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I. INTRODUCTION

Entanglement is a basic resource in quantum computation
and quantum communication.1 Recently, various experiments
for quantum information processing schemes have been suc-
cessfully implemented with photons such as Bell inequality
violation2 or teleportation.3,4

Any system with a two-level quantum degree of freedom
is a possible candidate to carry a quantum bit. One of such is
the electron and its spin. In principle, individual electrons
can be manipulated in a quantum circuit and have the advan-
tage of promising high-level integration in electronic
devices.5 Notice that the electron flow can be in principle
much larger than the photon flow in equivalent optical de-
vices where attenuation is necessary to produce individual
photons. Moreover, photons essentially do not interact except
during their generation process, whereas Coulomb correla-
tions between electrons in a quantum circuit open the possi-
bility for new operations between quantum bits.6,7

Nonlocality in quantum mechanics can be probed by let-
ting two quantum degrees of freedom interact, and subse-
quently separating these two systems. Here, electronic en-
tanglement can be created using a superconductor,8,9 where
two electrons forming a Cooper pair are in a singlet state.
The superconductor is coupled to two arms, each of them
collecting one electron from each Cooper pair. The emission
of one electron in each lead from the same Cooper pair cor-
responds to the so-called Crossed Andreev process,10–12

which can be understood as a nonlocal Andreev reflection:
the emission of one of the electrons can be seen as the ab-
sorption of a hole with opposite spin and opposite momen-
tum. The two electrons forming the singlet are then spatially
separated. It is then necessary to avoid the “ordinary” An-
dreev reflection where the two electrons go into the same
lead. This selection can be enforced, either with the help of
spin filters, leading to energy entanglement.9 Or alternatively,
one can use energy filters, leading to spin entanglement.8,9

Quantum dots with Coulomb blockade, inserted in each
branch, can efficiently select the crossed Andreev process. As
another possibility, the superconductor can be replaced by a
normal quantum dot.6,13 In this paper, the studied device con-

sisting of a superconductor connected to two quantum dots in
parallel will be called the entangler(see Fig. 1). Branching
currents in the right and left leads were calculated for this
entangler in Ref. 8 using aT-matrix approach. Entanglement
can be probed by sending the electrons from a splitted pair
into a beam splitter14 and by measuring noise correlations.15

In the present paper a microscopic derivation of quantum
master equations16 for the entangler is presented. It provides
a simple, intuitive approach to probe entanglement and to
monitor the effect of parasitic processes. Compared to a
T-matrix derivation,8 this approach has the advantage of de-
scribing the whole charge dynamics in a nonperturbative way
(this statement will be qualified below). This allows one to
derive not only the average current but also the higher mo-
ments of the current distribution. Another point is that quan-
tum master equations can be applied to any arbitrary quan-
tum system containing superconducting elements, or to
another kind of entangler.

Over the past years a great interest has been devoted to
the description of the transport properties through devices
containing coupled nanostructures, where quantum interfer-
ence has a strong influence. A rather accessible method, gen-
eralizing the classical master equations,17 has been devel-
oped in Ref. 18 where Bloch-type quantum rate equations
have been derived using the Schrödinger equation. When the
system is an isolated quantum dot in the Coulomb blockade,
only the diagonal elements of the density matrix(the occu-

FIG. 1. The Entangler setup: a superconductor injects electrons
in quantum dotsD1 and D2, whose energies in stateu1l (i.e., one
excess electron) are, respectively,E1 andE2. Electrons in the dots
can subsequently tunnel into the normal reservoirsL ,R.
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pation probabilities) enter the rate equations. On the other
hand, when the transfer of electrons through a quantum de-
vice goes through a superposition of states in the different
parts of this device, nondiagonal matrix elements will appear
in the equations of motion. The master equations then take
into account coherent processes and are a generalization of
the Bloch equations.19

The microscopic derivation of these equations provides a
good understanding of the correspondence between quantum
and classical descriptions of transport in mesoscopic sys-
tems. The crucial point is the decoupling between the time
scales which specify, first, the dynamics inside the reservoirs
and, secondly, the inverse rates for coupling the quantum
states and the leads. This decoupling procedure is justified as
long as the time scales characterizing transfer within the
quantum system and injection(emission) from (to) the res-
ervoirs are both large compared to the time scale for fluctua-
tions within the reservoirs. This is equivalent to a markoffian
hypothesis.19

Quantum master equations have been derived in the case
of sequential tunneling within quantum dots coupled to nor-
mal reservoirs, using a microscopic Hubbard-type
Hamiltonian.18,20 In the present work, it is generalized to
electron transfer which is mediated by high lying virtual
states. Consider now the case of a superconductor coupled to
quantum dots: single-electron tunneling does not conserve
energy and is forbidden as the electron transfer is accompa-
nied by the emission of a Bogolubov quasiparticle. However
two-electron events such as Andreev processes(transfer of a
pair of electrons out of the superconductor) and supercon-
ducting cotunneling(S cotunneling) processes21 (transfer of
an electron from one dot to another via the superconductor)
connect low-energy states, and thus enter the lowest-order
contribution to the tunneling current from the supercon-
ductor. One simplification would be to assume that the two-
electron tunneling processes occur simultaneously, and are
described by a pair Hamiltonian: rate equations have been
written recently in this manner for the transport processes in
a teleportation cell which employs an array of normal and
superconducting quantum dots.7 However, in presence of
transport channels mixing different processes, it is safer to
derive quantum master equations starting directly from the
microscopic Hamiltonian. This is achieved in the present
work, taking into account the main parasitic processes. The
sequence of relevant steps will clearly require virtual states
which contribute to Andreev and cotunneling events. After
having established the equations including coherent
quantum-mechanical effects and Coulomb blockade, we will
determine their range of validity and show the relevance of
the lifetime of virtual states. The derivation of quantum mas-
ter equation is nonperturbative with regard to transitions
within the entangler, while the coupling to the leads is treated
within the Fermi golden rule as in the orthodox theory of
Coulomb blockade.17

The paper is organized as follows. In Sec. II, we present
the system and its energy scales, together with the crossed
Andreev process—the main process—and the important
parasitic processes that can occur during its evolution. This
allows one to write the many-excitation wave function which
is the starting point of each microscopic derivation. This

derivation is first described in Sec. III for the crossed An-
dreev process, without any parasitic process. Parasitic pro-
cesses are presented next, and compared in Sec. IV before
giving the complete description of the system by quantum
master equations in Sec. V and Appendix B. Section VI pro-
vides the physical discussion of the operation of the device
as a function of its parameters.

II. THE ENTANGLER DEVICE AND ITS PARAMETERS

A. The model

Let us first provide a qualitative description of the entan-
gler. The setup involves a superconductorsSd coupled by
tunneling barriers to two quantum dots(D1 and D2) which
are themselves coupled to normal leadsL andR (see Fig. 1).
Only one level is retained in each dot, assuming the level
separation in each dot to be large enough.8 The energy levels
of the dots can be tuned by external gate voltages. The mi-
croscopic Hamiltonian of the entire system is the following:

H = H0 + Htunnel, s1d

where

H0 = o
k,s

Ekgks
† gks + E1d1s

† d1s + E2d2s
† d2s + U1n1sn1−s

+ U2n2sn2−s + o
ls

Elals
† als + o

rs

Erars
† ars, s2d

wheregks, dis, als, ars are destruction operators for Bogol-
ubov quasiparticles, dot electrons, and reservoir electrons.
nis=dis

† dis is the occupation number in the dots, which enters
the Hubbard repulsion term with coupling constantsU1 and
U2. A possible interdot repulsion is omitted here for sake of
simplicity, but it could easily be incorporated in the energies
of various charge states of the two dots system.

