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Pb deposition on Cu(111) causes the surface to self-assemble into periodically arranged domains of a Pb-rich
phase and a Pb-poor phase. Using low-energy electron microscopy(LEEM) we provide evidence that the
observed temperature-dependent periodicity of these self-assembled domain patterns is the result of changing
domain-boundary free energy. We determine the free energy of boundaries at different temperatures from a
capillary wave analysis of the thermal fluctuations of the boundaries and find that it varies from 22 meV/nm at
600 K to 8 meV/nm at 650 K. Combining this result with previous measurements of the surface stress
difference between the two phases we find that the theory of surface-stress-induced domain formation can
quantitatively account for the observed periodicities.
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I. INTRODUCTION

When Pb is deposited on Cu(111), the surface rapidly re-
arranges in a remarkable fashion: it self-assembles into pat-
terns composed of domains of a Pb-rich phase and a Pb-poor
phase with temperature-dependent periodicities ranging from
40 to 140 nm.1,2 Recently, we have presented evidence that
this self-assembly is the result of elastic relaxations at the
boundaries between the two phases.3 In this paper, we further
refine our understanding of the self-assembly by measuring
the boundary free energy, one of the factors that are predicted
to determine the periodicity.

The phases observed to self-assemble on Cu(111) are a
disordered Pb/Cu surface alloy and an incommensurate Pb
overlayer. These atomic structures have been well character-
ized by low-energy electron diffraction(LEED),4 spot-
profile-analysis(SPA) LEED,5,6 STM,7 and surface x-ray
diffraction.8 The surface alloy phase consists of a random
distribution of Pb atoms substituted in the Cu(111) surface
layer and is the thermodynamically stable phase up to a cov-
erage of 0.22 Pb atoms per surface Cu atom. When Pb is
deposited in excess of 0.22 monolayers(ML ), the surface
dealloys and the Pb overlayer phase appears. It completely
covers the surface at 0.56 ML and has a lattice constant close
to 4/3 that of the Cu substrate. The low-energy boundary
between these two phases consists of a surface step: the Pb
overlayer steps down to the alloy phase. A schematic of the
striped phase is shown in Fig. 1.

Because the alloy and overlayer phases have different sur-
face stresses, elastic relaxations can occur at the boundary
between them. The energetic decrease associated with these
relaxations can be large enough to overcome the energetic
cost of making the boundaries due to short-ranged atomic
interactions—in this case the attractive Pb-Pb cohesive inter-
actions which would normally cause overlayer steps to cost
energy. To take advantage of these relaxations, periodic ar-
rays of domain boundaries form. The type of domain pattern
that forms is predicted(and observed) to depend on the Pb

coverage: when it is such that the two phases have approxi-
mately the same areal coverage, a striped domain pattern, as
in Fig. 2, is the low-energy structure. On the other hand,
when the coverage of one phase is much larger than the
other, the equilibrium pattern consists of droplets of one
phase inside the other.

At T=0 K, the repeat distance of the stripe patternl0 is
predicted to be9–12

l0 = 2peaexpsb/C2d, s1d

whereb is the boundary energy per unit length. If the Cu
substrate were elastically isotropic, the parameterC2 would
be given by

C2 =
Ds2s1 − n2d

pE
, s2d

whereDs is the stress mismatch,E is Young’s modulus, and
n is Poisson’s ratio.10 Performing the full anisotropic elastic-
ity calculation for Cu at 600 K replacess1−n2d /E with
0.75310−11 m2/N.13 The a in Eq. (1) is a short distance

FIG. 1. (Color) A ball model showing the striped phase of Pb on
Cu(111). The Pb atoms are grey and the Cu atoms are gold.
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cutoff. The cutoff is necessary because the elastic model
leading to Eq.(1) contains no parameter with dimensions of
distance, and would be mathematically divergent without
one. This difficulty evidently prevents us from predictingl0
absolutely. As discussed below it does not, however, stand in
the way of predicting observed temperature dependences.
Thus, the quasimacroscopic theory leading to Eq.(1) has
sufficient physical content to verify the appropriateness of
the basic picture—that patterns are formed as a result of
competition between boundary energies and stress differ-
ences.

