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A full-potential augmented-plane-wave-based variational method is proposed to construct the scattering
wave function for a system consisting of two semi-infinite crystals separated by an interface region. The two
half spaces are represented by their complex band structures, and a basis set expansion is used to represent the

wave function in the embedded region. The method is based on solving the equationĝsĤ−EdC=0 in the
scattering region, which is equivalent to the original Schrödinger equation, and the presence of the operatorĝ

makes it possible to formulate the variational problem in terms of plane waves. Current conservation consid-
erations are drawn on to include the requirement of the smooth continuity of the wave function into the
variational functional. The problem of the overcompleteness of embedding basis sets is discussed and a
solution is presented. The method is verified by calculating the electron diffraction and surface states on(100)
and (111) surfaces of Al and Cu. The accuracy and convergence properties of the computational scheme are
analyzed.
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I. INTRODUCTION

Scattering of electrons by interfaces underlies a variety of
experimental techniques, such as scanning tunneling1,2 and
ballistic electron emission microscopy3,4 or, at higher ener-
gies, photoelectron spectroscopy5 and low-energy electron
diffraction.6 Transmission coefficients of Bloch waves are
the basis for understanding mesoscopic transport
phenomena,7,8 in particular in technologically important
metal-semiconductor heterojunctions or magnetic
multilayers.9 In many applications, apart from the scattering
matrix, a detailed information about wave functions is re-
quired, for example, to reveal current inhomogeneities or to
calculate the photoemission matrix elements.

There exists a variety of computational approaches to the
problem of electronic structure of a scattering layer sand-
wiched between two semi-infinite crystals. Within a wave
functions approach various finite-difference real space
schemes have been developed.4,10–14Alternatively, a Green
functions approach in a localized basis formulation is exten-
sively employed when a direct interaction between the semi-
infinite leads can be neglected.15–19Both the finite-difference
schemes and most of the Green function matrix techniques
refer to a pseudopotential treatment of the scattering region,
whereas the majority of calculations for singular(so-called
all-electron) crystal potentials are performed within the
Korringa-Kohn-Rostoker formalism.1,6,20–22

Although the experience with band structure calculations
suggests that the augmented-plane-wave(APW)
representation23 is the most direct way to achieve a high
accuracy of wave functions, the applications of the APW
formalism to scattering problems are still rather rare.24–29

The APW based methods employ a variational approach to
the scattering wave function, with the semi-infinite substrate
being represented either by its complex band structure,30 as
in Refs. 24–26, or by a surface inverse Green function,31 as
in Refs. 27–29. The main difficulty in the implementation of

the APW based schemes stems from a complicated numerical
representation of the basis functions—the augmented plane
waves. In particular, in all these methods the scattering re-
gion is separated from the infinite space by a matching sur-
face, and the presence of the muffin-tin spheres, in which the
plane wave is modified and expressed by an angular-
momentum set of numerical orbitals, requires a considerable
computational effort to set up the boundary surface and de-
termine boundary values.26,27

The aim of the present work is to facilitate the application
of APW’s to electron scattering by mapping the variational
problem onto an equivalent problem expressed in terms of
usual plane waves. Similar to the majority of(augmented)
plane waves based schemes,4,13,14,25,26 we describe semi-
infinite substrates by their complex band structures, i.e., by
the generalized Bloch waves, which in this paper are referred
to aspartial waves. This is rather close to the approach of
Stiles and Hamann,26 the main difference being that in the
present method the basis set expansion in the scattering re-
gion is obtained without the intermediate step of generating
the partial waves for this region. The developed formalism
has no restrictions on the representation of the wave func-
tions. In this work we use a set of energy independent APW’s
with extended radial basis to describe the Hamiltonian of the
system: the extended linear APW method(ELAPW)32 is em-
ployed in the scattering region, and itsk ·p formulation33,34

is applied to the semi-infinite leads. Within the APW repre-
sentation the accuracy can be systematically improved, so
the calculations with the present method may serve as a
benchmark for the quality of the scattering wave function.

The paper is organized as follows. In Sec. II we introduce
the embedding setup, describe the trial function of the
method, and define the variational functional. The applica-
tions are illustrated and the accuracy analysis is presented in
Sec. III for the electron diffraction at the(100) and (111)
surfaces of Al and Cu and in Sec. IV for the determination of
three surface states on these surfaces.
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II. BASIC CONCEPTS

Consider two semi-infinite crystals separated by an inter-
face region, see Fig. 1. In the embedded regionV, between
zL and zR, the potential is a fragment of the potential of a
slab, which occupies the regionD between the planesz̃L and
z̃R. The slab is assumed to be thick enough, so that the slab
potentialVS matches on the planeszL and zR, respectively,
the potentialsVL and VR of the semi-infinite substrates. We
use superscriptsR andL to distinguish between the two half
spaces.

The system is periodic in ther i=sx,yd plane, and its sta-
tionary states are characterized by the Bloch vectorsk i par-
allel to the surface. In each semi-infinite crystal the potential
is periodic in the surface perpendicularz direction, so the
complex band structure of the half space can be introduced:
for a given energyE and vectork i a set of partial waves
csk; r d—solutions of the Schrödinger equation with different
surface perpendicular projectionsk of the Bloch vector. The
set of physically relevant functionsc comprises a finite num-
ber of propagating solutions(real k), which may travel in
both directions, and an infinite number of evanescent waves
(complexk), which decay to the right in the right half space
and to the left in the left one.