The tunnel Hamiltonian which connects these elements by
a one-electron transition reads

Htunnel= o
k,s

Vk1d1s
† cks + o

k,s
V−k2d2−s

† c−k−s + o
l,s

Vlals
† d1s

+ o
r,s

Vrars
† d2s + H.c. s3d

with a single electron tunneling amplitudeV1 sV2d between
S and D1 (S and D2), and Vl sVrd betweenD1 and L (be-
tweenD2 and R). s=h 1

2 ,−1
2
j is the spin variable. Note that

Htunnel is written in the Fourier space. Point contacts are
assumed betweenS and dots 1 and 2(in rW1 and rW2) thus the
tunneling term isVidis

† crs,8 which can be written in the Fou-
rier spaceokVie

ikW·rWdis
† cks=okVkidis

† cks. The effective mo-
mentum dependence of the tunneling amplitudeVki intro-
duces a geometrical factor, which can strongly influence the
transition amplitude for processes involving the two quantum
dots. During the injection process, Cooper pairs are initially
separated into one electron in a dot and one quasiparticle in
S. We introduce the Bogulubov transformation
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cks
† = ukgks

† + svkg−k−sS†,

cks = uk
*gks + svk

*g−k−s
† S s4d

with

uk =
1
Î2

S1 +
jk

Ek
D1/2

, s5d

vk =
1
Î2

S1 −
jk

Ek
D1/2

eifS, s6d

Ek = Îjk
2 + D2 =Î"2k2

2m
− mS+ D2. s7d

HereS stands for the annihilation of a Cooper pair22 and
fS is the superconductor’s phase. The two electrons from a
Cooper pair become an entangled pair of electrons(only the
singlet state is involved) when going into different leads.
Current flow is imposed by a voltage biasDm between the
superconductor and the leads. The basic mechanism for en-
tanglement is based on a crossed Andreev process between
the superconductor and the two quantum dots, forced by the
Coulomb blockade in the dots. First, two entangled electrons
are created inD1 andD2 via a virtual state which contains a
quasiparticle inS whose energy is larger thanDS, the super-
conducting gap. This process is coherent, and couples the
superconducting chemical potentialmS and the final energy
of the pair in the dotsE1+E2. This Andreev process prob-
ability is optimized atE1+E2=mS, and behaves similar to a
narrow two-particle Breit-Wigner resonance. Then the two
electrons tunnel independently to each lead. This whole se-
quence of events forms the Crossed Andreev channel.

B. Working conditions

Next, the relevant parameters describing the device are
discussed, following Ref. 8. First, the charge states of the
quantum system have to be well separated to avoid transi-
tions due to thermal excitations. But the thermal energy must
be large enough in comparison to the transition probability to
allow the markoffian hypothesis. ThereforeGL,R!kBQ!Ei
−mL,R. In order to conserve spin and thus the singlet state
during the electron transfer, spin flip must be excluded. Thus
each dot cannot carry a magnetic moment which could inter-
fere with an electron coming fromS, i.e., it must carry an
even number of electrons.8 Moreover, when an electron is
deposited on a dot, another electron of this dot with opposite
spin could in principle escape to the normal leads thus spoil-
ing the entanglement. This spin-flip process is suppressed
when the dot level spacingde is larger than the imposed bias
Dm and the temperaturekBQ. Entanglement loss can also
occur because of electron-hole excitations out of the Fermi
sea of the leads during the tunneling sequence. Such many-
particle contributions are suppressed if the resonance width
GL,R=2prL,RsE1,2duVL,RsE1,2du2 is smaller thanE1,2−mL,R.
This justifies the microscopic Hamiltonian of Eq.(1).

Next, given this Hamiltonian, one needs to justify the
derivation of the quantum master equation. Single-electron

tunneling from the superconductor to the leads via the dots is
avoided because it implies the creation of a quasiparticle in
S. This process costs at leastDS which is assumed to be
much larger thanDm andkBQ.

C. Parasitic processes

The main purpose of this device is to force the two elec-
trons from a pair to propagate in the two different leads. In a
clean three-dimensional superconductor, this process is de-
creased by a geometrical factorgA=e−r/pj0fsinskFrd /kFrg (j0

is the superconductor coherence length andr = ur1
W −r2

W u is the
distance of the two contacts between dots andS). The
crossed Andreev amplitude is thengAT, with T
=sp /2dNs0dV1V2. In addition to the decay onj0, the alge-
braic factor can be improved by reducing the
dimensionality23 or using a dirty superconductor.24 Inciden-
tally, the finite width of the contacts may introduce diffrac-
tion corrections to the geometrical factor. Note that when
taking into account the momentum-dependent tunneling, the
geometrical factor can be modified.25

There are three main parasitic processes which could de-
crease the entangler efficiency. Two of them create different
channels of emission of two electrons coming from a Cooper
pair, for which the two electrons can tunnel to the same
lead.8 Although they involve higher energy intermediate
states, those do not suffer from the geometrical factor of the
crossed Andreev channel. In addition, an elastic
cotunneling—this process will be calledS cotunneling in
what follows—connects every channel to other processes by
transferring an electron between the two dots viaS.

The two electrons of a Cooper pair can tunnel through the
same dot by an Andreev process(see Fig. 3). Because of
double occupancy, the pair would get an energyU due to
Coulomb repulsion. This is a coherent process between two
energy levels with a large energy differenceU. Because this
energy cost is much larger than the Andreev process prob-
ability amplitudeTi ,Ns0dVi

2 involving a single lead, this
process is strongly suppressed.8 Alternatively, a pair could
propagate to the same lead if the first electron injected on a
given dot leaves it before the second electron is deposited on
either dots. It goes to the corresponding lead while its twin
electron “has been staying inS” as part of a quasiparticle
(see Fig. 4). The latter can then choose toward which dot it
will tunnel. It will prefer the same dot in order to avoid
paying the geometrical factor. This latter process costsDS
and thus can be suppressed withDS@gAT. Let us notice that
this process requires three transitions, including one transi-
tion to a reservoir, thus it is not coherent.

By a S-cotunneling process viaS, an electron can tunnel
from D1 sD2d to D2 sD1d (see Fig. 5). This is a coherent
process between two discrete energy levelsE1 andE2 for a
single electron in the two dots orU1 andE1+E2 for a doubly
occupied dot(U2 andE1+E2 for the opposite configuration).
Cotunneling is characterized by an amplitudegCT, with its
own geometrical factorgC. If the energy difference between
the two coupled levels is much larger than the process am-
plitude TC, this process will be weak.
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To summarize, the working regime of the device is the
following:

DS,U,uE1 − E2u . de . Dm,kBQ . GL,R,TA,TC. s8d

This working regime contains the justifications for the ap-
proximations made in the derivation of the master equation:
the markoffian approximation and the relevant processes in-
volving at most two successive virtual states with only one
quasiparticle inS. In what follows we also assume thatDm
.kBQ, in order to ensure the irreversibility of the pair pro-
duction.

III. MASTER EQUATIONS FOR THE CROSSED
ANDREEV CHANNEL

The transport channels which are described above can be
characterized by the charge configuration of the isolated

quantum system for each step of the entangler operation. The
quantum system is composed of the dots and the supercon-
ductor, but its dynamics can be directly probed by integrating
out excitations in the reservoirs and superconductor. Using
the Schrödinger equation and generalizing the procedure of
Ref. 18, it is shown here how to derive quantum master
equations which describe the evolution of the reduce density
matrix of the system. As a starting point, we consider the
dynamics in the situation where only the crossed Andreev
process and one-electron relaxation processes are effective—
the ideal regime. The wave function is thus chosen to include
charge states involved in this particular channel. A reduced
Hilbert space containing the lowest energy states and the
required virtual intermediate states is chosen(containing a
single quasiparticle inS).

