PHYSICAL REVIEW B 70, 245322(2004)

Augmented-plane-wave approach to scattering of Bloch electrons by an interface
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A full-potential augmented-plane-wave-based variational method is proposed to construct the scattering
wave function for a system consisting of two semi-infinite crystals separated by an interface region. The two
half spaces are represented by their complex band structures, and a basis set expansion is used to represent the

wave function in the embedded region. The method is based on solving the eqia(a%ierE)\If:O in the
scattering region, which is equivalent to the original Schrodinger equation, and the presence of the gperator
makes it possible to formulate the variational problem in terms of plane waves. Current conservation consid-
erations are drawn on to include the requirement of the smooth continuity of the wave function into the
variational functional. The problem of the overcompleteness of embedding basis sets is discussed and a
solution is presented. The method is verified by calculating the electron diffraction and surface sta@® on
and(111) surfaces of Al and Cu. The accuracy and convergence properties of the computational scheme are
analyzed.
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[. INTRODUCTION the APW based schemes stems from a complicated numerical
representation of the basis functions—the augmented plane
Scattering of electrons by interfaces underlies a variety ofyaves. In particular, in all these methods the scattering re-
experimental techniques, such as scanning tunrieliagd  gion is separated from the infinite space by a matching sur-
ballistic electron emission microscofyor, at higher ener- face, and the presence of the muffin-tin spheres, in which the
gies, photoelectron spectrosc8pgnd low-energy electron plane wave is modified and expressed by an angular-
diffraction® Transmission coefficients of Bloch waves are momentum set of numerical orbitals, requires a considerable
the basis for understanding mesoscopic transportomputational effort to set up the boundary surface and de-
phenomend? in particular in technologically important termine boundary valug$:2”
metal-semiconductor heterojunctions or magnetic The aim of the present work is to facilitate the application
multilayers? In many applications, apart from the scattering of APW'’s to electron scattering by mapping the variational
matrix, a detailed information about wave functions is re-problem onto an equivalent problem expressed in terms of
quired, for example, to reveal current inhomogeneities or tausual plane waves. Similar to the majority @ugmentey
calculate the photoemission matrix elements. plane waves based scheniéd!42526we describe semi-
There exists a variety of computational approaches to thinfinite substrates by their complex band structures, i.e., by
problem of electronic structure of a scattering layer sandthe generalized Bloch waves, which in this paper are referred
wiched between two semi-infinite crystals. Within a waveto aspartial waves This is rather close to the approach of
functions approach various finite-difference real spaceStiles and Hamantf, the main difference being that in the
schemes have been develogéf:l4Alternatively, a Green present method the basis set expansion in the scattering re-
functions approach in a localized basis formulation is extengion is obtained without the intermediate step of generating
sively employed when a direct interaction between the semithe partial waves for this region. The developed formalism
infinite leads can be neglectéd1°Both the finite-difference  has no restrictions on the representation of the wave func-
schemes and most of the Green function matrix techniquesons. In this work we use a set of energy independent APW'’s
refer to a pseudopotential treatment of the scattering regionwith extended radial basis to describe the Hamiltonian of the
whereas the majority of calculations for singulao-called  system: the extended linear APW meth @&l APW)3? is em-
all-electron crystal potentials are performed within the ployed in the scattering region, and ksp formulatior?334
Korringa-Kohn-Rostoker formalisrh®-20-22 is applied to the semi-infinite leads. Within the APW repre-
Although the experience with band structure calculationsentation the accuracy can be systematically improved, so
suggests that the augmented-plane-waveAPW) the calculations with the present method may serve as a
representatioff is the most direct way to achieve a high benchmark for the quality of the scattering wave function.
accuracy of wave functions, the applications of the APW The paper is organized as follows. In Sec. Il we introduce
formalism to scattering problems are still rather r#r@® the embedding setup, describe the trial function of the
The APW based methods employ a variational approach tmethod, and define the variational functional. The applica-
the scattering wave function, with the semi-infinite substratetions are illustrated and the accuracy analysis is presented in
being represented either by its complex band strucéfles, Sec. Ill for the electron diffraction at thel00) and (111)
in Refs. 24-26, or by a surface inverse Green functiaas  surfaces of Al and Cu and in Sec. IV for the determination of
in Refs. 27—-29. The main difficulty in the implementation of three surface states on these surfaces.
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L

Ty wave function on a finite interval, betweehandz®, so that

the solution can be represented by a Fourier series—
constructing a Fourier integrdldx is not required. Thus, for

a givenk' one x point is sufficient, and it is natural to choose
x=0. We denote byé,} the set of slab eigenfunctions at this
point:

—

LT

H%% = €mém- (1)

It is essential thaf) is a subdomain oA because we need a
z basis set to reproduce a function withéd with arbitrary
] _ ] boundary values on the plangsandz®. Any function peri-
FIG. 1. (Color onling Embedding setup with a repeated slab. oic in the intervalZ-, %] can be expanded in a convergent
Upper picture: The embeddédcattering region () is located be- series in terms of,,. [We have chosen poirit in Eq. (1)
tween the planes- andzR. The wavey/ is incident from the right x=01] Obviously, irr1nthe regiorY, the scattering functioI‘If’

half space, reflected waves and transmitted waveg" constitute . . .
the complex band structures of the right and the left half-spacescan be represented by a series of the slab solutions with any