Let us consider the scattering of a Bloch wavecIskI ; r d
traveling towards the interface from +̀. In the half spacez
.zR the incident wave cI satisfies the Schrödinger
equation—it belongs to thek i projected real band structure
of the right crystal. The scattering functionCsk i ; r d in the
right half-space is a sum of the incident wave and a number
of reflected wavescRskn

R; r d, which propagate or decay to-
wards +̀ . In the left half space, it is a sum of transmitted
wavescLskn

L ; r d, which propagate or decay towards −`.
All information about the embedded regionV is con-

tained in the(real) band structure of therepeatedslabemskd
arising from the invariance of the system with respect to the
translation byz̃R− z̃L.35 Note that we are interested in the

wave function on a finite interval, betweenzL andzR, so that
the solution can be represented by a Fourier series—
constructing a Fourier integrale dk is not required. Thus, for
a givenk i onek point is sufficient, and it is natural to choose
k=0. We denote byhjmj the set of slab eigenfunctions at this
point:

ĤSjm = emjm. s1d

It is essential thatV is a subdomain ofD because we need a
basis set to reproduce a function withinV with arbitrary
boundary values on the planeszL andzR. Any function peri-
odic in the intervalfz̃L , z̃Rg can be expanded in a convergent
series in terms ofjm. [We have chosen pointG in Eq. (1),
k=0.] Obviously, in the regionV, the scattering functionC
can be represented by a series of the slab solutions with any
desired accuracyCV=omamjm. Indeed, the wave function
CV can be extended beyondV to the slab domainD so as to
satisfy the same boundary conditions on the slab boundaries
as the functionshjmj. It should be noted that the set is over-
complete because such an extension is not unique.

An alternative approach to the representation of the scat-
tering function in the embedded region has been developed
by Stiles and Hamann in Ref. 26. There a partial wave ex-
pansion is used also in the scattering region, so that one first
constructs several variational solutionsc of the Schrödinger
equation inV for the same energyE and then seeks a linear
combination of them that minimizes the mismatch at the
boundaries. The idea of the present method is to unite the
two tasks into a single variational procedure with the aim to
enhance the variational freedom. In other words, we exploit
the property that with the same basis sethjmj the sum of
partial waves may be obtained with a higher accuracy than
each individual functionc.

A. The representation of the trial function

The trial function of the method depends upon the coef-
ficientshbn

Lj andhbn
Rj of the partial waves in the left and the

right bulk crystals, respectively, and upon the coefficients
hamj, which determine the wave function in the interface re-
gion

C =5
cI + o

n

bn
Rcn

R, z. zR,

o
n

bn
Lcn

L, z, zL,

o
m

amjm, zL , z, zR.
6 s2d

By construction the trial function satisfies the Schrödinger
equation in both half-spaces, and the variational coefficients
hamj andhbn

Xj, X=L or R, are determined by the two require-
ments(i) that the Schrödinger equation withinV is satisfied

sĤS− EdCV = o
m

amsem − Edjm = 0 s3d

and (ii ) that the matching conditions at the boundary planes
z=zL andz=zR are fulfilled:

FIG. 1. (Color online) Embedding setup with a repeated slab.
Upper picture: The embedded(scattering) region V is located be-
tween the planeszL andzR. The wavecI is incident from the right
half space, reflected wavescR and transmitted wavescL constitute
the complex band structures of the right and the left half-spaces,
respectively. The arrows represent the probability currentF calcu-
lated at differentz=const planes; the definition is given in Sec. II B.
Lower picture: The regionV is a fragment of the slabD bounded by
the planesz̃L and z̃R. The slab is repeated to form a crystal, for
which a band structure problem is solved.
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o
m

amjm
XsGid = dXRcIsGid + o

n

bn
Xcn

XsGid, s4d

o
m

amhm
XsGid = dXRzIsGid + o

n

bn
Xzn

XsGid. s5d

Here the same symbolsc andj are used for the components
of the Laue representation of the functions, for example,

jmsr d =
1

ÎA
o
Gi

jmsGi,zdeiGi·r i

. s6d

The missing argumentz in Eqs. (4) and (5) means that the
function is evaluated at the corresponding matching plane,
for example,jm

XsGid;jmsGi ,zXd. The functionshm and zn

are the normal derivatives −id /dzof the functionsjm andcn,
respectively. The symboldXR allows for the presence of the
incident wave in the right half space:dRR=1 anddLR=0.

The variational procedure depends upon the answer to the
question: With a finite number of partial wavesc and basis
functionsj what is the best approximation to the functionC?
In the present method we require that in the regionV the
solution minimize its deviation from the true function in a
least-squares sense

sV = isĤS− EdCVi ; E
V

usHS− EdCVu2dr . s7d

The functionalsV is positive definite and quadratic in en-
ergy. Alternatively, the requirement that the function satisfies
the Schrödinger equation in the embedded region can be ex-
pressed by a functional linear in energy.26,29 For example, if
the trial function satisfies by construction the boundary con-
ditions in value(4) the functional whose first variation at the
exact solution vanishes takes the form

E
V

CV*sHS− EdCVdr +E
F

CV* ]̂nCVdr i + c.c. s8d

The surface integral arises from the nonrelativistic kinetic
energy operator −D as a consequence of the arbitrariness of
the derivative boundary conditions at the matching planes.

In contrast to the functional(8), the expression(7) does
not involve surface terms. It gives a measure of the deviation
of the trial function from the true solution in theV region
and is easily expressed in terms of the slab eigenfunctionsj:

sV = o
i j

sei − Edse j − Edvi jai
*aj . s9d

Only the overlap integralsvi j have to be evaluated numeri-
cally:

vi j =E
V

ji
*sr dj jsr ddr . s10d

Thus, from now onwards we represent the slab by an effec-
tive Hamiltonian given by the set of its exact eigenfunctions
hjmj. Numerical errors in these functions distort the original
Hamiltonian, which may manifest itself in a failure of sta-
tionary states to conserve current.

At the boundaries the function and derivative mismatches
are

fX =E
A
Uo

m

amjm
X − dXRcI − o

n

bn
Xcn

XU2
dr i, s11d

dX =E
A
Uo

m

amhm
X − dXRzI − o

n

bn
Xzn

XU2
dr i. s12d

Here the integration is over the surfaceA of the 2D unit cell
of the system; the argumentr i is dropped.

