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We investigate five different methods of modeling the correction to the magnetoconductivity due to the weak
localization effect in two-dimensional(2D) systems. The phase breaking rate is extracted using each method by
fitting experimental magnetoconductivity data of high-quality 2D GaAs hole systems over the range of carrier
densities and temperatures that weak localization is observed. We find that despite corrections to the magne-
toconductivity differing by more than 100% between different methods valid beyond the diffusion approxima-
tion, the phase breaking rate extracted is approximately the same. We also find that if diffusive transport is
incorrectly assumed in high-quality systems, then values of the phase breaking rate approximately 2.5 times
too high are extracted. We demonstrate the regime in which the diffusive transport approximation holds and
explain previous discrepancies in the literature where phase breaking rates much higher than expected from
Fermi-liquid theory have been obtained. We find good agreement of the phase breaking rate with Fermi-liquid
theory untilkFl begins to approach 1.
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I. INTRODUCTION

Electrical measurement of the conductivity as a function
of particle density, temperature, and magnetic field is a com-
mon experimental probe of the physics of two-dimensional
(2D) systems of electrons and holes. At low temperature
these measurements reveal information about the particle-
particle interaction,1 particle-phonon interaction,2 and the
weak localization effect.3

Weak localization, which is the focus of this paper, is the
localization of electrons by the constructive interference of
wave functions which return to the origin after propagating
along time-reversed paths. The length of these paths is re-
stricted by the phase-coherence timetf, which determines
the time scale over which quantum interference effects can
operate in the system. It is well known that weak localization
gives rise to a positive magnetoconductivity.4 Increasing the
magnetic field increases the conductivity by removing the
time-reversal symmetry. This destroys the phase coherence
of progressively shorter paths and removes the localizing ef-
fect. Analysis of this positive magnetoconductivity has been
widely used to measure the phase-coherence time and probe
the dephasing mechanisms in 2D systems.5–15

In order to reliably extracttf from the measured data it is
essential to have an accurate method for determining the ef-
fect of the weak localization on the magnetoconductivity.
While a good physical understanding of the weak localiza-
tion effect exists, the numerical process by which experimen-
tal data are analyzed is not so well understood. Various meth-
ods of calculating the contribution of weak localization to the
magnetoconductivityDswlsBd exist in the literature.16–20 To
date these methods have not been directly compared and it is
not clear whether they are equivalent or produce a different
DswlsBd and hence different estimates oftf from the same
experimental data. The aim of this paper therefore is to re-
view and compare the different methods of generating
DswlsBd available and demonstrate their effect on determin-
ing tf.

We examine five of the most commonly used methods
available in the literature for calculatingDswlsBd, namely(i)
Hikami et al.,16 (ii ) Kawabata,17 (iii ) Wittmann and
Schmid,18 (iv) Zduniaket al.,19 and(v) Dmitriev et al.20 (all
of which we subsequently refer to by the first author name).
Using the same data from high-qualityp-GaAs systems we
compare these methods and, in particular, choose the low
carrier density regime where spin relaxation can be
neglected.21

We show that each method predicts a markedly different
correction DswlsBd to the magnetoconductivity. For high-
quality systems the variation in the magnitude of the weak
localization predicted by the different methods can be more
than 100%. Despite this, the values oftf extracted from the
same experimental data using four of the methods agree
closely and give a value close to the Fermi-liquid theory
prediction fortf. The other method, that of Hikami, is valid
only in the diffusion approximation and therefore is at the
limit of applicability for high-quality samples. The method
of Hikami predicts a value oftf a factor of approximately
2.5 times smaller than the other methods. This factor of ap-
proximately 3 between the value oftf extracted using the
Hikami method and the Fermi-liquid prediction has been re-
peatedly observed in experimental measurements of the
phase breaking ratetf

−1 on a variety of material
systems.8,9,12–15Our analysis of theB dependence ofDswl
allows us to explain the discrepancy.

