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Quantum master equations for the superconductor—quantum dot entangler
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The operation of a source of entangled electron spins, based on a superconductor and two quantum dots in
parallel, is described in detail with the help of quantum master equations. These are derived including the main
parasitic processes in a fully consistent and nonperturbative way, starting from a microscopic Hamiltonian. The
average current is calculated, including the contribution of entangled and nonentangled pairs. The constraints
on the operation of the device are illustrated by a calculation of the various charge state probabilities.
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I. INTRODUCTION sisting of a superconductor connected to two quantum dots in

Entanglement is a basic resource in quantum computatioR@rallel will be called the entanglesee Fig. 1 Branching
and quantum communicatidrRecently, various experiments Currents in the right gnd left Ie_ads were calculated for this
for quantum information processing schemes have been suéntangler in Ref. 8 using &matrix approach. Entanglement
cessfully implemented with photons such as Bell inequalitycan be probed by sending the electrons from a splitted pair
violatior? or teleportatiord into a beam splittéf and by measuring noise correlatiofs.

Any system with a two-level quantum degree of freedom In the present paper a microscopic derivation of quantum
is a possible candidate to carry a quantum bit. One of such igaster equatiod8 for the entangler is presented. It provides
the electron and its spin. In principle, individual electronsa simple, intuitive approach to probe entanglement and to
can be manipulated in a quantum circuit and have the advarmonitor the effect of parasitic processes. Compared to a
tage of promising high-level integration in electronic T-matrix derivatiorf} this approach has the advantage of de-
devices® Notice that the electron flow can be in principle scribing the whole charge dynamics in a nonperturbative way
much larger than the photon flow in equivalent optical de-(this statement will be qualified belowThis allows one to
vices where attenuation is necessary to produce individualerive not only the average current but also the higher mo-
photons. Moreover, photons essentially do not interact excegnients of the current distribution. Another point is that quan-
during their generation process, whereas Coulomb correldum master equations can be applied to any arbitrary quan-
tions between electrons in a quantum circuit open the possfum system containing superconducting elements, or to
bility for new operations between quantum Iits. another kind of entangler.

Nonlocality in quantum mechanics can be probed by let- Over the past years a great interest has been devoted to
ting two quantum degrees of freedom interact, and subsdéhe description of the transport properties through devices
quently separating these two systems. Here, electronic eigontaining coupled nanostructures, where quantum interfer-
tanglement can be created using a supercondf@tahere  ence has a strong influence. A rather accessible method, gen-
two electrons forming a Cooper pair are in a singlet stateeralizing the classical master equatiéhdjas been devel-
The superconductor is coupled to two arms, each of ther@ped in Ref. 18 where Bloch-type quantum rate equations
collecting one electron from each Cooper pair. The emissioftave been derived using the Schrodinger equation. When the
of one electron in each lead from the same Cooper pair cosystem is an isolated quantum dot in the Coulomb blockade,
responds to the so-called Crossed Andreev proes%, only the diagonal elements of the density mattixe occu-
which can be understood as a nonlocal Andreev reflection:
the emission of one of the electrons can be seen as the ab- dot1 1
sorption of a hole with opposite spin and opposite momen- L (reservoir L
tum. The two electrons forming the singlet are then spatially
separated. It is then necessary to avoid the “ordinary” An- superconductor8 T,
dreev reflection where the two electrons go into the same
lead. This selection can be enforced, either with the help of reservoir R
spin filters, leading to energy entanglem@gr alternatively, dot2 "R
one can use energy filters, leading to spin entanglefiient.

Quantum dots with Coulomb blockade, inserted in each F|G. 1. The Entangler setup: a superconductor injects electrons
branch, can efficiently select the crossed Andreev process. Ag quantum dotsD; and D,, whose energies in stai&) (i.e., one
another possibility, the superconductor can be replaced by excess electrgrare, respectivelyE; andE,. Electrons in the dots
normal quantum ddt3In this paper, the studied device con- can subsequently tunnel into the normal reservbirg.

1098-0121/2004/1@4)/24531315)/$22.50 245313-1 ©2004 The American Physical Society



SAURET, FEINBERG, AND MARTIN PHYSICAL REVIEW B70, 245313(2004)

pation probabilities enter the rate equations. On the otherderivation is first described in Sec. Il for the crossed An-
hand, when the transfer of electrons through a quantum dedreev process, without any parasitic process. Parasitic pro-
vice goes through a superposition of states in the differentesses are presented next, and compared in Sec. IV before
parts of this device, nondiagonal matrix elements will appeagiving the complete description of the system by quantum
in the equations of motion. The master equations then takgaster equations in Sec. V and Appendix B. Section VI pro-
into account coherent processes and are a generalization @fjes the physical discussion of the operation of the device

the Bloch equation® _ ~as a function of its parameters.
The microscopic derivation of these equations provides a

good understanding of the correspondence between quantum

and classical descriptions of transport in mesoscopic sys-1l. THE ENTANGLER DEVICE AND ITS PARAMETERS

tems. The crucial point is the decoupling between the time

scales which specify, first, the dynamics inside the reservoirs A. The model

and, secondly, the inverse rates for coupling the quantum | et ys first provide a qualitative description of the entan-

states and the leads. This decoupling procedure is justified &fer. The setup involves a superconductSy coupled by

long as the time scales characterizing transfer within thqunneling barriers to two quantum do®, and D,) which

quantum Syt')stem and |nject|(1|&dm|55|ﬁ|) f.rom (to)l tr}e rﬁs- are themselves coupled to normal leddsndR (see Fig. 1

ervoirs are both large compared to the time scale for fluctua: . : . . :

tions within the reservoirs. This is equivalent to a markoffiarallsO enpl))allrgggnl?r\lleelalsh rgct)?lpoegelTa?gzcgn%%t@he:zsgnnélrg% fg\?e:svel
id9

hypothesis! gé the dots can be tuned by external gate voltages. The mi-

Quantum master equations have been derived in the ca . L . . N
of sequential tunneling within quantum dots coupled to nor-croscopic Hamiltonian of the entire system is the following:

mal reservoirs, using a microscopic Hubbard-type
Hamiltonian!®2° In the present work, it is generalized to
electron transfer which is mediated by high lying virtual
states. Consider now the case of a superconductor coupled \Mlere
quantum dots: single-electron tunneling does not conserve
energy and is forbidden as the electron transfer is accompa- Ho= > Ex¥ie Ve + E1dl, 01, + Ex0 05, + Uiy ni -,

H ="Ho+ Hunneb (1)

nied by the emission of a Bogolubov quasiparticle. However ko
two-electron events such as Andreev processasasfer of a +Umon. +SEala +SEa a 2
pair of electrons out of the supercondugtand supercon- 2ierieme % oo rEU o @

ducting cotunnelingS cotunneling processe? (transfer of

an electron from one dot to another via the supercondyuctoivhere v, di,., a,,, &, are destruction operators for Bogol-
connect low-energy states, and thus enter the lowest-ordehov quasiparticles, dot electrons, and reservoir electrons.
contribution to the tunneling current from the supercon-niﬂzdi’f”di(ris the occupation number in the dots, which enters
ductor. One simplification would be to assume that the twothe Hubbard repulsion term with coupling constadtsand
electron tunneling processes occur simultaneously, and arg,. A possible interdot repulsion is omitted here for sake of
described by a pair Hamiltonian: rate equations have beesimplicity, but it could easily be incorporated in the energies
written recently in this manner for the transport processes inf various charge states of the two dots system.