B. The variational method

In the exact function, the matching errorsfL,R and dL,R

vanish as well as the errorsV in the embedding region[Eq.
(7)], but in an approximate solution the errors cannot be
simultaneously minimized because the coefficientshamj enter
each of the values. Thus, with a given set of functionsc and
j the accuracy of matching is the higher the lower is the
quality of CV in the sense of Eq.(7). The two sources of
error refer to spaces of different dimensionality: the 3D in-
tegral(7) for sV and the 2D integrals(11) and(12) for fX and
dX. To bring the two factors to a common denominator, we
shall use as a guide their influence on the current conserva-
tion in the scattering state. Because the current is an impor-
tant observable it is desirable that the values of current cal-
culated at differentz=const planes be in the best possible
agreement. In particular, a consequence of the inaccuracy of
the functionCV is the difference of the fluxesFV

R andFV
L at

the matching planes(see Fig. 1)

DFV = uFV
R − FV

L u, s13d

which are calculated from thej representation ofCV:

FV
X = o

Gi

JV
XsGid. s14d

HereJV
L is the right-side limit of theGi-resolved current in

the z direction at the left plane andJV
R the left-side limit at

the right plane:

JV
XsGid = CV*sGi,zdUF− i

d

dz
CVsGi,zdGU

z=zX
+ c.c.

In principle,DFV can be made arbitrarily small by reducing
sV. Similarly, the residual mismatch at the boundaries can be
characterized by a value that has the dimension of flux

DFM = Ho
X

o
Gi

fJV
XsGid − JB

XsGidg2J1/2
. s15d

Here JB
L is the left-side limit of the current at the left plane

andJB
R the right-side limit at the right plane.

To find the solutionC, we minimize the functional

F = sV + Wo
X

ffX + dXg, s16d

which vanishes with its first variation at the exact solution,
and which depends upon a factorW that balances the errors
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coming from the failure to pointwise satisfy the Schrödinger
equation in theV region and to pointwise match thej ex-
pansion to thec expansions at the boundaries. The value of
W is determined automatically within the variational proce-
dure. We start with an excessively largeW, so that the mis-
matches at the boundaries are minimized without taking care
of the shape of the function insideV. Owing to the abundant
number of thej functions, the flux mismatchDFM [Eq. (15)]
is negligible. By gradually reducingW we relax the require-
ment of matching, and at certain pointDFM starts growing
and may exceed the current value ofDFV. The optimal value
of W is determined by the requirement thatDFM be close to
DFV. Of course, this criterion is applied only ifDFM exceeds
a physically reasonable limit of accuracy, say, 0.1% of the
incident current—otherwiseW may be further reduced and
CV further refined.

We do not introduce different weights forfX anddX and
rely upon the variational freedom of the basis set, which will
provide an optimal mismatch in one of the values(function
or derivative) and an excessively small one in the other. In
our calculations the optimal value ofW varied with energy
within two orders of magnitude, which reflects the fact that
for a given energy the quality of the variational wave func-
tion is stable to considerable variations of this parameter.

It should be noted that it is not the aim of the above
procedure to minimize the current nonconservationDFV

across the embedded region. In fact, it would be misleading
to impose such a requirement because a less accurate func-
tion CV may provide a better agreement between the cur-
rents at the two surfaces. This is just a way to find a reason-
able value for the parameterW. How small the actual values
of DFM andDFV are depends upon the number and the qual-
ity of the basis functionsj. We address this issue in Sec.
III B.

C. Overcompleteness of the basis set

The functionsc andj play different role in the variational
method. The number of the partial wavesc cannot be unre-
strictedly increased: irrespective of the method of calculation
only a limited number of them, those with sufficiently small
decay constants Imk, can be calculated with acceptable ac-
curacy. However, because the contribution from the evanes-
cent states is the smaller the further the matching planeszL

and zR are placed from the interface region, we can always
restrict ourselves to a finite number ofc’s without loss of
accuracy. On the other hand, we must be able to generate
with desired accuracy an arbitrarily large number of the slab
eigenfunctionsj. In the present work they are calculated
with the extended linear augmented plane waves method.32

The differentiation of the functional(16) with respect to
the coefficientsam, bn

L, and bn
R leads to a system of linear

equations with a right-hand side arising from the values of
function and derivative of the incident wave at the boundary
zR. As a result of the nonuniqueness of thej expansion of the
function CV, the determinant of the system may turn out to
be too small, which would lead to numerical instabilities in
the computer implementation of the method. This problem
stems from the basic idea to expand a function with un-

known boundary conditions in terms of a basis set and is
common to all variational embedding methods. In the present
method as well as in the method of Inglesfield and Benesh29

it arises from the fact that the domain over which the basis
functions are defined is larger than the embedding domain. In
the method of Stiles and Hamann26 the domain of the func-
tion to be foundfszd coincides with the domain of the basis
functionsjm. The function is then represented by a discreti-
zation of the Fourier integral over the 1D Brillouin zone:

o
m
E

BZ'

fmskdjmsk,zddk → o
m

o
k

fmskdjmsk,zd.

Again, the finer is the sampling of thek interval the more
accurate is the representation, and the less stable is the nu-
merical procedure. In Ref. 26 the authors had to restrict the
summation overk to two points.

The basis sethjmj is overcomplete inV, but it is complete
and orthogonal by construction inD. Thus, the computa-
tional procedure will be protected from the instability if we
formulate the problem in the domainD. With this aim we
modify the functional(16) so as to include a requirement that
the functionCV satisfies the Schrödinger equation not only
in V but everywhere inD:

F = sV + PsD + Wo
X

ffX + dXg, s17d

where the new parameterP determines the accuracy with
which the additional requirement will be fulfilled. The en-
ergy deviationsD is an integral overD similar to sV in Eq.
(7). The minimal value ofP depends upon the numerical
precision of the calculations, and it is determined from the
condition that the matrix in the left-hand side of the system
of linear equations be positive definite with the machine pre-
cision. Thus, as a result of the number and character of the
partial wavesc varying with energy, the accuracy of the
scattering function varies, and for a given energy it is the
highest possible accuracy. The orthogonality of the basis
functions inD makes the procedure absolutely stable.