. Qo .
respectively. The arrows represent the probability curFetlcu- deﬂswed accuracy™* =3 yaméy. Indeed, the wave function
lated at differenz=const planes; the definition is given in Sec. Il B. v .can be extended beyoritito th? slab domair so as to .
Lower picture: The regiofi is a fragment of the slah bounded by satisfy the same boundary conditions on the slab b_oundarles
the plane- and ¥R The slab is repeated to form a crystal, for @S the functiong&y}. It should be noted that the set is over-

000
[e)e]
[e)¢]

~L
z

which a band structure problem is solved. complete because such an extension is not unique.
An alternative approach to the representation of the scat-
Il BASIC CONCEPTS tering function in the embedded region has been developed

by Stiles and Hamann in Ref. 26. There a partial wave ex-

Consider two semi-infinite crystals separated by an interPansion is used also in the scattering region, so that one first
face region, see Fig. 1. In the embedded rediprbetween ~ Constructs several variational solutiopf the Schrbdmger
7 and ZR, the potential is a fragment of the potential of a €quation in() for the same energl and then seeks a linear
slab, which occupies the regianbetween the planés and combmapon of them that minimizes the mlsmatch at the
7R, The slab is assumed to be thick enough, so that the sladPundaries. The idea of the present method is to unite the
potential VS matches on the planes and &%, respectively, WO tasks into a _slr!gle variational procedure with the aim to
the potentialsvt and VR of the semi-infinite substrates. We €nhance the varlathnal freedom. In qther words, we exploit
use superscript® andL to distinguish between the two half the property that with the same basis $&f} the sum of
spaces. partial waves may be obtained with a higher accuracy than

The system is periodic in thé=(x,y) plane, and its sta- €ach individual functiony.
tionary states are characterized by the Bloch vedtorsar-
allel to the surface. In each semi-infinite crystal the potential
is periodic in the surface perpendiculardirection, so the
complex band structure of the half space can be introduced: The trial function of the method depends upon the coef-
for a given energyE and vectork! a set of partial waves ficients{b:} and{bf} of the partial waves in the left and the
(k;r)—solutions of the Schrodinger equation with different right bulk crystals, respectively, and upon the coefficients
surface perpendicular projectiokof the Bloch vector. The {a,}, which determine the wave function in the interface re-
set of physically relevant functiongcomprises a finite num- gion
ber of propagating solutiongeal k), which may travel in (
both directions, and an infinite number of evanescent waves VDS bﬁlﬁﬁ, 72>,
(complexk), which decay to the right in the right half space n
and to the left in the left one. ) > byt

Let us consider the scattering of a Bloch wayk';r) n
traveling towards the interface froneet In the half space >
>ZR the incident wave ¢/ satisfies the Schrodinger ~ Amém: A <z< .
equation—it belongs to thk' projected real band structure \
of the right crystal. The scattering functiok(k';r) in the By construction the trial function satisfies the Schrodinger
right half-space is a sum of the incident wave and a numbegduation in both half-spaces, and the variational coefficients
of reflected waveg/R(k%;r), which propagate or decay to- {am} and{by}, X=L or R, are determined by the two require-
wards +o. II_n the left half space, it is a sum of transmitted ments(i) that the Schrédinger equation withii is satisfied
wavesyt(ks;r), which propagate or decay towards.— -

All information about the embedded regidd is con- (HS-E)¥" =2 ay(en—E)&n=0 3
tained in the(real) band structure of theepeatedslab €, «) m
arising from the invariance of the system with respect to theand (ii) that the matching conditions at the boundary planes
translation byZR-7-3> Note that we are interested in the z=z- andz=2" are fulfilled:

A. The representation of the trial function

z< 7, (2
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Xl = I X I At the boundaries the function and derivative mismatches
2 anén(G) = 8/ (G) + X bjup(@), @)
m n
2
S (G = 3e(G) + SHGG). (9 =], [S ot - S v
m n m n
Here the same symbolgand ¢ are used for the components
of the Laue representation of the functions, for example, dx—f D ammi = Skl = > XX Zdr!. (12)
Al m n
1 ol
&m(r) = —ZE &n(G 2T (6)  Here the integration is over the surfagef the 2D unit cell
Aal of the system; the argumentis dropped.
The missing argumert in Eqgs.(4) and (5) means that the
function is evaluated at the corresponding matching plane, B. The variational method

for example, & (G = £,(G!,2¥). The functionsy, and ¢,

i i R L,R
are the normal derivativesd/dz of the functionst,, and ¢, In the exact function, the matching errofs® and d

. vanish as well as the erre? in the embedding regiofEg.
respectively. The symbalyy allows for the presence of the (7)], but in an approximate solution the errors cannot be

incident wave in the right half spacézg=1 and g=0. . SR -
The variational procedure depends upon the answer to thsélmultaneously minimized because the coefficidaty enter

question: With a finite number of partial wavesand basis each of the values. Thus, with a given set of functigrand

. . N : the accuracy of matching is the higher the lower is the
functions¢é what is the best approximation to the functié? 3 ) ;
In the prgsent method we rpepquire that in the regfdrthe quality of ¥ in the sense of Eq(7). The two sources of

