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We reexamine scattering of electromagnetic waves from metallic and semiconducting cylinders in the frame-
work of complex angular momentum techniques. We prove that “resonant surface polariton modes” are gen-
erated by a unique surface wave—i.e., a surface polariton—propagating close to the cylinder surface. This
surface polariton corresponds to a particular Regge pole oBtmatrix of the cylinder. From the associated
Regge trajectory we can construct semiclassically the spectrum of the complex frequencies of the resonant
surface polariton modes which can be considered as Breit-Wigner-type resonances. Furthermore, by taking into
account the Stokes phenomenon, we derive an asymptotic expression for the position in the complex angular
momentum plane of the surface polariton Regge pole. We then describe semiclassically the surface polariton
and provide analytical expressions for its dispersion relation and its damping. All these features allow us to
consider the photon-cylinder system as a kind of artificial atom where the photon plays the role of the electron.
Finally, we briefly discuss the implication of our results for two-dimensional photonic crystals.
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[. INTRODUCTION physical description of scattering of electromagnetic waves
from curved metal-dielectric or semiconductor-dielectric in-
In recent years, since the work of McGurn andterfaces does not still exist. In the scientific literature, this
Maradudin! there has been a growing interest in the study offact sometimes leads to a semantic ambiguity with the ex-
photonic crystals containing metallic or semiconductingpression “surface polaritons” denoting the surface waves
components. The frequency dependence of the dielectrigropagating close to the interface as well as the resonant
function e(w) of these materials, as well as the presence of @lectromagnetic modes they generate. In order to avoid such
frequency range whergw) <0, leads to new features which an ambiguity and to distinguish between the two physical
do not exist in conventional photonic crystals and which arephenomena, we shall use the more appropriate expression
mainly linked to the presence of surface polarit@S#’s). “resonant surface polariton mode@RSPM’s for the latter.
With this in mind, we intend to reexamine the theory of  Since the 1960s, mainly under the impetus of Nussenz-
SP’s propagating close to curved metal-dielectric or semiveig, asymptotic(i.e., semiclassicaltechniques which use
conductor-dielectric interfaces. In this paper, we will empha-analytic continuation of partial-wave representatidivie
size the case of the circular cylindrical interface. For reviewssumg have been developed to understand scattering of elec-
of photonic crystal physics see Refs. 2—4. Among the numertromagnetic waves from dielectric objects. Together these
ous articles dealing with SP’s in photonic crystals, we refertechniques form the complex angular moment(@AM)
to Refs. 1 and 5-13—i.e., to a nonexhaustive list of worksmethod. In electromagnetism, it can be considered as a re-
dealing more particularly with two-dimensional arrays of finement of ray optics which takes into account “tunneling
cylinders of circular cross section for which SP’s may beaspects” of scattering and therefore includes diffractive rays
excited and which are consequently relevant to our study. associated with surface waves. Of course, the CAM method
SP’s supported by flat metal-dielectric or semiconductoris an asymptotic approach and formally it is only valid at
dielectric interfaces can be easily described from a theoretiength scales “large” compared to the wavelength of the elec-
cal point of view and their properties can be obtained fromtromagnetic field.
rather elementary calculations involving homogeneous and The CAM method originates from the pioneering work of
inhomogeneous plane waves. It should be noted that in thigv/atsort® dealing with the propagation and diffraction of ra-
context, an SP is clearly defined as a surface wave propagatio waves around the Earth. It has since been successfully
ing close to the interface with an amplitude that decays in afntroduced in various domains of physics. The success of the
exponential fashion perpendicularly to the interface and intaCAM method is mainly due to its ability to provide a clear
both medium. By contrast, in the presence of cylindrithils ~ description of a given scattering problem by extracting the
is also true for sphericpinterfaces, the corresponding theo- physical information(linked to the geometrical and diffrac-
retical analysis is a little bit more complicat¢see, for ex- tive aspects of the scattering procesghich is hidden in
ample, Refs. 14-17: Bessel functions must be introduced anprtial-wave representations and then to semiclassically de-
transcendental equations involving them must be numeriscribe resonance phenomena. Here the dual structure &f the
cally solved, for example, in order to understand resonanceatrix associated with a given scattering problem plays a
phenomena associated with SP’s. As a consequence, a cleaucial role. Indeed, th& matrix is a function of both the
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frequencyw and the angular momentum indéx It can be by using CAM techniques, we establish the connection be-
analytically extended into the complex plane as well as tween the SP propagating close to the surface cylinder and
into the complex’ plane(CAM plane). Its poles lying in the  the associated RSPM’s. In Sec. IV, we describe semiclassi-
fourth quadrant of the complew plane are the complex cally the SP by providing analytic expressions for its disper-
frequencies of the resonant modes. In other words, the be&jon relation and its damping. We then deduce analytic ap-
havior of theS matrix in the complex plane permits us to  proximations for the excitation frequencies of RSPM's.
investigate resonance phenomena. The structure @tha-  Finally, in Sec. V, we conclude our article by considering
trix in the complext plane allows us, by using integration some possible extensions of our work and by briefly discuss-

contour deformations, Cauchy’s theorem, and asympiolig,y the implication of our results in the context of two-
analysis, to provide a semiclassical description of scatteringi o nsional photonic crystal physics.

