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We reexamine scattering of electromagnetic waves from metallic and semiconducting cylinders in the frame-
work of complex angular momentum techniques. We prove that “resonant surface polariton modes” are gen-
erated by a unique surface wave—i.e., a surface polariton—propagating close to the cylinder surface. This
surface polariton corresponds to a particular Regge pole of theS matrix of the cylinder. From the associated
Regge trajectory we can construct semiclassically the spectrum of the complex frequencies of the resonant
surface polariton modes which can be considered as Breit-Wigner-type resonances. Furthermore, by taking into
account the Stokes phenomenon, we derive an asymptotic expression for the position in the complex angular
momentum plane of the surface polariton Regge pole. We then describe semiclassically the surface polariton
and provide analytical expressions for its dispersion relation and its damping. All these features allow us to
consider the photon-cylinder system as a kind of artificial atom where the photon plays the role of the electron.
Finally, we briefly discuss the implication of our results for two-dimensional photonic crystals.
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I. INTRODUCTION

In recent years, since the work of McGurn and
Maradudin,1 there has been a growing interest in the study of
photonic crystals containing metallic or semiconducting
components. The frequency dependence of the dielectric
functionesvd of these materials, as well as the presence of a
frequency range whereesvd,0, leads to new features which
do not exist in conventional photonic crystals and which are
mainly linked to the presence of surface polaritons(SP’s).
With this in mind, we intend to reexamine the theory of
SP’s propagating close to curved metal-dielectric or semi-
conductor-dielectric interfaces. In this paper, we will empha-
size the case of the circular cylindrical interface. For reviews
of photonic crystal physics see Refs. 2–4. Among the numer-
ous articles dealing with SP’s in photonic crystals, we refer
to Refs. 1 and 5–13—i.e., to a nonexhaustive list of works
dealing more particularly with two-dimensional arrays of
cylinders of circular cross section for which SP’s may be
excited and which are consequently relevant to our study.

SP’s supported by flat metal-dielectric or semiconductor-
dielectric interfaces can be easily described from a theoreti-
cal point of view and their properties can be obtained from
rather elementary calculations involving homogeneous and
inhomogeneous plane waves. It should be noted that in this
context, an SP is clearly defined as a surface wave propagat-
ing close to the interface with an amplitude that decays in an
exponential fashion perpendicularly to the interface and into
both medium. By contrast, in the presence of cylindrical(this
is also true for spherical) interfaces, the corresponding theo-
retical analysis is a little bit more complicated(see, for ex-
ample, Refs. 14–17: Bessel functions must be introduced and
transcendental equations involving them must be numeri-
cally solved, for example, in order to understand resonance
phenomena associated with SP’s. As a consequence, a clear

physical description of scattering of electromagnetic waves
from curved metal-dielectric or semiconductor-dielectric in-
terfaces does not still exist. In the scientific literature, this
fact sometimes leads to a semantic ambiguity with the ex-
pression “surface polaritons” denoting the surface waves
propagating close to the interface as well as the resonant
electromagnetic modes they generate. In order to avoid such
an ambiguity and to distinguish between the two physical
phenomena, we shall use the more appropriate expression
“resonant surface polariton modes”(RSPM’s) for the latter.

Since the 1960s, mainly under the impetus of Nussenz-
veig, asymptotic(i.e., semiclassical) techniques which use
analytic continuation of partial-wave representations(Mie
sums) have been developed to understand scattering of elec-
tromagnetic waves from dielectric objects. Together these
techniques form the complex angular momentum(CAM)
method. In electromagnetism, it can be considered as a re-
finement of ray optics which takes into account “tunneling
aspects” of scattering and therefore includes diffractive rays
associated with surface waves. Of course, the CAM method
is an asymptotic approach and formally it is only valid at
length scales “large” compared to the wavelength of the elec-
tromagnetic field.

The CAM method originates from the pioneering work of
Watson18 dealing with the propagation and diffraction of ra-
dio waves around the Earth. It has since been successfully
introduced in various domains of physics. The success of the
CAM method is mainly due to its ability to provide a clear
description of a given scattering problem by extracting the
physical information(linked to the geometrical and diffrac-
tive aspects of the scattering process) which is hidden in
partial-wave representations and then to semiclassically de-
scribe resonance phenomena. Here the dual structure of theS
matrix associated with a given scattering problem plays a
crucial role. Indeed, theS matrix is a function of both the
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frequencyv and the angular momentum index,. It can be
analytically extended into the complexv plane as well as
into the complex, plane(CAM plane). Its poles lying in the
fourth quadrant of the complexv plane are the complex
frequencies of the resonant modes. In other words, the be-
havior of theS matrix in the complexv plane permits us to
investigate resonance phenomena. The structure of theSma-
trix in the complex, plane allows us, by using integration
contour deformations, Cauchy’s theorem, and asymptotic
analysis, to provide a semiclassical description of scattering
in terms of rays. In that context, the poles of theS matrix
lying in the CAM plane(the so-called Regge poles) are as-
sociated with diffraction. Of course, when a connection be-
tween these two faces of theS matrix can be established,
resonance aspects of scattering are then semiclassically inter-
preted. For reviews of the CAM method we refer to the
monographs of Newton,19 Nussenzveig,20 and Grandy21 as
well as to references therein for various applications in quan-
tum mechanics, nuclear physics, electromagnetism, optics,
and seismology. Specific applications of that method in
acoustic-wave scattering can be found in the review article
by Flax, Gaunaurd, and Überall.22 For recent applications in
more “exotic” contexts, we refer to Refs. 23–25 where a
CAM analysis of black hole scattering and black hole gravi-
tational radiation is provided and to Ref. 26 where the
Aharonov-Bohm effect is considered.