: T - - error refer to spaces of different dimensionality: the 3D in-
solution minimize its deviation from the true function in a ) . X
least-squares sense tegral(7) for o and the 2D integral€l1) and(12) for fX and

d*. To bring the two factors to a common denominator, we

) A o S a2 shall_ use as a gu!de their influence on the current conserva-
o =|(HS-E)W"| = [ [(H3-E)w"dr. (7)  tion in the scattering state. Because the current is an impor-

@ tant observable it is desirable that the values of current cal-

The functionalo® is positive definite and quadratic in en- culated at differenz=const planes be in the best possible

ergy. Alternatively, the requirement that the function satisfie2greement. In particular, a consequence of the inaccuracy of

the Schrédinger equation in the embedded region can be ef@e function®* is the difference of the fluxeB andFy, at

pressed by a functional linear in enef§y° For example, if  the matching planegee Fig. 1

the trial function satisfies by construction the boundary con-

_ IR _ L
ditions in value(4) the functional whose first variation at the AFq =[Fq - Fql, (13
exact solution vanishes takes the form which are calculated from thé representation o
* S X — X II
f WY (HS- E)wdr + f v wldrl+cc. (8) Fao= EH Jo(G)). (14)
QO E G

The surface integral arises from the nonrelativistic kineticHereJy, is the right-side limit of theG'-resolved current in
energy operator A as a consequence of the arbitrariness ofthe z direction at the left plane andfj the left-side limit at
the derivative boundary conditions at the matching planes. the right plane:

In contrast to the functiongl8), the expressiori7) does d
not involve surface terms. It gives a measure of the deviation  J§(G") = ¥ (G!,2) {— i—\[fﬂ(Gl,z)}
of the trial function from the true solution in th@ region dz

and is easily expressed in terms of the slab eigenfunctions In principle, AF, can be made arbitrarily small by reducing

_ _ _ * o, Similarly, the residual mismatch at the boundaries can be
o _%: (6= B)& - Blojaa. ©) characterized by a value that has the dimension of flux

+ C.C.
z=2X

1/2

Only the overlap integrals); have to be evaluated numeri- AFy, = {E PARA(ED) —J’é(G')]Z} (15

cally: X gl

. Here J; is the left-side limit of the current at the left plane
Wij =f & (g (r)dr. (10 andJk the right-side limit at the right plane.
@ To find the solution¥, we minimize the functional

Thus, from now onwards we represent the slab by an effec-
tive Hamiltonian given by the set of its exact eigenfunctions
{&4)- Numerical errors in these functions distort the original
Hamiltonian, which may manifest itself in a failure of sta- which vanishes with its first variation at the exact solution,
tionary states to conserve current. and which depends upon a facéfthat balances the errors

&=+ WD, [fX+d], (16)
X
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coming from the failure to pointwise satisfy the Schrdodingerknown boundary conditions in terms of a basis set and is

equation in theQ) region and to pointwise match theex-  common to all variational embedding methods. In the present

pansion to they expansions at the boundaries. The value ofmethod as well as in the method of Inglesfield and Beffesh

W is determined automatically within the variational proce-it arises from the fact that the domain over which the basis

dure. We start with an excessively largé so that the mis- functions are defined is larger than the embedding domain. In

matches at the boundaries are minimized without taking carthe method of Stiles and Hamarthe domain of the func-

of the shape of the function inside. Owing to the abundant tion to be foundf(z) coincides with the domain of the basis

number of the functions, the flux mismatcAF,, [Eq. (15)] functions&,, The function is then represented by a discreti-

is negligible. By gradually reducing/ we relax the require- zation of the Fourier integral over the 1D Brillouin zone:

ment of matching, and at certain poif), starts growing

and may exceed the current valueAd¥,. The optimal value

of Wis determined by the requirement th¥f,, be close to % Bz, (1) &m(sc, 2 lic % 2,:’ (1) ém(1.2).

AF(. Of course, this criterion is applied only A\, exceeds ) ] ) ) )

a physically reasonable limit of accuracy, say, 0.1% of theAgain, the finer is the sampling of the interval the more

incident current—otherwis&v may be further reduced and accurate is the representation, and the less stable is the nu-

P further refined. merical procedure. In Ref. 26 the authors had to restrict the

We do not introduce different weights fé¥ andd* and ~ Summation ovek to two points. _ N

rely upon the variational freedom of the basis set, which will  The basis sef¢.} is overcomplete irf), but it is complete

provide an optimal mismatch in one of the valyésnction ~ and orthogonal by construction iA. Thus, the computa-

or derivativg and an excessively small one in the other. Intional procedure will be protected from the instability if we

our calculations the optimal value &% varied with energy formulate the problem in the domaih. With this aim we

within two orders of magnitude, which reflects the fact thatmodify the functional16) so as to include a requirement that

for a given energy the quality of the variational wave func-the functionW satisfies the Schrédinger equation not only

tion is stable to considerable variations of this parameter. in ) but everywhere in:

It should be noted that it is not the aim of the above

procedure to minimize the current nonconservatidR, ® =g+ Pot+ W [+, 17

across the embedded region. In fact, it would be misleading X

to impose such a requirement because a less accurate funehere the new parametdt determines the accuracy with

tion ¥ may provide a better agreement between the curwhich the additional requirement will be fulfilled. The en-

rents at the two surfaces. This is just a way to find a reasorergy deviationo™ is an integral overA similar to ¢ in Eq.

able value for the paramet®#. How small the actual values (7). The minimal value ofP depends upon the numerical

of AFy, andAF, are depends upon the number and the qualprecision of the calculations, and it is determined from the

ity of the basis functions. We address this issue in Sec. condition that the matrix in the left-hand side of the system

[l B. of linear equations be positive definite with the machine pre-
cision. Thus, as a result of the number and character of the
partial wavesy varying with energy, the accuracy of the

C. Overcompleteness of the basis set scattering function varies, and for a given energy it is the

The functionsy andé play different role in the variational highest possible accuracy. The orthogonality of the basis
method. The number of the partia| Wav$$annot be unre- functions inA makes the procedure abSOlUtE|y stable.
strictedly increased: irrespective of the method of calculation
only a limited number of them, those with sufficiently small
decay constants Ik can be calculated with acceptable ac-
curacy. However, because the contribution from the evanes- Computationally, apart from the linear algebra, the
cent states is the smaller the further the matching plahes Method involves generating the Laue expansion of all the
and R are placed from the interface region, we can alwaysconstituents at the matching plangsgs. (4) and (5)] and
restrict ourselves to a finite number gfs without loss of ~ evaluating the overlap integrald0). The calculations are
accuracy. On the other hand, we must be able to generafdmple and fast if the functiong and ¢ are given in a plane
with desired accuracy an arbitrarily large number of the slapvave representation, but they become very cumbersome in
eigenfunctionsé. In the present work they are calculated an APW representation, especially when the matching plane
with the extended linear augmented plane waves method. intersects the muffin-tin spher&s(For the purpose of the

The differentiation of the functionall6) with respect to numerical accuracy of functiong and ¢ the spheres should
the coefficientsa,, b}, and b leads to a system of linear b€ aslarge as possiblét would be impracticable to straight-
equations with a right-hand side arising from the values oforwardly expand an all-electron wave function in a Fourier
function and derivative of the incident wave at the boundaryseries because it would result in an enormous number of
ZR. As a result of the nonuniqueness of thexpansion of the Fourier coefficients, especially when localized functions are
function P, the determinant of the system may turn out toinvolved, such asgl states of transition or noble metals.
be too small, which would lead to numerical instabilities in ~ We shall now describe a general method to solve the
the computer implementation of the method. This problenvariational equations®=0 in a plane-wave representation.
stems from the basic idea to expand a function with un\We replace the requiremefiS-E)¥?=0 with an equiva-

D. Plane-wave formulation
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Al3p  w(n) YO w(r) [1-y(" 1w ()

local

FIG. 2. Two forms of they transformation
Yy TMT Yy MT Yy OMT applied to the Al ® orbital. Upper graphs: mul-
tiplication by a functiony(r). Lower graphs: re-
placement by a linear combination of the free-
space zero-energy solutiorl and its energy
derivativer'+2,

non-local

lent requirement&(lils— E)w®=0, wherey is an operator Which is legitimate because there is a one-to-one correspon-
such that for an arbitrary functiog the norm||y4|| is zero if dence bLetween th_e function and its image. Of course, the
and only if||#| is zero. Because we have assumed that th¥aluesFq and Fq in Egs. (13) and (14) do not have the

functionsé&,, pointwise satisfy the Schrédinger equation, we Meaning of current in this case, and their exact values are not

need only to replace the integralg in Eq. (9) by the inte- necessarily equal.
grals The performance of the method depends both upon the

quality of the variational function§,, (we have assumed that
- . . they pointwise satisfy the Schrddinger equati@md upon
wjj =f [¥&(r)]* ¥&(r)dr. (18 the quality of the plane-wave expansion, which determines
@ the accuracy of the overlap integrals3). In the next section
The operatofy is chosen such that the functiofs,, have a ~We present calculations on the low energy electron diffrac-
rapidly convergent plane-wave expansion. Thus, the problerfion with the present method and demonstrate its accuracy
is formulated in terms of plane waves without resorting to@nd convergence properties.
pseudopotentials.
Two forms of the operatoy have been tried in this work.
In both cases the operator modifies the function only in a
close vicinity of the nuclei, see Fig. 2: inside a sphere of Diffraction of electrons at very low energies is a simple
radiusR, it replaces the rapidly oscillating radial functions and instructive application of the method. The incident elec-
with smoother functions and makes the entire wave functioiron comes from the vacuum and the scattering function de-
amenable to being Fourier transformed. The matching planpends upon the two parametdsandE. The incident wave
may then cut through the muffin-tin sphere, but it should notjs normalized to a unity current, and the current carried by
in general, intersect the sphere. In the first case the wave the scattering function is the transmitted curr@&k',E). We
function is multiplied by a positive definite functiop(r) that  shall restrict ourselves td'=0 and concentrate on the energy
depends only upon the distance from the nucleus and gradalependence of the transmission coeffici€() over an en-
ally decreases from unity at=R, to zero atr=03" In the  ergy interval up to 50 eV above the vacuum level. By scan-
second casé is a nonlocal operator: it replaces the radial ning a wide energy interval we encounter partial wawbsf
function of thelth orbital in the angular momentum expan- very different character and can compare the performance of
sion by a linear combination of the free-electron zero-energyhe method in different situations.
solution r' and its energy derivative'*? that matches the
original radial function in value and in slope etR,. The
nonlocal operator removes the oscillations more efficiently, A. Methodology
and one can achieve a better convergence of the plane wave In the case that the right half-space is vacuum the partial
expansion than with a simple multiplication, however, with waves 4R are simply plane waves, and it is convenient to
R, between 1.5 and 1.9 a.u. and with about 1000 planelightly reformulate the problem, namely, to match the func-
waves per atom the results by the two operators turned odion ¥ exactly over the planez=z% to its vacuum
practically identical. The local operator has an advantage thatpresentatiof The trial function in the vacuum half-space
the matching plane may also cut through thephere, pro- may now violate the Schrédinger equation, and the corre-
vided that the same functiop(r) is used in the substrate and sponding energy deviation is included int8: the integral in
in the slab. In this case & image of the function in the Eqg.(7) extends to the vacuum half-space, but the mismatches
substrate is matched to itsimage in the embedded region, fR and dR vanish. This is achieved by smoothly continuing