a teleportation cell which employs an array of normal and The tunnel Hamiltonian which connects these elements by
superconducting quantum ddtsHdowever, in presence of gz one-electron transition reads

transport channels mixing different processes, it is safer to

derive quantum master equations starting directly from the _
q q 9 y Hiunner= 2 ledLTCku + 2 Q—kzd;—u-c—k—u' + 2 Q|a1TUd1u
l,o

microscopic Hamiltonian. This is achieved in the present ko ko

work, taking into account the main parasitic processes. The

sequence of relevant steps will clearly require virtual states +2 O,af,dy, + H.c. 3
which contribute to Andreev and cotunneling events. After re

having established the equations including coherent i , )
quantum-mechanical effects and Coulomb blockade, we willVith @ single electron tunneling amplitud®, (€2,) between
determine their range of validity and show the relevance of @ndD; (S andD,), and Q) ({,) betweenD, andL (be-
the lifetime of virtual states. The derivation of quantum mas-tweenD; andR). o={3,-3} is the spin variable. Note that
ter equation is nonperturbative with regard to transitionsHwnnel IS Written in the Fourier space. Point contacts are
within the entangler, while the coupling to the leads is treatedSsumed betwee® and dots 1 and 2in r; andry) thus the
within the Fermi golden rule as in the orthodox theory oftunneling term isf)df c;,.® which can be written in the Fou-
Coulomb blockadé’ rier space= Qe "d! ¢, =2 Qd! c,. The effective mo-
The paper is organized as follows. In Sec. Il, we presentmentum dependence of the tunneling amplitudig intro-
the system and its energy scales, together with the crossefilices a geometrical factor, which can strongly influence the
Andreev process—the main process—and the importarttansition amplitude for processes involving the two quantum
parasitic processes that can occur during its evolution. Thigots. During the injection process, Cooper pairs are initially
allows one to write the many-excitation wave function whichseparated into one electron in a dot and one quasiparticle in
is the starting point of each microscopic derivation. ThisS. We introduce the Bogulubov transformation
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= Uy + o0kyao S, tunneling from the superconductor to the leads via the dots is
avoided because it implies the creation of a quasiparticle in

— * it S. This process costs at leadt which is assumed to be
Crr = Uk * OV 1S @ uch larger tham\ . and kg®. ’
with
U= i_(l + é)m, (5) C. Parasitic processes
V2 Ex
The main purpose of this device is to force the two elec-
1 £\Y2 trons from a pair to propagate in the two different leads. In a
vk—=<1— > e?s, (6) clean three-dimensional superconductor, this process is de-
V2 Ex creased by a geometrical factpgx=e"""%[sin(ker)/ker] (&
> is the superconductor coherence length anft,—r,| is the
E = i+ Al= K A2 (77 distance of the two contacts between dots a@d The
K K om  Ms ' crossed Andreev amplitude is theny,T, with T

=(wl2)N(0)Q1Q,. In addition to the decay o#,, the alge-
braic factor can be improved by reducing the
Qimensionality® or using a dirty superconductdf.Inciden-
tally, the finite width of the contacts may introduce diffrac-
tion corrections to the geometrical factor. Note that when
taking into account the momentum-dependent tunneling, the

eometrical factor can be modifiéel.

NThere are three main parasitic processes which could de-

Here S stands for the annihilation of a Cooper paiand
¢s is the superconductor’s phase. The two electrons from
Cooper pair become an entangled pair of electi@méy the
singlet state is involvedwhen going into different leads.
Current flow is imposed by a voltage bidg. between the
superconductor and the leads. The basic mechanism for e
tanglement is based on a crossed Andreev process betwe

inarticle irS wh s | i h pair, for which the two electrons can tunnel to the same
quasiparticle irS whose energy is larger thai, the super- lead® Although they involve higher energy intermediate

conducting 9ap. This process |s_coherent, af‘d couples ﬂE‘?ates, those do not suffer from the geometrical factor of the
supercon.du.ctmg chemical poter}t;ag and the final energy crossed Andreev channel. In addition, an elastic
of the pair in the dotds, +E,. This Andreev process prob- cotunneling—this process will be calle® cotunneling in

2b'r|:tyw'stv3pf'm'§[.e? aéElT;IE\IZ\/.:’LS’ and behaves_rs;lmllat;to ta what follows—connects every channel to other processes by
arro o-particie breit-vigner resonance. Tnen the WOtransferring an electron between the two dots Sia

electrons tunnel independently to each lead. This whole se- The two electrons of a Cooper pair can tunnel through the
quence of events forms the Crossed Andreev channel. same dot by an Andreev procesee Fig. 3 Because of
. - double occupancy, the pair would get an enetf\due to
B. Working conditions Coulomb repulsion. This is a coherent process between two

Next, the relevant parameters describing the device arenergy levels with a large energy differeride Because this
discussed, following Ref. 8. First, the charge states of th&nergy cost is much larger than the Andreev process prob-
quantum system have to be well separated to avoid transibility amplitude T;~ N(0)Q? involving a single lead, this
tions due to thermal excitations. But the thermal energy musprocess is strongly suppressedlternatively, a pair could
be large enough in comparison to the transition probability tqpropagate to the same lead if the first electron injected on a
allow the markoffian hypothesis. Therefolg R <kg® <E; given dot leaves it before the second electron is deposited on
—-mLr- In order to conserve spin and thus the singlet stateither dots. It goes to the corresponding lead while its twin
during the electron transfer, spin flip must be excluded. Thuglectron “has been staying i as part of a quasiparticle
each dot cannot carry a magnetic moment which could inter¢see Fig. 4 The latter can then choose toward which dot it
fere with an electron coming fror8, i.e., it must carry an will tunnel. It will prefer the same dot in order to avoid
even number of electrofsMoreover, when an electron is paying the geometrical factor. This latter process cdsfs
deposited on a dot, another electron of this dot with oppositend thus can be suppressed witks> y,T. Let us notice that
spin could in principle escape to the normal leads thus spoilthis process requires three transitions, including one transi-
ing the entanglement. This spin-flip process is suppressetibn to a reservoir, thus it is not coherent.
when the dot level spacing is larger than the imposed bias By a S-cotunneling process vi§, an electron can tunnel
Au and the temperaturkg®. Entanglement loss can also from D, (D,) to D, (D;) (see Fig. % This is a coherent
occur because of electron-hole excitations out of the Fermprocess between two discrete energy leslsand E, for a
sea of the leads during the tunneling sequence. Such mangingle electron in the two dots &, andE; +E, for a doubly
particle contributions are suppressed if the resonance widtbccupied do{U, andE; +E, for the opposite configuration
[ r=27p q(E12)|Q r(E19)[? is smaller thanE; ,—u g Cotunneling is characterized by an amplitugleT, with its
This justifies the microscopic Hamiltonian of Ed.). own geometrical factoyc. If the energy difference between

Next, given this Hamiltonian, one needs to justify thethe two coupled levels is much larger than the process am-
derivation of the quantum master equation. Single-electroplitude T, this process will be weak.
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FIG. 2. Sequence of states for the crossed Andreev channel of the entangler. For itgtgraenotes the amplitude to have an electron
in doti while a quasiparticle is created in the superconductor. First an electron is deposited in either dot, next the second electron tunnels and
forms a singlet state in the pair of dots, next either electron is absorbed in the reservoir, and finally the two dots are empty.