As far as we know, the CAM method has never been used
to understand scattering of electromagnetic waves from me-
tallic and semiconducting objects. In fact, because of the
frequency dependence of the dielectric function of metals
and semiconductors, the extension of the ideas of
Nussenzveig20 to such a problem is not quite as obvious as it
seems at first sight. In this article, we make some steps in
that direction but with a rather modest goal. Indeed, we only
consider the scattering of TE waves(H polarization) by a
metallic or semiconducting circular cylinder surrounded by a
dielectric medium. We limit our study to that case because
SP’s are not excited in theE-polarization configuration.
From theS matrix of the cylinder, using CAM techniques,
we develop a semiclassical description of the scattering as-
pects linked to SP’s. More precisely, we prove that RSPM’s
are generated by a unique SP propagating close to the cylin-
der surface. This surface wave is associated with a particular
Regge pole of theS matrix of the cylinder. From the corre-
sponding Regge trajectory,—i.e., from the curve traced out in
the CAM plane by this Regge pole as a function of the
frequency—we can construct semiclassically the spectrum of
the complex frequencies of RSPM’s which can be considered
as Breit-Wigner-type resonances. Furthermore, by carefully
taking into account the Stokes phenomenon, we derive an
asymptotic expression for the position of the SP Regge pole
in the CAM plane and, then, we can describe semiclassically
the SP. In some sense, our results allow us to consider the
photon-cylinder system as an artificial atom: RSPM’s are
long-lived quasibound states for this atom while the trajec-
tory of the SP which generates them and which is supported
by the cylinder surface is a Bohr-Sommerfeld-type orbit.

Our paper is organized as follows. In Sec. II, we introduce
our notation and we construct theSmatrix of the system. We
then discuss the resonant aspects of our problem. In Sec. III,

by using CAM techniques, we establish the connection be-
tween the SP propagating close to the surface cylinder and
the associated RSPM’s. In Sec. IV, we describe semiclassi-
cally the SP by providing analytic expressions for its disper-
sion relation and its damping. We then deduce analytic ap-
proximations for the excitation frequencies of RSPM’s.
Finally, in Sec. V, we conclude our article by considering
some possible extensions of our work and by briefly discuss-
ing the implication of our results in the context of two-
dimensional photonic crystal physics.

II. EXACT S MATRIX AND SCATTERING RESONANCES

From now on, we consider the scattering of an electro-
magnetic wave by a metallic or semiconducting circular cyl-
inder with a frequency-dependent dielectric functionecsvd
which is embedded in a host medium of infinite extent with
constant dielectric functioneh (region I). In the usual cylin-
drical polar coordinate systemsr ,u ,zd the cylinder occupies
a region corresponding to the range 0ør,a (region II). We
also assume that the magnetic fieldH is parallel to the axis
of the cylinder(H polarization), and we choose to treat our
problem in a two-dimensional setting, ignoring thez coordi-
nate. Furthermore, in the following, we implicitly assume the
time dependence exps−ivtd for the magnetic field and we
shall sometimes use the wave numbers

kIsvd = Sv

c
DÎeh and kIIsvd = Sv

c
DÎecsvd. s1d

Herec is the velocity of light in vacuum.
As far as the dielectric function of the cylinder is con-

cerned, we assume it presents a Drude-like behavior27,28

ecsvd = e`S1 −
vp

2

v2D s2d

or ionic crystal behavior27,28

ecsvd = e`SvL
2 − v2

vT
2 − v2D . s3d

In both cases,e` is the high-frequency limit of the dielectric
function. In Eq.(2), vp is the plasma frequency. In Eq.(3),
vT and vL, respectively, denote the transverse-optical-
phonon frequency and the longitudinal-optical-phonon fre-
quency. In the first case, SP’s follow from the coupling of the
electromagnetic wave with the plasma wave and are usually
called surface plasmon polaritons. In the second one, SP’s
follow from the coupling of the electromagnetic wave with
the longitudinal and transverse acoustic waves and are usu-
ally called surface phonon polaritons. Equation(2) can be
used to describe the dielectric behavior of certain metals and
semiconductors(Si, Ge, InSb,…) while Eq. (3) can be used
to investigate the optical properties of other semiconductors
such as GaAs.

From Maxwell’s equations it is easy to show that thez
component of the magnetic field satisfies the Helmholtz
equation

FDx + Sv

c
D2

ecsvdGHz
IIsxd = 0 for 0ø r , a, s4ad
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FDx + Sv

c
D2

ehGHz
Isxd = 0 for r . a, s4bd

wherex=sr ,ud and with the LaplacianDx given, in the polar
coordinate system, by

Dx =
]2

]r2 +
1

r

]

]r
+

1

r2

]2

]u2 . s5d

Furthermore, from the continuity of the tangential compo-
nents of the electric and magnetic fields(i.e., ofEu andHz) at
the interface between regions I and II, it can be shown that
the z component of the magnetic field satisfies, for 0øu
,2p,

