eq. (4)], we obtain the final form of the
defect concentration and Young’s modulus relation:

Ys0

Ys
= 1 + o

a=1

M

naaa, s13d

where

aa = LaSY0

Ya

− 1D = LaSYs0

Ysa

− 1D . s14d

The parameteraa can be fitted to reproduce experimental or
simulation data. We emphasize that the result is independent
of how the division into tube sections is made. This can be
seen by employing the formula recursively.

IV. RESULTS AND DISCUSSION

A. Young’s modulus and tensile strength of intact nanotubes

In order to have a reference point for nanotubes with de-
fects, we have first computed Young’s moduli of perfect
SWNTs. The results are presented in Table I. For the Young’s
modulus our simulations give a value of 0.7 TPa, insensi-
tively to tube chirality and diameter. This is in line with the
experimental values of CNT Young’s modulus around
1 TPa1,2,4,7 and with previous simulations using the Brenner
potential.28,40,41

We have also evaluated the critical strain and tensile stress
by fixing atoms at one end of the tube and applying a force
that increases linearly in time to the other end until the tube
breaks; see Fig. 1. The force is increased with a rate of
0.8 eV Å−1 ps−1. We have aimed to model the tube fracture at
low temperatures(i.e., T,0 K) but because the onset of the
fracture requires fluctuations, the temperature was kept at
10 K.

The calculated critical strain and tensile strength are also
listed in Table I. In accordance with other similar
simulations,39,40,42 the values proved to be higher than the
experimental values which approach 60 GPA for tensile
strength1,7 and 12% for the yielding strain.7 In part, this is
due to the cut-off problem39 typical for Tersoff-like poten-
tials, for which the atomic interaction energy is artificially
driven to zero at a certain separation between atoms. This in
turn causes the corresponding inter-particle force to be over-
estimated, as can be seen from the force-strain curves with
various cut-offs for a(5,5) nanotube given in Fig. 1. In order
to circumvent this problem, we have increased the onset of

TABLE I. Young’s modulus, critical strain« and tensile strength
s of perfect nanotubes.Ys0 refers to surface based Young’s modulus
andY0 to conventional Young’s modulus[see Eqs.(2) and(3)]. The
graphite interlayer distancet=3.35 Å has been used as the thickness
of a nanotube shell in computingY0 ands.

Tube
Diameter

(Å)
Ys0

(N/m)
Y0

(GPa) «
s

(GPa)

(5,5) 6.78 230 690 0.260 240

(9,0) 7.05 220 669 0.22 220

(10,10) 13.56 240 700 0.27 240

(17,0) 13.31 230 690 0.21 220

FIG. 1. Force-strain curves for an ideal(5,5)-nanotube at 10 K
temperature with three different cut-off radii. The onset of the cut-
off function can be perceived as an artificial peak. The flat regime
depicts a sudden bond elongation to a length corresponding to the
cut-off. Thus the beginning of this plateau, “X,” corresponds to the
largest value of force outside the cut-off peak and will be inter-
preted as bond rupture.
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interaction cut-off from 1.7 Å to 2.05 Å in the simulations.
From the curves of Fig. 1 it is seen that by increasing the

cut-off we do not affect the force-strain curve at inter-particle
distances shorter than the cut-off as long as the cut-off re-
mains smaller than the distance to the second closest neigh-
bor. We interpret the bond rupture force as the maximum
force outside the cut-off peak region. The bond rupture point
for a cut-off onset values of 1.9 Å and 2.05 Å is marked by
an “X” in Fig. 1. In the case of 1.7 Å cut-off onset the
artificial peak in force covers this point.

It is well known that the nanotube fracture behavior de-
pends on temperature and simulation time as well the loading
rate.39,40,42,43We note that in this study we did not account
for possible formations of topological defects in strained
nanotubes,44–46 becauseab initio calculations indicate that
the formation energy of these defects is very high.37,47 Fi-
nally, as we discuss below, one can expect that a small num-
ber of defects is always present in the nanotubes used for
mechanical testing. We stress, however, no matter what the
origin of the discrepancy between the absolute values of the
experimental and calculated tensile strength is, in this work
we are interested more in vacancy-mediated changes rather
than in absolute values of tensile characteristics.

B. Vacancy-related defects on walls of carbon nanotubes

Vacancy-related defects can appear in nanotubes during
purification or as a result of irradiation. In the latter case
collisions of energetic particles—electrons or ions—with
CNTs displace carbon atoms in the nanotube network from
their original positions thus giving rise to vacancies in the
graphitic shells and to carbon interstitials in the inter-tube
regions. Energetic electrons produce mostly single vacancies
by knocking out carbon atoms in the nanotube network,48

whereas heavy ions can easily give rise to multi-vacancies by
sputtering several adjacent carbon atoms. These vacancies
can transform into other vacancy-related defects by saturat-
ing some of the dangling bonds.30–33 For a single vacancy,
this reconstruction results in the appearance of a pentagon
ring accompanied by the protrusion of the atom with a dan-
gling bond by 0.5-0.7 Å out of the plane, as in graphite.49

Multi-vacancies reconstruct in more complex structures as
described later.