The paper is laid out as follows. In Sec. II we outline the
five different methods of calculatingDswlsBd. In Sec. III we
give details of the samples and methods used to obtain and
analyze the experimental data. In Sec. IV B we compare the
values oftfsp,Td extracted for each method using two dif-
ferent samples withrs,12 and,23 (wherers is the ratio of
the carrier’s potential energy due to interactions to their ki-
netic energy). Following our conclusions we present, in Ap-
pendix A, typographical corrections to some of the basic
references in the field(essential when calculatingDswl), and
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finally in Appendix B we give a detailed description of the
way in which we generate the quasiprobability of return of
the hole to the origin,Pn. This is needed for the methods of
Kawabata, Wittmann, Zduniak, and Dmitriev but has not
been described in detail in the literature to date.

II. METHODS OF COMPUTING Dswl„B…

In this section we compare the five methods of calculating
DswlsBd which are later used to extracttf from the experi-
mental data. These methods are as follows.

(a) Hikami (1980): An easily applicable method de-
rived by a renormalization-group process, valid only in the
diffusive transport regime.

(b) Kawabata(1984): A more complicated method de-
rived using Green’s functions. The first method developed
that was valid beyond the diffusive limit.

(c) Wittmann(1987): A method derived from a differ-
ent physical starting point from Kawabata, considering elec-
tron eigenstate overlap, which results in a different math-
ematical framework. Wittmann rescales the momentum
scattering lengthl due to the effect of the weak localization.

(d) Zduniak(1997): An expansion of and correction to
Kawabata’s method which includes spin-orbit effects. Simi-
lar to Wittmann in mathematical formulation, but does not
rescale the momentum scattering length due to the effect of
the weak localization.

(e) Dmitriev (1997): An extension of the Kawabata
method taking into account a phase-coherent nonbackscatter-
ing effect not considered by the other methods.

The first four methods have been extensively used in the
literature to extract phase-coherence times from experimental
data. However it is not clear from the literature which
method should be applied to different experimental systems,
or indeed how the methods compare. It is the intention of
this paper to compare the different methods for use in ex-
tracting phase breaking rates from high-quality 2D systems.
We will see that while all the methods of calculatingDswlsBd
yield results which are qualitatively similar, there are signifi-
cant quantitative differences between them.

All five methods listed above consider isotropic large-
angle scattering of the type caused by a short-ranged scatter-
ing potential. To our knowledge no analytical method exists
which allows weak localization due to anisotropic small-
angle scattering caused, for example, by remote ionized im-
purities. A recent paper22 has numerically modeled the effect
of small-angle scattering. However, as we will discuss in
Sec. IV A, the values oftf extracted from experimental data
are not greatly affected by whether the analysis is performed
for isotropic or anisotropic scattering.

Before discussing the methods in detail it is necessary to
define our terminology. For the holes(or electrons) in a 2D
system the relevant length scales when considering the weak
localization effect are(i) the momentum relaxation lengthl,
(ii ) the phase relaxation lengthlf, and (iii ) the magnetic
length lB=Î" /2eB (where B is the external magnetic field
perpendicular to the 2D system). From the first two length
scales we find the momentum scattering timet= l /vF and
phase relaxation timetf= lf /vF (wherevF is the Fermi ve-
locity).

It is convenient to define two reduced parameters which
are frequently referred to in the theoretical methods which
follow. The first is the ratio of the elastic-scattering length to
the phase relaxation length,

z= t/tf = l/lf, s1d

which varies inversely with the magnitude of the weak local-
ization effect. Second, the reduced magnetic field

b = B/B0 = l2/lB
2 , s2d

whereB0=sm*d2/2phet2 and m* is the effective mass. The
reduced field is defined such thatb=1 at lB= l or equivalently
2pl2B0=f0 wheref0=h/2e is the magnetic flux quantum.
z!1, b!1 is therefore the diffusive regime, andb*1 indi-
cates magnetically localized nondiffusive transport.