The purpose of this paper is to determine how well Eq.(1)
accounts for the observed domain boundary periodicities. As
previously reported, the stripe periodicity in the Pb/Cu(111)
system is strongly temperature dependent.2 As temperature is
increased, a sharp decrease in the feature size is observed,
from 140 nm at 590 K to 40 nm at 650 K. To account for this
temperature dependence, we assume that the zero-
temperature form of Eq.(1) holds, but thatb should be in-
terpreted as the boundaryfreeenergy per unit length and that
Ds2 is the finite-temperature stress mismatch.(That is, we
ignore the effects of the thermal disorder in the stripe pat-
terns seen in Fig. 2 on the local stripe width.) In our previous
study of this system3 we found that the stress mismatch be-
tween the two phases was approximately 1.2 N/m and did
not show a significant temperature dependence. Thus, to ex-
plain our observations of a changing domain pattern period-
icity we need to assume a decreasing domain boundary free
energy with temperature. In this paper we confirm this pos-
tulate by presenting measurements of the domain boundary
free energy as a function of temperature. We also offer evi-
dence that the source of the temperature dependence is kink
excitations in the boundary step edge.

Before proceeding to consider the measurements, it is im-
portant to expose a subtle issue raised by the need for a

cutoff in the elastic theory underlying Eq.(1). It is that the
interpretation of the quantityb depends on the value chosen
for a. If a is taken to be of the order of a few lattice con-
stants, then the value ofb needed to account for stripe
widths will roughly equal the energy needed to break Pb-Pb
bonds to form a boundary,without elastic relaxation. Thus,b
would be comparable to a step free energy on Pb(111). If,
however,a is chosen to be large—many lattice constants—
then more of the elastic relaxation energy at the phase
boundary would have to be included inb, in order for Eq.(1)
to yield the measured stripe widthl0.

We deal with this ambiguity by measuringb in a way,
which, as we will explain below, forces the result to repre-
sent the short-ranged Pb-Pb interaction, and to include elastic
relaxation effects only minimally. Substituting the measured
b and stripe width into Eq.(1), then produces a value of the
cutoff a. If the theory is reasonable, the value that emerges
should be of the order of a few lattice spacings.

II. BOUNDARY ENERGY MEASUREMENTS

To perform a quantitative measurement of the domain
boundary energy we used a capillary wave analysis of the
thermal fluctuations of steps previously developed to study
Si surfaces.14–17Steps on surfaces wander due to the thermal
excitations of kinks in the step edge. The thermodynamic
consequences of these kink excitations is given by the step

stiffnessb̃, which is defined as

b̃sud = bsud +
d2b

du2 . s3d

The increase in free energy per unit length when rotating a

step by a small angleu is b̃u2. The stiffness is determined by
the kink energye: for example, if the density of kinks is
sufficiently small, on a(111) surface the stiffness of a close-
packed step edge is given by18

b̃ =
2kT

3a0
exps− e/kTd, s4d

wherea0 is the nearest-neighbor atomic spacing in the(111)
surface ande is the kink energy. In the capillary wave analy-

sis,b̃ is determined by measuring the amplitude of thermally
excited fluctuations on the surface in the following manner.
Let xsyd represent the profile of the boundary. If one defines
the Fourier componentsxq by xsyd=oqxqe

iqy, then in the ab-
sence of any surface stress effects the free energy per unit
straight-boundary length of a distorted boundary relative to
the straight-boundary energy can be written as14,17

f =
1

2o
q

q2b̃uxqu2. s5d

Equipartition of the energy among the fluctuation modes
gives the mean squared amplitude of each mode to be14,17

FIG. 2. An example stripe phase observed at 608 K. The Pb
overlayer phase shows up bright in the LEEM images and the
Pb/Cu surface alloy phase is dark. Note that the stripe phase that
has formed is not ideal. As discussed in the text, the length of the
stripes limits the wavelengths that we can analyze with the capillary
wave analysis. Field of view is 1.7mm.
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Asqd = 2kuxsqdu2l =
2kT

Lb̃q2
, s6d

whereL is the length of the domain boundary that was ana-

lyzed. Thus measurement ofAsqd determinesb̃.
When the step is also a phase boundary separating phases

of different surface stress, there is an additional contribution
to the energetics of step fluctuations, caused by elastic relax-
ation. For example, a straight, isolated phase boundary will
become unstable to perturbations with a wavelength above a
certain critical value. For sufficiently small wavelengths, we
will show that these elastic effects can be neglected and thus
the capillary wave analysis measures a stiffness that is deter-
mined by short-ranged interactions as in Eq.(4).