It is intuitively clear that vacancies have a much stronger
effect on the axial mechanical characteristics of individual
SWNTs than interstitial atoms. Therefore, in this work we
dwell only on vacancies. Assuming that the vacancies have
been formed under irradiation, we simulated the response of
defective SWNTs to axial mechanical load. We calculated
the Young’s modulus and tensile strength of four nanotubes
with different chiral indices:(5,5)-, (9,0)-, (10,10)-, and
(17,0)-tubes. These particular tube indices were chosen in
order to observe the possible diameter and chirality effects.

We have considered SWNTs with a single vacancy(one
atom removed), with a double vacancy(two adjacent atoms
knocked out) and with a triple vacancy(three adjacent atoms
missing), as depicted in Figs. 2(a)–2(c). In what follows,
these configurations will be referred to as nonreconstructed
defects. In each tube the nonreconstructed double and triple

vacancy defects have two axially distinguishable orientations
separated by 120 degrees(only one configuration is shown in
Fig. 2). These atomic configurations are metastable but can
survive for macroscopic times at low temperatures,30,32 or
when the atoms with dangling bonds are bonded to a sur-
rounding medium, e.g., a polymer matrix.

The other type of defects studied here are the vacancy-
related defects, i.e., vacancies in SWNTs relaxed to the glo-
bal minimum energy configuration. In order to find these low
energy configurations, the nonreconstructed vacancies were
thermally annealed at a temperature of 3000 K for 40 ps be-
fore the system was slowly cooled down at an average rate of
5 K/ps using the Berendsen thermostat.38 These configura-
tions are presented in Figs. 2(d)–2(f) for (10,10) armchair
tubes and in Figs. 2(g)–2(i) for (17,0) zig-zag tubes. The
vacancy configurations in the other studied SWNTs are simi-
lar to those shown in Fig. 2.

C. Young’s modulus of nanotubes with defects

We have calculated the Young’s moduli of SWNTs with
one vacancy but different tube lengths. These correspond to
linear defect concentrations of 1/25 Å−1 (one defect per
25 Å), 1 /50 Å−1, 1/100 Å−1, 1/150 Å−1, and 1/200 Å−1.
Both nonreconstructed and reconstructed vacancies were ex-
amined. The energy of a given structure was calculated as the
tube length was increased from its nonstretched equilibrium
value. Then the Young’s modulusYs was determined from
the smooth curve fitted to the simulation points. The results

FIG. 2. Atomic networks of SWNTs with nonreconstructed(a)–
(c) and reconstructed(d)–(i) single(a),(d),(g), double(b),(e),(h) and
triple (c),(f),(i) vacancies. Only the front wall of each tube is
shown. The bottom row configurations correspond to a(17,0) zig-
zag SWNT, and the others to a(10,10) armchair SWNT.
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are presented in the form of Eq.(13) (with M =1) in Fig. 3,
which presents the inverse of the scaled Young’s modulus as
a function of defect concentration for nonreconstructed and
reconstructed vacancies. From this figure it is evident that
the inverse scales linearly with the defect concentration,
which validates the use of the continuum theory[Eq. (13)].
Different symbols refer to the type of the vacancy and are
explained in the figure caption.

The data in Table II shows the dependency of the Young’s
modulus on the defect type, i.e., the coefficientsaa for each
defect type. As expected, single vacancies, whether recon-
structed or nonreconstructed, decrease the Young’s modulus
least whereas the larger vacancies more. The reconstruction
matters for double and triple vacancies but not so much for
single vacancies. This can be understood in terms of the
vacancy geometries presented in Fig. 2. The “hole size” for
the reconstructed single vacancy is practically the same as
before the reconstruction. Also, the difference between the
behavior of thin(5,5) and(9,0) tubes and the thicker(10,10)
and(17,0) tubes is as expected, i.e., the defective region is a
much smaller portion of the tube circumference in the thicker
tubes and therefore the Young’s modulus is not so sensitive
to the defects nor to the order of vacancy or reconstruction.

Chirality dependence is observed only in the non-
reconstructed vacancies because the axial orientation of
higher order vacancies influences the result. In general re-
constructed vacancies result in stiffer tubes than nonrecon-
structed but some orientations of nonreconstructed vacancies
appear to affect the stiffness less than the corresponding re-
constructed defects, especially for the larger tubes. The rea-
son for this is that the relative decrease in the size of holes in
reconstruction is smaller for the large tubes. Therefore, as the
bonds of an atom with a dangling bond are stiffer than regu-
lar sp2 bonds, a favorable local bond orientation in the non-
reconstructed vacancy may result in a stiffer tube than the
reconstructed vacancy for small deflections.