We now consider how the well-known Drude expression
for the conductivity of a 2D system,sxxsBd, is modified to
include the effects of weak localization. Ignoring the
electron-electron interaction for the moment(it will be con-
sidered in Sec. III) we can write the conductivity as the semi-
classical Drude term plus a quantum correction,Dswl, which
accounts for phase-coherent effects:

sxxsBd =
e2

h

kFl

1 +SetB

m* D2 + Dswl . s3d

The perturbative expansion ofDswl yields four first-order(in
1/kFl) terms, which may be represented by four distinct
Feynman diagrams.20 Of these, two cancel each other and
need not be considered. Of the two remaining diagrams one
makes a negative contribution to the conductivity and is the
“conventional” weak localization pictured physically as
phase-coherent backscattering of electrons. The Feynman
diagram which correspond to this conventional weak local-
ization term is sometimes known as the “maximally crossed”
diagram.

The other first-order term in the expansion ofDswl repre-
sents another phase-coherent contribution to the conductiv-
ity. This is positive and not included in the conventional
weak localization model. It is known as nonbackscattering
contribution to the weak localization. A physical picture of
this positive contribution is that it represents anisotropic
scattering of the carriers from the impurity potential caused
by phase coherence at the origin. This should not be con-
fused with the anisotropic small-angle scattering in samples
where ionized impurities are the dominant cause of the scat-
tering. In this case the asymmetry arises from constructive
interference at the origin between paths with different num-
bers of scattering events. This effectively increases the
chance of forward scattering at the expense of large-angle
scattering events,20 which is equivalent to increasingz and
reducing the magnitude of the weak localization.

Before we can proceed we must consider whether the
phase-coherence effects can be completely represented by
the inclusion ofDswl in Eq. (3). In 1985 it was shown by
Hershfield and Ambegaokar23 that if only the conventional
weak localization correction is considered, then the momen-
tum scattering length is reduced by a factor ofs1+zd. A
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theory which models the weak localization correction due
only to coherent backscattering should therefore scale the
momentum scattering length by this factor ofs1+zd. As Eq.
(2) shows this will reduce the value of the reduced magnetic
field b by a factor ofs1+zd2.

Reference 23 however does not include the contribution
of the phase-coherent nonbackscattering to the weak local-
ization. If both first-order correction terms to the conductiv-
ity are taken into account, then the effect of the nonbackscat-
tering term cancels out the effect of the coherent
backscattering on the momentum scattering length.20 This
means thatl and henceb do not need to be rescaled. There-
fore Eq.(3) is correct as it is written, but implicitly assumes
that both first-order contributions toDswl are included.

A. Hikami (1980)

The magnitude of the magnetoconductivity correction due
to weak localization, in two dimensions, was first quantified
by Hikami et al. via a renormalization-group method. Using
the assumption that the electron transport is diffusive they
produced a closed-form expression for the magnetoconduc-
tivity which may be written(in the absence of spin relax-
ation) as

DswlsBd =
− 2e2

ph
FCS1

2
+

1

b
D − CS1

2
+

z

b
DG , s4d

where C is the digamma function.24 Hikami’s method in-
cludes only the conventional weak localization correction to
the conductivity and not the nonbackscattering correction.

Hikami’s method has the dual benefits of simplicity and
computational ease of use. However it is limited to the dif-
fusive regime, and hence is valid only for low magnetic
fields sb!1d and low temperatures and/or low-quality
samples where the phase-coherence length is much longer
than the momentum relaxation lengthsz!1d. High-quality
samples have large mobilities, and consequently long mo-
mentum relaxation lengthsl and largerz= l / lf. In order to
study weak localization in high-quality samples it is there-
fore necessary to go beyond the diffusion approximation.