Hz
Isr = a,ud = Hz

IIsr = a,ud, s6ad

1

eh

]Hz
I

]r
sr = a,ud =

1

ecsvd
]Hz

II

]r
sr = a,ud. s6bd

We are first interested in the construction of theS matrix
for the cylinder. Because of the cylindrical symmetry of the
scatterer, theS matrix is diagonal and its elementsS,,8 are
given byS,,8=S,d,,8. For a given angular momentum index
,PZ, the coefficientS, is obtained from the partial-wave
sHzd, solution of the following problem(here we extend,
mutatis mutandis, the quantum mechanical approach devel-
oped in Ref. 29):

(i) sHzd, satisfies the Helmholtz equation(4),
(ii ) sHzd, satisfies the boundary conditions(6),
(iii ) at large distance,sHzd, has the asymptotic behavior

sHzd,sr,ud ,
r→+`

1
Î2pkIr

se−iskIr−,p/2−p/4d

+ S,svdeiskIr−,p/2−p/4ddei,u.

Outside the cylinder(region I), the solution of(4) is express-
ible in terms of Bessel functions(see Ref. 30) as a linear
combination ofJ,skIrdei,u andH,

s1dskIrdei,u. Inside the cylin-
der (region II), it is proportional toJ,skIIrdei,u. As a conse-
quence, the partial-wavesHzd, solution of(i) and(ii ) can be
obtained exactly. Then, by using the standard asymptotic be-
havior of Hankel functions forx→` (see Ref. 30),

H,
s1dsxd , Î2/spxdeisx−,p/2−p/4d, s7ad

H,
s2dsxd , Î2/spxde−isx−,p/2−p/4d, s7bd

we find from(iii ) the expression of the diagonal elementsS,

of the S matrix. We have

S,svd = 1 − 2
D,

s1dsvd
D,svd

, s8d

whereD,
s1dsvd andD,svd are two 232 determinants which

are explicitly given by

D,
s1dsvd = kIIsvdJ,8„k

Isvda…J,„k
IIsvda…

− kIsvdJ,„k
Isvda…J,8„k

IIsvda…, s9ad

D,svd = kIIsvdH,
s1d8„kIsvda…J,„k

IIsvda…

− kIsvdH,
s1d
„kIsvda…J,8„k

IIsvda…. s9bd

The unitarity of theS matrix,19 which expresses the energy
conservation, can be easily verified from Eqs.(8) and(9) by
using the elementary properties of Bessel functions. The
reciprocity property,19 which is associated with time-reversal
invariance, is also satisfied becauseS, is an even function of
,.

The S matrix is of fundamental importance because it
contains all the information about the scattering process. Its
components appear in the Green functions of the problem
and in the scattered field when a plane wave excites the
cylinder as well as in both the scattering amplitude and the
total scattering cross section. As far as the scattering by a
plane wave propagating along thex axis is concerned, the
total magnetic field in region I is given by

Hz
Isr,ud = eikIr cosu + o

,=0

+`
g,

2
i,fS, − 1gH,

s1dskIrdcoss,ud.

s10d

Hereg, is the Neumann factor(g0=1 and for,Þ0, g,=2).
The scattering amplitudefsv ,ud is defined from the
asymptotic behavior of the total magnetic field by

Hz
Isr,ud ,

r→+`
eikIr cosu + fsv,ud

eikIr

Îr
. s11d

By using the asymptotic behavior(7a) in Eq. (10), we can
write

fsv,ud =Î 1

2ipkIsvdo,=0

+`

g,fS,svd − 1gcoss,ud. s12d

Then, the total scattering cross section per unit length of the
cylinder can be obtained by using the optical theorem:19

sTsvd =Î 8p

kIsvd
Imfe−ip/4fsv,u = 0dg. s13d

In Figs. 1(a) and 2(a), we present two examples of total
cross section. They are both plotted as functions of the re-
duced frequencyva/c. In Fig. 1(a), the cylinder is embedded
in vacuumseh=1d and its dielectric function is given by Eq.
(2) with e`=1 andvpa/c=2p. In Fig. 2(a), the cylinder is
embedded in vacuumseh=1d and its dielectric function is
given by Eq.(3) with e`=1, vTa/c=2p, and vLa/c=3p.
Even if we restrict ourselves to those particular configura-
tions, it should be noted that the results emphasized numeri-
cally and that we shall now discuss are very general. In the
two figures, rapid variations of sharp characteristic shapes
can be observed. This strongly fluctuating behavior is due to
scattering resonances. These resonances are the poles of the
Smatrix lying in the fourth quadrant of the complexv plane,
and they are determined by solving
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D,svd = 0 for , P N. s14d

The solutions of Eq.(14) are denoted byv,p=v,p
s0d− iG,p/2

wherev,p
s0d.0 andG,p.0, the indexp permitting us to dis-

tinguish between the different roots of Eq.(14) for a given,.
In the immediate neighborhood of the resonancev,p, S,svd
has the Breit-Wigner form—i.e., is proportional to

G,p/2

v − v,p
s0d + iG,p/2

. s15d

As a consequence, when a pole of theSmatrix is sufficiently
close to the real axis in the complexv plane, it has an ap-
preciable influence on the scattering amplitude and therefore
on the total cross section. Of course, if a pole is very close to
this axis, the corresponding peak is too sharp to be observed

FIG. 1. (a) Total cross section
sT. (b) Scattering resonances in
the complexva/c plane.ecsvd has
Drude-type behavior withe`=1
andvpa/c=2p while eh=1.