The values of coefficientsaa provided in Table II can be
used to compute the Young’s modulus for an arbitrary defect
concentration. For example, if we haves5,5d nanotubes with
single, double and triple vacancies with concentrations of
10−4 Å−2 or 1 defect every 50 Å for the single vacancies and
10−5 Å−2, that is 1/500 Å−1, for the double and triple vacan-
cies, Eq.(13) predicts the Young’s modulus as

Y0

Y
= 1 +a1n1 + a2n2 + a3n3,

Y = 0.97Y0. s15d

Essentially, these numbers show that the averaged defect
concentration has to be very high to cause a noticeable de-
crease in the Young’s modulus. Even for relatively high con-
centrations used in the example the decrease in the Young’s
modulus is predicted to be only about 3%.

D. Tensile strength of nanotubes with defects

In order to calculate the tensile strength and critical strain
of nanotubes with defects, we have used the same simulation
setup as for intact SWNTs. The results for defective struc-
tures are presented in Fig. 4 where the reduced critical strain
«̃=« /«0 and the reduced tensile strengths̃=s /s0. Here «0
refers to the critical strain ands0 to the tensile strength of a

FIG. 3. Inverse of the scaled Young’s modulusYs0/Ys (where
Ys0 is the surface based Young’s modulus of a perfect tube) plotted
as a function of the defect concentration(or 1/L) for four different
nanotubes with single, double and triple vacancies. Circles refer to
single vacancies, triangles to double vacancies and diamonds to
triple vacancies. Filled symbols stand for reconstructed defects,
whereas open symbols are for nonreconstructed defects. Nonrecon-
structed double and triple vacancies have two possible axial orien-
tations which result in differentYs behavior and two separate
datasets. The lines have been obtained by fitting the continuum Eq.
(13) (with M =1) to each dataset.

TABLE II. The coefficientsaa [Eq. (13)] necessary to calculate
the Young’s modulus of a defective nanotube. The bold-face num-
bers represent theaa values corresponding to reconstructed vacan-
cies and the values in parentheses the nonreconstructed vacancies.
The two numbers inside the parenthesis for the double and triple
vacancies represent the two alternative orientations of the nonrecon-
structed defects. The Young’s modulus for an arbitrary defect con-
centration can be computed by plugging in the values to Eq.(13).

Tube
Y0

(GPa)

a1

1 atom
missing

(Å)

a2

2 atoms
missing

(Å)

a3

3 atoms
missing

(Å)

(5,5) 690 1.2 (1.2) 1.4 s1.7/2.8d 1.8 s2.2/3.6d
(9,0) 670 1.1 (1.1) 1.2 s1.3/2.1d 1.6 s2.4/3.6d

(10,10) 700 0.8 (0.5) 1.0 s0.7/1.3d 1.2 s1.0/1.5d
(17,0) 690 0.8 (0.5) 1.0 s0.7/1.0d 1.2 s1.2/1.7d
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pristine nanotube. The significance of defect reconstruction
can be clearly seen—the tubes with reconstructed vacancies
are much stronger than the tubes with nonreconstructed de-
fects. The results are also chirality dependent, i.e., in zig-zag
tubes the reconstruction heals the carbon network to almost
ideal strength,ca. 95% of the critical strain and tensile
strength in an ideal tube. Reconstructed single and double
vacancies are equally strong within the presentation accuracy
and the structure with a reconstructed triple vacancy is only
slightly weaker. This can be understood if the stress concen-
tration factor50 of each defect type is considered. As visible
in Fig. 2, if a zig-zag tube is loaded axially, the load spreads
symmetrically on the defect region bonds. On the other hand,
in the armchair case[see Figs. 2(d)–2(f)] the load spreads
unevenly on respective bonds, that is, the stress concentra-
tion factor is larger locally. Thus the corresponding bonds are
the first to yield and result in critical strains ofca. 70% and
tensile strengths ofca. 85–90% of the perfect tube values.

Nonreconstructed vacancies result in a much lower tube
strength. Thus, the significance of the defect size with re-
spect to the tube circumference can be seen very clearly. For
example, for armchair tubes the symbols in Fig. 4 corre-
sponding to nonreconstructed single vacancy and one orien-
tation of the double and triple vacancy clamp together
around critical strain 65%, tensile strength 85%. The reason
for this, again, is the stress concentration factor. These sym-
bols correspond to vacancies shown in Figs. 2(a)–2(c). If any
of these configurations is viewed in the axial direction, the
portions of defective cross-circumference are identical and
the stress concentration factors are equal because of axially
similar bond orientations in the defect region. The single
vacancy is slightly stronger than the double vacancy, which
on the other hand exceeds the triple vacancy in strength. This
is because fracture is an activated process and a larger hole
size allows more fluctuation at the constituent bonds.
Thereby the multiple vacancies break little earlier even at a
low 10 K temperature. In a similar manner, the other orien-
tations of the double and triple vacancy in armchair tubes

span the same cross-circumferential section and result in an
apparently similar strength. For zig-zag tubes the axial ori-
entations differ 30 degrees which causes the nonrecon-
structed single vacancy and one orientation of double va-
cancy to result in similar strengths. The second pair is the
remaining double vacancy orientation and a triple vacancy
and the third, the weakest, is a triple vacancy in which the
three missing atoms are along the circumferential zig-zag
line of atoms.