in terms of rays. In that context, the poles of tBenatrix

lying in the CAM plane(the so-called Regge poleare as-  |I. EXACT S MATRIX AND SCATTERING RESONANCES
sociated with diffraction. Of course, when a connection be- ) ]
tween these two faces of tH& matrix can be established, ~ From now on, we consider the scattering of an electro-

resonance aspects of scattering are then semiclassically intéfagnetic wave by a metallic or semiconducting circular cyl-
preted. For reviews of the CAM method we refer to theinder with a frequency-dependent dielectric functiefiw)
monographs of Newtot, Nussenzveid® and Grandy* as  which is embedded in a host medium of infinite extent with
well as to references therein for various applications in quaneonstant dielectric functios;, (region I). In the usual cylin-
tum mechanics, nuclear physics, electromagnetism, opticsirical polar coordinate systefp, 6,2) the cylinder occupies
and seismology. Specific applications of that method ina region corresponding to the rangep <a (region Il). We
acoustic-wave scattering can be found in the review articlalso assume that the magnetic fiéldis parallel to the axis
by Flax, Gaunaurd, and Uberdf.For recent applications in of the cylinder(H polarization, and we choose to treat our
more “exotic” contexts, we refer to Refs. 23—-25 where aproblem in a two-dimensional setting, ignoring theoordi-
CAM analysis of black hole scattering and black hole gravi-nate. Furthermore, in the following, we implicitly assume the
tational radiation is provided and to Ref. 26 where thetime dependence ekpiwt) for the magnetic field and we

Aharonov-Bohm effect is considered. shall sometimes use the wave numbers

As far as we know, the CAM method has never been used
to understand scattering of electromagnetic waves from me- K(w) = (9)\"; and K'(w)= (9>\% (1)
tallic and semiconducting objects. In fact, because of the c c

frequency dependence of the dielectric function of metal erec is the velocity of light in vacuum.
and semlgonductors, the extensmn .Of the .|deas OF As far as the dielectric function of the cylinder is con-
Nussenzveiff to such a problem is not quite as obvious as it erned. we assume it presents a Drude-like beh&ibr
seems at first sight. In this article, we make some steps in '
that direction but with a rather modest goal. Indeed, we only _ gé

consider the scattering of TE wavéd polarization by a €(w) =€ 1- 2 2
metallic or semiconducting circular cylinder surrounded by a )

dielectric medium. We limit our study to that case becausér ionic crystal behavidf 28

SP’s are not excited in thé&-polarization configuration. W2 = w2
From theS matrix of the cylinder, using CAM techniques, e(w) = 630< ; 2).
we develop a semiclassical description of the scattering as- wr-ow
pects linked to SP's. More precisely, we prove that RSPM'Sy poth casese, is the high-frequency limit of the dielectric
are generated by a unique SP propagating close to the cylifanction. In Eq.(2), w, is the plasma frequency. In E¢B),

der surface. This surface wave is associated with a particul%T and W, respectively, denote the transverse_optica|_
Regge pole of th& matrix of the cylinder. From the corre- phonon frequency and the longitudinal-optical-phonon fre-
sponding Regge trajectory,—i.e., from the curve traced out ifyyency. In the first case, SP’s follow from the coupling of the
the CAM plane by this Regge pole as a function of theelectromagnetic wave with the plasma wave and are usually
frequency—we can construct semiclassically the spectrum of|led surface plasmon polaritons. In the second one, SP’s
the complex frequencies of RSPM'’s which can be consideregyjiow from the coupling of the electromagnetic wave with
as Breit-Wigner-type resonances. Furthermore, by carefullyne |ongitudinal and transverse acoustic waves and are usu-
taking into account the Stokes phenomenon, we derive agjly called surface phonon polaritons. Equati® can be
asymptotic expression for the position of the SP Regge polgsed to describe the dielectric behavior of certain metals and
in the CAM plane and, then, we can describe semiclassicalléemiconductorgSi, Ge, InSb,...) while Eqg.(3) can be used

the SP. In some sense, our results allow us to consider thg investigate the optical properties of other semiconductors
photon-cylinder system as an artificial atom: RSPM’s aresch as GaAs.

long-lived quasibound states for this atom while the trajec- From Maxwell’s equations it is easy to show that the

tory of the SP which generates them and which is supportegomponent of the magnetic field satisfies the Helmholtz
by the cylinder surface is a Bohr-Sommerfeld-type orbit.  equation

Our paper is organized as follows. In Sec. Il, we introduce 5
our notation and we construct tiSamatrix of the system. We A+ (2) H'(x)=0 for0<op<a 4
then discuss the resonant aspects of our problem. In Sec. I, { X ec(@) [Hz () P . (43

3
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2 — Ll D7 g ]
D =k'(w)H;”" (k k
[ . (9) €h]H|Z(X) 0 frp>a (4D (@) =K' (@HP (K(0)2)3,(K'(w)a)
¢ - K(0)HP (K (w)a)J) (K (w)a). (9b)
wherex=(p, §) and with the Laplacian\, given, in the polar o g
coordinate system, by The unitarity of theS matrix,”” which expresses the energy
conservation, can be easily verified from E®.and(9) by
: # 19 1 & using the elementary properties of Bessel functions. The
A= (;_pz + ;a_p + Eﬁ' (5) reciprocity property? which is associated with time-reversal

invariance, is also satisfied becawgés an even function of
Furthermore, from the continuity of the tangential compo-¢,
nents of the electric and magnetic fields., of E, andH,) at The S matrix is of fundamental importance because it
the interface between regions | and Il, it can be shown thagontains all the information about the scattering process. Its
the z component of the magnetic field satisfies, foc®  components appear in the Green functions of the problem