FIG. 2. (a) Total cross section
sT. (b) Scattering resonances in
the complexva/c plane.ecsvd has
ionic crystal behavior withe`=1,
vTa/c=2p, andvLa/c=3p while
eh=1.
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on the total cross section. In Figs. 1(b) and 2(b), resonances
are exhibited for the two configurations previously consid-
ered. A one-to-one correspondence between the peaks ofsT
and the resonances near the realva/c axis can be clearly
observed in certain frequency ranges.

More precisely and more generally, for the dielectric func-
tion (2) there exists in the frequency rangev,vp where
ecsvd,0 a family of resonances close to the real axis of the
complexv plane which converges, for large,, to the limit-
ing frequencyvs satisfying

ecsvsd + eh = 0 s16d

and given by

vs =
vp

Î1 + eh/e`

. s17d

A possible physical justification of Eq.(16) could be pro-
vided by using the method of images as described in Ref. 15.
For the dielectric function(3), the same type of behavior
occurs but in two different frequency ranges: in the region
v,vT [hereecsvd.0] with an accumulation of resonances
at the polevT of the dielectric function and in the region
vT,v,vL [hereecsvd,0] with an accumulation of reso-
nances at the limiting frequencyvs still satisfying Eq.(16)
but which is now given by

vs =ÎvL
2 + seh/e`dvT

2

1 + eh/e`

. s18d

We must keep in mind that in the scattering of aH-polarized
photon with frequencyv,p

s0d, a decaying state of the photon-
cylinder system is formed. It has a finite lifetime propor-
tional to 1/G,p. The resonant states whose complex frequen-
cies belong to one of the families previously described are
therefore long-lived states. Because of these particular qua-
sibound states, the photon-cylinder system behaves as a kind
of artificial atom for which the photon plays the usual role of
the electron. We shall come back to this point of view in the
next two sections.

From now on, we shall more particularly focus our atten-
tion on the physical interpretation of the long-lived resonant
states whose excitation frequencies belong to frequency
ranges in whichecsvd,0. We shall prove that these states
are generated by a SP propagating close to the cylinder sur-
face and for this reason we call them RSPM’s. For such
states, the artificial-atom point of view can be pushed further
as we shall show in Secs. III and IV. For the long-lived
resonant states whose excitation frequencies belong to the
frequency range in whichecsvd.0 (the so-called bulk po-
lariton states), we are not able to provide a similar analysis.
This is not very serious as they do not have, in photonic
crystal physics, the importance of RSPM’s.

III. SEMICLASSICAL ANALYSIS: FROM THE SP REGGE
POLE TO THE COMPLEX FREQUENCIES OF

RSPM’s

Using the CAM method, we can provide a physical pic-
ture of the scattering process in term of diffraction by surface

waves and more particularly a physical explanation of the
excitation mechanism of RSPM’s valid for “high frequen-
cies.” By means of a Watson transformation18 applied to the
scattering amplitude(12), we can write

fsv,ud = −Î i

2pkIsvd
PE

C

sSlsvd − 1d
sinpl

cosflsp − udgdl.

s19d

Here C is the integration contour in the complexl plane18

illustrated in Fig. 3 and which encircles the real axis in the
clockwise sense. In Eq.(19), P, which stands for Cauchy’s
principal value at the origin, is used in order to reproduce the
Neumann factor. The Watson transformation has permitted us
to replace the ordinary angular momentum, by the complex
angular momentuml. Slsvd is now an analytic extension of
S,svd into the complexl plane which is regular in the vicin-
ity of the positive reall axis. Using Cauchy’s theorem and
by noting that inside the contourC the only singularities of
the integrand in Eq.(19) are the integers, we can easily re-
cover Eqs.(12) and (19).

We can then deform the path of integration in Eq.(19),
taking into account the possible singularities. The only sin-
gularities that are encountered are the poles of theS matrix
lying in the CAM plane. They are known as Regge poles19,20

and are determined by solving

Dlsvd = 0 for v . 0. s20d

Figures 4 and 5 exhibit the distribution of Regge poles for a
cylinder embedded in vacuum. We still consider the two con-
figurations previously studied. We do not display the Regge
pole distributions for other configurations(i.e., for other val-
ues of the parameterse`, eh, vP, vT, andvL) because they
are not really different from those of Figs. 4 and 5. In fact, all
these Regge pole distributions are rather similar to the dis-
tributions associated with the dielectric objects usually
studied.20 However, in the frequency range whereesvd,0,
something new occurs: there exists a particular Regge pole
lying in the first quadrant of thel plane and very close to the
real axis. It is not present for ordinary dielectric objects. As
we shall see below, this new Regge pole is associated with a
SP orbiting around metallic or semiconducting cylinders.
From now on, we shall denote it bylSPsvd.

FIG. 3. The Watson integration contour.
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By Cauchy’s theorem we can then extract from Eq.(19)
the contribution of a residue series over Regge poles. In fact,
we limit our study to the contribution oflSPsvd which is
given by

fSPsv,ud =Î 2p

ikIsvd
rSPsvd

sinfplSPsvdg
cosflSPsvdsp − udg.

s21d

Here rSPsvd=residue(Slsvd)l=lSPsvd. Of course, f differs
from fSP by a smooth background integral and by the contri-
butions of all other Regge poles. We are not interested in

these contributions which do not play any role in the excita-
tion of RSPM’s. We think that these contributions could be
studied,mutatis mutandis, in the framework of CAM tech-
niques developed by Nussenzveig.20 By using

1

sinpl
= − 2i o

m=0

+`

eips2m+1dl,

which is true if Iml.0, we can write

FIG. 4. Regge poles in the
complex angular momentum
plane. ecsvd has Drude-type be-
havior with e`=1 andvpa/c=2p
while eh=1. The distribution cor-
responds tova/c=4.