D. Plane-wave formulation

Computationally, apart from the linear algebra, the
method involves generating the Laue expansion of all the
constituents at the matching planes[Eqs. (4) and (5)] and
evaluating the overlap integrals(10). The calculations are
simple and fast if the functionsc andj are given in a plane
wave representation, but they become very cumbersome in
an APW representation, especially when the matching plane
intersects the muffin-tin spheres.36 (For the purpose of the
numerical accuracy of functionsc andj the spheres should
be as large as possible.) It would be impracticable to straight-
forwardly expand an all-electron wave function in a Fourier
series because it would result in an enormous number of
Fourier coefficients, especially when localized functions are
involved, such asd states of transition or noble metals.

We shall now describe a general method to solve the
variational equationdF=0 in a plane-wave representation.

We replace the requirementsĤS−EdCV=0 with an equiva-
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lent requirementĝsĤS−EdCV=0, where ĝ is an operator
such that for an arbitrary functionf the normiĝfi is zero if
and only if ifi is zero. Because we have assumed that the
functionsjm pointwise satisfy the Schrödinger equation, we
need only to replace the integralsvi j in Eq. (9) by the inte-
grals

ṽi j =E
V

fĝjisr dg * ĝj jsr ddr . s18d

The operatorĝ is chosen such that the functionsĝjm have a
rapidly convergent plane-wave expansion. Thus, the problem
is formulated in terms of plane waves without resorting to
pseudopotentials.

Two forms of the operatorĝ have been tried in this work.
In both cases the operator modifies the function only in a
close vicinity of the nuclei, see Fig. 2: inside a sphere of
radiusRg it replaces the rapidly oscillating radial functions
with smoother functions and makes the entire wave function
amenable to being Fourier transformed. The matching plane
may then cut through the muffin-tin sphere, but it should not,
in general, intersect theg sphere. In the first case the wave
function is multiplied by a positive definite functiongsrd that
depends only upon the distance from the nucleus and gradu-
ally decreases from unity atr =Rg to zero atr =0.37 In the
second caseĝ is a nonlocal operator: it replaces the radial
function of thelth orbital in the angular momentum expan-
sion by a linear combination of the free-electron zero-energy
solution r l and its energy derivativer l+2 that matches the
original radial function in value and in slope atr =Rg. The
nonlocal operator removes the oscillations more efficiently,
and one can achieve a better convergence of the plane wave
expansion than with a simple multiplication, however, with
Rg between 1.5 and 1.9 a.u. and with about 1000 plane
waves per atom the results by the two operators turned out
practically identical. The local operator has an advantage that
the matching plane may also cut through theg sphere, pro-
vided that the same functiongsrd is used in the substrate and
in the slab. In this case ag image of the function in the
substrate is matched to itsg image in the embedded region,

which is legitimate because there is a one-to-one correspon-
dence between the function and its image. Of course, the
valuesFV

L and FV
R in Eqs. (13) and (14) do not have the

meaning of current in this case, and their exact values are not
necessarily equal.

The performance of the method depends both upon the
quality of the variational functionsjm (we have assumed that
they pointwise satisfy the Schrödinger equation) and upon
the quality of the plane-wave expansion, which determines
the accuracy of the overlap integrals(18). In the next section
we present calculations on the low energy electron diffrac-
tion with the present method and demonstrate its accuracy
and convergence properties.

III. SPECIAL CASE: LEED

Diffraction of electrons at very low energies is a simple
and instructive application of the method. The incident elec-
tron comes from the vacuum and the scattering function de-
pends upon the two parametersk i andE. The incident wave
is normalized to a unity current, and the current carried by
the scattering function is the transmitted currentTsk i ,Ed. We
shall restrict ourselves tok i=0 and concentrate on the energy
dependence of the transmission coefficientTsEd over an en-
ergy interval up to 50 eV above the vacuum level. By scan-
ning a wide energy interval we encounter partial wavescn

L of
very different character and can compare the performance of
the method in different situations.

A. Methodology

In the case that the right half-space is vacuum the partial
wavescR are simply plane waves, and it is convenient to
slightly reformulate the problem, namely, to match the func-
tion CV exactly over the planez=zR to its vacuum
representation.38 The trial function in the vacuum half-space
may now violate the Schrödinger equation, and the corre-
sponding energy deviation is included intosV: the integral in
Eq. (7) extends to the vacuum half-space, but the mismatches
fR and dR vanish. This is achieved by smoothly continuing

FIG. 2. Two forms of theĝ transformation
applied to the Al 3p orbital. Upper graphs: mul-
tiplication by a functiongsrd. Lower graphs: re-
placement by a linear combination of the free-
space zero-energy solutionr l and its energy
derivativer l+2.
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the Laue decomposition(6) of each functionjm to the
vacuum. To each functionjmsGi ,zd a linear combination of
two functions is attached atz=zR: the vacuum solution

cGi
R sr i,zd = expfisGi + k idr i + ik'zg,

with uGi+k iu2+k'2
=E, and an auxiliary function

aGi
R sr i,zd = expfisGi + k idr i + iq'zg,

with uGi+k iu2+q'2
=Eaux and Req'=0. The auxiliary energy

Eaux is taken considerably lower thanE, so that the auxiliary
functions decay fast into the vacuum. ForGi=0 the solution
c0

R is always propagating: it is the outgoing plane wave
(specular beam). The functionsjm are thereby defined in the
entire half-spacez.zL.