<2m, and in the scattered field when a plane wave excites the
Lo o cylinder as well as in both the scattering amplitude and the
HiAp=a,6)=Hz(p=2,0), (63) total scattering cross section. As far as the scattering by a
| | plane wave propagating along tkeaxis is concerned, the
10H 1 oH total magnetic field in region | is given b
=2 2(y=a,0)= Z(p=a,0). (6b) g g given by
€h dp e(w) dp .
We are first interested in the construction of Bienatrix HY(p, 6) = alk'p cosd ;. > Eif[se - 1HP(K p)cog € 6).
for the cylinder. Because of the cylindrical symmetry of the =0 2
scatterer, theS matrix is diagonal and its elemen®,, are (10)

given by Syr=S,6;¢. For a given angular momentum index
t €7, the coefficientS, is obtained from the partial-wave pHere v, is the Neumann factafy,=1 and for¢ #0, y,=2).
(H,), solution of the following problemhere we extend, The scattering amplitudef(w, ) is defined from the

mutatis mutandisthe quantum mechanical approach devel-asymptotic behavior of the total magnetic field by
oped in Ref. 2%

(i) (H), satisfies the Helmholtz equatigd), ikl
(i) (H,, satisfies the boundary conditio(®), H(p,0) ~ olk'p cosd . flw,0)—. 11

(iif) at large distancgH,), has the asymptotic behavior p—e \p
1 il —pio By using the asymptotic behavigva) in Eqg. (10), we can

~ (K'p—tm2-ml4)
(Hz)e(pyﬁ)pHer\s,rm(el ’ write
. | _ _ .
+S€((1))el(kp €2 77/4))el€t9. f( 0) 1 +o0 [ ( ) 1] qeg) (12)
,0) = —_— — 1|CO .
Outside the cylinde¢region ), the solution of4) is express- © 2i 7k (w) 729 Y Sele

ible in terms of Bessel functionesee Ref. 3pas a linear

combination ofJ,(K'p)e*? andH!"(K'p)e’. Inside the cylin-  Then, the total scattering cross section per unit length of the
der (region I, it is proportional toJ,(k"p)e’?. As a conse- cylinder can be obtained by using the optical theotém:
guence, the partial-wavgH,), solution of(i) and(ii) can be

obtained exactly. Then, by using the standard asymptotic be- 8 imla
havior of Hankel functions fok — <« (see Ref. 3§) or(w) = K(w) Im[e™™*f(w, 0= 0)]. 13
HP(x) ~ V2/(mx) g0tz (79) In Figs. Xa) and 2a), we present two examples of total
cross section. They are both plotted as functions of the re-
HP(x) ~ \2/(mx)g i tmi2=ml4) (7b)  duced frequencwa/c. In Fig. 1(a), the cylinder is embedded

in vacuum(e,=1) and its dielectric function is given by Eq.
we find from(iii) the expression of the diagonal elemeSts  (2) with €,=1 andwpa/c=2m. In Fig. 2a), the cylinder is
of the S matrix. We have embedded in vacuune,=1) and its dielectric function is
DY(w) given by Eq.(3) with €,=1, wra/c=2m, and w a/c=3.
¢ , (8)  Even if we restrict ourselves to those particular configura-
D(w) tions, it should be noted that the results emphasized numeri-
cally and that we shall now discuss are very general. In the
two figures, rapid variations of sharp characteristic shapes
can be observed. This strongly fluctuating behavior is due to

Sg(a)):1—2

Wherefo)(w) andD,(w) are two 2x 2 determinants which
are explicitly given by

DM (w) = K (0)3)(K (w)2) (K" (w)a) scattering resonances. These resonances are the poles of the
| | o Smatrix lying in the fourth quadrant of the complexplane,
- K(w)J(K(0)a)dy(k' (w)a), (98 and they are determined by solving
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FIG. 1. (a) Total cross section
or1. (b) Scattering resonances in
the complexwa/c plane.e(w) has
Drude-type behavior withe,=1
and w,a/c=2m while e,=1.

Diw)=0 for €eN. (14)

4%/_ (15)

= oy, © 4+ IF{DIZ

The solut|ons of Eq(14) are denoted bywp—w( =il 2
wherew( >0 andl'¢,>0, the indexp permitting us to dis-
tinguish Between the different roots of EG4) for a givent.
In the immediate neighborhood of the resonangg, Sy(w)
has the Breit-Wigner form—i.e., is proportional to

As a consequence, when a pole of Bwmatrix is sufficiently
close to the real axis in the complex plane, it has an ap-
preciable influence on the scattering amplitude and therefore
on the total cross section. Of course, if a pole is very close to
this axis, the corresponding peak is too sharp to be observed

0 o"i.‘—=: . hdatd =.a. -
. s .. * ‘e : o 9
* oe
o [ ] * L] o O
1 . . * : : o *°
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4 | .. - N .
0 5 u)Ta/c wLa/c 15 FIG. 2. (@) T_otal Cross sect|or_1
(@) Re wa/c or1. (b) Scattering resonances in

the complexwa/c plane.e(w) has
, : - ionic crystal behavior withe,.=1,
: : wralc=2m, andw a/c=37 while
€n= 1.