Within continuum elasticity theory for an isotropic sur-
face, the free energy of a step is19

f =
1

2o
q

q2fb̃ + sC2/2dlnsqadguxqu2. s7d

We first note that wave vectorsqa,e−2sb̃/C2d have negative
energy; these modes are unstable as mentioned above. Sec-
ond, we note that the lnsad term effectively renormalizes the

stiffnessb̃. Thus in principle, there is an ambiguity in the
definition of the boundary stiffness caused by the choice of
the cutoffa. However, as before, ifa is chosen to be on the
order of the lattice constant, one expects the stiffness to be
given by something close to Eq.(4), where the kink energy is
just determined by atomic cohesive energies. In this case if

q@qmin=e−2sb̃/C2d /a one can neglect elastic effects in Eq.(7).
Thus if C2 is not much greater thanb̃, there will be a large
range of small wavelengths where the energy of distorting
the step edge is again given by Eq.(5). In this range of
wavelengths, measurement ofAsqd provides an estimate of
the stiffness due to broken atomic bonds.

Finally, we note that at the temperatures of our experi-
ment, there is no sign of any dependence of the boundary
free energy on orientation. For example, the shape of small
domains are, to within our experimental resolution, circular.

In this situation the stiffness equals the boundary energyb̃
<b.

III. EXPERIMENTAL RESULTS

Experiments were performed on a Cu(111) crystal20 on
which we vapor deposited Pb from an external evaporation
source. Surface structures were imaged with a low-energy
electron microscope(LEEM) of Bauer’s design.21 Details on
experimental preparation and the setup have been published
elsewhere.22,23 Boundary energy measurements were per-
formed at half area fraction, i.e., the amount of Pb that was
deposited was such that the surface alloy and overlayer phase
covered half the visible surface area, as in Fig. 2. After the
deposition of Pb and formation of the striped phase, we al-
lowed the domain pattern to stabilize and form a well-
equilibrated stripe pattern. A suitable domain boundary was
subsequently selected for the analysis. When selecting the
domain boundary, the wavelengths that can be analyzed are

limited by the length of the selected domain boundary, on
one hand, and pixelization, on the other. Temporally, we are
limited by the video frame rate(30 Hz), which provides a
cutoff for the relaxation times of the capillary waves that we
can analyze in the temperature regime where the striped
phase forms. Measurements of domain boundary fluctuations
were performed from 597 to 649 K. Fluctuations of the do-
main boundaries were observed to increase with temperature.

The position of the selected domain boundary was then
determined using the procedure described by Bartelt and
Tromp.16 Figure 3 displays several of the domain boundary
profiles obtained through this analysis. The domain boundary
profile xsy,td was then decomposed in its Fourier compo-
nentsxqstd. The amplitudes of each of the modes is deter-
mined by measuring the time-correlation functions and fit-
ting to an exponential

Gqst − t8d = kuxqstd − xqst8du2l = Asqds1 − e−fst−t8d/tsqdgd, s8d

where the characteristic relaxation time of a mode with wave
number q is given by tsqd. The correlation functions ob-
tained from the amplitudes of the Fourier components are
shown in Fig. 4. The saturation amplitudes and time con-
stants of the correlation functions decrease with increasingq,
as expected. The amplitudes of the correlation functions
were measured and plotted vsq2. An example of this is
shown in Fig. 5. Notice that in this figure we only use the
amplitudes for small values ofq2 in our fit. The time con-
stants that we obtain for largeq’s are too small to determine
them properly, even at video frame rate(30 frames/s). This
effect of the fluctuations being too fast to measure is illus-
trated in Fig. 6 From this plot oft vs q we find that the time
constants are proportional toq3, indicating that the fluctua-
tions are terrace-diffusion limited.24 From the same figure we
also see that forq3 values greater than approximately 0.5
310−3 nm−3 the time constants exceed the frame capture
rate. As a result the amplitudes we obtain forq.0.8 nm−1

FIG. 3. Measured domain boundary profiles. The four upper
panels shows a time sequence of profiles at a temperature of 649 K.
The profile in the bottom panel shows the smaller fluctuations at
597 K.
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are unreliable and cannot be used to obtain a value of the
domain boundary stiffness. We repeated the analysis for sev-
eral different temperatures in the temperature range from 597
to 649 K. The resulting temperature dependence of the
domain-boundary energy obtained in this manner is plotted
in Fig. 7.