It should be noted that increasing the temperature would
add to the difference between the symbols corresponding to
different vacancy orders because of increased fluctuations.
Nevertheless, the results show clearly how the tensile
strength varies with defect type and chirality and how large
the relative drops in tensile strength are. Unlike the Young’s
modulus, the tensile strength is practically independent of
tube diameter because in uniform axial loading the size and
form of the defect define how much load the first-to-fail de-
fect region bonds carry. A particular defect has practically the
same form and orientation in tubes of the same chirality but
different diameter and thus the load has the same magnitude
and spreads similarly in the bond region. There is a small
diameter dependence visible in Fig. 4 due to smaller binding
energy in thin tubes and slightly larger fluctuations.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied theoretically the effects of
vacancy-related defects on the mechanical characteristics of
single-walled carbon nanotubes. Specifically, we have calcu-
lated the Young’s modulus and tensile strength of SWNTs
with vacancies for different defect concentrations and va-
cancy types.

We have found that the nanotube Young’s modulus de-
pends weakly on the vacancy concentration: a relatively high
defect density of one vacancy per 50 Å gives rise to a small
decrease in the Young’s modulus: about 3% only. Double and
triple vacancies have a stronger effect on the modulus, but
vacancy reconstructions by saturating dangling bonds dimin-
ish the degradation for the majority of the tubes and vacancy
orientations studied.

We have further shown that vacancies have a much stron-
ger effect on the tensile strength of nanotubes. Our simula-
tions indicate that the tensile strength can degrade to 60% of
the intact tube value if vacancies are present. For the critical
strain the effect can be even more deleterious. The critical
strain of the defective SWNT can be half of the intact tube
value. Similar to the nanotube Young’s modulus, the degra-
dation of tensile characteristics is partly alleviated by the
ability of the nanotube carbon network to heal the vacancy
damage by saturating the dangling bonds. However, even
reconstructed defects decrease the tensile characteristics by
5–10% for the zig-zag tubes and 10–15%(tensile strength)
and 25–30%(critical strain) for the armchair tubes. Overall,
the tensile characteristics, especially if defects were present,
were observed to be chirality dependent. This is consistent
with the previous reports on tensile strength dependence on
chirality for intact tubes.39

These results indicate that the Young’s modulus of nano-
tubes with defects will essentially be the same unless the

FIG. 4. Tensile strength and critical strain of nanotubes with
defects. Filled symbols correspond to reconstructed vacancies and
open symbols to nonreconstructed vacancies. Squares are the refer-
ence values for perfect tubes, circles stand for tubes with a mono-
vacancy, triangles with a double vacancy and diamonds for tubes
with a triple vacancy.
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vacancy concentration is extremely high. On the other hand,
the tensile strength will substantially drop due to the quasi-
one-dimensional atomic structure of SWNTs already if a
single vacancy is present—the tensile strength of a SWNT is
governed by the “weakest” segment of the tube. Given that a
small number of defects are always present in nanotubes, this
may explain why the theoretically predicted Young’s modu-
lus agrees well with the experimentally measured values,
while the tensile characteristics are much worse.

Finally, within the framework of the continuum theory we
have derived an expression which can be used to calculate
the Young’s modulus of defective CNTs at an arbitrary va-
cancy concentration, unless the defect concentration is so
high that there are several defects in a specific nanotube unit
cell. Thus, knowing the irradiation dose and defect produc-
tion rate one can readily evaluate the drop in Young’s modu-
lus, which is indispensable for the qualitative explanation of
the recent experimental data on the behavior of Young’s
modulus of irradiated nanotube bundles.24 Note also that the
defect concentration and ideally the defect types can be es-

timated by probing the electronic structure of nanotubes by
using various experimental techniques such as Raman, elec-
tron spin resonance and optical absorption spectroscopy.
Thus, simultaneous monitoring of the nanotube mechanical
properties and defect concentration can shed light on the
properties of irradiation-induced defects in carbon nano-
tubes.

Since our initial submission, similar results for the frac-
ture behavior of nanotubes with defects have also been
obtained51 with the use of density functional theory, semi-
empirical methods and molecular mechanics.
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