To summarize, the working regime of the device is thequantum system for each step of the entangler operation. The
following: quantum system is composed of the dots and the supercon-
ductor, but its dynamics can be directly probed by integratin
AsU,|E1~ B[ > 0> Apkg® > T g TaTe.  (8) out excitations )i/n the reservoirs and ysEpercondyuctor?q Usingg
This working regime contains the justifications for the ap-the Schrédinger equation and generalizing the procedure of
proximations made in the derivation of the master equationRef. 18, it is shown here how to derive quantum master
the markoffian approximation and the relevant processes irfduations which describe the evolution of the reduce density
volving at most two successive virtual states with only oneMatrix of the system. As a starting point, we consider the
quasipartic|e |rﬁ In What fO||OWS we a|so assume thAF.L dynamiCS in the Situation Where Only the CrOSSGd Andreev
>kg®, in order to ensure the irreversibility of the pair pro- Process and one-electron relaxation processes are effective—

duction. the ideal regime. The wave function is thus chosen to include

charge states involved in this particular channel. A reduced

ll. MASTER EQUATIONS FOR THE CROSSED Hilbert space containing the lowest energy states and the
ANDREEV CHANNEL required virtual intermediate states is chogeantaining a

single quasiparticle iry).
The transport channels which are described above can be The many-excitation wave function for this problem is
characterized by the charge configuration of the isolatedvritten as

(W (1)) = | bo(t) + X by (0], ¥ oS+ 2 b o(D0] 7, S+ 2 bios (D], A, S+ > bys (Da),d} S
k,o k,o o l,o

+ E blrS,(r(t)dIUalT—(rS-'_ E blrS,(r(t)aITUa:-—o-S-F 2 blrS(r, 1k/lf/(t)d;|r_0-/ ’yik’—g-’a‘lT(ralT—(fSS
ro

Iro Ir, ok o'

+ X byseace Dy Yo ahal ;SS+ -+ o+ {|0), 9)

Ir,ok o'

whereb---(t) are the time-dependent amplitudes for findingrelax on a very short time, due to inelastic processes occur-
the system in the corresponding states with the initial condifing in L andR. On the contrary, all possible charge and spin
tions by(0)=1 and all othe(0) are zero. The indices indi- States on the dots, together with all excitations including

cate the electron occupation in the dots and reservoirs, gi!es inL and electrons irR, are considered. Summing on
depicted in Fig. 2. The use of Schrédinger equation and th ese reservoir states eventually lead to the equations for the

form of |¥(t)) call for som mments. In fact id wo reduced density matré®
orm o call for some comments. act, as sald - after substituting Eq.(9) into the Schrodinger equation
above, the temperature is not zero thus one should in prin

ciple rely on a density matrix description from the beginning.'|‘/’(t)>:H|w(t)>' an infinite set of coupled linear differential

Yet, under the conditiod’, x<ks® <Ap, one can simply ~equations is obtained fob(t) by projecting i{y [(1)
use the Schrodinger equation in a reduced subspace &fyi|H|y(t)) for each statéy). |) characterizes the quan-
states'® Those states for instance do not include electrontum state of the total system including the environment. Ap-
hole excitations in the same reservoir: these are supposed plying the Laplace transform
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~ ©o , T Tri~
b(E) = f e B+ (t)dt (10) <E+ ip-E; -E,—c'(Ty+ Ty + '?L + |?R>b1250
0
and taking into account the initial conditions, an infinite set = ZUyATe'i¢SBO, (12b)
of algebraic equations is obtained for the amplitutés)

(see Fig. 2

T\~ -
<E+i7]‘ Ei - Er+i?L>blrS,a-:Qrb12$u—u (129
(E+inby— 2 ovibi, + 2 000, =1,
ko ko

s\~ ~
(113 (E +ig-E-E+ if)bz.s,,, =Qbys,, (129
(E+i9-E; — EQby, = 00, Qabo + U D1ss,, . ~
(11b) [E+in-—E-E —2c(T1+ Ty ]bys o
) ~ . ~ .~ = 2y,Té ¢S(~blrScr,lZS’0" _BIrSo-,l2S’—a-’)
(E+in—Ey - BEdbu, == 00, Qyabp = Uy b, ~ ~
(110) + lelrs,a + QrbZIS,m R (128)
~ with Ti:%’N(O)Qi2 andc, ¢’ are numerical constantsee Ap-
(E+in—E; - Eybyog, pendix A), involved in self-energy corrections. Here the co-
L~ L~ efficients for virtual stateéstategv) and|v’) in Fig. 2) have
= 2 U Qoiobi, = 2 U Qiaba, disappeared from the equations. This is the consequence of
K K the succession of quasiparticle creation and annihilation tran-
+So '61 ot D Q|Bz|s (11d) sitions forced by the assumption that two quasiparticles can-
r rso Yol
r |

not coexist inS.
The singlet/triplet basis is now chosen. For instance, in
: ~ T = the global wave functions by,s.dl df_ is replaced by
E+in-E; - E)bys, = Qb + 2 Qbys,, (11 - S0 12505102~ _
(Evinm Eu b= bz 2 Obisr (116 B a1~ 0, )12 B (6L o a1\
B ~ _ From Eg. (12b) one can say that coefficients;,s, and
(E+inp- E2—E,)b2|SU=Q|b12&,+E Obysy, (11 bi,s-, for a given spin are opposite. This is the same for
' bys, andbys -, bys, andbys—,. The tunnel Hamiltonian
conserves spin, therefore there is no coupling towards triplet

(E+in=E~Elbis,~ 2 0" uilabiso, o spin states. Thub29®'=\2b;s ,=—2bjs _, and bE'*'=0.
Ko’ The density matrix elements of the set-up are now intro-
ro0f w —0oF = duced. The Fock space of the quantum dots consists of four
+ 2 00 biso 20 = Qibare + Qb b q

possible charge statefa) levels E; and E, are empty,|b)
levels E; and E, are occupiedic) level E; is occupied,/d)
(119 level E, is occupied. Reservoirs states are identifiedhpthe
Each term corresponds to the transition between two succeBUMber of pairs of electrons out froBito the reservoirs. To
sive states. Each transition leads to the creation or annihilé2Ptain the reduced density matrix, elements are summed over
tion of a quasiparticle either iB or in a reservoir. Thereisa ™
fundamental difference between the two types of transitions. w0
The first one involves an excited state whose lifetime is so o= o (13)
small(7q,~ 1/As<1/T) that coherence is kept until the qua- ap =0 ap
siparticle is destroyed. On the other hand, in the reservoirs,

k' o’

guasiparticles instantaneously deday.«~ 1/Ex<1/T") so In_ every state, electrqns are paired in a singlet state. The
coherence is lostMarkoff process To simplify the system Matrix elements are defined as
of equations, the expression fbris substituted in terms of -~ i T singl

uaons, press " 0aa= o017 + 2 B2+ X [osetg 2+ -+,
the type=Qb from equations containing sums. Every sum Ir <l r<r’
over the continuum state&,l,r) is replaced by integrals
(see Appendix A Crossed termgsuch asXbQ,Q,/(E _ Bsing|e12+ D feinglet 12, .
-E))] vanish!® and the following set of equations is ob- by = |1z - ,| s 129 :
tained: rr

[E+i%=2c(Ty + Tp)Jbo = 2yaT€ bz, - blzs—o)(vlza) o= 2 DI+ X [oprts e

r 1 r'<r
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_ Tsinglet2 .singlet |2 Here, because only one current channel is implied in the
O'dd—E |bz|sg 1 + E |b|, s, 2|s| T ; : y ; ; phe
ideal operation, we can easily verify that the equations are