The many-excitation wave function for this problem is
written as

uCstdl = Fb0std + o
k,s

b1k,sstdd1s
† g−k−s

† S+ o
k,s

b2k,sstdd2−s
† gks

† S+ o
s

b12S,sstdd1s
† d2−s

† S+ o
l,s

b2lS,sstdals
† d2−s

† S

+ o
r,s

b1rS,sstdd1s
† ar−s

† S+ o
lr ,s

blrS,sstdals
† ar−s

† S+ o
lr ,s,k8,s8

blrSs,1k8s8stdd1s8
† g−k8−s8

† als
† ar−s

† SS8

+ o
lr ,s,k8,s8

blrSs,2k8s8stdd2−s8
† gk8s8

† als
† ar−s

† SS8 + ¯ + ¯ + ¯Gu0l, s9d

whereb¯ std are the time-dependent amplitudes for finding
the system in the corresponding states with the initial condi-
tions b0s0d=1 and all otherbs0d are zero. The indices indi-
cate the electron occupation in the dots and reservoirs, as
depicted in Fig. 2. The use of Schrödinger equation and the
form of uCstdl call for some comments. In fact, as said
above, the temperature is not zero thus one should in prin-
ciple rely on a density matrix description from the beginning.
Yet, under the conditionGL,R,kBQ,Dm, one can simply
use the Schrödinger equation in a reduced subspace of
states.18 Those states for instance do not include electron-
hole excitations in the same reservoir: these are supposed to

relax on a very short time, due to inelastic processes occur-
ring in L andR. On the contrary, all possible charge and spin
states on the dots, together with all excitations including
holes inL and electrons inR, are considered. Summing on
these reservoir states eventually lead to the equations for the
two reduced density matrix.18

After substituting Eq.(9) into the Schrödinger equation

i uċstdl=Hucstdl, an infinite set of coupled linear differential

equations is obtained forbstd by projecting ikciuuċstdl
=kciuHucstdl for each stateucil. ucil characterizes the quan-
tum state of the total system including the environment. Ap-
plying the Laplace transform

FIG. 2. Sequence of states for the crossed Andreev channel of the entangler. For instance,bik,s denotes the amplitude to have an electron
in dot i while a quasiparticle is created in the superconductor. First an electron is deposited in either dot, next the second electron tunnels and
forms a singlet state in the pair of dots, next either electron is absorbed in the reservoir, and finally the two dots are empty.
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b̃sEd =E
0

`

eisE+ihdtbstddt s10d

and taking into account the initial conditions, an infinite set

of algebraic equations is obtained for the amplitudesb̃sEd
(see Fig. 2):

sE + ihdb̃0 − o
ks

svkVk1
* b̃1ks + o

ks

svkV−k2
* b̃2ks = i ,

s11ad

sE + ih − E1 − Ekdb̃1ks = svk
*Vk1b̃0 + ukV−k2

* b̃12Ss,

s11bd

sE + ih − E2 − Ekdb̃2ks = − svk
*V−k2b̃0 − ukVk1

* b̃12Ss,

s11cd

sE + ih − E1 − E2db̃12Ss

= o
k

uk
*V−k2b̃1ks − o

k

uk
*Vk1b̃2ks

+ o
r

Vrb̃1rSs + o
l

Vlb̃2lSs, s11dd

sE + ih − E1 − Erdb̃1rSs = Vrb̃12Ss + o
l

Vlb̃lrSs, s11ed

sE + ih − E2 − Eldb̃2lSs = Vlb̃12Ss + o
r

Vrb̃lrSs, s11fd

sE + ih − El − Erdb̃lrSs − o
k8s8

s8vkVk1
* b̃lrSs,1k8s8

+ o
k8s8

s8vkV−k2
* b̃lrSs,2k8s8 = Vlb̃1rs + Vrb̃2ls, . . . .

s11gd

Each term corresponds to the transition between two succes-
sive states. Each transition leads to the creation or annihila-
tion of a quasiparticle either inS or in a reservoir. There is a
fundamental difference between the two types of transitions.
The first one involves an excited state whose lifetime is so
smallstqp,1/DS!1/Td that coherence is kept until the qua-
siparticle is destroyed. On the other hand, in the reservoirs,
quasiparticles instantaneously decaystrelax,1/EF!1/Gd so
coherence is lost(Markoff process). To simplify the system

of equations, the expression forb̃ is substituted in terms of

the typeoVb̃ from equations containing sums. Every sum
over the continuum statessk, l ,rd is replaced by integrals

(see Appendix A). Crossed terms[such asolb̃lVlVr / sE
−Eld] vanish,18 and the following set of equations is ob-
tained:

fE + ih − 2csT1 + T2dgb̃0 = 2gATeifSsb̃12S,s − b̃12S,−sd,

s12ad

SE + ih − E1 − E2 − c8sT1 + T2d + i
GL

2
+ i

GR

2
Db̃12S,s

= 2sgATe−ifSb̃0, s12bd

SE + ih − E1 − Er + i
GL

2
Db̃1rS,s = Vrb̃12S,s, s12cd

SE + ih − E2 − El + i
GR

2
Db̃2lS,s = Vlb̃12S,s, s12dd

fE + ih − El − Er − 2csT1 + T2dgb̃lrS,s

= 2gATeifSsb̃lrSs,12S8s8 − b̃lrSs,12S8−s8d

+ Vlb̃1rS,s + Vrb̃2lS,s, . . . , s12ed

with Ti =
p
2Ns0dVi

2 andc, c8 are numerical constants(see Ap-
pendix A), involved in self-energy corrections. Here the co-
efficients for virtual states(statesuvl and uv8l in Fig. 2) have
disappeared from the equations. This is the consequence of
the succession of quasiparticle creation and annihilation tran-
sitions forced by the assumption that two quasiparticles can-
not coexist inS.

The singlet/triplet basis is now chosen. For instance, in

the global wave functionosb̃12S,sd1s
† d2−s

† is replaced by

b̃12S
singlet sd1s

† d2−s
† −d1−s

† d2s
† d /Î2+b̃12S

triplet sd1s
† d2−s

† +d1−s
† d2s

† d /Î2.

From Eq. (12b) one can say that coefficientsb̃12S,s and

b̃12S,−s for a given spin are opposite. This is the same for

b̃1rS,s and b̃1rS,−s, b̃2lS,s and b̃2lS,−s. The tunnel Hamiltonian
conserves spin, therefore there is no coupling towards triplet

spin states. Thusb̃ijS
singlet=Î2bijS,s=−Î2bijS,−s and b̃ijS

triplet=0.
The density matrix elements of the set-up are now intro-

duced. The Fock space of the quantum dots consists of four
possible charge states:ual levels E1 and E2 are empty,ubl
levels E1 and E2 are occupied,ucl level E1 is occupied,udl
level E2 is occupied. Reservoirs states are identified byn, the
number of pairs of electrons out fromS to the reservoirs. To
obtain the reduced density matrix, elements are summed over
n:

sab = o
n=0

`

sab
snd . s13d

In every state, electrons are paired in a singlet state. The
matrix elements are defined as

saa = ub̃0stdu2 + o
l,r

ub̃lrS
singletu2 + o

l,l8,r,r8

ub̃lrS,l8r8S8
singlet u2 + ¯ ,

sbb = ub̃12S
singletu2 + o

l8,r8

ub̃l8r8S8,12S
singlet u2 + ¯ ,

scc = o
r

ub̃1rS
singletu2 + o

l8,r8,r

ub̃l8r8S8,1rS
singlet u2 + ¯ ,
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sdd = o
l

ub̃2lS
singletu2 + o

l8,r,r8

ub̃l8r8S8,2lS
singlet u2 + ¯ ,

sab = b̃0b̃12S
singlet* + o

l,r
b̃lrS

singletb̃lrS,12S8
singlet* + ¯ ,

sba = sab
* .