0 5 (DTa/ C (DLB./ C 15
(b) wa/c
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on the total cross section. In Figgbl and 2b), resonances 4 ImA
are exhibited for the two configurations previously consid-
ered. A one-to-one correspondence between the peaks of
and the resonances near the real/c axis can be clearly
observed in certain frequency ranges.

More precisely and more generally, for the dielectric func-
tion (2) there exists in the frequency range< w, where
e(w) <0 a family of resonances close to the real axis of the

Y

complexw plane which converges, for large to the limit- . N . . Re A
ing frequencywy satisfying 0 T 2 3 3 g
ewy) +€,=0 (16)

FIG. 3. The Watson integration contour.
and given by

waves and more particularly a physical explanation of the
excitation mechanism of RSPM’s valid for “high frequen-
cies.” By means of a Watson transformatiapplied to the

A possible physical justification of Eq16) could be pro-  Scattering amplitudél2), we can write

vided by using the method of images as described in Ref. 15.

For the dielectric function3), the same type of behavior [ (S\(w)-1)

occurs but in two different frequency ranges: in the region f(w,6) =~ V Zwkl(w)P S;inwx cogA(m - 6)JdA.

w < w7 [heree.(w) > 0] with an accumulation of resonances ¢

at the polew of the dielectric function and in the region (19
wr<w<wm_ [heree(w)<0] with an accumulation of reso-

nances at the limiting frequenay still satisfying Eq.(16) ~ HereC is the integration contour in the complexplané®
but which is now given by illustrated in Fig. 3 and which encircles the real axis in the
clockwise sense. In Eq19), P, which stands for Cauchy’s
principal value at the origin, is used in order to reproduce the
Neumann factor. The Watson transformation has permitted us
to replace the ordinary angular momentérby the complex
We must keep in mind trgat in the scattering dfigpolarized  angular momenturh. S,(w) is now an analytic extension of
photon with ffequencyv(gp)' a decaying state of the photon- g (w) into the complex plane which is regular in the vicin-
cylinder system is formed. It has a finite lifetime propor- ity of the positive real axis. Using Cauchy’s theorem and
tional to 1/',. The resonant states whose complex frequenty noting that inside the contou the only singularities of
cies belong to one of the families previously described argne integrand in Eq(19) are the integers, we can easily re-
therefore long-lived states. Because of these particular quagyer Eqgs(12) and(19).

of artificial atom for which the photon plays the usual role of taking into account the possible singularities. The only sin-
the electron. We Sha” come baCk to '[hIS pOint Of VieW in thegularities that are encountered are the poles Ofslnmtrix

next two sections. _ lying in the CAM plane. They are known as Regge ptié%
From now on, we shall more particularly focus our atten-and are determined by solving

tion on the physical interpretation of the long-lived resonant
states whose excitation frequencies belong to frequency
ranges in whiche,(w) <0. We shall prove that these states

are generated by a SP propagating close to the cylinder sug- I o
face and for this reason we call them RSPM's. Eor suCh|5|gures 4 and 5 exhibit the distribution of Regge poles for a

states, the artificial-atom point of view can be pushed furtheC.yllnder embedded in vacuum. We still consider the two con-

as we shall show in Secs. Il and IV. For the long-lived lgurations previously studied. We do not display the Regge

resonant states whose excitation frequencies belong to thoeoIe distributions for other configuratiolie., for other val-

frequency range in whick,(w)>0 (the so-called bulk po- -c> of the parametews,, &, wp, wr, andw, ) because they
lariton statey we are not able to provide a similar analysis are not really dlﬁerent fr_om _those of Figs. 4 a_nd_ 5. In fact, a_II
. these Regge pole distributions are rather similar to the dis-

Irhlztz;IS nhOts'VcirythS:r':gmuf)rtaasnézegf (Ilosga,shave, n IOhOtor“(\tributions associated with the dielectric objects usually
ystal physics, Imp : studied?® However, in the frequency range whes@w) <0,

(‘OS: ’_w,;L_ (17)
V1 +e)/e,

o + (€€ 0t

. 18
1+¢e/e, (18)

wWg =

Dy(w)=0 for w>0. (20

IIl. SEMICLASSICAL ANALYSIS: FROM THE SP REGGE f"?me.th'?]g ][‘.ew OCC(;”S: thfrﬁﬁeﬁ'sw a pdartlculalr Reggehpo'e
POLE TO THE COMPLEX FREQUENCIES OF ying In the first quadrant of thk plane and very close to the
RSPM's real axis. It is not present for ordinary dielectric objects. As

we shall see below, this new Regge pole is associated with a
Using the CAM method, we can provide a physical pic-SP orbiting around metallic or semiconducting cylinders.
ture of the scattering process in term of diffraction by surfacé=rom now on, we shall denote it bys w).