I"<rr’ . i
the same for each. Therefore the sum overis obvious and

~singlet* Tsinglepsinglett one obtains the master equations for the evolution of the
Oab™= bob + E birs b|rs syt density matrix describing the system:
. . i H
* Taa=2V2iypT(E I(/)S‘Tab - e|¢so'ba) + I ot Trog,
Opa— .
ba ab (173)

The matrix density elements are directly related to the

coefficientsB(E) by a Laplace transform Ty = — 2\2i yaT(€ %50, - €%501,,) — (T + TR)Tops

dEdE’ ~, 170
(n) = E f .,r,...(E)bl,...,r,...(E,)y (14) (7
where a/ 8 specify the charging states associated with the Tee™ = L'L0ec+ Trob, (179
amplitudes(b’s). The equations fom=0 can be obtained _
straightforwardly. For instance, to get?, Eq.(12a is mul- 044=~I'roga+ I'Lopp, (17d
tiplied by bO(E ) and the conjugate equation written ot is
subtracted: . 1 A ,
— ) ) Uab:_E(FL+FR)Uab+|(E1+ Ez)o'ab
o = 2\2i yaT(e7¢50 ) - €¢5010) (158

+ 2\21 YATE?S(02 = 011 (179
o0 = — ([ + TR0 - 2\2iy,T(e¢50'Q - d#s50)
with E/ =E;+KT;.

(15D Th|s is the main result of this section. First, let us remark
that the transition ratels, z appear only from the dots to the
reservoirs, and not in the opposite direction. This is consis-
0 © © tent vyith the as_sumption th&p® is small compared to the_

0qa = ~I'rogg + ' Lopy (15d) transition energies between dots and reservoirs. This limita-
tion of Gurvitz’'s method is not a problem here since the
o = 2\2iyaT(e %50 - d9s6) + T 09 + Tro'?, ... entangler actually needs to be strongly biased to avoid deco-
(156 herence effects. The second term of Elie) expresses that
two discrete energy levels are coupled by a coherent process
Note that the diagonal matrix elemer(tse “populations)  involving two transitions. Note that the probability of trans-
are coupled with the off-diagonal density-matrix elementsmission between these two states is maximum in the resonant
(“coherences), which is symptomatic of a coherent, revers- case, e.g.e=E;+Ej is zero.
ible transition. The ideal operation of the system involves only one chan-
To obtain the equations for the coherence one subtracisel for transferring a Cooper pair to the reservoirs: the two
Eq. (129 for E multiplied byBZZS,singleKE,) and Eq.(19) for electro_ns t_unnel tov_vards different Ieads._ Actually, using the
E’ multiplied byB*(E): normalization pondmon for th(_e populat|on:3aa+obb+_<rCc
0 —
+049=1, equationg17) are easily solved for the stationary
current,| =1(t— =) (0,5=0):

(0) = - FL(T + FRO' (15C)

o == —(rL +TRo +ilE; + B +K(Ty + T)lof)

ent, —
IL7e=TLopp+ I'Loee

+242i yaTe?S(0Q - o9, (16)
I' Ik 89AT?
whereK=c’-2c. T 4T T T (18)
These equations describe the sequential evolution of the LR R 2R
system and involve consequently only processes between 4 (I +Tg)
real states. Coherent procesg@®t involving reservoirs
couple nondiagonal elements to diagonal elements while re- |g“: el'rop+ €MrOgq = |fm, (19)

laxation processes couple only diagonal elements. From the
set of Eq.(15), one can see that these processes do not inFhis current is made of entangled singlet pairs. This result
terfere because of the loss of phase coherence introduced laas obtained earlier in Ref. 8 in the limii,T<I" andI',

the markoffian approximation, i.e., the sum over reservoir=I'r. Here the presence of the terny;@? in the denomina-
states. A density matrix element for one particular state igion comes from a complet@onperturbativi treatment of
then only coupled to the elements for adjacent states in thieoth Andreev and decay processes.

sequence. Thus the processes can be added easily, which will The equality of the currents in the two branches of the
be crucial when considering the full operation including all device is a direct consequence of the crossed Andreev pro-
channels. cess. Every electron pair crosses and goes out of the
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state a state e state ¢ state a FIG. 3. A current channel
. sending a pair of electrons to the
>8 < . §© < . >< >6 R >O@ ° same reservoir. Andreev process
towards one quantum dot can hap-
< O < O < O < O< pen against strong Coulomb repul-
by b by by s by: sion U.

system—each electron on its own side—before the next paincluding them together in a whole system of quantum mas-
is injected in the dots. Those “cycles” never overlap in thister equations collecting every possible procegse® Sec.

ideal working regime. V). To start with, the different processes will be separately
In the casd’> y,T, one obtains considered.
8yaTAIL+T
|E“‘/e: M (20) A. Direct Andreev effect process against Coulomb blockade
e+ (' +T'p)/a

Let us imagine that a Cooper pair tunnels to the same
quantum dot by an Andreev process, while generating a dou-
T bly occupied state. Because of Coulomb repulsion, an energy
IMe= —L R (21) U [Eg. (2)] is required for having two electrons in a same
I +T'r quantum dot(see Fig. 3. If U is “large enough,” such a
similar to a single quantum dot between two le&tii the ~ Process will havg a Iow_ probability. With. conventional dot
latter situation, the dots are almost always occupied, so thdgchnology, the interaction enerdy~1 K in the quantum
the resistance is dominated by the rate associated with tHiPts can be controlled so that it is smaller than the supercon-

while in the casd’ << y,T,

two barriers—in parallel—between dots and leads. ducting gapAs>2 K. Therefore the doubly occupied energy
level has no coupling to the continuum 8Sfquasiparticles,
IV. PARASITIC CHANNELS which would effectively introduce a broadening.

Similarly to the case of the ideal working regini8ec.

The ideal working regime is affected by parasitic pro- Ill), the set of differential equations associated with this di-
cesses: Andreev tunneling via a single dot, one-by-one turrect Andreev channel are established for the reduced density
neling or S cotunneling. The two first ones have been sepamatrix elements. Here, only one branch—day-is consid-
rately computed by th& matrix in Ref. 8. Their effect is to ered for simplicity. The Fock space of the quantum dots con-
create different channels of pair current which decrease theists here of three possible charge statasboth dots are
efficiency of entanglement. As said before, the terms for eacempty, |e) dot 1 is doubly occupiedg) dot 1 is singly occu-
process can be added in the equations and combined befgpeed. The wave function takes the following form:

W (1) = [boa) + 2 by, (0d], ¥ S+ X by (hdl,dl S+ X bys (Da)dl S+ X byg.balal_ S
k.o 4 l,o

I<l',o

+ 2 bII’So-,lk’o-’(t)dj_g-"yik/—(r/alTo-alt—(rSS T |0> (22)

1<’ ok' o

From the Schrodinger equation, and performing steps similar ¢ =i[U; + K'T;]ope+ 2iT1€ 95000~ g — I 0
to Sec. lll, the set of equations for the density matrix ele- (23d)
ments is

Taa= 2AT1(€7 5056 = €750, + T 0, (238 with K’ a numerical constant, andl’| =2mp (U,
+E,)|Q (U, +E,)|? the level broadening introduced by cou-
pling of the two-electrons level with ledd These equations

Oee=— 2T (€7%50,.— €%50,) — 2| 0gey  (23b)  @TE similar to Eqs(17). Nevertheless, the sequence passes
through a high energy-levelU) via an Andreev process
which implies an oscillation between two discrete energy

) levels, us and U;=U,+K'T,. On the contrary, in the ideal
0=~ Lo+ 2[ 0, (230 regime, this energy difference can be as small as desired.
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FIG. 4. Sequence corresponding to the tunneling of a singlet pair through one branch of the devicka)Statids) are coupled through
two successive virtual states.