Ill. SPECIAL CASE: LEED
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the Laue decompositiori6) of each function&,, to the
vacuum. To each functio#(G',z) a linear combination of
two functions is attached at=2z%: the vacuum solution

¢2H(r”,z) =exdi(G"+ k"' +ik*z],
with |G'+k/[2+k*=E, and an auxiliary function
ali(r',2) = exdi(G' + khr' +iq*Z],
with |G”+k”|2+qi2:Eaux and Reg' =0. The auxiliary energy

E.ux IS taken considerably lower thdf) so that the auxiliary
functions decay fast into the vacuum. Fat=0 the solution

PHYSICAL REVIEW B70, 245322(2004)

scribe the wave function in the muffin-tin spheres: a special
extension of the radial basis set has to be introduced, as
explained in Ref. 34.

The{&,} set comprises the slab states from the bottom of
the valence band to a cutoff enerdy,. The localized
atomiclike states should not be included because they are
orthogonal to all scattering functions. The cutoff enekgy
determines the accuracy of the calculation and it depends
both upon the thickness of the slab(see Fig. 1 and the
relative thickness of the embedded region

0= (R-IER-2). (20)

¢)§ is always propagating: it is the outgoing plane wave
(specular bea The functionsty, are thereby defined inthe For o given energyE, the cutoff energy is the lower the

entire half-space>z-.
The free term has to be modified too: unlike in E2), it
is not just the incident wave

1
Pl z) = o exdik'-r'—ik'z],
\‘!

but a linear combination with the outgoing and the auxiliary

wave

p(r',2) = ¢ (r',2) + couff(r',2) + can(r',2),

where the coefficients, andc,, are defined by the condi-

thicker the slab and the thinner the embedded layer. In the
present calculations the slabs that modeled (t@0) and
(111) surfaces of Al and Cu were 40-50 a.u. thick, and with
0 between 0.1 and 0.6 the convergence at a given ertergy
was achieved witl, some 15 to 30 eV above the energy

B. Transmission spectra

The electron transmission spectra {@00) and(111) sur-
faces of Al and Cu are shown in Fig. 3. The lower curves are
obtained with a realistic self-consistent potential at the sur-

tion that the functionp' vanishes with vanishing derivative at fac€, and the upper curves with a steplike poterigae Fig.
z=2R Thus, the trial function is smoothly continuous in the 4 SO that a few layers of the bulk crystal are embedded

half-spacez>Z" and it satisfies the Schrédinger equation

both in the bulk half space<Zz- and far from the surface in
the vacuum:

pl +E améms z> 7,
v = " (19)

DI RN
n

By exactly matching the trial function at the surfazewe
get rid of the variational coefficientsy [see Eq(2)]. In the
exact solution the auxiliary functiorgs, coming fromp' and
from all of the &,, cancel each other out.

between the vacuurftonstant potentigzland the bulk half
spaces. The steplike potential is computationally the more
demanding because both matching planes are close to the
nuclei and the boundary valug§(G') and 73(G') of large

G' are involved[see Egs(4) and (5)]. The steplike setup
enables us to check the calculations by comparing the upper
curves to a calculation without the embedding region, i.e.,
bulk is matched immediately to vacuum, in which case the
new formalism connected to the functio&ss not involved.

In all the four cases the curves virtually pointwise coincided
with the curves by the embedding method. This proves that
the equationgHS-E)¥?=0 and ¥(HS-E)¥“=0, see Sec.

II D, are equivalent not only mathematically but also com-

In the left half-space, the complex band structure constitup,tationally. The calculations on copper are an especially
entsy- are calculated with the inverse extended linear augstringent test of the plane-wave formulation of the energy

mented plane wavek-p method®® The solution of the
Schrédinger equation with a Bloch vectky is a product of
the exponential factor ekitk,—ky)z] and a Bloch function
gbﬁo with the reference Bloch vectdg. The latter is given in
terms of APW’sy; at the reference poirk'+zk:

$o=2 Cxi(k!+ zkg,1).