The free term has to be modified too: unlike in Eq.(2), it
is not just the incident wave

cIsr i,zd =
1

Î2kI
expfik i · r i − ikIzg,

but a linear combination with the outgoing and the auxiliary
wave

rIsr i,zd = cIsr i,zd + c0c0
Rsr i,zd + cauxa0

Rsr i,zd,

where the coefficientsc0 and caux are defined by the condi-
tion that the functionrI vanishes with vanishing derivative at
z=zR. Thus, the trial function is smoothly continuous in the
half-spacez.zL and it satisfies the Schrödinger equation
both in the bulk half spacez,zL and far from the surface in
the vacuum:

C = 5rI + o
m

amjm, z. zL,

o
n

bn
Lcn

L, z, zL.6 s19d

By exactly matching the trial function at the surfacezR we
get rid of the variational coefficientsbn

R [see Eq.(2)]. In the
exact solution the auxiliary functionsaGi

R coming fromrI and
from all of thejm cancel each other out.

In the left half-space, the complex band structure constitu-
entscn

L are calculated with the inverse extended linear aug-
mented plane wavesk ·p method.33 The solution of the
Schrödinger equation with a Bloch vectorkn is a product of
the exponential factor expfiskn−k0dzg and a Bloch function
fn

k0 with the reference Bloch vectork0. The latter is given in
terms of APW’sxi at the reference pointk i+zk0:

fn
k0 = o

i

Cixisk
i + zk0,r d.

In the k ·p method the coefficientshCij describe the partial
wave cn

L over the whole half space, whereas in other(aug-
mented) plane-wave based methods13,26,28the complex band
structure is constructed one layer at a time, and a piecewise
representation ofc’s is used. As has been mentioned in Sec.
II C, in variational methods this leads to an overcomplete-
ness of the bases set. On the other hand, in thek ·p method,
additional computational effort is required to accurately de-

scribe the wave function in the muffin-tin spheres: a special
extension of the radial basis set has to be introduced, as
explained in Ref. 34.

The hjmj set comprises the slab states from the bottom of
the valence band to a cutoff energyEj. The localized
atomiclike states should not be included because they are
orthogonal to all scattering functions. The cutoff energyEj

determines the accuracy of the calculation and it depends
both upon the thickness of the slabD (see Fig. 1) and the
relative thickness of the embedded region

u = szR − zLd/sz̃R − z̃Ld. s20d

For a given energyE, the cutoff energy is the lower the
thicker the slab and the thinner the embedded layer. In the
present calculations the slabs that modeled the(100) and
(111) surfaces of Al and Cu were 40–50 a.u. thick, and with
u between 0.1 and 0.6 the convergence at a given energyE
was achieved withEj some 15 to 30 eV above the energyE.

B. Transmission spectra

The electron transmission spectra for(100) and(111) sur-
faces of Al and Cu are shown in Fig. 3. The lower curves are
obtained with a realistic self-consistent potential at the sur-
face, and the upper curves with a steplike potential(see Fig.
4), so that a few layers of the bulk crystal are embedded
between the vacuum(constant potential) and the bulk half
spaces. The steplike potential is computationally the more
demanding because both matching planes are close to the
nuclei and the boundary valuesjm

RsGid and hm
RsGid of large

Gi are involved[see Eqs.(4) and (5)]. The steplike setup
enables us to check the calculations by comparing the upper
curves to a calculation without the embedding region, i.e.,
bulk is matched immediately to vacuum, in which case the
new formalism connected to the functionsj is not involved.
In all the four cases the curves virtually pointwise coincided
with the curves by the embedding method. This proves that

the equationssĤS−EdCV=0 and ĝsĤS−EdCV=0, see Sec.
II D, are equivalent not only mathematically but also com-
putationally. The calculations on copper are an especially
stringent test of the plane-wave formulation of the energy
minimization problem(7). The presence of the 3d states in
the j set is perfectly dealt with by theĝ operator, and we
observe no difference in performance between Al and Cu.

At low kinetic energies the steplike potential reduces
transmission for all the four surfaces. It is seen in Fig. 4 that
the samec wave transmits current into the bulk, but the
wave function in vacuum depends strongly on the shape of
the potential barrier. On the contrary, in the vicinity of the
gaps in thek i projected band structure the smooth potential
barrier may increase the reflection, which is seen, for ex-
ample, in the(111) spectra in Fig. 3 for Al at around 20 eV
and for Cu at 30 eV.

The thickness of the lines in Fig. 3 arises from vertical
error bars, which characterize the current nonconservation in
the scattering function. In terms of the notation in Fig. 1 and
in Eqs.(13) and (14) the length of the bar is
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fsFB
R − F+`

R d2 + sFV
L − FV

Rd2 + DFM
2g1/2. s21d

Note thatFV
R =FB

R and that only the left boundary contributes
to the mismatchDFM defined in Eq.(15). The method is seen
to provide a good current conservation over a wide energy
range in all the cases studied.

It should be noted that the error minimized by the varia-
tional procedure—expressed by the functional(16)—is
rather loosely connected to the uncertainty of the observable
TsEd. In particular, the error bars in Fig. 3 do not give the
limits for the value ofTsEd. The effect of the residual errors
in the scattering function on the transmission coefficient is
revealed by the dependence of the spectra on the position of
the matching planezL. For each of the surfaces a series of
calculations was performed with differentzL placed midway
between adjacent atomic planes(see Fig. 4). For the func-
tions c all these planes are equivalent because to within a
Bloch factor they have the periodicity of the interlayer spac-
ing. The same is true for the(well-converged) j functions, at

least for the steplike potential barrier, for the reasons of sym-
metry.

When the left matching plane moves leftwards the embed-
ded region widens and the variational task is thereby redis-
tributed betweenc’s and j’s. At the same time, different
cross sections of the scattering function are probed, which
are not necessarily equivalent.