FIG. 5. Regge poles in the
complex angular momentum
plane.ecsvd has ionic crystal be-
havior with e`=1, vTa/c=2p,
and vLa/c=3p while eh=1. The
distribution corresponds tova/c
=7.8.
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fSPsv,ud = −Î 2ip

kIsvd
rSPsvdo

m=0

+`

seilSPsvdsu+2mpd

+ eilSPsvds2p−u+2mpdd. s22d

In Eq. (22), exponential terms correspond to surface-wave
contributions. Because the Regge polelSPsvd lies in the first
quadrant of the CAM plane, expfilSPsvdsudg (expfilSPsvd
3s2p−udg) corresponds to a surface wave propagating
counterclockwise (clockwise) around the cylinder and
RelSPsvd represents its azimuthal propagation constant
while Im lSPsvd is its damping constant. The exponential
decay expf−Im lSPsvdug (expf−Im lSPsvds2p−udg) is due to

a continual reradiation of energy. Moreover, in Eq.(22), the
sum overm takes into account the multiple circumnaviga-
tions of the surface waves around the cylinder as well as the
associated radiation damping. The Regge polelSP is very
close to the real axis in the complexl plane. It then corre-
sponds to a surface wave which is slightly attenuated during
its propagation and which contributes significantly to the
scattering process and to the resonance mechanism.

As v varies, the Regge polelSPsvd describes a Regge
trajectory19 in the CAM plane. In Figs. 6 and 7, we have
displayed the Regge trajectories of SP’s for the two configu-
rations previously studied. It should be noted that asv
→vs, the real part of the SP Regge pole increases indefi-

FIG. 6. Regge trajectory for
the SP Regge pole.ecsvd has
Drude-type behavior withe`=1
and vpa/c=2p while eh=1. As
va/c→vsa/c, the real part of the
SP Regge pole increases indefi-
nitely while its imaginary part
vanishes.

FIG. 7. Regge trajectory for
the SP Regge pole.ecsvd has the
ionic crystal behavior withe`=1,
vTa/c=2p, andvLa/c=3p while
eh=1. As va/c→vsa/c, the real
part of the SP Regge pole in-
creases indefinitely while its
imaginary part vanishes.
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nitely while its imaginary part vanishes. For other configu-
rations(i.e., for other values of the parameterse`, eh, vp, vT,
andvL), we have verified that the SP Regge pole behavior is
very similar.

The resonant behavior of the cylinder-photon system can
now be understood in terms of the Regge trajectory of the
SP. When the quantity RelSPsvd coincides with an integer, a
resonance occurs. Indeed, it is produced by a constructive
interference between the different components of the surface
wave, each component corresponding to a different number
of circumnavigations. Resonance excitation frequenciesv,SP

s0d

are therefore obtained from the Bohr-Sommerfeld-type quan-
tization condition

RelSPsv,SP
s0d d = ,, , = 0,1,2, . . . . s23d

By assuming thatv is in the neighborhood ofv,SP
s0d and using

RelSPsvd@ Im lSPsvd (which can be numerically verified,
except for low frequencies), we can expandlSPsvd in a Tay-
lor series aboutv,SP

s0d and obtain

lSPsvd < , + Ud RelSPsvd
dv

U
v=v

,SP
s0d

sv − v,SP
s0d d

+ i Im lSPsv,SP
s0d d + ¯ . s24d

Then, by replacing Eq.(24) in the term cosfplSPsvdg of Eq.
(21), we show thatfSPsv ,ud presents a resonant behavior
given by the Breit-Wigner formula(15) with

G,SP

2
= U Im lSPsvd

d RelSPsvd/dv
U

v=v
,SP
s0d

. s25d

Equations(23) and (25) are semiclassical formulas which
permit us to determine the location of the resonances from
the Regge trajectory oflSP.

Tables I and II present samples of complex frequencies of
RSPM’s for the two configurations previously considered.
They are calculated from the semiclassical formulas(23) and
(25) by using the Regge trajectories numerically determined
by solving Eq.(20) (see Figs. 6 and 7). A comparison be-
tween the “exact” and the semiclassical spectra shows a very

good agreement, except for “low” frequencies. We have also
performed the corresponding calculations for other configu-
rations with ehÞ1 and e`Þ1. The agreement seems even
better. Furthermore, inserted into the semiclassical formulas
(23) and (25), the behavior of Regge trajectories near the
limiting frequenciesvs easily explains the existence of the
families of resonances close to the real axis of the complexv
plane which converges for large, to the limiting frequency
vs. In conclusion, we have established a connection between
the complex frequencies of RSPM’s and a particular surface
wave, the so-called SP, described by a particular Regge pole
of the S matrix and which orbits around the cylinder.