The matrix density elements are directly related to the

coefficientsb̃sEd by a Laplace transform

sab
snd = o

l,. . .,r,. . .
E dEdE8

4p2 b̃l,. . .,r,. . .sEdb̃l,. . .,r,. . .
* sE8d, s14d

where a /b specify the charging states associated with the
amplitudes(b’s). The equations forn=0 can be obtained
straightforwardly. For instance, to getsaa

s0d, Eq. (12a) is mul-

tiplied by b̃0
*sE8d and the conjugate equation written forE8 is

subtracted:

ṡaa
s0d = 2Î2igATse−ifSsab

s0d − eifSsba
s0dd s15ad

ṡbb
s0d = − sGL + GRdsbb

s0d − 2Î2igATse−ifSsab
s0d − eifSsba

s0dd
s15bd

ṡcc
s0d = − GLscc

s0d + GRsbb
s0d s15cd

ṡdd
s0d = − GRsdd

s0d + GLsbb
s0d s15dd

ṡaa
s1d = 2Î2igATse−ifSsab

s1d − eifSsba
s1dd + GLsdd

s0d + GRscc
s0d, . . . .

s15ed

Note that the diagonal matrix elements(the “populations”)
are coupled with the off-diagonal density-matrix elements
(“coherences”), which is symptomatic of a coherent, revers-
ible transition.

To obtain the equations for the coherence one subtracts

Eq. (12a) for E multiplied by b̃12s,singlet
* sE8d and Eq.(19) for

E8 multiplied by b̃0
*sEd:

ṡab
s0d = −

1

2
sGL + GRdsab

s0d + ifE1 + E2 + KsT1 + T2dgsab
s0d

+ 2Î2igATeifSssaa
s0d − sbb

s0dd, s16d

whereK=c8−2c.
These equations describe the sequential evolution of the

system and involve consequently only processes between
real states. Coherent processes(not involving reservoirs)
couple nondiagonal elements to diagonal elements while re-
laxation processes couple only diagonal elements. From the
set of Eq.(15), one can see that these processes do not in-
terfere because of the loss of phase coherence introduced by
the markoffian approximation, i.e., the sum over reservoir
states. A density matrix element for one particular state is
then only coupled to the elements for adjacent states in the
sequence. Thus the processes can be added easily, which will
be crucial when considering the full operation including all
channels.

Here, because only one current channel is implied in the
ideal operation, we can easily verify that the equations are
the same for eachn. Therefore the sum overn is obvious and
one obtains the master equations for the evolution of the
density matrix describing the system:

ṡaa = 2Î2igATse−ifSsab − eifSsbad + GLscc + GRsdd,

s17ad

ṡbb = − 2Î2igATse−ifSsab − eifSsbad − sGL + GRdsbb,

s17bd

ṡcc = − GLscc + GRsbb, s17cd

ṡdd = − GRsdd + GLsbb, s17dd

ṡab = −
1

2
sGL + GRdsab + isE18 + E28dsab

+ 2Î2igATeifSssaa − sbbd s17ed

with Ei8=Ei +KTi.
This is the main result of this section. First, let us remark

that the transition ratesGL,R appear only from the dots to the
reservoirs, and not in the opposite direction. This is consis-
tent with the assumption thatkBQ is small compared to the
transition energies between dots and reservoirs. This limita-
tion of Gurvitz’s method is not a problem here since the
entangler actually needs to be strongly biased to avoid deco-
herence effects. The second term of Eq.(17e) expresses that
two discrete energy levels are coupled by a coherent process
involving two transitions. Note that the probability of trans-
mission between these two states is maximum in the resonant
case, e.g.,«=E18+E28 is zero.

The ideal operation of the system involves only one chan-
nel for transferring a Cooper pair to the reservoirs: the two
electrons tunnel towards different leads. Actually, using the
normalization condition for the populationssaa+sbb+scc
+sdd=1, equations(17) are easily solved for the stationary
current,I = Ist→`d sṡab=0d:

IL
ent/e= GLsbb + GLscc

=
GLGR

GL + GR

8gA
2T2

8gA
2T2 +

GLGR

4
+ «2 GLGR

sGL + GRd2

, s18d

IR
ent= eGRsbb + eGRsdd = IL

ent. s19d

This current is made of entangled singlet pairs. This result
was obtained earlier in Ref. 8 in the limitgAT!G and GL
=GR. Here the presence of the term 8gA

2T2 in the denomina-
tion comes from a complete(nonperturbative) treatment of
both Andreev and decay processes.

The equality of the currents in the two branches of the
device is a direct consequence of the crossed Andreev pro-
cess. Every electron pair crosses and goes out of the
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system—each electron on its own side—before the next pair
is injected in the dots. Those “cycles” never overlap in this
ideal working regime.

In the caseG@gAT, one obtains

IL
ent/e=

8gA
2T2sGL + GRd

«2 + sGL + GRd2/4
s20d

while in the caseG!gAT,

IL
ent/e=

GLGR

GL + GR
s21d

similar to a single quantum dot between two leads.17 In the
latter situation, the dots are almost always occupied, so that
the resistance is dominated by the rate associated with the
two barriers—in parallel—between dots and leads.

IV. PARASITIC CHANNELS

The ideal working regime is affected by parasitic pro-
cesses: Andreev tunneling via a single dot, one-by-one tun-
neling orS cotunneling. The two first ones have been sepa-
rately computed by theT matrix in Ref. 8. Their effect is to
create different channels of pair current which decrease the
efficiency of entanglement. As said before, the terms for each
process can be added in the equations and combined before

including them together in a whole system of quantum mas-
ter equations collecting every possible processes(see Sec.
V). To start with, the different processes will be separately
considered.

A. Direct Andreev effect process against Coulomb blockade

Let us imagine that a Cooper pair tunnels to the same
quantum dot by an Andreev process, while generating a dou-
bly occupied state. Because of Coulomb repulsion, an energy
U [Eq. (2)] is required for having two electrons in a same
quantum dot(see Fig. 3). If U is “large enough,” such a
process will have a low probability. With conventional dot
technology, the interaction energyU,1 K in the quantum
dots can be controlled so that it is smaller than the supercon-
ducting gapDS.2 K. Therefore the doubly occupied energy
level has no coupling to the continuum ofS quasiparticles,
which would effectively introduce a broadening.

Similarly to the case of the ideal working regime(Sec.
III ), the set of differential equations associated with this di-
rect Andreev channel are established for the reduced density
matrix elements. Here, only one branch—sayL—is consid-
ered for simplicity. The Fock space of the quantum dots con-
sists here of three possible charge states:ual both dots are
empty,uel dot 1 is doubly occupied,ucl dot 1 is singly occu-
pied. The wave function takes the following form:

uCstdl = Fb0std + o
k,s

b1k,sstdd1s
† g−k−s

† S+ o
s

b11stdd1s
† d1−s

† S+ o
l,s

b1lS,sstdals
† d1−s

† S+ o
l,l8,s

bll8S,sstdals
† al8−s

† S

+ o
l,l8,s,k8,s8

bll8Ss,1k8s8stdd1s8
† g−k8−s8

† als
† al8−s

† SS8 + ¯ + ¯ + ¯Gu0l. s22d

From the Schrödinger equation, and performing steps similar
to Sec. III, the set of equations for the density matrix ele-
ments is

ṡaa = 2iT1se−ifSsae− eifSsead + GLscc, s23ad

ṡee= − 2iT1se−ifSsae− eifSsead − 2GL8see, s23bd

ṡcc = − GLscc + 2GL8see, s23cd

ṡae= ifU1 + K8T1gsae+ 2iT1e
ifSssaa − seed − GL8sae

s23dd

with K8 a numerical constant, andGL8=2prLsU1

+E1duVLsU1+E1du2 the level broadening introduced by cou-
pling of the two-electrons level with leadL. These equations
are similar to Eqs.(17). Nevertheless, the sequence passes
through a high energy-levelsUd via an Andreev process
which implies an oscillation between two discrete energy
levels, mS and U18=U1+K8T1. On the contrary, in the ideal
regime, this energy difference can be as small as desired.