The effect of the thicknessu on the accuracy of the wave
function is determined by the two competing factors.

(i) For a thin embedded region, the nearest vicinity of the
surface is described by the set of the partial wavesc, and
steeply decayingc’s may contribute to the wave function. If
such waves are not included in the set the accuracy would
suffer (see the first paragraph of Sec. II C). As the embedded
region gets thicker such waves are taken into account by the
j expansion, and the accuracy improves.

(ii ) On the other hand, the variational freedom of thej set
reduces asu grows, and the accuracy of thej expansion
deteriorates.

FIG. 3. Normal incidence elec-
tron transmission spectra for(100)
and (111) surfaces of Al and Cu.
Upper curves are calculated with a
steplike surface potential barrier,
and lower curves with a realistic
potential, see Fig. 4. Vertical error
bars, which characterize the cur-
rent nonconservation in the LEED
function according to Eq.(21),
produce a finite width of the lines.
The locations of the minima in the
TsEd spectra of the(111) surfaces
of Al and Cu experimentally ob-
served in Ref. 39 are shown by
triangles.

FIG. 4. Scattering of the plane wave with ki-
netic energy 1.6 eV by a Cu(111) crystal surface
with a realistic potential barrier(full line) and
with a steplike barrier(dashed line). In the lower
graph the self-consistent potential of the slabVS

is superimposed on the self-consistent potential
of the bulk crystalVL. The work function was
takenf=4.94 eV as cited in Ref. 42. In the upper
graph the real part of theGi=0 Fourier compo-
nent of the functiongC is shown for the realistic
and for the steplike potential by the full and the
dashed line, respectively. The vertical lines show
the location of the matching planeszL and zR,
which bound the embedded regionV, and the
planesz̃L andz̃R, which bound the slab domainD.

AUGMENTED-PLANE-WAVE APPROACH TO… PHYSICAL REVIEW B 70, 245322(2004)

245322-7



In the range ofu from 0.1 to 0.6 all the eight curves were
found rather stable: the variations ofTsEd almost never ex-
ceeded 2%. The strongest dependence on the location of the
matching plane is observed in the interval between 26 and
33 eV in the Al(100) spectrum, see Figs. 5(a) and 5(b). The
transmission coefficient is seen to oscillate as a function ofu
both for the steplike(a) and for the realistic(b) potential
barrier. Surprisingly, in the latter case the current conserva-
tion criterion (21) is fulfilled with extremely high accuracy
for all u. The reason for the non-steady behavior ofTsEd is
that the wave function is very strongly modulated, see Fig.
5(c); in this energy interval two Bloch functions with differ-
ent Bloch vectors contribute equally strongly to the scatter-
ing function. As a result, at certain locations of the matching
plane the numerical errors in boundary values of thec andj
add up, which affects the outputTsEd. Unexpectedly, in this
case the uncertainty of the wave function coexists with very
small values of the criterion(21). In other words, the “incor-
rect Hamiltonian” given by its exact eigenfunctionsj may
provide a perfect current conservation.

We infer from the above analysis that the limitations of
the present procedure stem from the limited accuracy of con-
stituentsc andj rather than from the convergence properties
of the procedure. The functionsc andj are calculated with a
variational method, so the errors in boundary values are un-
avoidable. Nevertheless, even in such difficult cases, the un-
certainty of the wave function is not dramatic[see Fig. 5(c)],

and the accuracy achieved is acceptable in many applica-
tions.

Experimentally, theTsEd curves are obtained by means of
low-energy-electron reflectance39 or target current40 spec-
troscopy. Thek i projected gaps of the real band structure are
reflected as minima in theTsEd spectra, but some minima
may have a more complicated origin.38 In Fig. 3 the minima
in the (111) spectra of Al and Cu observed in Ref. 39 are
shown by triangles. The sharpness of experimentally ob-
served structures may provide information about the inelastic
scattering of the incident electron, and such information can
be extracted from the experiment by simulating the inelastic
effects with an energy dependent imaginary potential −iVi
added to the Hamiltonian.41

IV. SURFACE STATES

The calculation of surface states provides a complimen-
tary test of the embedding method. Now the incident wave is
absent, and one looks for the energy at which a solution
exists that is spatially localized in thez coordinate. The de-
termination of the surface state proceeds as follows: for a
sufficiently thick embedded region the surface state in the
bulk z,zL can be represented by a single evanescent wave
cLsr d, which delivers the boundary constraints on the value
of the functionCVsr d at z=zL [see Eq.(4)]:

FIG. 5. Upper graphs: Normal incidence Al
(100) electron transmission spectra forE−EF be-
tween 25 and 33 eV for the steplike potential bar-
rier (a) and for the realistic barrier(b) for several
thicknessesu of the embedded region. The curves
are vertically shifted with a step ofDT=0.06 in
graph (a) and DT=0.12 in graph(b). For com-
parison the u=0.125 curve is repeated as a
dashed line in graph(a) and theu=0.208 curve in
graph(b). The length of the vertical error bars is
defined by Eq.(21); in graph (b) the error bars
are four times magnified. Lower graph: The real
part of theGi=0 component of the functiongC
at the energyE−EF=32.5 eV for u=0.208 (full
line) and foru=0.375(dashed line). Solid circles
show the nine atomic layers that constitute the
slab. The right matching planezR is kept 7.7 a.u.
away from the outermost atomic layer, and the
left matching planezL is taken at five different
positions between the layers.
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o
m

amjm
L sGid = cLsGid. s22d

The derivative of the functionCVsr d is free. The second
boundary condition is given by the exponential decay of the
function atz→ +`. For a given energyE, the solution of the
boundary value problem in the half-spacez.zL is unique. It

is obtained by solving the variational equationd igsĤS

−EdCVi=0 under the given boundary constraints. Then, the
energy is sought at which the function turns out smooth at
z=zL, i.e., the derivative condition is satisfied[see Eq.(5)]:

o
m

amhm
L sGid = zLsGid. s23d

The energy dependence of the derivative mismatch

dL =E
A
Uo

m

amhm
L − zLU2

dr i s24d

for three surface states on Al(100) and Al and Cu(111)
surfaces is shown in Fig. 6. The derivative mismatch drops
by three orders of magnitude over several tenths of eV, and
the minimum gives the surface state energy.