IV. SEMICLASSICAL ANALYSIS: ASYMPTOTICS FOR
THE SP AND PHYSICAL DESCRIPTION

A deeper understanding of the SP behavior can be ob-
tained by solving perturbatively Eq.(20) for l=lSP. We first
replace the Bessel functionJlszd by the modified Bessel
function Ilszd (see Ref. 30) in order to take into account the
fact thatecsvd,0. Equation(20) reduces to

1
Îeh

HlSP

s1d8sÎehav/cd

HlSP

s1d sÎehav/cd
= −

1
Î− ecsvd

IlSP
8 „

Î− ecsvdav/c…

IlSP
„
Î− ecsvdav/c…

.

s26d

On the right-hand side of Eq.(26), we can use the uniform
asymptotic expansions ofIlszd for large orders(see Ref.
30)—i.e.,

Ilszd ,
1

Î2p

1

sl2 + z2d1/4eFlszd/2, s27d

where

Flszd
2

= sl2 + z2d1/2 + l lnS z

l + sl2 + z2d1/2D . s28d

By assumingulSPu@Î−ecsvdav /c, we then obtain

TABLE I. The first complex frequencies of RSPM’s.ecsvd has
Drude-type behavior withe`=1 andvpa/c=2p while eh=1.

,
Exact
v,SP

s0d
Exact

G,SP/2
Semiclassical

v,SP
s0d

Semiclassical
G,SP/2

1 0.570278 0.642122 0.665828 0.582435

2 1.53524 0.633630 1.49245 0.602114

3 2.35038 0.475286 2.25693 0.476399

4 2.97766 0.274602 2.90439 0.289791

5 3.42645 0.119226 3.39638 0.127238

6 3.73632 0.036765 3.73016 0.037645

7 3.94064 0.007494 3.94009 0.007435

8 4.07049 0.000999 4.07047 0.000981

9 4.15483 0.000093 4.15476 0.000094

10 4.21272 0.000006 4.21266 0.000006

TABLE II. The first complex frequencies of RSPM’s.ecsvd has
ionic crystal behavior withe`=1, vTa/c=2p, and vLa/c=3p
while eh=1.

,
Exact
v,SP

s0d
Exact

G,SP/2
Semiclassical

v,SP
s0d

Semiclassical
G,SP/2

7 6.459387 0.4345112 6.283821 0.0837525

8 6.809183 0.2419456 6.698432 0.3004512

9 7.091176 0.1055079 7.056186 0.1188560

10 7.311233 0.0353546 7.304271 0.0371596

11 7.470835 0.0088275 7.470046 0.0088537

12 7.581710 0.0016441 7.581652 0.0016417

13 7.659584 0.0002366 7.659579 0.0002392

14 7.716557 0.0000273 7.716543 0.0000274

15 7.759919 0.0000026 7.759919 0.0000027
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−
1

Î− ecsvd

IlSP
8 „

Î− ecsvdav/c…

IlSP
„
Î− ecsvdav/c…

,
flSP

2 − ecsvdsav/cd2g1/2

ecsvdsav/cd
.

s29d

On the left-hand side of Eq.(26), the relative positions oflSP
andÎehav /c in the l complex plane(see Fig. 10) permit us
to employ the Debye asymptotic expansion ofHl

s1dszd in the
form31,32

Hl
s1dszd , − iAsl,zde−asl,zd, s30d

where

Asl,zd = S 2

p
D1/2

sl2 − z2d−1/4, s31ad

asl,zd = sl2 − z2d1/2 − l lnSz+ sl2 − z2d1/2

z
D . s31bd

By assumingulSPu@Îehav /c, we then deduce

1
Îeh

HlSP

s1d8sÎehav/cd

HlSP

s1d sÎehav/cd
, −

flSP
2 − ehsav/cd2g1/2

ehsav/cd
. s32d

Equation(26) can now be solved, and we easily find

FIG. 8. Regge trajectory for
the SP Regge pole. Comparison
between exact and asymptotic
theories.ecsvd has Drude-type be-
havior with e`=1 andvpa/c=2p
while eh=1.

FIG. 9. Regge trajectory for
the SP Regge pole. Comparison
between exact and asymptotic
theories. ecsvd has ionic crystal
behavior withe`=1, vTa/c=2p,
andvLa/c=3p while eh=1.
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lSPsvd , Sva

c
DÎ ehecsvd

eh + ecsvd
. s33d

We have obtained an asymptotic expansion forlSP or more
exactly for the real part oflSP. Indeed, the right-hand side of
Eq. (33) is purely real. The perturbative resolution of Eq.
(26) did not permit us to extracted the small imaginary part
of lSP. Of course, it would be possible to improve Eq.(33)
by taking into account higher orders in the asymptotic ex-
pansions(27) and (30). But that does not seem necessary.
First, this does not provide an imaginary part forlSP. In fact,
as we shall see below, this term corresponds to an exponen-
tially small contribution which lies beyond all orders in per-
turbation theory. Furthermore, we have numerically tested
the formula(33) for various values of the parameterse`, eh,
vp, vT, and vL. In all cases, it provides a rather good ap-
proximation for RelSP (see, for example, Figs. 8 and 9 for
the two configurations previously studied). It should be noted
that it also predicts the divergence of RelSP for v→vs.