245406-5



ANCEY et al. PHYSICAL REVIEW B 70, 245406(2004)
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By Cauchy’s theorem we can then extract from Etp)  these contributions which do not play any role in the excita-
the contribution of a residue series over Regge poles. In faction of RSPM’s. We think that these contributions could be
we limit our study to the contribution okgfw) which is  studied,mutatis mutandisin the framework of CAM tech-

given by niques developed by NussenzvéigBy using
2 rsp((l))
f ,0) = /- - N -0)].
=—9j eiﬂ'(2m+1))\,
(21) sin IEO

Here rsp(w)=residu<éSA(w))x:ASF(w). Of course, f differs

from fgp by @ smooth background integral and by the contri-
butions of all other Regge poles. We are not interested invhich is true if Im\ >0, we can write

8 T T T T T T
2
6 * a
k]
4+ * |
* * FIG. 5. Regge poles in the
< complex angular momentum
é 2 * SP 8 plane. e.(w) has ionic crystal be-
havior with e€.=1, wtal/c=2m,
* / and w a/c=3m while e,=1. The
0 P s s sen ~ distribution corresponds tma/c
=7.8.
-2 4
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| FIG. 6. Regge trajectory for
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Drude-type behavior withe,=1
(@) ma/c and wpa/c=2m while e,=1. As
walc— wglc, the real part of the

1 T T T T T T T T
| SP Regge pole increases indefi-
08 - : . nitely while its imaginary part
o | vanishes.
» 0.6 - | i
< I
E o4r | 1
02t : ]
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(b) ma/c
2 e a continual reradiation of energy. Moreover, in E2Q2), the
fspw,6) =~ mrsp(w)z (ehsl@)(G+2mm) sum overm takes into account the multiple circumnaviga-
@ m=0 tions of the surface waves around the cylinder as well as the
+ ghspw)(2m6+2mm)) (22) associated radiation damping. The Regge palgis very

) close to the real axis in the compléxplane. It then corre-
In Eq. (22), exponential terms correspond to surface-wavesponds to a surface wave which is slightly attenuated during
contributions. Because the Regge pbig(«w) lies in the first  its propagation and which contributes significantly to the
quadrant of the CAM plane, efipsd@)(6)] (exdirsd®)  scattering process and to the resonance mechanism.
X(2m-6)]) corresponds to a surface wave propagating As o varies, the Regge polesdw) describes a Regge
counterclockwise (clockwisg around the cylinder and trajectory® in the CAM plane. In Figs. 6 and 7, we have
Relsdw) represents its azimuthal propagation constandisplayed the Regge trajectories of SP’s for the two configu-
while ImAgsdw) is its damping constant. The exponential rations previously studied. It should be noted that aas
decay exp-Im \glw) 6] (exd—Im Asdw)(27—0)]) isdueto  — w,, the real part of the SP Regge pole increases indefi-

20 T T T T T T R
15| -
A :
7 :
< 10t -
© .
< :
5t o
§ FIG. 7. Regge trajectory for
n 1 1 Il Il 1 1 "
U alc ®. alc the SP Regge pole(w) has the
(@) 0 1 2 3 4 OJZ /e § 2 L ionic crystal behavior withe,,=1,
wralc=2m, andw al/c=3m while
. . . . . — e,=1. As wa/c— wgalc, the real
: part of the SP Regge pole in-
1 L | creases indefinitely while its
& imaginary part vanishes.
<
é 0.5+ 1
0 1 1 1 1 1 - 1 _ -
0 1 23 4 5 e g wpak
(b) wa/c
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TABLE I. The first complex frequencies of RSPM's,(w) has TABLE Il. The first complex frequencies of RSPM'g,(w) has
Drude-type behavior witle,,=1 andw,a/c=27 while e,=1. ionic crystal behavior withe,=1, wra/c=27, and w a/c=3m
while e,=1.
Exact Exact Semiclassical Semiclassical
¢ wgp Tyspl2 “’(eos)P Tyspl2 Exact Exact Semiclassical Semiclassical
¢ o, Tyspl2 o\ 2 Tysp/2
1 0570278 0.642122 0.665828 0.582435
2 1.53524 0.633630 1.49245 0.602114 7 6.459387 0.4345112 6.283821 0.0837525
3 2.35038 0.475286 2.25693 0.476399 8 6.809183 0.2419456 6.698432 0.3004512
4 297766 0.274602 2.90439 0.289791 9 7.091176  0.1055079 7.056186 0.1188560
5 3.42645 0.119226 3.39638 0.127238 10 7.311233  0.0353546 7.304271 0.0371596
6 3.73632 0.036765 3.73016 0.037645 11 7.470835 0.0088275 7.470046 0.0088537
7 3.94064 0.007494 3.94009 0.007435 12 7.581710 0.0016441 7.581652 0.0016417
8 4.07049 0.000999 4.07047 0.000981 13  7.659584  0.0002366 7.659579 0.0002392
9 4.15483 0.000093 4.15476 0.000094 14 7.716557 0.0000273 7.716543 0.0000274
10 4.21272 0.000006 4.21266 0.000006 15 7.759919  0.0000026 7.759919 0.0000027

nitely while its imaginary part vanishes. For other configu-good agreement, except for “low” frequencies. We have also
rations(i.e., for other values of the parametets e, wp, wr, performed the corresponding calculations for other configu-
andw, ), we have verified that the SP Regge pole behavior igations withe,# 1 and e, # 1. The agreement seems even
very similar. better. Furthermore, inserted into the semiclassical formulas

The resonant behavior of the cylinder-photon system cafi23) and (25), the behavior of Regge trajectories near the
now be understood in terms of the Regge trajectory of thdimiting frequenciesws easily explains the existence of the
SP. When the quantity Ress(w) coincides with an integer, a families of resonances close to the real axis of the complex
resonance occurs. Indeed, it is produced by a constructiviélane which converges for largeto the limiting frequency
interference between the different components of the surfacgs In conclusion, we have established a connection between
wave, each component corresponding to a different numbdpe complex frequencies of RSPM’s and a particular surface
of circumnavigations. Resonance excitation frequenells ~ Wave, the so-called SP, described by a particular Regge pole
are therefore obtained from the Bohr-Sommerfeld-type quare’ the S matrix and which orbits around the cylinder.
tization condition