Similar to the scattering problem[see Eq.(17)] the value
to be minimized is

F = sV + PsD + WfL. s25d

The factorW is chosen such that the normalized boundary
value mismatch

m =E
A
Uo

m

amjm
L − cLU2

dr i, with E
A

ucLu2dr i = 1,

is kept below certain border, typicallym,0.001.

The surface state energy converged very fast with the
number of basis functions and was rather stable to the thick-
ness of the embedding region. Because the matching is
thought sufficiently accurate the quality of the wave function
is characterized by the energy deviationsV. Owing to the
competition of the surface and the bulk contributions to the
functionalF, the deviationsV does not, in general, steadily
reduce with extending the basis set(increasing the cutoff
energyEj). However, for a sufficiently thick embedding re-
gion the main contribution to the functional comes from the
bulk integral, and the energy deviation decreases steadily
with increasing the energy cutoff, see right panel of Fig. 6.

The calculations described in this section were the basis
for the recent study of the photoemission from the surface
states on the(100) and (111) Al surfaces.43 Accurate deter-
mination of both the surface state and the photoelectron final
states made it possible to explain the photon energy depen-
dence of the photoemission intensity.

V. CONCLUDING REMARKS

The full-potential all-electron embedding method devel-
oped in this paper reduces the scattering problem for the
interface to solving the band structure problem for each of
the constituents: two semi-infinite leads and a slab contain-
ing the scattering region. This variational method is based on
a partial waves(complex band structure) representation of
the wave function in semi-infinite leads and a complete-basis
(real band structure) representation in the scattering region.
To circumvent the problem of overcompleteness of the basis
set, the variational problem is formulated in terms of or-
thogonal functions by imposing an additional requirement on
the trial function.

FIG. 6. The three left graphs
show the energy dependence of
the derivative mismatchdL [Eq.
(24)] between the solutionCV of
the boundary value problem and
the evanescent statecL within the
gaps of thek i=0 projected real
band structure for three surfaces.
The right graph shows for the
Cu (111) surface state atE−EF

=−0.55 eV the dependence of the
energy deviationDE=ÎsV of the
variational wave function upon
the energy cutoffEj of the basis
set for four thicknessesu of the
embedded region.
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The variational functional combines the requirement that
the function satisfies the Schrödinger equation in the scatter-
ing region (expressed by a volume integral) and that it is
smoothly continuous at the boundaries(surface integral).
Current-conservation considerations are used to judge on the
relative importance of the two requirements and to control
the accuracy with which they are fulfilled. An attractive fea-
ture of the positive-definite formisĤ−EdCi of the volume
contribution is that it leads to a Hermitean matrix: the kinetic
energy operator does not generate surface terms in the first
variation of this functional—in contrast to a functional linear
in energy. This is especially convenient in semirelativistic
calculations, where the kinetic energy operator has a more
complicated form and the surface contribution from the
mass-velocity term has to be taken into account when a
boundary plane comes close to the nuclei. Owing to the ab-
sence of the surface terms, the present formalism can be
straightforwardly applied in semirelativistic calculations, for
example, with the energy-dependent Hamiltonian of Koel-
ling and Harmon44 or with the Foldy-Wouthuysen
Hamiltonian.34 It should be noted that the semirelativistic
corrections may lead to a violation of current conservation,
which is an essential ingredient of the present scheme. The
experience shows, however, that for moderately large atomic
numbers(at least up to Au) the nonrelativistic current is
transferred from one matching plane to another with a physi-
cally acceptable accuracy.

To facilitate the numerical implementation of the method,
a plane-wave representation of the basis functions is intro-
duced. This enables us to discard unphysical computational
parameters, such as muffin-tin spheres radii or energy param-
etersEn, at the stage of computing the scattering wave func-
tion, and to strongly simplify the geometrical aspects of the
calculation. In order to be able to use the plane-wave formal-
ism, we transfer from the original Schrödinger equation in

the embedded regionsĤ−EdCV=0 to an equivalent equation

ĝsĤ−EdCV=0, with the role of the operatorĝ being to damp

the oscillations of the wave function near the nucleus. The
equivalence of the two equations in practical calculations is
proved by the test calculations for a steplike potential barrier,
i.e., by embedding a fragment of the periodic bulk crystal,
which can be directly compared to the calculations without
an embedding region. The output of the variational proce-
dure are the coefficientshbn

L,Rj of the partial wavescn
L,R in

the semi-infinite crystals and the coefficientshamj of the slab
eigenfunctionsjm. Because bothc’s and j’s are originally
given in the APW representation one immediately recovers
the APW representation of the scattering function.

The convergence properties of the method have proved
very favorable: both the required Imk range of the partial
wavesc and the energy rangeEj of the basis functionsj are
accessible by routine(complex) band structure calculations.
The accuracy limitations of the method stem from numerical
errors in the basis functions. An essential assumption of the
formalism is that they are exact solutions of a Schrödinger
equation, and because in practice they are obtained with a
variational method(ELAPW in this work) the failure of the
basis functions to pointwise satisfy the Schrödinger equation
may lead to uncertainties in the scattering wave function.
Nevertheless, even in the most difficult cases considered the
accuracy was quite acceptable. The current conservation
analysis of the transmission spectra and the determination of
surface states on Al and Cu surfaces prove the efficiency and
versatility of the method. The simplicity of the plane wave
formulation of the variational problem combined with the
most accurate APW representation of the wave functions
makes the present scheme promising in a wide range of ap-
plications involving electron scattering.