We can now insert Eq.(33) into Eq. (22). The contribu-
tions corresponding to the SP propagating counterclockwise
and clockwise are then given by

exphif±lSPsvdu − vtgj = exphif±kSPsvdau − vtgj, s34d

with

kSPsvd = Sv

c
DÎ ehecsvd

eh + ecsvd
. s35d

Here we have reintroduced the time dependence exps−ivtd in
order to clarify the physical interpretation. From Eq.(34) and
by noting thata du represents the length element on the cyl-
inder surface, it now appears that SP propagation is sup-

ported by the cylinder surface which thus plays the role of a
Bohr-Sommerfeld-type orbit and that Eq.(35) can be consid-
ered as the SP dispersion relation. This relation could permit
us to derive analytically the phase velocityvp=v /kSPsvd as
well as the group velocityvg=dv /dkSPsvd of the SP.

It should be also noted that the dispersion relation(35) is
in fact the usual dispersion relation of a SP supported by a
flat metal-dielectric or semiconductor-dielectric interface
(see, for example, Ref. 33). We have recovered the same
dispersion relation because we have limited the perturbative
resolution of Eq.(26) to the lowest order. By taking into
account higher orders in the asymptotic expansions(27) and
(30) we could obtain corrections for Eqs.(33) and(35) van-
ishing for a→`—i.e., in the limit of large radius.

By inserting expression(33) for lSPsvd into the Bohr-
Sommerfeld quantization condition(23) we can derive ap-
proximations for the resonance excitation frequenciesv,SP

s0d .
If the dielectric function of the cylinder is given by Eq.(2),
we obtain, for the reduced frequencies,

v,SP
s0d a

c
<

1
Î2
HSvpa

c
D2

+ S eh + e`

ehe`
D,2

−ÎFSvpa

c
D2

+ S eh + e`

ehe`
D,2G2

−
4

eh
Svpa

c
D2

,2J1/2

.

s36d

This analytic formula provides accurate results for “large”
values of,. For,=3, the error is around 13% and it becomes
less than 1% for,.7. Furthermore, it predicts the conver-
gence tovs=vp/Î1+eh/e` when ,→`. For the dielectric
function (3), we obtain

v,SP
s0d a

c
<

1
Î2
HSvLa

c
D2

+ S eh + e`

ehe`
D,2 −ÎFSvLa

c
D2

+ S eh + e`

ehe`
D,2G2

−
4

ehe`
Fe`SvLa

c
D2

+ ehSvTa

c
D2G,2J1/2

. s37d

This analytic formula provides accurate results for “large”
values of,. For ,=7, the error is around 3% and it becomes
less than 1% for,.10. Furthermore, it predicts the accumu-
lation of resonances atvs=ÎfvL

2+seh/e`dvT
2g / s1+eh/e`d for

,→`.
To conclude this section, we shall come back to the damp-

ing constant ImlSPsvd of the SP. Numerically(see Figs. 6
and 7) we have shown that this term is small but we cannot
consider that it vanishes as we previously found. In fact, this
term corresponds to an exponentially small contribution
which lies beyond all orders of the asymptotic expansion
(30) and which can be captured by carefully taking into ac-
count the Stokes phenomenon.34,35 (For modern aspects of
asymptotics beyond all orders and of the Stokes phenom-
enon, we refer to a beautiful article by Berry36 as well as to

Refs. 37–39). Instead of Eq.(30), we shall use the Debye
asymptotic expansion ofHl

s1dszd in the form

Hl
s1dszd , − iAsl,zde−asl,zds1 + ¯ d

+ Sfasl,zdgAsl,zds1 + ¯ deasl,zd. s38d

On the right-hand side of Eq.(38), the first term is the usual
Debye asymptotic expansion truncated near its least term.
The second one is obtained by decoding the divergent tail of
that asymptotic expansion. This can be done(see Refs. 36
and 39) by Borel summation after exploiting a resurgence
formula discovered by Dingle.37 In the region of thel com-
plex plane where the Regge polelSP lies (see Fig. 10), we
have Rea,0. As a consequence, the first term on the right-
hand side of Eq.(38) is the dominant contribution while the

ANCEY et al. PHYSICAL REVIEW B 70, 245406(2004)

245406-10



second one is a subdominant term which can be forgotten
when ulu→`. That is what we did previously by using Eq.
(30). The Stokes multiplier functionSfasl ,zdg is a compli-
cated function involving the exponential integral functionE1.
It goes continuously from 0 to 1 at the crossing of the Stokes
line Im a=0 emerging from the turning pointz=b (see Fig.
10). Below the Stokes line, it rapidly vanishes. On the Stokes
line, it is equal to 1/2 and above the Stokes line it rapidly
becomes equal to 1. It thus describes the rapid but continu-
ous birth of the subdominant contribution near the Stokes
line.

From Eq.(38) we can now write

1
Îeh

HlSP

s1d8sÎehav/cd

HlSP

s1d sÎehav/cd

, −
flSP

2 − ehsav/cd2g1/2

ehsav/cd

3h1 − 2iSfaslSP,Îehav/cdge2aslSP,Îehav/cdj s39d

instead of Eq.(32). By using Eqs.(29) and(39), Eq.(26) can
be solved approximately and we find

RelSPsvd , Sva

c
DÎ ehecsvd

eh + ecsvd
, s40ad

Im lSPsvd , 2Sva

c
DPsvdSsvde2asvd, s40bd

where

Psvd <
eh

2ec
2svd

feh
2 − ec

2svdgÎehecsvdfeh + ecsvdg
, s41ad

asvd < aSsva/cdÎ ehecsvd
eh + ecsvd

,Îehav/cD , s41bd

Ssvd < SFaSsva/cdÎ ehecsvd
eh + ecsvd

,Îehav/cDG . s41cd

We can see easily that the imaginary part(40b) of lSP van-
ishes for v=vs as well as in the large radius limit
a→`—i.e., in the flat interface limit. Furthermore, we have
numerically studied Eq.(40b) for “high” values of v—i.e.,
when the Regge polelSP is very close to the Stokes line. In
that case, by giving to the Stokes multiplier functionS the
value 1/2, we have checked that Eq.(40b) provides accurate
results for the imaginary part oflSP. We therefore consider
we have succeeded in providing an analytic formula for the
Regge pole of the SP. However, the expression(40b) is a
rather complicated function ofv. As a consequence, its use
in the semiclassical formula(25) is unfortunately not very
interesting. In short, we think that Eq.(40b) is especially
interesting for the qualitative description of the SP damping
it provides.