In the k -p method the coefficientéC;} describe the partial
wave ¢ over the whole half space, whereas in ottaug-
mented plane-wave based methdés628the complex band

minimization problem(7). The presence of thed3states in
the £ set is perfectly dealt with by thé operator, and we
observe no difference in performance between Al and Cu.
At low kinetic energies the steplike potential reduces
transmission for all the four surfaces. It is seen in Fig. 4 that
the samey wave transmits current into the bulk, but the
wave function in vacuum depends strongly on the shape of
the potential barrier. On the contrary, in the vicinity of the
gaps in thek! projected band structure the smooth potential
barrier may increase the reflection, which is seen, for ex-
ample, in the(111) spectra in Fig. 3 for Al at around 20 eV

structure is constructed one layer at a time, and a piecewisend for Cu at 30 eV.

representation of/’s is used. As has been mentioned in Sec.

The thickness of the lines in Fig. 3 arises from vertical

Il C, in variational methods this leads to an overcomplete-error bars, which characterize the current nonconservation in

ness of the bases set. On the other hand, irktipemethod,

the scattering function. In terms of the notation in Fig. 1 and

additional computational effort is required to accurately de-n Egs.(13) and(14) the length of the bar is
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— 1 — —1
Al (100) Al (11D
L o FIG. 3. Normal incidence elec-

tron transmission spectra f@t00)
and (111) surfaces of Al and Cu.
Upper curves are calculated with a
steplike surface potential barrier,
and lower curves with a realistic
potential, see Fig. 4. Vertical error
bars, which characterize the cur-

— -1 — -1 L
Cu (100) Cudln rent ponconservgtlon in the LEED
function according to Eq(21),
produce a finite width of the lines.
The locations of the minima in the
1 —o 1 v_\\ =0 T(E) spectra of thg111) surfaces

T(E)
T(E)

| I |
10 20

v of Al and Cu experimentally ob-

) 2 served in Ref. 39 are shown by
&~ &~ triangles.
0 1 1 I 1 () 1 I 1 | 1 I 1
40 50 10 20 30 40 50
E-E_(eV) E-E_(eV)
[(FR-FR )2+ (F5, - FR)?+ AF,2¥2. (21 least for the steplike potential barrier, for the reasons of sym-
metry.

Note the}tFSZFS and that only the left boundary contributes  When the left matching plane moves leftwards the embed-
to the mismatct\Fy defined in Eq(15). The method is seen  ded region widens and the variational task is thereby redis-
to provide a good current conservation over a wide energyributed betweenys and &s. At the same time, different

range in all the cases studied. cross sections of the scattering function are probed, which
It should be noted that the error minimized by the varia-are not necessarily equivalent.
tional procedure—expressed by the functiondl6)—is The effect of the thicknesg on the accuracy of the wave

rather loosely connected to the uncertainty of the observablginction is determined by the two competing factors.

T(E). In particular, the error bars in Fig. 3 do not give the (i) For a thin embedded region, the nearest vicinity of the
limits for the value ofT(E). The effect of the residual errors surface is described by the set of the partial wayesind

in the scattering function on the transmission coefficient issteeply decaying/’s may contribute to the wave function. If
revealed by the dependence of the spectra on the position efich waves are not included in the set the accuracy would
the matching plang-. For each of the surfaces a series of suffer (see the first paragraph of Sec. I).@s the embedded
calculations was performed with differertt placed midway region gets thicker such waves are taken into account by the
between adjacent atomic planese Fig. 4. For the func- & expansion, and the accuracy improves.

tions ¢ all these planes are equivalent because to within a (ii) On the other hand, the variational freedom of &wet
Bloch factor they have the periodicity of the interlayer spac-reduces a9 grows, and the accuracy of theexpansion
ing. The same is true for thevell-convergegl ¢ functions, at  deteriorates.

EL z L ER = ZR FIG. 4. Scattering of the plane wave with ki-

netic energy 1.6 eV by a Ci11) crystal surface
with a realistic potential barrie(full line) and
with a steplike barriefdashed ling In the lower
graph the self-consistent potential of the s\&b

is superimposed on the self-consistent potential
: of the bulk crystalV-. The work function was
vacuum level taken$=4.94 eV as cited in Ref. 42. In the upper

"""" 0 I graph the real part of th&'=0 Fourier compo-
i nent of the functiony¥ is shown for the realistic
Fermi level and for the steplike potential by the full and the
dashed line, respectively. The vertical lines show
A the location of the matching planes and z%,
l‘. Cu (11D which bound the embedded regidn, and the

planesz- andZR, which bound the slab domaik
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FIG. 5. Upper graphs: Normal incidence Al
(100 electron transmission spectra fiérEr be-
tween 25 and 33 eV for the steplike potential bar-
rier (@) and for the realistic barrigib) for several
thicknesse® of the embedded region. The curves
are vertically shifted with a step dfT=0.06 in
. graph(a) and AT=0.12 in graph(b). For com-
o Loy 0.5 parison the §=0.125 curve is repeated as a
26 28 30 32 26 28 30 32 dashed line in grapte) and the§=0.208 curve in
(eV) (b) E-E_ (eV) graph(b). The length of the vertical error bars is

defined by Eq(21); in graph(b) the error bars
are four times magnified. Lower graph: The real
0=0541 0375 0.208 part of theG'=0 component of the functiog¥
T Ca at the energyE-Er=32.5 eV for #=0.208 (full
‘ : :": line) and for #=0.375(dashed ling Solid circles
. ‘ show the nine atomic layers that constitute the
Ao i slab. The right matching plare® is kept 7.7 a.u.
; f away from the outermost atomic layer, and the
j ! left matching planez- is taken at five different
/ positions between the layers.