B. One-by-one electron tunneling to the reservoir , T\~
_ _ o ) Ay =c"Qy+i—= by,
This channel is another way to send a pair into one single 2

lead. Before the second electron of a broken Cooper pair can oo Q2 ~
tunnel to a dot, the first one already leaves the dot to the => s o
corresponding lead. The second electron will tunnel through k A,k(AlkHFL(A))
the same dot as its twin electron with a much higher prob- 2
ability (Fig. 4) than through the other dot, because of the U2l Q20 5
geometrical factor. The latter process will be simply ne- + il B by (26)
glected. . o o AIkAI’k<Alk+ i FL(A)>
There are only two processes involved in this channel. 2

The first one, between staté® and|c), requires two con-
secutive virtual states, both containing a quasiparticl&.in
Because of the coupling with a continuum of states in th
lead, phase coherence is lost thus off-diagonal matrix 2T, \%. |~

elements—or coherences—are not coupled to populations. E+i7}‘2CQf+i<T> Iy [bo=1, (27)
Therefore this channel is peculiar in the sense that it is inco- s

herent even though it involves transitions wBhThe equa-

tions describing the evolution of the density matrix are ob- <A1| _CHQ§+ iﬂ)r)u

tained as before. The Schrddinger equation gives 2 7

Finally, using integrals calculated in Appendix A 5, Eq.
e(A14)' the following set of equations is obtained:

~ ~ - o2 grios +ai9229 b (28)
(E+inby=i+ X o0 Qubyc, (249 mAs 0 2mAg M
k,o

2T \2 . |- ~ ~
~ . ~ o~ |:A||/_2CQ%+i(_l) FL:|b||/0:Q|/bl|0._Q|bl|/0..
(E+i7=E1~ EQby = 00, abo+ 2 by, (24b) mhs
|

(29)

Virtual states have disappeared from the equations. The re-
maining term inT,(); corresponds to the three-step process
coupling|ay—|c). Introducing the elements of the density ma-
trix one gets

(E+in-E - Ek)Blka = Q|51|<a + Ukﬂil’Bllm (240

(E+in—E;—E)by,= > U Qubyy+ > o Dy, _ T2
1~ E)by ~ Uk K101k - 3 Taa=—K A—érl_gaa+ [Low (309
S
(249
T
Oec=—TLocc+ K”A_ZFLO'aai (30b)

(E+in—E - E)by, _ °

_ _ - where K"=4/#2. This process behaves as the transport

= Oy = Qbyr_p + > o' v by g 1ker - (246 through a single dot where the first barrier between the left
ko' lead and the dot is a three-step process via two virtual states

o ~ o ) and the second barrier is a classic tunnel barrier.
Let us eliminateby,. To simplify, the notationA;=E
+in—-E-E;isi :
17~Ei~§, is introduced: C. S cotunneling between the two quantum dots
2 Another process involves intermediate virtual states of the
(E+i 25 =i Ui tum device which to the oth :
+in-2c09)by=i+ >, ——————hy,, (25  quantum device which are common to the other processes:
kho Ai(Ay +il/2) cotunneling?2! between the two quantum dots V& This
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O < quasiparticles irs. Note that the transition amplitudeis the
state ¢ @ state d same as for Andreev process.

O —[.e—"9C V. ENTANGLER IN THE PRESENCE OF PARASITIC
by — by PROCESSES

>@ < 26
One of the advantage of Bloch-type equations is to be

FIG. 5. Cotunneling between the two dots. An electron from dot@ble to study all processes together and nonperturbatively. In
1 tunnels towards the dot 2 via a virtual intermediate state containth® Previous sections, a specific system of dynamical equa-

ing a quasiparticle. Two contributions participate to the cotunnelindions was obtained separately for different channels of pair

depending on when the initial electron is transferred. current. In particular, such channels are repeated cycle after
cycle, which allows to systematically group the contributions

process involves oscillations between two position states an‘f\f'th dlfferent_ reserv0|r_var|able$by recurrence over the
number of pairs transmitted to the leads

connects all of the channels studied until now. In reality, each channg&induced by crossed Andreev, di-
It can occur in different situations: between states contain- Y, & Y ’

ing only one or two electrons in the two dots. As for the 1 B TR ER R RS T T e uations for
crossed Andreev process, the transmission probability des 9 9 q

pends on the energy difference between the two couple e density mf?“”’“’ee Fig. 6. Because of this _mixing, it is
states. The equation of evolution for the density matrix de 10 More possible to establish a set of equations cycle after
scribing oscillations between two statefe)<electron on dot cycle.

: : . A starting point for deriving generalized quantum master
1) and|d) (electron on dot P(see Fig. j-are established: equations is thus to label the amplitude associated with each

e =1YcT(0eg— 040, (318  process by variables which count how many entangled pair
have passed through reserv@iror L or both (while being

4= 1 YeT(0ge— Tog) (31b) split). Note that such variables do not appear in the quantum
master equation of each channel because they have been
. . . summed over. It is straightforward, but tedious, to write a
Oeg=I1AE0q+iycT(0ce— 04a) » (310 9

full Schroédinger equation for the most general operation,
where AE=E,-E;, yc=e"™[cogdker)/ker] is the geo- combining all states, and to derive the density matrix equa-
metrical factor corresponding to this cotunneling prodéss. tions. The basic assumption is that not more than one quasi-
Note that when the distangewhich separates the two tun- particle is excited in the superconductor during the pro-
neling locations is zeroy. diverges. This is expected be- cesses.

cause this process has no meaning for the same tunneling As was said in Sec. Ill, all the processes can be gathered
location: this local process brings back the system in thavithout appealing to the full derivation of the Schrodinger
same state, it only participates to the renormalization of the&quation, by adding terms corresponding to each process. We
energy level of the state by coupling with the continuum ofset the equations for a given state of reservoirs wer@g)

FIG. 6. General operation in-
: cluding the three Andreev chan-

Ly '------mo-oo Q i
“L- siate e =01 state ¢ n(_els and S cotunneling. States
............ , with three or four electron states

>@ < Q, >@< Qp >@ < are omitted for clarity. Real states

O - O - O are fully squared while virtual

________ < < < states are dashed squared. To

statea =7 g tT(‘ P N state a make it simpler, spin is not repre-
Q, Q, Qg Q

L sented. The(Q’s correspond to

DO < >@ < T >O < transitions between two quantum
O < ® < C O < stategS) ® |[dot9 ®|1,r), while T

Q indicates the resonant cotunneling

Q
2 L
~ o 1Te ~ rd process. Certain mixing process,

>O < >O < >O < QR such as the direct Andreev effect

between statef) and state with

® < Q, @< {2k ® < one electron in dot 1 and two elec-
------------ . sar T - sae il trons in dot 2, are not presented
Qps oo Q for lack of space. However, such

5 processes are included in the
O <: guantum master equations.
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singlet pairs of electrons have tunneled to the resetvoR) 1 2
andn, pairs whose electrons have tunneled to different leads. obp(t) = 5(1 T oT2
States are thus defined by the charge of quantum dots, one

electron already in the reservoir while its twin electron is still while for the direct Andreev process