V. CONCLUSION AND PERSPECTIVES

In this article we have introduced the CAM method in the
context of scattering of electromagnetic waves from metallic
and semiconducting cylinders. This allows us to provide a
physical explanation for the excitation mechanism of
RSPM’s as well as a simple mathematical description of the
surface wave(i.e., the SP) that generates them. It should be
noted that our results are not limited to metals and semicon-
ductors. Under simple assumptions, they are also valid,mu-
tatis mutandis, for more general materials. Indeed, in a fre-
quency range where the dielectric function of a material
presents a dominant simple polev0, it is always possible to
write28

ecsvd < e` +
2v0R

v0
2 − vsv + igd

. s42d

Here v0 is the resonance frequency of the material in the
frequency region considered,g denotes the associated damp-
ing term,e` stands for the high-frequency that the coefficient
R is positive. In the absence of dissipationsg<0d and if the
zero of ecsvd which is given byÎv0

2+2v0R/e` lies in the
validity range of Eq.(42), there exists a SP which can be
described by the theory developed in Secs. III and IV. This
remains also true for more general materials with a dielectric
function ecsvd negative, of large absolute value, and such
that Eq.(16) admits a solution. The presence of a pole in the
expression of the dielectric function is not necessarily re-
quired.

In parallel with the semiclassical analysis of SP’s on me-
tallic or semiconducting cylinders, we have developed a new
picture of the photon-cylinder system: it can be viewed as an
artificial atom for which the photon plays the role of an elec-
tron. RSPM’s are long-lived quasibound states for this atom
and the associated complex frequencies are Breit-Wigner-
type resonances while the trajectory of the SP which gener-
ates them is a Bohr-Sommerfeld-type orbit. Furthermore, the
imaginary part of a given RSPM complex frequency corre-
sponds to an exponentially small term which lies beyond all

FIG. 10. The relative positions, in thel complex plane, of the
Regge polelSP and the reduced frequencyb=Îehva/c.
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orders in perturbation theory. As a consequence, as their ex-
citation frequency increases, RSPM’s gain very long life-
times; i.e., they behave like bound states.

With applications in photonic crystal physics in mind, our
work could be naturally extended in various directions in-
cluding (i) scattering by cylinders with metallic or semicon-
ducting coating or, more generally, multilayered structures,
(ii ) scattering by metallic or semiconducting spheres, and last
but not least(iii ) scattering by objects fabricated from left-
handed materials. It would be also interesting to provide a
complete(i.e., not limited to SP’s) semiclassical description
of scattering of electromagnetic waves from metallic and
semiconducting objects in the framework of CAM tech-
niques by extending the ideas of Nussenzveig.20 But at first
sight that seems to be a formidable task.

In recent papers dealing with photonic band structure of
two-dimensional photonic crystals fabricated from metallic
or semiconducting cylinders arrayed in a square lattice, a
striking feature has been noted1,5,8–13—namely, the existence
of flat bands(i.e., dispersionless bands) in the frequency
range in whichesvd,0. This result, which only exists forH
polarization, is of course linked to the excitation of RSPM’s.
More precisely, it is due to the localization of the photon
which is trapped on the Bohr-Sommerfeld orbit. Of course,
this analysis is rather oversimplified. In fact, it is necessary
to understand up to what point single-cylinder resonant as-
pects are related to “resonant” aspects of the full photonic
crystal. Recently, Ito and Sakoda4,11 have considered this
problem by developing a physically intuitive but appealing
analysis: they regard the RSPM’s of an isolated cylinder as

atomic orbitals and they describe their effects into the pho-
tonic crystal in the context of the “linear combination of
atomic orbitals(LCAO) theory.” Ito and Sakoda do not use
the terminology “artificial atom” to describe the photon-
cylinder system but this picture is implicitly present in their
work and the point of view we develop in the present article
strengthens their analysis.

Of course, it should be interesting to provide a more rig-
orous interpretation of the existence of the flat bands. With
this aim in view, it would be possible to benefit from the
machinery developed in semiclassical physics(see, for ex-
ample, Ref. 40 and references therein) to analyze quantum
chaos in connection with multiple scattering. As far as we
know, such a semiclassical approach has never been consid-
ered in the context of photonic crystal physics but it seems to
us very promising. Indeed, it is well known that, due to con-
vergence problems, band structure computations of metallic
or semiconducting photonic crystals are very heavy in the
frequency range in whichesvd,0. The semiclassical ap-
proach could permit us to easily construct these band struc-
tures by taking into account the shortest periodic orbits in-
volving SP trajectories and lying in the Wigner-Seitz cell.
Here, the properties we have found for the SP would be very
useful.
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