IV. SEMICLASSICAL ANALYSIS: ASYMPTOTICS FOR
RehsHwigy =¢, €=0,12,... . (23 THE SP AND PHYSICAL DESCRIPTION

. .. . 0 .
By assuming thai is in the neighborhood af)(és)P and using

RE)‘SPt((]ﬁ))ilm ?SF((") (V\.'h'Ch can be nurgenca)llly ve_Pfled, tained by solving perturbatively E¢R0) for A=Agp We first
exeep: for ‘ow r?guencw)swe_ can expandsgw) in a Tay- replace the Bessel functiod,(z) by the modified Bessel
lor series abouty,<, and obtain

(SP function|,(2) (see Ref. 3pin order to take into account the

A deeper understanding of the SP behavior can be ob-

dRe) fact thate.(w) <0. Equation(20) reduces to
Nglw) = € + dReAse(«) (- s ¢
d(l) w:w(o) (l)’ — , ———
o sp 1 H)\SP(V’Ehaw/C) 1 I)\Sp(\"— e(w)awlc)
+ilm\ o 24 T — =7 ] :
sel@sp) (24) Veén H;lgp(\" €,aw/C) V= €(w) I)\Sp(\"— e(w)awlc)
Then, by replacing Eq24) in the term cosm\sd w)] of Eq. (26)
(21), we show thatfsgw, ) presents a resonant behavior
given by the Breit-Wigner formulal5) with On the right-hand side of Eq26), we can use the uniform
Tysp Im A ®) asymptotic expansions df,(z) for large orders(see Ref.
= . 25 — i
2~ dRersdldo |0 25 30—ie.,
Equations(23) and (25) are semiclassical formulas which 1,(2) ~ i_ﬁeﬂ(zvz, (27)
permit us to determine the location of the resonances from V2m (N2 + 29

the Regge trajectory ofgp
Tables | and Il present samples of complex frequencies owhere
RSPM’s for the two configurations previously considered.
They are calculated from the semiclassical formykg and Fx_(z) =(\2+ )24\ In(
(25) by using the Regge trajectories numerically determined 2
by solving Eq.(20) (see Figs. 6 and)7A comparison be-
tween the “exact” and the semiclassical spectra shows a veljy assuming\sd > \-€.(w)aw/c, we then obtain

z
) @
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20 T T T T T T T
|
|
18 | — Exact I 7
|
7 U Asymptotic : 4
|
14 : 1
|
12 | 1 :

& | FIG. 8. Regge trajectory for
< ol | | the SP Regge pole. Comparison
D“é : between exact and asymptotic

gl | | theories.e.(w) has Drude-type be-
: havior with €.,=1 andwpa/c=2m
while e,=1.
6 | 8
|
4 + | .
|
|
2 r | 4
Lo |
........ )
0 E | | 1 | | 1 |
0 1 2 3 4w alc 5 6w afc 7
s o
wa/c
’ I 1/2
L1 B a@an)  p2 - ew)@wlo?]? AN = (E) 02— 2 (319
V=€) eV~ &(w)aw/c) e(w)(awlc) &
(29) 2 1/2
z+(\°-7
a(\,2)=(\2-2)Y2-\ In(g) . (31b
On the left-hand side of E¢26), the relative positions ofgp z
andye,aw/c in the X complex pl_ane(see Elg. 1@)per_m|t us By assuminghed > \s’e_haw/c, we then deduce
to employ the Debye asymptotic expansmnl—tﬁ (2) in the
form®:32 @' [ 2 291/2
1 M (Venawlc)  [\2 - ¢ (aw/c)?] @2
HY (@) ~ -iAN,2eeM2, (30) Ven HY (Veraolc) en(@w/c)
where Equation(26) can now be solved, and we easily find
20 T T T T I T
Exact :
18 ‘ | .
""""""""" Asymptotic I
16 - | 1
|
14 : -
|
12 ¢ | 1 :

o | FIG. 9. Regge trajectory for
<& 0k | i the SP Regge pole. Comparison
) I between exact and asymptotic
F .l : i theories. e;(w) has ionic crystal

[ behavior withe,=1, wtal/c=2m,
6l | | and w_a/c=3m while ¢,=1.
|
4+ I ]
|
2t | |
|
|
0 1 1 1 1 } 1
5 5.5 6w afc 7 75  w@afe 85 9

wa/c
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(wa> enec(®) ported by the cylinder surface which thus plays the role of a
Asplo) ~ | — |\ = - (33)  Bohr-Sommerfeld-type orbit and that E5) can be consid-

¢ €+ &) ered as the SP dispersion relation. This relation could permit
We have obtained an asymptotic expansionXgs or more  Us to derive analytically the phase velocity=w/ksHw) as
exactly for the real part ofsp Indeed, the right-hand side of Well as the group velocity y=dw/dksg(w) of the SP.