T(E)

0.8

0.7

=)}

0.

0.6

=

|
~L L L L ~R R
(c) z z z z zZ =z

In the range of from 0.1 to 0.6 all the eight curves were and the accuracy achieved is acceptable in many applica-
found rather stable: the variations ®fE) almost never ex- tions.
ceeded 2%. The strongest dependence on the location of the Experimentally, thel (E) curves are obtained by means of
matching plane is observed in the interval between 26 antbw-energy-electron reflectanteor target curredf spec-
33 eV in the AI(100) spectrum, see Figs(® and b). The  troscopy. Thek! projected gaps of the real band structure are
transmission coefficient is seen to oscillate as a functiof of reflected as minima in th&(E) spectra, but some minima
both for the steplike(@) and for the realistiqb) potential may have a more complicated origfln Fig. 3 the minima
barrier. Surprisingly, in the latter case the current conservain the (111) spectra of Al and Cu observed in Ref. 39 are
tion criterion (21) is fulfilled with extremely high accuracy shown by triangles. The sharpness of experimentally ob-
for all 6. The reason for the non-steady behaviofTOE) is  served structures may provide information about the inelastic
that the wave function is very strongly modulated, see Figscattering of the incident electron, and such information can
5(c); in this energy interval two Bloch functions with differ- be extracted from the experiment by simulating the inelastic
ent Bloch vectors contribute equally strongly to the scattereffects with an energy dependent imaginary potentid; —
ing function. As a result, at certain locations of the matchingadded to the Hamiltoniaf.
plane the numerical errors in boundary values of thend &
add up, which affects the outpWitE). Unexpectedly, in this

case the uncertainty of the wave function coexists with very IV. SURFACE STATES

small values of the criterio(21). In other words, the “incor-

rect Hamiltonian” given by its exact eigenfunctiogsmay The calculation of surface states provides a complimen-
provide a perfect current conservation. tary test of the embedding method. Now the incident wave is

We infer from the above analysis that the limitations of absent, and one looks for the energy at which a solution
the present procedure stem from the limited accuracy of corexists that is spatially localized in theecoordinate. The de-
stituentsy and ¢ rather than from the convergence propertiestermination of the surface state proceeds as follows: for a
of the procedure. The functionsand¢ are calculated with a  sufficiently thick embedded region the surface state in the
variational method, so the errors in boundary values are urbulk z<z- can be represented by a single evanescent wave
avoidable. Nevertheless, even in such difficult cases, the unf-(r), which delivers the boundary constraints on the value
certainty of the wave function is not dramafiee Fig. §c)],  of the functionW*(r) at z=2" [see Eq(4)]:
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Al(111) Al (100) Cu (111)

N 005NN

!- v \ ‘.\ FIG. 6. The three left graphs
I 2 % Vo show the energy dependence of

\ the derivative mismatchl- [Eq.

L
log,,(@")
[\)

I

il 0.04 5 (S
\f \ - (24)] between the solutio* of
1

3 3 : NP
V \I * T, s e the boundary value problem and
H N T . Yy e the evanescent staté within the
3 \ A N 0 gaps of thek'=0 projected real

N \.‘ \ * 0625 band structure for three surfaces.
1
A

AE (eV)
o)
3
T

\ The right graph shows for the
*e Cu (111) surface state aE—Eg
et . *. . =-0.55eVv _tht_e depenfj_mlce of the
N P 0.02 \ e 054 energy dewatlomE:\s‘of2 of the
-l \ T et \‘.\ variational wave function upon
3 / — 9—0a75 LN the energy cutoffE; of the basis
e ST O set for four thicknesse® of the

....... 9=0.208 <o (1458 ;
L ~ embedded region.
0.01 * 0375 g

L
log, (d")
)
=

-0.6 -0.4 -0.2 0 0.2 20 30 40 50
E-E, V) E, V)

(22) The surface state energy converged very fast with the
number of basis functions and was rather stable to the thick-
o PO ness of the embedding region. Because the matching is
The derivative of the function?™(r) is free. The second hqought sufficiently accurate the quality of the wave function
boundary condition is givgn by the exponential _decay of th§s characterized by the energy deviatioff. Owing to the
function atz— +. For a given energg, the solution of the  competition of the surface and the bulk contributions to the
boundary value problem in the half-space z- is unique. It fynctional®, the deviations® does not, in general, steadily
is obtained by solving the variational equatiafiy(HS reduce with extending the basis s@icreasing the cutoff
-E)¥*|=0 under the given boundary constraints. Then, theenergyE;). However, for a sufficiently thick embedding re-
energy is sought at which the function turns out smooth agion the main contribution to the functional comes from the

> anén(G!) = yH(G).

z=7, i.e., the derivative condition is satisfi¢see Eq(5)]: bulk integral, and the energy deviation decreases steadily
with increasing the energy cutoff, see right panel of Fig. 6.