)[1 - cog2y,Tt) e (36)

in the quantum system, andy, ng, and ny [ oT2

=|dotl,dot2®|ll'rr’y®|n_,ng,Ng). TO get equations for Oedt) = ——=[1-cog\ U2+ 4T?)Je ™.  (37)
e U/2+ 4T2

only the charge states of the dots, they are summedIpVer

r,r’ and the recurrence is made ovef ng, No. The obtaineéd  pecaysel” is small we are here in the regime where the

set does not depend on the number of channels and leadgossed Andreev channel is more probable than the direct
Thus Gurvitz’s method for generating quantum masteizndreev one because many oscillations between coherent
equation&® can be generalized to the multiterminal case Withgtates can occur before a transition to a reservoir has hap-

many current channels. The full system is given in Appendixpened_ In the other limity,T<T), one gets
B. One can notice that the parasitic processes may generate

. . . TZ
triplet pairs in the lead& ,R. out) = )/lz,iz (e‘Zﬁ\TZ’Fw &2t 2T 39)

VI. DISCUSSION

T? 210112472
. . - -IT2/(U 24T -2r T
The set of quantum master equations will now be used to %ed!) = 7z, L€ THU s @72 - 2 cogUt)e™ .
describe more quantitatively the transport properties. To as-

sess the constraints on parameters, each channel will first be (39
studied, before using the complete set to obtain a numericalg soon as the pair has tunneled to the dots, it goes to the
evaluation of the operation in a realistic regime. reservoirs. And because the direct Andreev frequency is

By solving quantum master equations one can finq th‘?arger than the crossed Andreev ofié> y,T), there is a
average current for each uncoupled channel. This will D&l time interval in which direct Andreev is favored even
done for the symmetric cas@ =I'r, U1=Uy, andT,=To)  {hough the amplitude of oscillatiofand thus tunneling be-
and assuming thdf, g=I'; g=I" when the coupling between een|a) and|e)) is smaller: for a relaxation time I/of the
quantum dots and lead depends weakly on the energy: Th&yer of half a period of oscillation for direct Andreev effect
d|_rect-Andreev current is computed in the stationary regime /), after a timet~ 1/T, the population of stati) can be
with Egs. (23): much larger than population of stajts.

16T2 The same kind of argument can be given to study the
Fm- (32)  effect of S cotunneling. As said before, fad and Ag large
enough, the only parasitic effect is elastic cotunneling. Using

Andreeyy , — ’ —
IL /e_ZFLUbb+FL0-CC_

With U'> 2T, I" we have, as in Ref. 8 only this process and crossed Andreev process in the master
) equation, the efficiency of entanglement is calculated de-
|Andreev,__ el“ﬂ (33) pending onE=|E;-E,| which controlsS-cotunneling prob-
- U2 ability. We want to know the proportion of electrons from a

same pair tunneling to different reservoiBeniangied OF t0

the same reservoilPp,siid- Cycles of current do not over-
sy/ﬁTZ lap so the probability is the same for each cycle. To calculate

m- (34) them, we can use Bloch equations describing Fhe evolution
A on only one cycle to get firsc) and |d) populations as a

The current created by the one-by-one tunneling process fsinction of time. From statéb) the first electron tunnels for

given by example towards the left reservoir. The chance for the second

electron to tunnel towards the righteft) reservoir is

while with yAT?> &2 Eq. (18) can be written

I E Andreev__ el

nT2 2 .
et ger— 35  TrP4(® [Tipcd)] assuming thatpg(0)=1. Thus Penangied
AS+K'T m?AS = [oTrpg(t)dt. ForI' =T'r:
Without taking here into account elastic cotunneling, one [2+ B2+ 292T?
can see here the relationship between parameters that must Pentangled™ —F2 FE2+ 42T (40)
Cc

be fulfilled to approach the ideal working of the entangler:

U’, As>maXT,I'/ ya,el ya]. This can be understood with a From Eq.(40), we can see that the condition to neglé&ct
dynamical study of each channel. Actually Andreev pro-cotunneling, leading t®gnangiea 1, is v.T<maxE,I'].

cesses are coherent processes which create an oscillation be-A more general study using the complete set of equations
tween the state where the Cooper pair isSrand states (see Appendix Bhas to be performed. This set of equations
where the pair of electrons is in the dots. Thus it will be acan be solved in the stationary regime, but the general solu-
competition between the period and the amplitude of osciltion is typically cumbersome. For the sake of readability, it is
lations and the probability of tunneling from a dot to a res-presented here taking into account the parasitic processes
ervoir. Let us first consider the case wheyd>1". Then for  only to first order. This fixes the different energy scales, pre-
resonant crossed-Andreev process viously discussed above, which define the working regime of
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FIG. 7. Charge states populations as a functiorlJofor Ag FIG. 8. Ratio between populations of stdt® (singlet state

=9.5 K,E;=-E»,=0.5 K,FL'R:FLR:T=O.1 K, ¥a 7c~0.2. States  shared between dots 1 anglghd of statge) population(two elec-
|a), |b), [c), [d), |e), |f) refer to Fig. 6. Staték) refers to the triplet  trons in dot 3 for Ag=9.5 K, E;=-E,=0.5K, I'| g=I'{ =T
state shared between dots, and stiggand|h) refer to three elec- =0.1 K, y,, yc~0.2. It indicates the ratio between direct Andreev
trons stategsee Appendix B |g), |h), and|k) populations corre- channel and crossed Andreev channel. The latter is strongly favored
spond to the three lowest curves. The population of states contairwhenU increasegp,/p.(U/I'=90)=83.3).
ing doubly occupied dots vanishes whéh increases. For low
values ofU (U~|[E;~E,|), the asymmetry is introduced by energy compared in calculating the ratio between two populations:
difference_between statés) (two electrons in dot Land [f) (two on Fig. 8 the ratio between the population of siapeand the
electrons in dot p one of statde) indicates which of the crossed Andreev and
direct Andreev processes is the most likely depending/on
the entangler. Here the asymmelry# ' is kept to show  Thus increasindJ increases the efficiency of entanglement.
the role ofS cotunneling: For smallU~T, the two channels become comparable be-
cause decays to reservoirs are much faster than crossed-
I =€l opp + el oeet 26T o, (41 Andreev oscillations.
A large I will allow a fast transition between dots and
1 1 yéTZ reservoirs. That is why increasidgy/ T will favor the most
IL=eoq FL+FR+4F2<F__F_) AE2 likely process which connects the superconductor to the
L 'R dots® On Fig. 9 we can see that increasibgfavors the
T2<1 1 ) decay of a single charge state before another pair tunnels

B ZKHA‘TOFLA_é _2_00 towards the free quantum dot. Actually, because direct An-

dreev oscillations are fasteffrequency~ VE2>+4T?) than

—8AcT T_2 24 r_ﬁ<1 1 + ﬂ% crossed Andreev oscillatiorirequency~ y,T), even if their
O ty? r 09 I'g probability is smaller, the decay towards reservoirs can hap-
2T? I 1 oT pen before one crossed Andreev process has been achieved.
- 2000 55| 2 +—L(1 ——) —
U FL gp FR 0.020
ViN N
+ =, 42 0.016
1“2+87,§T,§+82]} 42
where A=8y4Ta/(T'?+8yATa+£?) and op'=A+1+Tg/T, , 0-0124
+I' /T'r. From Eq.(42) we can exhibit which parameters are %

controlling each contribution to the total current. 0.008+
To complete this discussion, the set of equations is used to

describe the average populations of each state depending on 0.004

some relevant parametersg is taken to be the largest en-

ergy scale. With niobium as superconductor, one takes 0.0004+— , . .