ACKNOWLEDGMENTS

I would like to thank W. Schattke and A. Perlov for help-
ful discussions. This work was supported by Deutsche
Forschungsgemeinschaft(Forschergruppe FOR 353).

1G. Doyen, D. Drakova, and M. Scheffler, Phys. Rev. B47, 9778
(1993).

2H. Ness and A. J. Fisher, Phys. Rev. B56, 12 469(1997).
3M. D. Stiles and D. R. Hamann, Phys. Rev. Lett.66, 3179(1991).
4K. Kobayashi, Phys. Rev. B59, 13 251(1999).
5P. J. Feibelman and D. E. Eastman, Phys. Rev. B10, 4932

(1974).
6J. B. Pendry,Low Energy Electron Diffraction(Academic Press,

London, 1974).
7Y. Imry and R. Landauer, Rev. Mod. Phys.71, S306(1991).
8D. S. Fisher and P. A. Lee, Phys. Rev. B23, 6851(1981).
9P. Weinberger, Phys. Rep.377, 281 (2003).

10J. A. Appelbaum and D. R. Hamann, Phys. Rev. B6, 1122
(1972).

11K. Hirose and M. Tsukada, Phys. Rev. B51, 5278(1995).
12S. Lorenz, C. Solterbeck, W. Schattke, J. Burmeister, and W.

Hackbusch, Phys. Rev. B55, R13 432(1997).
13H. J. Choi and J. Ihm, Phys. Rev. B59, 2267(1999).

14Y. Fujimoto and K. Hirose, Phys. Rev. B67, 195315(2003).
15P. Krüger and J. Pollmann, Phys. Rev. B38, 10 578(1988).
16J. Taylor, H. Guo, and J. Wang, Phys. Rev. B63, 245407(2001).
17M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stok-

bro, Phys. Rev. B65, 165401(2002).
18K. S. Thygesen, M. V. Bollinger, and K. W. Jacobsen, Phys. Rev.

B 67, 115404(2003).
19A. Calzolari, N. Marzari, I. Souza, and M. Buongiorno Nardelli,

Phys. Rev. B69, 035108(2004).
20J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, Phys.

Rev. B 59, 5470(1999).
21N. Papanikolaou, J. Opitz, P. Zahn, and I. Mertig, Phys. Rev. B

66, 165441(2002).
22P. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, Phys.

Rev. B 69, 125104(2004).
23J. C. Slater, Phys. Rev.51, 846 (1937).
24G. Wachutka, Phys. Rev. B34, 8512(1986).
25W. Hummel and H. Bross, Phys. Rev. B58, 1620(1998).

E. E. KRASOVSKII PHYSICAL REVIEW B70, 245322(2004)

245322-10



26M. D. Stiles and D. R. Hamann, Phys. Rev. B38, 2021(1988).
27H. Ishida, Phys. Rev. B63, 165409(2001).
28D. Wortmann, H. Ishida, and S. Blügel, Phys. Rev. B65, 165103

(2002).
29J. E. Inglesfield and G. A. Benesh, Phys. Rev. B37, 6682(1988).
30V. Heine, Proc. Phys. Soc. London81, 300 (1963).
31J. E. Inglesfield, J. Phys. C14, 3795(1981).
32E. E. Krasovskii, Phys. Rev. B56, 12 866(1997).
33E. E. Krasovskii and W. Schattke, Phys. Rev. B56, 12 874

(1997).
34E. E. Krasovskii and W. Schattke, Phys. Rev. B63, 235112

(2001).
35Alternatively, the boundary conditions of an isolated slab may be

imposed, see, e.g., E. Wimmer, H. Krakauer, M. Weinert, and A.
J. Freeman, Phys. Rev. B24, 864 (1981).

36To calculate integrals similar to those of Eq.(10) out of an APW
representation, Stiles and Hamann(Ref. 26) expanded the step
function of cut muffin-tins in an angular momentum series, and
Wachutka(Ref. 24) and Hummel and Bross(Ref. 25) simply
reduced the muffin-tin radii in order to be able to use the plane-
wave representation of the wave functions outside the muffin-
tins. To introduce the boundary values, Stiles and Hamann(Ref.
26) generated the values on a real space mesh and then used an
FFT procedure to get a 2D reciprocal lattice expansion. An al-

ternative technique was used by Ishida(Ref. 27) who introduced
a buffer region between a curvy matching surface and an artifi-
cial planar surface and defined the boundary conditions on the
planar surface by integrating the Schrödinger equation in the
buffer region.

37The application of the localg transformation to the representation
of the crystal density in self-consistent calculations has been
introduced in E. E. Krasovskii, F. Starrost, and W. Schattke,
Phys. Rev. B59, 10 504 (1999) and to the calculation of the
dielectric matrix in E. E. Krasovskii and W. Schattke,ibid. 60,
R16 251(1999).

38E. E. Krasovskii and W. Schattke, Phys. Rev. B59, R15 609
(1999).

39R. C. Jaklevic and L. C. Davis, Phys. Rev. B26, 5391(1982).
40V. N. Strocov, R. Claessen, G. Nicolay, S. Hüfner, A. Kimura, A.

Harasawa, S. Shin, A. Kakizaki, H. I. Starnberg, P. O. Nilsson,
and P. Blaha, Phys. Rev. B63, 205108(2001).

41E. E. Krasovskii, W. Schattke, V. N. Strocov, and R. Claessen,
Phys. Rev. B66, 235403(2002).

42E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci.437,
330 (1999).

43E. E. Krasovskii and W. Schattke, Phys. Rev. Lett.93, 027601
(2004).

44D. D. Koelling and B. N. Harmon, J. Phys. C10, 3107(1977).

AUGMENTED-PLANE-WAVE APPROACH TO… PHYSICAL REVIEW B 70, 245322(2004)

245322-11