> anm(Gh) = 4G, (23) The calculations described in this section were the basis

m for the recent study of the photoemission from the surface

states on th&100) and (111) Al surfaces'® Accurate deter-
mination of both the surface state and the photoelectron final
states made it possible to explain the photon energy depen-
dence of the photoemission intensity.

The energy dependence of the derivative mismatch
d-= j 2 amnhq - gL
A

m
for three surface states on ALOO) and Al and Cu(11l)
surfaces is shown in Fig. 6. The derivative mismatch drops V. CONCLUDING REMARKS
by three orders of magnitude over several tenths of eV, and
the minimum gives the surface state energy.
Similar to the scattering problefisee Eq(17)] the value
to be minimized is

%ar! (24)

The full-potential all-electron embedding method devel-

oped in this paper reduces the scattering problem for the
interface to solving the band structure problem for each of
the constituents: two semi-infinite leads and a slab contain-
P =0+ Po* + W (25 ing the scattering region. This variational method is based on

The factorW is chosen such that the normalized boundarya partial Wave_s(cqmplex_l:_uar_ld_ structuyerepresentation of .
the wave function in semi-infinite leads and a complete-basis

value mismatch (real band structuperepresentation in the scattering region.
_ Sa i 2 _ 3ol — To circumvent the problem of overcompleteness of the basis
k=], amgm_&‘ drl, with A|¢H dri=1, set, the variational problem is formulated in terms of or-
" thogonal functions by imposing an additional requirement on
is kept below certain border, typically<0.001. the trial function.
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The variational functional combines the requirement thathe oscillations of the wave function near the nucleus. The
the function satisfies the Schrédinger equation in the scatteequivalence of the two equations in practical calculations is
ing region (expressed by a volume integraind that it is  proved by the test calculations for a steplike potential barrier,
smoothly continuous at the boundariesurface integral ~ j.e., by embedding a fragment of the periodic bulk crystal,
Current-conservation considerations are used to judge on thghich can be directly compared to the calculations without
relative importance of the two requirements and to controhn embedding region. The output of the variational proce-
the accuracy with which they are fulfilled. An attractive fea- yyre are the coefficient""} of the partial waves/~® in
ture of the positive-definite fori(H—E)¥| of the volume  the semi-infinite crystals and the coefficiefds,} of the slab
contribution is that it leads to a Hermitean matrix: the kinetiCeigenfunctionsgm_ Because bothﬂ’s and &'s are Origina”y
energy operator does not generate surface terms in the firglyen in the APW representation one immediately recovers
variation of this functional—in contrast to a functional linear the APW representation of the scattering function.
in energy. This is espeually'convement in semirelativistic  The convergence properties of the method have proved
calcullatlonz, ¥vhere th de khlnetlc fenergy OP?tgatF’f h?s a mﬁ”@ery favorable: both the required Iknrange of the partial
complicated form and the surface contribution from the ; ;
mass-velocity term has to be taken into account when yavesy and the energy range, of the basis functiong are

Accessible by routinecomple® band structure calculations.

boundary plane comes close to the nuclei. OW'”Q to the a The accuracy limitations of the method stem from numerical
sence of the surface terms, the present formalism can be

straightforwardly applied in semirelativistic calculations, for ;arrorsllln the i)has;sthfunctlons. Ant esTetr)tlaI as%surgptr;op dF’f the
example, with the energy-dependent Hamiltonian of Koel-Ormaiism is that they are exact solutions ot a schrodinger

ling and Harmoff or with the Foldy-Wouthuysen equation, and because in practice they are obtained with a

Hamiltonian* It should be noted that the semirelaivistic Ya/ational method ELAPW in this work the failure of the

corrections may lead to a violation of current conservation,baSIS functions to pointwise safisfy the throdlnger equation
ay lead to uncertainties in the scattering wave function.

which is an essential ingredient of the present scheme. The'

experience shows, however, that for moderately large atomiglevertheless, even in the most difficult cases considered the
numbers(at least up to A the nonrelativistic current is accuracy was quite acceptable. The current conservation

transferred from one matching plane to another with a physig;malysis of the transmission spectra and the deter_m_ination of
cally acceptable accuracy surface states on Al and Cu surfaces prove the efficiency and

To facilitate the numerical implementation of the method,versati”t.y of the methqd._ The simplicity of th? plang wave
ormulation of the variational problem combined with the

a plane-wave representation of the basis functions is intro- ¢ e APW taii f1h functi
duced. This enables us to discard unphysical computatiom’;i‘i‘OS accurate representation of the wave functions

parameters, such as muffin-tin spheres radii or energy pararﬁ‘j_""ke_S the_ present scheme promising in a wide range of ap-
etersk,, at the stage of computing the scattering wave funcpllcatlons involving electron scattering.

tion, and to strongly simplify the geometrical aspects of the

calculation. In order to be able to use the plane-wave formal- ACKNOWLEDGMENTS
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