~9.25 K. For a two-dimensional quantum dot, small enough 0 2 4 6 8 10

(10 nn?), one takes|E|~0.5 K andU~9 K, with T, T T

~0.1 K (Ref. 26 and ya, yc~0.2. . FIG. 9. Ratio between populations of stéie (one electron in

On Fig. 7, it can be seen that the population of stategjot 1, two electrons in dotyzand of statec) (one electron in dot)L
containing doubly occupied dots vanishes wikmcreases. for Ag=9.5 K,E;=-E»=0.05 K,I' g=T g, T=0.1 K,U=1 K, 7y,
It is important to notice that whet) ~|Ej|, the system is y.~0.2. Increasind” compared to the transition rate of direct An-
asymmetric and the channel with~ |E; ~E,| is favored be-  dreev and crossed Andreev processes allows us to favor the decay
cause a direct Andreev process becomes resonant. At tlsingle charge states before another Cooper pair tunnels to the free
working point(U/T=90) p¢/p,=0.012. Two channels can be quantum dot. FolJ=1 K=10 T, p,/pe<1.5%.
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Thus increasind’/T at fixed U, direct Andreev process in- ergy so they can be considered as constant with a phase

crease to the detriment of the crossed Andreev one. factor €. NeglectingE - E; <E,~ Ag one obtains
VII. CONCLUSION |A:—(2192L3 f dSRAzeik'f"

In this article, quantum master equations have been de- (2m) 2B,
rived, starting from a microscopic Hamiltonian for the 0.0, Vv (27 7 % _
superconducting-dot entangler. Using the Schrodinger equa- = — ——2 3f dq&f def dkl€ sin gelkr cos?
tion technique developed in Ref. 18, the full equations de- 2 (2m)°Jq 0 0
scribing the evolution of the reduced density matrix are ob- A
tained, retaining as virtual states only single particle XT. (A2)
excitations in the superconductor. Considering only one level 24 <_ - M)
by dot, all possible processes are taken into account in a fully 2m

consistent and nonperturbative way: crossed Andreev pro-
cess, responsible for entanglement, as well as direct AndreéV/
and one-by-one tunneling processes, and cotunneling

ith w=%%k2/2m andV the volume.
Because of parity the integral can be extended from

through the superconductor. The latter connects all the other” © *

processes, yet the quantum master equations written in Ap- 0.0,V (* A

pendix B take into account all processes in a coherent way,, = —= 2—3f dkk(ek" — gkn) s 23
From them, the average current has been calculated. The 2 (2m)°) . A2+ ﬂ_ﬁ_ké
conditions on the entangler parameters, needed for an opti- | 2m  2m |
mal operation of the device, have been derived, and extend (A3)

the result of Ref. 8.

The power of master equations is to give access, not onlyhe four poles are
to the first moment, but to all moments of the current
distribution?’ In a forthcoming papet® shot noise correla- 4 2mA\?2 . 22 _
. : o : ; - 2 2mAAE)
tions are computed in order to give a clear diagnosis of k=xkey/1+ 722 g2 arctan Fl = +ake",
entanglement?® Another extension of Bloch equations is to F
include explicitly spin/charge relaxation or coupling to exter-i =ak.e’?, k,=-ak-e", ks=-ake€’, ky=ak-e™’. The con-
nal degrees of freedom, in order to quantitatively study detoyr is the positive half circle fog*" and the negative one for

coherence effects. g ikr-

Such a derivation of quantum master equations, including
higher order process, can obviously be generalized to a wid(’asA 0,0, V. A om\2 k,elar
class of quantum systems involving discrete charge state$a= 2ir  (2m)3 b 72 K. — ko) (K: — Ka) (Ky —
and coherent/incoherent transitions. It is therefore a valuable (2m) " (ke =)k f_)k( 1k
tool for investigating nanostructures in view of controlling ko™ _ — kg™
guantum information based on spin/charge degrees of free- (Ko — ky)(kp — K3) (Ko — kg) (K3 — Kp) (K3 — ko) (K3 — Ky)

om. — kyehar
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APPENDIX A: CALCULATION OF INTEGRALS X[ 080 — griaker cosf] (A4)

To obtain the evolution equation of the density matrix, it with sin 20=2mA/(a?4%k2), sin #=A/2E¢. Given thata and
is necessary to compute some integrals arising from the cowos#~ 1 (As<Eg), one obtains
pling betweenS and the two dots.
0)sin(k,:r)

ﬂ- - T
1. Crossed-Andreev effect A= EN(O)Qlﬂze (rim (A5)

el
The tunneling of the two electrons of a same Cooper pair _ _ )
to two different dots gives a contributiojsee Egs. [N What follows, 1, is noted: I,=y,T with T
(11a~(11g)]: =(w/2)N(0)Q,Q, and yy=e""™[sin (ker)/ker], the geo-
metrical factor for the crossed-Andreev effect.
U Q1 )
IA:E KUK k1 k2. (A1) .
k E-E-E 2. Direct-Andreev effect

The two energy levels of the dots are assumed to be close to The tunneling of the two electron of a same Cooper pair
us The transitions amplitudeQ depend weakly on the en- to the same dof, gives a contribution
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_ 2 U0 Q4 Qi (A6) 4. S cotunneling
LY E-E-E Local Scotunneling has no meaniritunneling of an elec-
tron between two placgso keeping the geometrical contri-
From the previous calculation, one must take the limit pution of the integrand in this process, one gets
—0 in Eq.(A5). The same result is found when making the

calculation without taking into account the phase faeibr (ud? = [0dD Qo
which generates the geometrical factor. The amplitude of this lc= > E_E-E . (A11)
effect towards thé side is thenT;=(m/2)N(0)Q?. k i Ek
d 2_1, 2= .
3. Self-energy With Jud®=[oi®=6d Ec
The self-energy terms are due to the coupling between a %2K2
discrete statéstate with zero or one electron in a gland a 0.0, V [* ' ' om M
continuum of stategquasiparticle states if). They corre- lo= —2 3] dk KX - e )— s,
spond to the renormalization of these energy levels. They 2ir - (2m)°) .. A2 (ﬂ_’u>
involve |vJ? when the annihilation of an electron $icorre- 2m
sponds to the creation of quasiparticle, dog? when the
creation of an electron corresponds to the creation of quasldsing once again the residue theorem one gets
particle. In Eqs(11a—(11g), this term corresponds to
| |2|Q |2 - 779192 \V; (2_m)277k,2:e_akFr sin 6
le=S E”_kE—_k'E (A7) €7 2r 2m3\ 42/ (ako)Zsin(20)
k i k X[ei(akFr cos f)+0)(azei0 _ e—ifl)
_ ari(akgr cos0+0) (247160 _ A
) |Uk|2|Qki|2 (ace e9]. (A12)
R=Z B (A8)
k ik With a®~1+1/22mA/#%k3)%
for a giveni side.
The sum are transformed into integrals over quasiparticle le= ZN(O)Ql(ZZe‘””fO{M
energies E, with a density of states given bWN(E) 2 Ker
:N(O)E/\J’Ez—Aé. For the calculationE;/Ag is notede; and 1/ 2mA\?( sin(ker)  cogker)
E/Agis notedx. +5< > 2> ( P )] (A13)
a. Terms injv,/2. hke Fr Fr
. The second term is much smaller than the first g
= Lf ( 1 1) X gx=_H In[2(1-e)] <Eg). The only difference with the Andreev amplitude is the
R™2 1 \Wé-1 x/eg-x 2 ' cogker)/ker instead of sifker)/ker. S cotunneling diverges

for r—0.