FIG. 3. A current channel
sending a pair of electrons to the
same reservoir. Andreev process
towards one quantum dot can hap-
pen against strong Coulomb repul-
sion U.
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B. One-by-one electron tunneling to the reservoir

This channel is another way to send a pair into one single
lead. Before the second electron of a broken Cooper pair can
tunnel to a dot, the first one already leaves the dot to the
corresponding lead. The second electron will tunnel through
the same dot as its twin electron with a much higher prob-
ability (Fig. 4) than through the other dot, because of the
geometrical factor. The latter process will be simply ne-
glected.

There are only two processes involved in this channel.
The first one, between statesual and ucl, requires two con-
secutive virtual states, both containing a quasiparticle inS.
Because of the coupling with a continuum of states in the
lead, phase coherence is lost thus off-diagonal matrix
elements—or coherences—are not coupled to populations.
Therefore this channel is peculiar in the sense that it is inco-
herent even though it involves transitions withS. The equa-
tions describing the evolution of the density matrix are ob-
tained as before. The Schrödinger equation gives

sE + ihdb̃0 = i + o
k,s

svkVk1
* b̃1ks, s24ad

sE + ih − E1 − Ekdb̃1ks = svk
*Vk1b̃0 + o

l

Vl
* b̃lks, s24bd

sE + ih − El − Ekdb̃lks = Vlb̃1ks + ukVk1
* b̃1ls, s24cd

sE + ih − E1 − Eldb̃1ls = o
k

uk
*Vk1b̃lks + o

l8

sVl8b̃ll8s,

s24dd

sE + ih − El − El8db̃ll8s

= Vl8b̃1ls − Vlb̃1l8−s + o
k,s8

s8vkVk1
* b̃ll8s,1ks8. s24ed

Let us eliminateb̃lks. To simplify, the notationDi j =E
+ ih−Ei −Ej is introduced:

sE + ih − 2cV1
2db̃0 = i + o

k,l,s

sukvkuVk1u2Vl

DlksD1k + iGL/2d
b̃1ls, s25d

SD1l − c9Vl
2 + i

GL

2
Db̃1ls

= o
k

suk
*vk

* uVk1u2Vl

DlkSD1k + i
GLsDd

2
D b̃0

+ o
kl8

uuku2uVk1u2Vl8

DlkDl8kSD1k + i
GLsDd

2
D b̃1l8s. s26d

Finally, using integrals calculated in Appendix A 5, Eq.
(A14), the following set of equations is obtained:

FE + ih − 2cV1
2 + iS 2T1

pDS
D2

GLGb̃0 = i , s27d

SD1l − c9V1
2 + i

GL

2
Db̃1ls

= s
2T1

pDS
e−ifSVlb̃0 + s

3T1

2pDS
V1

2o
l8

Vl8b̃1l8s, s28d

FDll8 − 2cV1
2 + iS 2T1

pDS
D2

GLGb̃ll8s = Vl8b̃1ls − Vlb̃1l8s.

s29d

Virtual states have disappeared from the equations. The re-
maining term inT1Vl corresponds to the three-step process
couplingual–ucl. Introducing the elements of the density ma-
trix one gets

ṡaa = − K9
T1

2

DS
2GLsaa + GLscc, s30ad

ṡcc = − GLscc + K9
T1

2

DS
2GLsaa, s30bd

where K9=4/p2. This process behaves as the transport
through a single dot where the first barrier between the left
lead and the dot is a three-step process via two virtual states
and the second barrier is a classic tunnel barrier.

C. S cotunneling between the two quantum dots

Another process involves intermediate virtual states of the
quantum device which are common to the other processes:
cotunneling12,21 between the two quantum dots viaS. This

FIG. 4. Sequence corresponding to the tunneling of a singlet pair through one branch of the device. Statesual anducl are coupled through
two successive virtual states.
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process involves oscillations between two position states and
connects all of the channels studied until now.

It can occur in different situations: between states contain-
ing only one or two electrons in the two dots. As for the
crossed Andreev process, the transmission probability de-
pends on the energy difference between the two coupled
states. The equation of evolution for the density matrix de-
scribing oscillations between two states—ucl (electron on dot
1) and udl (electron on dot 2) (see Fig. 5)–are established:

ṡcc = igCTsscd − sdcd, s31ad

ṡdd = igCTssdc − scdd, s31bd

ṡcd = iDEscd + igCTsscc − sddd, s31cd

where DE=E2−E1, gC=e−r/pj0fcosskFrd /kFrg is the geo-
metrical factor corresponding to this cotunneling process.12

Note that when the distancer which separates the two tun-
neling locations is zero,gC diverges. This is expected be-
cause this process has no meaning for the same tunneling
location: this local process brings back the system in the
same state, it only participates to the renormalization of the
energy level of the state by coupling with the continuum of

quasiparticles inS. Note that the transition amplitudeT is the
same as for Andreev process.

V. ENTANGLER IN THE PRESENCE OF PARASITIC
PROCESSES

One of the advantage of Bloch-type equations is to be
able to study all processes together and nonperturbatively. In
the previous sections, a specific system of dynamical equa-
tions was obtained separately for different channels of pair
current. In particular, such channels are repeated cycle after
cycle, which allows to systematically group the contributions
with different reservoir variables(by recurrence over the
number of pairs transmitted to the leads).

In reality, each channel(induced by crossed Andreev, di-
rect Andreev,S cotunneling) mixes into one another, so one
needs to gather all transitions in a single set of equations for
the density matrix(see Fig. 6). Because of this mixing, it is
no more possible to establish a set of equations cycle after
cycle.

A starting point for deriving generalized quantum master
equations is thus to label the amplitude associated with each
process by variables which count how many entangled pair
have passed through reservoirR or L or both (while being
split). Note that such variables do not appear in the quantum
master equation of each channel because they have been
summed over. It is straightforward, but tedious, to write a
full Schrödinger equation for the most general operation,
combining all states, and to derive the density matrix equa-
tions. The basic assumption is that not more than one quasi-
particle is excited in the superconductor during the pro-
cesses.

As was said in Sec. III, all the processes can be gathered
without appealing to the full derivation of the Schrödinger
equation, by adding terms corresponding to each process. We
set the equations for a given state of reservoirs werenL snRd

FIG. 5. Cotunneling between the two dots. An electron from dot
1 tunnels towards the dot 2 via a virtual intermediate state contain-
ing a quasiparticle. Two contributions participate to the cotunneling
depending on when the initial electron is transferred.

FIG. 6. General operation in-
cluding the three Andreev chan-
nels and S cotunneling. States
with three or four electron states
are omitted for clarity. Real states
are fully squared while virtual
states are dashed squared. To
make it simpler, spin is not repre-
sented. TheV’s correspond to
transitions between two quantum
statesuSl ^ udotsl ^ ul ,rl, while TC

indicates the resonant cotunneling
process. Certain mixing process,
such as the direct Andreev effect
between statesucl and state with
one electron in dot 1 and two elec-
trons in dot 2, are not presented
for lack of space. However, such
processes are included in the
quantum master equations.
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singlet pairs of electrons have tunneled to the reservoirL sRd
andn0 pairs whose electrons have tunneled to different leads.
States are thus defined by the charge of quantum dots, one
electron already in the reservoir while its twin electron is still
in the quantum system, andnL, nR, and n0: ucl
= udot1,dot2l ^ ull 8rr 8l ^ unL ,nR,n0l. To get equations for
only the charge states of the dots, they are summed overl, l8,
r, r8 and the recurrence is made overnL, nR, n0. The obtained
set does not depend on the number of channels and leads.
Thus Gurvitz’s method for generating quantum master
equations18 can be generalized to the multiterminal case with
many current channels. The full system is given in Appendix
B. One can notice that the parasitic processes may generate
triplet pairs in the leadsL ,R.