B. Kawabata (1984)

The method developed by Kawabata was the first to go
beyond the diffusion approximation. It is, in principle, valid
for all b (as are the remaining methods listed here). In fact
we see later that it fails for largeb*20. Kawabata employs
a Green’s-function method to calculate the contribution of
the weak localization to the magnetoconductivity by first cal-
culating the quasiprobability of return of an electron(or
hole) to the origin afterN−1 scattering events. The qua-
siprobability of return is defined in terms ofPn,

Pn =
s

1 + z
E

0

`

dtLnst2des−st−t2/2d, s5d

whereLn is thenth Laguerre polynomial ands=s1+zdÎ2/b.
In the absence of the nonbackscattering correction
on=0

` sPndN may be thought of as the unnormalized probabil-

ity of a particle returning to the origin afterN−1 scattering
events(note thatn is an index with no physical meaning).

Once Pn is known (the process of calculatingPn is de-
tailed in Appendix B) the weak localization correction to the
magnetoconductivity can be calculated by summing over all
paths withN sections(N−1 collisions),

Dswl ~ o
N=3

`

o
n=0

`

Pn
N. s6d

The outer summation should not include paths withN=1 or
2, which do not contribute to the magnetoconductivity be-
cause they have no area. However these paths were incor-
rectly included in the Kawabata method.19

The effect of weak localization can be found by summing
over all paths via

Dswl = −
ae2

ph
sFA + FBd, s7d

where a is a material dependent parameter which may be
adjusted to account for additional scattering processes such
as intervalley scattering in Si. For thep-GaAs samples stud-
ied here it is fixed ata=1. FA is the coherent backscattering
contribution, i.e., normal weak localization andFB represents
the contribution from the nonbackscattering mechanism.
This nonbackscattering mechanism is not included in Kawa-
bata’s method, thusFB=0.

According to Kawabata’s theory,FA is given by

FA = ln
1 + z

z
− 4fFKfbsnK + 1d/4g + FKs0dg + bo

n=0

nK 1

1 − Pn
,

s8d

whereFK is a function defined by Kawabata to be

FKsyd =
1

4
F8y + s1 + zd2

2
+ Î8y + s1 + zd2

+ lnsÎ8y + s1 + zd2 − 1dG . s9d

The first term of Eq.(8) is, neglecting the contribution of the
nonbackscattering correction, theb=0 limit of the weak
localization.18 This is not present in Kawabata’s method but
it is necessary to add it as an offset so that we may later
directly compare Kawabata’s method with others.

The term in the summation of Eq.(8) is equivalent to the
outer summation of Eq.(6) from N=1 to `. To correct for
the inclusion of theN=1,2 terms in Eq.(8) (which cause it
to diverge) Kawabata includes the diverging functionFK and
finds the conductivity correction as the difference of these
diverging terms. As a result of the divergences, the sum must
be truncated at smallnK, wherenK is given by the closest
integer toEF /"vc. In practice, small variations innK caused
by the variation in the particle density makes little difference
to Dswl and in this papernK was fixed at 10 for consistency
with Taboryski and Lindelof.8 Kawabata provided a recur-
sion relation solution to Eq.(5) which allows computation of
Pn up to nK.
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The Kawabata method uses the correct value of the mo-
mentum scattering length, i.e., it does not rescale it bys1
+zd. This can be seen as a partial inclusion of the nonback-
scattering correction.

C. Wittmann (1987)

Wittmann’s method is essentially a version of Kawabata’s
that does not include theN=1,2 paths but does rescale the
momentum scattering length bys1+zd. A different physical
approach, considering the overlap of the electron eigenstates
of the system as opposed to a Green’s-function method, was
used to derive the equations but the end result is similar.
Thus the weak localization correction is given by Eq.(7)
with

FA =
b

s1 + zd2o
n=0

`
sPnd3

1 − Pn
s10d

and FB=0 (again the nonbackscattering is not considered).
As a result of the cubic term this equation can be seen to
recreate Eq.(6).