e (7 . T |
_T‘V—ﬁ E+arc5|r(e,) ~=3 n2,
! 5. One-by-one electron tunneling to the reservoir

- Here the calculation is not complicated by a phase factor.
Ig=CT;, (A9) e .
The sum ovek is simply replaced by an integral over en-
wherec is a numerical constant. ergy:
b. Terms in|u /2. This term never appears alone, so we
just have to calculate terms withy/?—|v,]*: U Qpal?
. o= By
Jr—Ir= i dx _ Ti[ln|e x| 17 L
RTIRT 5 P i~ Al uw
2); &-X 2 => %Q%ﬁl
kB
Jr=C'T,. A10 - E A
To avoid the logarithmic divergence we introduce a physical s VET-A
cutoff—the electron band width—to get a finite result. This Qiﬂl ®dx
does not yield a large contribution because of the logarithm: =N(0) A f 221
if the band width is 1000 times higher than the gap it only 1 XX
gives a factor 82 where ) <E,. Self-energy terms remain QEQI
small. Let us defin&=c’—2c for the following. = N(O)T' (A14)
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APPENDIX B: QU?_NH'II'EUE/IN_I\I{I:’\?C'I;'LEERREQUATIONS FOR Tan = i(E% + E}) 0ap+ 221 yaT(0aa— )
+iN2ycT(0get 0ap) = (IT10ep+ i T207,)
The set of fully consistent and nonperturbative quantum
. . . 1 ~ ~

master equations can be deriyasge main part of the paper — =2l + 2L+ T +TR) o4, (B10)
For simplicity, the space of charge states has been restricted 2
here to 0, 1, 2, or 3 electrons in the two dots. Numerical
calculations have been made with this set of equations in- 0ae= (B + U1 0aet+ 2T (005~ Ted
cluding statesg) (one electron in dot 2, two electrons in dot

.. [~ [~ _
1), |h) (one electron in dot 1, two electrons in dgt and|k) +iV2yeToap = 2V2yaT0pe = 2T207e)

(triplet state shared between dots 1 and 2 ~ (T +TR+ )0 e (B11)
(-)-aa: + 2iTl(g'ae— o'ea) + 2iT2(O-af - O'fa) (-Taf = I(Eé + UéZ) Oaf T 2iT2(0'aa_ 0-ff)
— S [o
X2\”2| '}’AT(O'ab - O'ba) + FLUCC + FRO'dd + I(\'IZ’YCTU-ab - 2\27ATO-bf - 2Tlo-ef)
— 2T +TR)0%a (B1) - (L + TR+ R0, (B12)
c-"be: i(Uil_ Eé) Tpeti VIIZ’YCT(O'bb ~ Oed
Top= +IV2ycT(0pe— Ter) +iN2ycT (o = o) i o b
opp= +iN2ycT(ope= oep) +iV2ycT(opt = o +i1(2T10pa— 2V2YpT 06— V2T 0t
1~ 1~ - /
- 2\*'Ei YaT(0ab = Opa) + EFRUCC+ EFLUdd (L + Tr* T e (B13
1 1 ot =1(Ugo = Ep)aps + iV2ycT(0pn = 0%¢)
+ =T ogqt —Tropn— 2T +T , B2 : I
2 L%9 2 RO~ 20+ TR0y B2) +i(2T,0p, = 2\’E'YAT0'af —\2ycToes)
- (T +Tr+TRops, (B14)
Occ=1YcT(0ca= Tgd) + 2iTo(0ch = nd) + 21 L0aa Ocd= i(Eé - Ei)o'cd +iycT(0ee— Tga)

' _ T 1 - -
+ 2o * Troct 2 0ee™ (T + 2R, +20(Tyoeg = Toon = 5T+ T+ 20+ 2R 0cq,

(B3)
(B15)
(-Tddz =i ’)’CT(O'Cd - O-dc) + 2iTl(0-dg_ Ugd) + Z'f‘RO'aa (.Tch: I(UéZ+ Eé)o-ch-i- 2iT2(0-CC_ (Thh)
+ 2F|_O'bb+ FLUkk+ 2F|’Q(Tff - (FR + 2f|_)0'dd, (84) - i’)’CT‘Tdh - (FL + Fll? + 1—‘R)O-Chi (816)
04g=1(U11+ E)ogg+ 2T 1(04g— 0gg)
. . I ~
Tee= = 2T (00~ 0ed —IN2¥cT(0pe = Tep) —iycTogg— (Tr+T{ +T)ogn, (B17)
+'rogg— 2I'| Oge (B5) .
Oef= '(Uéz_ Uil)o'ef +21(Ty0ea— T1049)
H /— ! !
. ) = +iIV2y:T(0ep— 0pr) = (I'| +I'R)oer,  (B1B)
05t = = 2T y(05 = 01a) = IN2ycT(0ps — Tpp) cren Tt LR
+ FLO-hh_ Zrézo'ff, (BG) b'cg = I(U5_1+ Eé)a'cg + iTlO-Cd_ [ ')’CTO'dg

1 ~
Ogg=—2T1(0g4g— 0gd) — (ar) + I'Rlogg (B7)
0an=1(Ugp+ Epagn+iTo0qc— ivcToen
- — _ _ ’ 1 ~
O =~ 2To(0en= one) = (2T + T)omn,  (BE) - SN+ T+ 20+ 2T o (B20)
3. _ whereE’ and U’ are the renormalized energy Ievefs‘tR
o= E(FRO'CC + ' Logg+ T ogg+ Tronp — (T + Tr) oy, =K"2I'_ gT; o/ Ag corresponds to the one-by-one process. The

superconducting phase, which do not change any result, is
(B9) omitted here.
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APPENDIX C: DERIVATION OF QUANTUM MASTER with ©,,=0,,T, /As corresponds to the one-by-one pro-

EQUATIONS FOR THE ENTANGLER USING A cess. The method only requires the amplitude for probability
PAIR-HAMILTONIAN of processes coupling different states of the quantum system,

The same set of quantum master equations could be ofgnd leads to a following general system:

tained from an effective Hamiltonian applied to the method
developed in Ref. 18. In considering all processes, thisoa,=i> Qu0ay=0y0) = 2 TayTaat 2 Tyalyy,
Hamiltonian can be derived from the microscopic Hamil- v*a yEa yEa
tonian(1) using a projective transformation which eliminates (C2)
states with quasiparticles in the superconductor to the lowest
order:

— 1 Tap=1(Eg=E)oap+i > (Uavﬂvﬁ_i > Qayayﬂ)
Hegr = PHoP + ZV"ZyAT’—E(dIUdE_U -dl_,di)s r*R rra

\!

1
__( 2 I‘a*»y_ E F,Bﬂy>0-a,8
Y#B

+ 2T1(dIUdI—0')S+ 2T2(d£(7d£—0')8+ \‘E‘YCTE dIO'dZO' 2 yFa
7 1
+ E QlaITa'le' + 2 Qra:U'dZU' + E Qld;Ir_UaITO'S * E g B (I"y—wa * 1—‘5_,13)0'75, (CB)
l,o ro l,o YyoT
+> ﬁrdgaa:,,8+ H.c. (c1  Where theQ’s are the coherent transition matrix elements
ro and thel™s the relaxation rates.
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