Eq. (33) is purely real. The perturbative resolution of Eq. It should be also noted that the dispersion relat@®) is

(26) did not permit us to extracted the small imaginary partin fact the usual dispersion relation of a SP supported by a
of Agp Of course, it would be possible to improve E§3) flat metal-dielectric or semiconductor-dielectric interface
by taking into account higher orders in the asymptotic ex{(S€€, for example, Ref. 33We have recovered the same
pansions(27) and (30). But that does not seem necessary.d'SperS'on relation because we have limited the perturbative

First, this does not provide an imaginary part fag In fact,  'esolution of Eq.(26) to the lowest order. By taking into
as we shall see below, this term corresponds to an exponefCCOUNt higher orders in the asymptotic expansi@Ts and

tially small contribution which lies beyond all orders in per- (30) we could Obt?"'” corrections for EG&33) af‘d(35) van-

turbation theory. Furthermore, we have numerically testedShing _fora—.>oo—|.e., |n.the limit of large r§d|us.

the formula(33) for various values of the parametets e, By inserting expressioni33) for Ase(w) into the Bohr-
wp, w7, and w,. In all cases, it provides a rather good ap- Som'merfeld quantization condltlo(|2$) we can derlvg ap-
proximation for Re\gp (see, for example, Figs. 8 and 9 for Proximations for the resonance excitation frequen

the two configurations previously studjedt should be noted  If the dielectric function of the cylinder is given by E(®),

that it also predicts the divergence of Rg for v — ws. we obtain, for the reduced frequencies,
_ We can now insert Eq.33) into Eq.(22). The contribu- _ w(qupa 1] ({op 2 (e +e, )
tions corresponding to the SP propagating counterclockwise— — =~ —= +— ¢

and clockwise are then given by ¢ V2 ¢ €h€=r

expli[t s w) 0 — wt]} = exgi[tksd w)ald — wt]}, (34) 0
it NI REE Jii(w)@} |
C €n€x €n C

(e €nec(w) 36
kSF(w)"(c)‘/—ehmc(w)' (35) (36)

This analytic formula provides accurate results for “large”
Here we have reintroduced the time dependencé-eub) in  values of¢. For¢=3, the error is around 13% and it becomes
order to clarify the physical interpretation. From E84) and  less than 1% fow > 7. Furthermore, it predicts the conver-
by noting thata d¢ represents the length element on the cyl-gence tow=wy/V1+e€,/ €., when € — . For the dielectric
inder surface, it now appears that SP propagation is sugunction (3), we obtain

0) 1/2
S 5 Y N [ BT S e G o 5
c V2 c €n€Ex c €n€Ex SN C c

This analytic formula provides accurate results for “large” Refs. 37-39 Instead of Eq(30), we shall use the Debye
values off. For{=7, the error is around 3% and it becomes asymptotic expansion dﬂ;\l)(z) in the form
less than 1% fof >10. Furthermore, it predicts the accumu-
lation of resonances ai,=\[w?+(&,/ €.) 2]/ (1 +€y/ €..) for H"(2) ~ —iA(\,2)e ™D (1 + ---)
{— o0, . e 2)

To conclude this section, we shall come back to the damp- +HagIAN 2L+ ) (38
ing constant Imgdw) of the SP. Numericallysee Figs. 6 On the right-hand side of E38), the first term is the usual
and 7 we have shown that this term is small but we cannotDebye asymptotic expansion truncated near its least term.
consider that it vanishes as we previously found. In fact, thisThe second one is obtained by decoding the divergent tail of
term corresponds to an exponentially small contributionthat asymptotic expansion. This can be dgsee Refs. 36
which lies beyond all orders of the asymptotic expansiorand 39 by Borel summation after exploiting a resurgence
(30) and which can be captured by carefully taking into ac-formula discovered by Dingl&. In the region of the\ com-
count the Stokes phenomen#r?® (For modern aspects of plex plane where the Regge polgp lies (see Fig. 10 we
asymptotics beyond all orders and of the Stokes phenomhave Rex<0. As a consequence, the first term on the right-
enon, we refer to a beautiful article by Bettyas well as to  hand side of Eq(38) is the dominant contribution while the
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Sw) = S{a((walc) A /%,\’an/c)] . (410

We can see easily that the imaginary p@®b) of Agp van-
ishes for w=ws as well as in the large radius limit
a—oo—i.e., in the flat interface limit. Furthermore, we have
numerically studied Eq0b) for “high” values of w—i.e.,
when the Regge polegpis very close to the Stokes line. In
that case, by giving to the Stokes multiplier functiSrthe
value 1/2, we have checked that E40b) provides accurate
results for the imaginary part ofsp We therefore consider
we have succeeded in providing an analytic formula for the
Regge pole of the SP. However, the expresgidob) is a
rather complicated function ab. As a consequence, its use
in the semiclassical formulé&25) is unfortunately not very
interesting. In short, we think that E@40b) is especially
interesting for the qualitative description of the SP damping
it provides.

second one is a subdominant term which can be forgotten

when [\|— . That is what we did previously by using Eq.

(30). The Stokes multiplier functiol a(\,2)] is a compli-
cated function involving the exponential integral functien

It goes continuously from 0 to 1 at the crossing of the Stoke

line Im =0 emerging from the turning poit= (see Fig.

10). Below the Stokes line, it rapidly vanishes. On the Stoke
line, it is equal to 1/2 and above the Stokes line it rapidly
becomes equal to 1. It thus describes the rapid but contin
ous birth of the subdominant contribution near the Stoke%

line.
From Eq.(38) we can now write

1 H;ls);( \s’:haw/c)

Ve Hig(Verawic)
[\%p— en(@aw/c)?]M?