Equation(10) avoids the diverging terms of Kawabata’s
method but requires the summation up to large(in principle
infinite) n. Large errors can result ifn,105, so this method
is somewhat computationally expensive. To calculatePn to
large n Wittmann et al. provided two new approaches to
calculatingPn, which are discussed further in Appendix B.

From Eq.(10) we can see that Wittmann did include the
factor of s1+zd that comes from the rescaling of the momen-
tum scattering length by the conventional weak localization.
While this is perfectly consistent for a theory that only in-
cludes the conventional weak localization term, the effect of
the nonbackscattering phase-coherent scattering is to cancel
out the rescaling of the momentum scattering length, i.e.,
Wittmann (unlike Kawabata) does not include the nonback-
scattering phase-coherent correction to the conductivity in
any way.

D. Zduniak (1997)

Zduniaket al.19 corrected Kawabata’s method by remov-
ing the N=1,2 terms. They also expanded it by including
spin-orbit effects, which become relevant when the magnetic
field is smaller thanBso=m* 2

/2phetso
2 , wheretso is the phase

relaxation time due to spin-orbit effects. If we taketso@tf

to compare directly with the other methods, then Zduniak’s
method, can be simplified to

FA = bo
n=0

`
sPnd3

1 − Pn
s11d

and FB=0. Thus Zduniak’s method is the same as Witt-
mann’s except for the absence of the factor of 1/s1+zd2 due
to the reduction oft by the weak localization correction.

Like Kawabata’s method, Zduniak partially includes the
effect of nonbackscattering phase-coherent correction by
leaving the value of the momentum scattering length un-
modified. It is not rescaled by a factor ofs1+zd due the

cancellation of the effects of the two first-order weak local-
ization mechanisms. However, the nonbackscattering phase-
coherent correction is not taken into account explicitly.

E. Dmitriev (1997)

The most recent method in the literature is similar to that
of Kawabata, Wittmann, and Zduniak except that it also in-
cludes the contribution to the conductivity of the nonback-
scattering phase-coherent correction, though not spin-
relaxation effects. It is the only method which includes all
first-order corrections to the magnetoconductivity.

Again we use Eq.(7) for the weak localization correction
to the conductivityDswl, with FA given by Eq.(10) and

FB = − bo
n=0

`
Pn„sPn

1d2 + sPn
−1d2

…

2s1 − Pnd
. s12d

A new term Pn
m defined similar toPn was introduced by

Dmitriev et al. to account for the nonbackscattering correc-
tion:

Pn
m =

s
În + s1 − md/2

E
0

`

dt t Ln−s1+md/2
1 st2des−st−t2/2d,

s13d

where Ln
1 is the first associated Laguerre polynomial and

P0
1=0. Note that this is a correction to the published defini-

tion of Dmitriev et al.20 which is typographically incorrect25

(other typographic errors in papers which comprise all five
methods are presented in Appendix A). Details of the calcu-
lation of Pn

m are presented in Appendix B.

F. Comparison of methods

Using Eqs.(4) and (10), with FA and FB defined appro-
priately for each method, we have calculated the theoretical
conductivity correction predicted by the five methods as a
function of reduced magnetic field. This is shown in Figs.
1(a)–1(c) for increasingz, corresponding to increasing tem-
perature or sample quality, respectively. All methods produce
curves which show qualitatively similar positive magneto-
conductivity due to the suppression of the weak localization
by the magnetic field.