VI. DISCUSSION

The set of quantum master equations will now be used to
describe more quantitatively the transport properties. To as-
sess the constraints on parameters, each channel will first be
studied, before using the complete set to obtain a numerical
evaluation of the operation in a realistic regime.

By solving quantum master equations one can find the
average current for each uncoupled channel. This will be
done for the symmetric case(GL=GR, U1=U2, and T1=T2)
and assuming thatGL,R=GL,R8 =G when the coupling between
quantum dots and lead depends weakly on the energy: The
direct-Andreev current is computed in the stationary regime
with Eqs.(23):

IL
Andreev/e= 2GL8sbb + GLscc = G

16T2

16T2 + G2 + U82 . s32d

With U8@2T, G we have, as in Ref. 8

IL
Andreev< eG

16T2

U82 s33d

while with gA
2T2@«2 Eq. (18) can be written

IL
C Andreev< eG

8gA
2T2

8gA
2T2 + G2/4

. s34d

The current created by the one-by-one tunneling process is
given by

IL
sb= e

K9T2G

DS
2 + K9T2 < 4eG

T2

p2DS
2 . s35d

Without taking here into account elastic cotunneling, one
can see here the relationship between parameters that must
be fulfilled to approach the ideal working of the entangler:
U8, DS@maxfT,G /gA,« /gAg. This can be understood with a
dynamical study of each channel. Actually Andreev pro-
cesses are coherent processes which create an oscillation be-
tween the state where the Cooper pair is inS and states
where the pair of electrons is in the dots. Thus it will be a
competition between the period and the amplitude of oscil-
lations and the probability of tunneling from a dot to a res-
ervoir. Let us first consider the case wheregAT@G. Then for
resonant crossed-Andreev process

sbbstd =
1

2
S1 −

G2

2T2Df1 − coss2gATtdge−Gt s36d

while for the direct Andreev process

seestd =
2T2

U82 + 4T2f1 − cossÎU82 + 4T2tdge−Gt. s37d

BecauseG is small we are here in the regime where the
crossed Andreev channel is more probable than the direct
Andreev one because many oscillations between coherent
states can occur before a transition to a reservoir has hap-
pened. In the other limitsgAT!Gd, one gets

sbbstd =
gA

2T2

G2 se−2gA
2T2/Gt + e−2Gt − 2e−Gtd, s38d

seestd =
T2

U82 + G2fe−GT2/sU82+G2dt + e−2Gt − 2 cossUtde−Gtg.

s39d

As soon as the pair has tunneled to the dots, it goes to the
reservoirs. And because the direct Andreev frequency is
larger than the crossed Andreev onesU@gATd, there is a
small time interval in which direct Andreev is favored even
though the amplitude of oscillation(and thus tunneling be-
tweenual anduel) is smaller: for a relaxation time 1/G of the
order of half a period of oscillation for direct Andreev effect
sp /Ud, after a timet,1/G, the population of stateuel can be
much larger than population of stateubl.

The same kind of argument can be given to study the
effect of S cotunneling. As said before, forU and DS large
enough, the only parasitic effect is elastic cotunneling. Using
only this process and crossed Andreev process in the master
equation, the efficiency of entanglement is calculated de-
pending onE= uE1−E2u which controlsS-cotunneling prob-
ability. We want to know the proportion of electrons from a
same pair tunneling to different reservoirssPentangledd or to
the same reservoirsPparasiticd. Cycles of current do not over-
lap so the probability is the same for each cycle. To calculate
them, we can use Bloch equations describing the evolution
on only one cycle to get firstucl and udl populations as a
function of time. From stateubl the first electron tunnels for
example towards the left reservoir. The chance for the second
electron to tunnel towards the right(left) reservoir is
GRpdstd fGLpcstdg assuming thatpds0d=1. Thus Pentangled

=e0
`GRpdstddt. For GL=GR:

Pentangled=
G2 + E2 + 2gc

2T2

G2 + E2 + 4gc
2T2 . s40d

From Eq. (40), we can see that the condition to neglectS
cotunneling, leading toPentangled,1, is gcT!maxfE,Gg.

A more general study using the complete set of equations
(see Appendix B) has to be performed. This set of equations
can be solved in the stationary regime, but the general solu-
tion is typically cumbersome. For the sake of readability, it is
presented here taking into account the parasitic processes
only to first order. This fixes the different energy scales, pre-
viously discussed above, which define the working regime of
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the entangler. Here the asymmetryGLÞGR is kept to show
the role ofS cotunneling:

IL = eGLsbb + eGLsee+ 2eGL8scc, s41d

IL = es0HGL + GR + 4G2S 1

GL
−

1

GR
DgC

2T2

DE2

− 2K9As0GL
T2

DS
2S1 −

1

2s0
D

− 8As0GL
T2

U2F2 +
GL8

GL
S1 −

1

s0
D +

2GR8

GR
G

− 2s0GL

gC
2T2

U2 F2 +
GL8

GL
S1 −

1

s0
D +

2GR8

GR

+
2GGL8

G2 + 8gA
2TA

2 + «2GJ , s42d

where A=8gA
2TA

2 / sG2+8gA
2TA

2 +«2d and s0
−1=A+1+GR/GL

+GL /GR. From Eq.(42) we can exhibit which parameters are
controlling each contribution to the total current.

To complete this discussion, the set of equations is used to
describe the average populations of each state depending on
some relevant parameters.DS is taken to be the largest en-
ergy scale. With niobium as superconductor, one takesDS
,9.25 K. For a two-dimensional quantum dot, small enough
s10 nm2d, one takesuEiu,0.5 K and U,9 K, with T, G
,0.1 K (Ref. 26) andgA, gC,0.2.

On Fig. 7, it can be seen that the population of states
containing doubly occupied dots vanishes whenU increases.
It is important to notice that whenU,uEiu, the system is
asymmetric and the channel withU,uE1−E2u is favored be-
cause a direct Andreev process becomes resonant. At the
working pointsU /T=90d pe/pb=0.012. Two channels can be

compared in calculating the ratio between two populations:
on Fig. 8 the ratio between the population of stateubl and the
one of stateuel indicates which of the crossed Andreev and
direct Andreev processes is the most likely depending onU.
Thus increasingU increases the efficiency of entanglement.
For smallU,G, the two channels become comparable be-
cause decays to reservoirs are much faster than crossed-
Andreev oscillations.

A large G will allow a fast transition between dots and
reservoirs. That is why increasingG /T will favor the most
likely process which connects the superconductor to the
dots.8 On Fig. 9 we can see that increasingG favors the
decay of a single charge state before another pair tunnels
towards the free quantum dot. Actually, because direct An-
dreev oscillations are fastersfrequency,ÎE2+4T2d than
crossed Andreev oscillations(frequency,gaT), even if their
probability is smaller, the decay towards reservoirs can hap-
pen before one crossed Andreev process has been achieved.

FIG. 7. Charge states populations as a function ofU for DS

=9.5 K,E1=−E2=0.5 K, GL,R=GL,R8 =T=0.1 K, gA, gC,0.2. States
ual, ubl, ucl, udl, uel, ufl refer to Fig. 6. Stateukl refers to the triplet
state shared between dots, and statesugl and uhl refer to three elec-
trons states(see Appendix B). ugl, uhl, and ukl populations corre-
spond to the three lowest curves. The population of states contain-
ing doubly occupied dots vanishes whenU increases. For low
values ofU sU,uE1−E2ud, the asymmetry is introduced by energy
difference between statesuel (two electrons in dot 1) and ufl (two
electrons in dot 2).