The question now is whether this measured boundary en-
ergy, when substituted into Eq.(1) can account for the ex-
perimentally observed temperature dependence of stripe pe-
riodicity, given a reasonable choice of the cutoffa. Figure 8
compares the observed temperature dependence of the stripe

width with Eq.(1) making the assumption thatb̃<b. In this
comparisona was taken as a fitting parameter withC2
=21 meV/nm, determined by substituting the experimentally
estimated value ofDs=1.2 N/m into Eq.(2). The value ofa
that gives the best agreement is indeed reasonable: 3.5 nm,
roughly twelve Pb-Pb atomic spacings, or four unit cells of
the overlayer phase. This value ofa would imply that con-
tinuum elasticity theory fails to describe elastic distortions
within 3.5 nm of the step edge. With this choice ofa, the

agreement between Eq.(1) and experiment is very good.
Given this estimate of thea associated with our values of

b̃, we can check the validity of neglecting the elastic effects
of Eq. (7) in the capillary wave analysis. At 608 K,qmin

=exps−4b̃ /C2d /a<5310−3 nm−1. The q values used in the
fits of Fig. 5 were greater than 10−2 nm−1, and thus in a
regime where the capillary analysis is applicable.

IV. THE ENERGETICS OF BOUNDARY FLUCTUATIONS:
COMPARISON WITH FIRST-PRINCIPLES

CALCULATIONS

We address next the source of the thermal excitations in
the step edge which gives rise to the temperature dependence
of the boundary free energy. In particular, is the temperature
dependence consistent with that expected for kink excitations
in the step edge, or does one have to invoke more compli-
cated effects such as a temperature dependence of segrega-
tion to the step edge? To help answer this question, we first
interpret the measured boundary free energies by making the
crude assumption that the energetic cost of the step edge is

FIG. 4. Correlation functions measured for a fluctuating domain
boundary at half coverage atT=608 K. The plot shows four corre-
lation functions that were obtained for differentq values.

FIG. 5. Measured amplitudes as a function ofq2 at T=608 K.
From the measurement shown in this figure we obtain a boundary
energy value of 22.1 meV/nm.

FIG. 6. Estimated relaxation times as a function ofq3 at T
=608 K. The dashed line indicates the rate at which frames from
the LEEM movies were digitized.

FIG. 7. The solid circles show the temperature dependence of
the boundary free energy obtained through the capillary wave
analysis. The solid line shows the single-parameter fit to the Ising
model discussed in the text[Eqs.(9)–(11)].
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due to broken nearest-neighbor Pb-Pb bonds. In this case the
temperature dependence of the step free energy due to ther-
mal kink excitations in the step edge is known from the exact
solution of the triangular Ising model.25 The observed aver-
age orientation of the boundaries13 is 30° from the close
packed step edge direction. For this orientation, the tempera-
ture dependence of the step energy is given by

b̃ =
2kT
Î3

cosh−1fsA − 1d/2g, s9d

with

A =
2x

s1 − xd2 +
s1 − xd2

2x
+ 1 s10d

and

x = tanhfbCPs0d/4kTg, s11d

wherebCPs0d is the zero temperature close-packed step en-
ergy. At high temperaturebsTd decreases linearly withT.
Figure 7 superimposes a least squares fit of the Ising model
result (9) to the experimentally observed step free energies.
This single parameter fit yielded a value of 154 meV/nm for
bCPs0d. The difference between the close packed and 30°
rotated free energies are insignificant at the experimental
temperatures: the computed ratio of this step free energy to
that of the close-packed direction is less than 1.0004,13 con-
sistent with the observed circular islands and the assumption