€n(awlc)

X{1 - 2 a(Agp \ €naw/c) |2 spiemanlo) (39)

instead of Eq(32). By using Eqs(29) and(39), Eq.(26) can
be solved approximately and we find

wa €nec(®)
Relsfw) ~( c )\/—6h+6c(w), (409
IM A @) ~ 2(%’") P(0)S()e®@,  (40D)
where
eneo(®)
P(w) = . (41
) [e~ eX(@)]V enec(w) e + €(w)] (419
() = ae((walc) N COR \':aw/c> (41b)
€T ec(w)' " ’

V. CONCLUSION AND PERSPECTIVES

In this article we have introduced the CAM method in the
Tontext of scattering of electromagnetic waves from metallic
and semiconducting cylinders. This allows us to provide a

Sphysical explanation for the excitation mechanism of

RSPM'’s as well as a simple mathematical description of the

Yurface wav€i.e., the SPthat generates them. It should be

oted that our results are not limited to metals and semicon-
ductors. Under simple assumptions, they are also valig,
tatis mutandis for more general materials. Indeed, in a fre-
quency range where the dielectric function of a material
presents a dominant simple palg, it is always possible to
write?8

2(1)0R

— . 42
W= o(w+iy) 42

e(w) =€, +
Here wq is the resonance frequency of the material in the
frequency region considereg,denotes the associated damp-
ing term, e,. stands for the high-frequency that the coefficient
Ris positive. In the absence of dissipatiop~0) and if the

. . . T A = .

zero of e;(w) which is given by\wg+2wyR/ €., lies in the
validity range of Eq.(42), there exists a SP which can be
described by the theory developed in Secs. Il and IV. This
remains also true for more general materials with a dielectric
function e.(w) negative, of large absolute value, and such
that Eqg.(16) admits a solution. The presence of a pole in the
expression of the dielectric function is not necessarily re-
quired.

In parallel with the semiclassical analysis of SP’s on me-
tallic or semiconducting cylinders, we have developed a new
picture of the photon-cylinder system: it can be viewed as an
artificial atom for which the photon plays the role of an elec-
tron. RSPM’s are long-lived quasibound states for this atom
and the associated complex frequencies are Breit-Wigner-
type resonances while the trajectory of the SP which gener-
ates them is a Bohr-Sommerfeld-type orbit. Furthermore, the
imaginary part of a given RSPM complex frequency corre-
sponds to an exponentially small term which lies beyond all
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orders in perturbation theory. As a consequence, as their eatomic orbitals and they describe their effects into the pho-
citation frequency increases, RSPM’s gain very long life-tonic crystal in the context of the “linear combination of
times; i.e., they behave like bound states. atomic orbitals(LCAO) theory.” Ito and Sakoda do not use
With applications in photonic crystal physics in mind, our the terminology “artificial atom” to describe the photon-
work could be naturally extended in various directions in-cylinder system but this picture is implicitly present in their
cluding (i) scattering by cylinders with metallic or semicon- work and the point of view we develop in the present article
ducting coating or, more generally, multilayered structuresgirengthens their analysis.
(i) scattering by metallic or semiconducting spheres, and last ¢ course, it should be interesting to provide a more rig-
but not Ieasi(ii!) scattering by object_s fabricgated from I_eft- orous interpretation of the existence of the flat bands. With
handed materials. It would be also interesting to provide 3his aim in view, it would be possible to benefit from the

B e aSaca) Coser T, qnachinery developed in semiclasscal phydsse, for ex
semiconducting objects in the framework of CAM tech- ample, Ref. 40 and references theyein analyze quantum

niques by extending the ideas of Nussenzd@igu at first chaos in connection with multiple scattering. As far as we
\q y 9 . know, such a semiclassical approach has never been consid-
sight that seems to be a formidable task.

i : ) ]ered in the context of photonic crystal physics but it seems to
In recent papers deal_lng with phOtO’F'C band structure Ols very promising. Indeed, it is well known that, due to con-
two-dlm_en5|ona_l photo_nlc crystals fab_r icated from me.ta"'Cvergence problems, band structure computations of metallic
or.s.emlconductmg cylinders a”?g’ed In a square lattice, A semiconducting photonic crystals are very heavy in the
zirlzggggﬁfjusrg gas d?:egr:igﬂrfs_s_bggdm; I){},Lh?rgxﬁéir;ce frequency range in whichke(w)<<0. The semiclassical ap-
range in WhiChe.(c;),)<OpThiS result. which onl exisqts fdﬂy proach could permit us to easily construct these band struc-
ge in whic T ' on'y .. tures by taking into account the shortest periodic orbits in-
polar|zat|on, IS Of course linked to the excitation of RSI:)Ms'volving SP trajectories and lying in the Wigner-Seitz cell
More precisely, it is due to the localization of the photon .

which is trapped on the Bohr-Sommerfeld orbit. Of Course,Here’ the properties we have found for the SP would be very

this analysis is rather oversimplified. In fact, it is necessaryuserI'

to understand up to what point single-cylinder resonant as-
pects are related to “resonant” aspects of the full photonic
crystal. Recently, Ito and Sakdtfd have considered this
problem by developing a physically intuitive but appealing We are grateful to Nick Halmagyi for help with the
analysis: they regard the RSPM’s of an isolated cylinder ag&nglish.
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