FIG. 8. Ratio between populations of stateubl (singlet state
shared between dots 1 and 2) and of stateuel population(two elec-
trons in dot 1) for DS=9.5 K, E1=−E2=0.5 K, GL,R=GL,R8 =T
=0.1 K, gA, gC,0.2. It indicates the ratio between direct Andreev
channel and crossed Andreev channel. The latter is strongly favored
whenU increasesfpb/pesU /G=90d=83.3g.

FIG. 9. Ratio between populations of stateuhl (one electron in
dot 1, two electrons in dot 2) and of stateucl (one electron in dot 1)
for DS=9.5 K, E1=−E2=0.05 K,GL,R=GL,R8 , T=0.1 K, U=1 K, gA,
gC,0.2. IncreasingG compared to the transition rate of direct An-
dreev and crossed Andreev processes allows us to favor the decay
of single charge states before another Cooper pair tunnels to the free
quantum dot. ForU=1 K=10 T, ph/pe,1.5%.
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Thus increasingG /T at fixed U, direct Andreev process in-
crease to the detriment of the crossed Andreev one.

VII. CONCLUSION

In this article, quantum master equations have been de-
rived, starting from a microscopic Hamiltonian for the
superconducting-dot entangler. Using the Schrödinger equa-
tion technique developed in Ref. 18, the full equations de-
scribing the evolution of the reduced density matrix are ob-
tained, retaining as virtual states only single particle
excitations in the superconductor. Considering only one level
by dot, all possible processes are taken into account in a fully
consistent and nonperturbative way: crossed Andreev pro-
cess, responsible for entanglement, as well as direct Andreev
and one-by-one tunneling processes, and cotunneling
through the superconductor. The latter connects all the other
processes, yet the quantum master equations written in Ap-
pendix B take into account all processes in a coherent way.
From them, the average current has been calculated. The
conditions on the entangler parameters, needed for an opti-
mal operation of the device, have been derived, and extend
the result of Ref. 8.

The power of master equations is to give access, not only
to the first moment, but to all moments of the current
distribution.27 In a forthcoming paper,28 shot noise correla-
tions are computed in order to give a clear diagnosis of
entanglement.9,29 Another extension of Bloch equations is to
include explicitly spin/charge relaxation or coupling to exter-
nal degrees of freedom, in order to quantitatively study de-
coherence effects.

Such a derivation of quantum master equations, including
higher order process, can obviously be generalized to a wide
class of quantum systems involving discrete charge states
and coherent/incoherent transitions. It is therefore a valuable
tool for investigating nanostructures in view of controlling
quantum information based on spin/charge degrees of free-
dom.
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APPENDIX A: CALCULATION OF INTEGRALS

To obtain the evolution equation of the density matrix, it
is necessary to compute some integrals arising from the cou-
pling betweenS and the two dots.

1. Crossed-Andreev effect

The tunneling of the two electrons of a same Cooper pair
to two different dots gives a contribution[see Eqs.
(11a)–(11g)]:

IA = o
k

ukvkVk1V−k2

E − Ei − Ek
. sA1d

The two energy levels of the dots are assumed to be close to
mS. The transitions amplitudesV depend weakly on the en-

ergy so they can be considered as constant with a phase
factor eikW.rW. NeglectingE−Ei !Ek,DS one obtains

IA = − V1V2
V

s2pd3 E d3kW
D

2Ek
2eikW·rW

= −
V1V2

2

V

s2pd3E
0

2p

dfE
0

p

duE
0

`

dkk2 sinueikr cosu

3
D

D2 + S"2k2

2m
− mD2 . sA2d

with m="2kF
2 /2m andV the volume.

Because of parity the integral can be extended from
−` to `.

IA =
pV1V2

2ir

V

s2pd3E
−`

`

dkkseikr − e−ikrd
D

D2 + F"2k2

2m
−

"2kF
2

2m
G2 .

sA3d

The four poles are

k = ± kFÎ4 1 +S2mD

"2kF
2 D2

e±i/2 arctans2mD/"2kF
2d ; ± akFe±iu,

k1=akFeiu, k2=−akFe−iu, k3=−akFeiu, k4=akFe−iu. The con-
tour is the positive half circle foreikr and the negative one for
e−ikr:

IA =
pV1V2

2ir

V

s2pd32ipDS2m

"2 D2F k1e
ik1r

sk1 − k2dsk1 − k3dsk1 − k4d

+
k2e

ik2r

sk2 − k1dsk2 − k3dsk2 − k4d
−

− k3e
−ik3r

sk3 − k1dsk3 − k2dsk3 − k4d

−
− k4e

−ik4r

sk4 − k1dsk4 − k2dsk4 − k3dG ,

IA =
pV1V2

2ir

V

s2pd3DS2m

"2 D2 pe−akFr sin u

2sakFd2sins2ud

3feiakFr cosu − e−iakFr cosug sA4d

with sin 2u=2mD / sa2"2kF
2d, sinu=D /2EF. Given thata and

cosu,1 sDS!EFd, one obtains

IA =
p

2
Ns0dV1V2e

−sr/pj0dsinskFrd
kFr

. sA5d

In what follows, IA is noted: IA=gAT with T
=sp /2dNs0dV1V2 and gA=e−r/pj0fsin skFrd /kFrg, the geo-
metrical factor for the crossed-Andreev effect.

2. Direct-Andreev effect

The tunneling of the two electron of a same Cooper pair
to the same dot,i, gives a contribution
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Ti = o
k

ukvkVkiV−ki

E − Ei − Ek
. sA6d

From the previous calculation, one must take the limitr
→0 in Eq. (A5). The same result is found when making the
calculation without taking into account the phase factoreikx

which generates the geometrical factor. The amplitude of this
effect towards thei side is thenTi =sp /2dNs0dVi

2.

3. Self-energy

The self-energy terms are due to the coupling between a
discrete state(state with zero or one electron in a dot) and a
continuum of states(quasiparticle states inS). They corre-
spond to the renormalization of these energy levels. They
involve uvku2 when the annihilation of an electron inS corre-
sponds to the creation of quasiparticle, anduuku2 when the
creation of an electron corresponds to the creation of quasi-
particle. In Eqs.(11a)–(11g), this term corresponds to

IR = o
k

uvku2uVkiu2

E − Ei − Ek
, sA7d

JR = o
k

uuku2uVkiu2

E − Ei − Ek
sA8d

for a giveni side.
The sum are transformed into integrals over quasiparticle

energies Ek with a density of states given byNsEd
=Ns0dE/ÎE2−DS

2. For the calculation,Ei /DS is notedei and
E/DS is notedx.

a. Terms inuvku2.

IR =
Ti

2
E

1

` S 1
Îx2 − 1

−
1

xD x

ei − x
dx= −

Ti

2
lnf2s1 − eidg

− Ti
ei

Îei
2 − 1

Sp

2
+ arcsinseidD < −

Ti

2
ln 2,

IR = cTi , sA9d

wherec is a numerical constant.
b. Terms in uuku2. This term never appears alone, so we

just have to calculate terms withuuku2− uvku2:

JR − IR =
Ti

2
E

1

` dx

ei − x
= −

Ti

2
fln uei − xu g1

`,

JR = c8Ti . sA10d

To avoid the logarithmic divergence we introduce a physical
cutoff—the electron band width—to get a finite result. This
does not yield a large contribution because of the logarithm:
if the band width is 1000 times higher than the gap it only
gives a factor 8V2 whereV!Ei. Self-energy terms remain
small. Let us defineK=c8−2c for the following.