that b< b̃.
To determine if the deduced 154 meV/nm is a reasonable

boundary energy, and thus to check that the simple kink ex-
citation picture of the temperature dependence is plausible,
we have used density functional theory to compute the
boundary energy. We first optimized the geometry of a peri-
odic model Pb overlayer in a 434Î3 unit cell. On a six
layer, Cu(111) slab, with 32 Cu atoms per layer, we placed a
Pb layer containing 18 Pb atoms.Ab initio geometric relax-
ation of this covered slab yielded a total energyEoverlayer. We
next computed the energy of a six-layer Cu(111) slab, in

which seven of the top layer Cu atoms were replaced by Pb
atoms. The optimized energy in this caseEalloy represents
that of a surface alloy phase with a surface Pb concentration
of 7/32 (< 0.22) ML. Finally, we optimized a 438Î3, six-
layer Cu(111) slab whose top layer had 18 Pb overlayer at-
oms adsorbed over half of it and seven substitutional Pb
atoms located similarly to the pure alloy slab’s, a configura-
tion shown in Fig. 1. The energy in this caseEstriped, is less
than Eoverlayer+Ealloy by twice the average boundary energy,
twice because each overlayer stripe is defined by two steps,
one on each side.

The calculations were done using theVASP

implementation26–29 of density functional theory30,31 and the
PW91 GGA version of exchange and correlation.32,33 VASP

represents electron-nucleus interactions in terms of ultrasoft
pseudopotentials,34–37minimizing the size of the plane-wave
basis set needed for convergence. We used a plane-wave cut-
off of 234 eV. Geometry optimizations were done with the
lower three Cu layers of each slab held fixed at bulk Cu
relative positions with a GGA value of the Cu-Cu spacing
5 0.2575 nm, compared to the experimental number 0.2553
nm. The calculations in 434Î3 unit cells were performed
using a 232 sample of the surface Brillouin zone. For con-
sistency, the 438Î3 calculation was done using a 231
sample. The Neugebauer-Scheffler method, as implemented
by Kresse,38,39 was used to compensate for the unphysical
contact-potential difference between the slab surfaces that
exists because Pb atoms were only adsorbed on the upper
surface. The Methfessel-Paxton Fermi-Level smearing
method(width 5 0.2 eV) was used to accelerate electronic
relaxation.40

The result of the comparison of slab energies is an esti-
mated domain boundary energy of 240 meV/nm. This com-
pares with the experimental value of 154 meV/nm. Given the
crude assumptions of the nearest-neighbor Ising model and
the fact that we do not know the actual step edge morphol-
ogy, specifically, where the nearest Pb atoms lie relative to an
overlayer boundary, this quite good level of agreement
shows that it is plausible that kink excitations are responsible
for the observed temperature dependence of the boundary
energy. Note that in earlier work concerning Pb stripe islands
on Pb(111), the similarly computed boundary energy18 was
88 meV/atom, or 246 meV/nm. The similarity of these val-
ues seems no accident. It reflects the fact that the main
source of the boundary energy is the same in both cases,
namely the broken Pb-Pb bonds that define an overlayer
stripe’s boundaries. The fact that there is Cu beneath the
stripe in one case and Pb in the other makes little difference.
Thus it seems that thermally broken Pb-Pb bonds are most
likely responsible for the large temperature dependence of
the stripe periodicity.

V. CONCLUSIONS

We have shown that the changing periodicity of self-
assembled domain patterns in the Pb/Cu(111) system can be
attributed to a changing domain boundary free energy. It, in
turn, is due to increased kink excitations in the step that
separates the domains.

FIG. 8. The characteristic feature size(stripe width) as a func-
tion of temperature. Open circles are data points obtained directly
from the LEEM images. Filled circles were obtained indirectly
through the separate measurements ofb and Ds and Eq.(1). The
value of a that was used to reproduce the feature size from our
measurements ofb andDs was 3.5 nm.
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In previous work3 we found that the magnitude of the
stress mismatch between the Pb phases which causes the
self-assembly of Pb/Cu is not anomalous. In this paper, we
have shown that the boundary free energy which determines
the periodicity of the domain patterns also has a typical
value. Taken together these results show that the driving
forces for the dramatic self-assembly observed in the Pb/Cu
system are not the result of a special energetic situation.
Another interesting feature of the Pb/Cu system is the rapid
mass transport which occurs during the equilibration of the
domain patterns.2 We are now investigating whether the

atomic mechanisms that lead to this equilibration are unique
to Pb/Cu.
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