For smallz (wheretf@t) and smallb!1 electron trans-
port is diffusive. In this limit all methods appear quantita-
tively identical as shown in Fig. 1(a) except Dmitriev which
includes the nonbackscattering correction. We also see that at
low z, Dswlsbd has a strong magnetic-field dependence as
electrons scatter from a large number of impurities and still
return diffusively to the origin with their phases intact. The
maximum number of collisions with impuritiesNmax that
paths contributing to weak localization may contain is given,
crudely, by,1/z. After this their phase is randomized by
inelastic processes. Therefore the conductivity correction is
partly determined by long paths with large areas. Only a
small magnetic field is required to destroy the phase coher-
ence of these large area paths so the conductivity is sensitive
to small changes in the magnetic field even at lowb.
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As z increases to 0.1 and 0.5 in Figs. 1(b) and 1(c) we see
that Dswlsbd becomes quantitatively less field sensitive to
changes inb up tob,1. Heretf,t and inelastic processes
destroy the phase coherence of long paths atb,0. Therefore
long paths do not contribute to the conductivity correction,
so all methods give aDswlsbd which is smaller and less field
sensitive at small magnetic fields than for smallz.

As the magnetic field increases all methods except Kawa-
bata predict that weak localization correction approaches
zero. Increasing the magnetic field reduces the weak local-
ization correction for two reasons, first it destroys the phase
coherence of ever-shorter diffusion paths. Second, it local-
izes the holes(electrons), to within the magnetic length
scale, reducing their ability to diffuse.

Above b*20 Kawabata’s method predicts an unphysical
increase in the weak localization correction, which is seen to
diverge in Figs. 1(a)–1(c). This is due to the inclusion of the
divergent terms discussed earlier in Sec. II B. In practice,
this failure is not so important as the quantum Hall effect
dominates the magnetoconductivity at these high fields and
generally these data are not used for weak localization fit-
ting.

In Fig. 2 we replotDswl for the five methods, on a linear
scale, over the range ofb andz that is relevant to our experi-
mental data. It is the magnetic-field dependence ofDswl in
these ranges that determines the values oftf extracted from
our experimental data in Sec. IV B.

We first compare the Hikami method, which is the only
method valid only in the diffusive limit, with the others. Asz

increases fromz,0.1 to 0.5 Hikami predicts an increasingly
different dependence ofDswl on b than the other methods,
even for low b. Figure 2 shows that the gradient ofDswl
predicted by Hikami is considerably steeper across the whole
range ofb andz than for any of the other methods.

The Hikami method is known to be invalid atb,1 due to
the violation of the diffusion approximation by magnetic
localization.17 By comparingDswl predicted by the Hikami
method with the other methods we can better quantify it’s
limits of validity. The Hikami method can be most directly
compared with that of Zduniak and Kawabata, as neither
Zduniak nor Kawabata rescale the momentum scattering
length l, and include only the conventional weak localiza-
tion. Deviations of the Hikami trace from that of Zduniak
and Kawabata therefore shows when the Hikami method is
moving outside its range of validity. From Figs. 1 and 2, and
other plots at intermediatez (not shown) we can quantify the
limits of validity of the Hikami method to bez&0.2, b
&0.1.

Therefore the method of Hikami is valid for only a frac-
tion of a typical set of temperature-dependent data. Due to
the insensitivity of the magnetoconductivity to changes in
the magnetic field at lowb and moderatez we see that inter-
preting data from high-quality samples(which have large
momentum scattering times and therefore largez values) re-
quires going to magnetic fields approachingb=1 or more.
However, forb*0.1 the diffusion model we have been con-
sidering breaks down and the method of Hikami is no longer
appropriate.

FIG. 1. (a), (b), and(c) show the conductivity correction due to
the weak localization,Dswl, generated by the five methods with for
z=0.01, 0.1, and 0.5, respectively.n, Hikami; s, Kawabata;h,
Wittmann;3, Zduniak;j, Dmitriev. Note the varyingy-axis scale
on each plot. The arrow on the right shows the effect of increasing
temperature or, equivalently, increasing the sample quality at a fixed
temperature.