4. S cotunneling

LocalScotunneling has no meaning(tunneling of an elec-
tron between two places) so keeping the geometrical contri-
bution of the integrand in this process, one gets

IC = o
k

suuku2 − uvku2dVk1V−k2

E − Ei − Ek
. sA11d

With uuku2− uvku2=jk/Ek:

IC =
pV1V2

2ir

V

s2pd3E
−`

`

dk kseikr − e−ikrd

"2k2

2m
− m

D2 + S"2k2

2m
− mD2 .

Using once again the residue theorem one gets

IC =
pV1V2

2ir

V

s2pd3S2m

"2 D2pkF
2e−akFr sin u

sakFd2sins2ud

3feisakFr cosu+udsa2eiu − e−iud

− e−isakFr cosu+udsa2e−iu − eiudg. sA12d

With a2,1+1/2s2mD /"2kF
2d2:

IC =
p

2
Ns0dV1V2e

−r/pj0FcosskFrd
kFr

+
1

2
S2mD

"2kF
2 D2SsinskFrd

kFr
−

cosskFrd
kFr

DG . sA13d

The second term is much smaller than the first onesDS

!EFd. The only difference with the Andreev amplitude is the
cosskFrd /kFr instead of sinskFrd /kFr. S cotunneling diverges
for r →0.

5. One-by-one electron tunneling to the reservoir

Here the calculation is not complicated by a phase factor.
The sum overk is simply replaced by an integral over en-
ergy:

IP = o
k

ukvkuVk1u2

DlksD1k+iGL/2d

. o
k

ukvk

Ek
2 V1

2Vl

= Ns0dV1
2VlE

D

` E
ÎE2 − D2

D

E3dE

= Ns0d
V1

2Vl

D
E

1

` dx

x2Îx2 − 1

= Ns0d
V1

2Vl

D
. sA14d

QUANTUM MASTER EQUATIONS FOR THE… PHYSICAL REVIEW B 70, 245313(2004)

245313-13



APPENDIX B: QUANTUM MASTER EQUATIONS FOR
THE ENTANGLER

The set of fully consistent and nonperturbative quantum
master equations can be derived(see main part of the paper).
For simplicity, the space of charge states has been restricted
here to 0, 1, 2, or 3 electrons in the two dots. Numerical
calculations have been made with this set of equations in-
cluding statesugl (one electron in dot 2, two electrons in dot
1), uhl (one electron in dot 1, two electrons in dot 2), andukl
(triplet state shared between dots 1 and 2):

ṡaa = + 2iT1ssae− sead + 2iT2ssaf − s fad

32Î2igATssab − sbad + GLscc + GRsdd

− 2sG̃L + G̃Rdsaa, sB1d

ṡbb = + iÎ2gCTssbe− sebd + iÎ2gCTssbf − s fbd

− 2Î2igATssab − sbad +
1

2
G̃Rscc +

1

2
G̃Lsdd

+
1

2
GL8sgg +

1

2
GR8shh − 2sGL + GRdsbb, sB2d

ṡcc = igCTsscd − sdcd + 2iT2ssch − shcd + 2G̃Lsaa

+ 2GRsbb + GRskk + 2GL8see− sGL + 2G̃Rdscc,

sB3d

ṡdd = − igCTsscd − sdcd + 2iT1ssdg − sgdd + 2G̃Rsaa

+ 2GLsbb + GLskk + 2GR8s f f − sGR + 2G̃Ldsdd, sB4d

ṡee= − 2iT1ssae− sead − iÎ2gCTssbe− sebd

+ GRsgg − 2GL8see, sB5d

ṡ f f = − 2iT2ssaf − s fad − iÎ2gCTssbf − s fbd

+ GLshh − 2GR8s f f , sB6d

ṡgg = − 2iT1ssdg − sgdd − s2GL8 + GRdsgg, sB7d

ṡhh = − 2iT2ssch − shcd − s2GR8 + GLdshh, sB8d

ṡkk =
3

2
sG̃Rscc + G̃Lsdd + GL8sgg + GR8shhd − sGL + GRdskk,

sB9d

ṡab = isE18 + E28dsab + 2Î2igATssaa − sbbd

+ iÎ2gCTssae+ safd − siT1seb+ iT2s fbd

−
1

2
s2G̃L + 2G̃R + GL + GRdsab, sB10d

ṡae= isE18 + U118 dsae+ 2iT1ssaa − seed

+ isÎ2gCTsab − 2Î2gATsbe− 2T2s fed

− sG̃L + G̃R + GL8dsae, sB11d

ṡaf = isE28 + U228 dsaf + 2iT2ssaa − s f fd

+ isÎ2gCTsab − 2Î2gATsbf − 2T1sefd

− sG̃L + G̃R + GR8dsaf, sB12d

ṡbe= isU118 − E28dsbe+ iÎ2gCTssbb − seed

+ is2T1sba − 2Î2gATsae− Î2gCTs fed

− sGL + GR + GL8dsbe, sB13d

ṡbf = isU228 − E18dsbf + iÎ2gCTssbb − s f fd

+ is2T2sba − 2Î2gATsaf − Î2gCTsefd

− sGL + GR + GR8dsbf, sB14d

ṡcd = isE28 − E18dscd + igCTsscc − sddd

+ 2isT1scg − T2shdd −
1

2
sGL + GR + 2G̃L + 2G̃Rdscd,

sB15d

ṡch = isU228 + E28dsch + 2iT2sscc − shhd

− igCTsdh − sGL + GR8 + G̃Rdsch, sB16d

ṡdg = isU118 + E18dsdg + 2iT1ssdd − sggd

− igCTscg − sGR + GL8 + G̃Ldsch, sB17d

ṡef = isU228 − U118 dsef + 2isT2sea− T1safd

+ iÎ2gCTsseb− sbfd − sGL8 + GR8dsef, sB18d

ṡcg = isU118 + E28dscg + iT1scd − igCTsdg

−
1

2
sGL + GR + 2GL8 + 2G̃Rdscg, sB19d

ṡdh = isU228 + E18dsdh + iT2sdc − igCTsch

−
1

2
sGL + GR + 2GR8 + 2G̃Ldsdg, sB20d

where E8 and U8 are the renormalized energy levels.G̃L,R
=K92GL,RT1,2/DS corresponds to the one-by-one process. The
superconducting phase, which do not change any result, is
omitted here.
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APPENDIX C: DERIVATION OF QUANTUM MASTER
EQUATIONS FOR THE ENTANGLER USING A

PAIR-HAMILTONIAN

The same set of quantum master equations could be ob-
tained from an effective Hamiltonian applied to the method
developed in Ref. 18. In considering all processes, this
Hamiltonian can be derived from the microscopic Hamil-
tonian(1) using a projective transformation which eliminates
states with quasiparticles in the superconductor to the lowest
order:

Heff = PH0P + 2Î2gAT
1
Î2

sd1s
† d2−s

† − d1−s
† d2s

† dS

+ 2T1sd1s
† d1−s

† dS+ 2T2sd2s
† d2−s

† dS+ Î2gCTo
s

d1s
† d2s

+ o
l,s

Vlals
† d1s + o

r,s
Vrars

† d2s + o
l,s

V̂ld1s
† als

† S

+ o
r,s

V̂rd2s
† ars

† S+ H.c. sC1d

with V̂l,r =Vl,rT1,2/DS corresponds to the one-by-one pro-
cess. The method only requires the amplitude for probability
of processes coupling different states of the quantum system,
and leads to a following general system:

ṡaa = i o
gÞa

Vagssag − sgad − o
gÞa

Ga→gsaa + o
gÞa

Gg→asgg,

sC2d

ṡab = isEb − Eadsab + i o
gÞb

SsagVgb − i o
gÞa

VagsgbD
−

1

2S o
gÞa

Ga→g − o
gÞb

Gb→gDsab

+
1

2 o
gdÞab

sGg→a + Gd→bdsgd, sC3d

where theV’s are the coherent transition matrix elements
and theG’s the relaxation rates.
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