FIG. 2. In (a), (b), and (c) we have replotted the conductivity
correction due to the weak localization,Dswl, on a linear scale.
Dswl is generated by each method withz=0.01, 0.05, and 0.1, re-
spectively.n, Hikami; s, Kawabata;h, Wittmann; 3, Zduniak;
j, Dmitriev. Note the differenty-axis scale on each plot. The arrow
on the right shows the effect of increasing temperature or, equiva-
lently, increasing the sample quality at a fixed temperature.
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We now compare three of the other methods, those of
Kawabata, Wittmann, and Zduniak, which are valid beyond
the diffusion approximation. We begin with Kawabata and
Zduniak which we might expect to be dissimilar given the
differences in Eqs.(8) and (11). However it is noteworthy
that even though Kawabata’s method is formally incorrect19

and only uses values forPn with nø10, it produces for allz
(as long asb&20) results almost indistinguishable from that
of Zduniak [which requires computation of the series in Eq.
(10) up to approximately 105 terms]. These results suggest
that in the absence of spin-orbit coupling, and belowb,20,
the method of Kawabata is functionally equivalent to Zdun-
iak while being more computationally efficient. In the re-
mainder of this section the methods of Zduniak and Kawa-
bata are treated identically.

For smallz, Wittmann and Zduniak are almost identical as
the factors1+zd2 for rescaling of the momentum scattering
length is nearly negligible. Asz increases Wittmann predicts
a progressively smaller weak localization correction to the
conductivity. However the rescaling bys1+zd2 causes only a
small difference in the predicted field dependence of the con-
ductivity. As a result the field dependencedDswl /db for the
Wittmann method is very similar to that of Zduniak.

The last method valid beyond the diffusion approximation
is that of Dmitriev. This method shows an obvious difference
from that of Zduniak for all the values ofz plotted in Figs.
1(a)–1(c). Zduniak and Dmitriev use the same expressions
for FA, thus any difference betweenDswl in the two methods
is due to the nonbackscattering correction, included asFB in
Dmitriev. Recall that the nonbackscattering effect reduces
the magnitude of the weak localization, similar to increasing
the momentum relaxation time of the electrons and effec-
tively increasingz=t /tf. The suppression of the weak local-
ization at b=0 by the nonbackscattering mechanism there-
fore grows stronger asz increases, as can be seen in Fig. 1.
At z=0.1 the difference inDswl caused by the inclusion of
the nonbackscattering mechanism is around 30% at lowb. At
higherz the difference grows to a factor of 2–3 but again the
field dependencedDswl /db is very similar for the two meth-
ods.

As z increases both Wittmann and Dmitirev predict a pro-
gressively smaller weak localization correction than Zdun-
iak. While for a different reason in each case(rescaling ofl
and inclusion of the nonbackscattering effect, respectively),
the two methods in fact predict values ofDswl which are
consistent to,20% over the whole range ofz andb. Witt-
mann predicts approximately the same field sensitivity for
Dswl as Dmitriev.

In summary,Dswl predicted by Hikami is considerably
more field sensitive than for methods valid beyond the dif-
fusion approximation and these latter methods produce very
similar magnetoconductivity corrections, except for a field-
independent offset. We now move on to consider how these
methods are used to interpret experimental magnetoconduc-
tivity data.

III. EXPERIMENTAL METHOD

We measured the low-temperature magnetoconductivity
of two high-quality 2D hole systems. The samples A1433/37

and T402/5 are gated, modulation doped GaAs-AlGaAs het-
erostructures grown by molecular-beam epitaxy on(311)A
substrates26,27 patterned into Hall bar geometries. We use
standard four terminal low-frequency lock-in measurement
techniques, with measurement currents below 1.5 nA to
minimize sample heating effects.

The carrier density of sample A1433/37 was measured to
be p=2.431011 cm−2 and the mobility m=2
3105 cm2 V−1 s−1 at zero gate bias. Sample T402/5 was
made from an extremely high-quality heterostructure, with a
much higher mobility of m=8.33105 cm2 V−1 s−1 at p
=7.731010 cm−2 (zero bias) and a peak mobility in excess of
1.23106 cm2 V−1 s−1. In both samples Shubikov de Haas
measurements show that only the heavy-hole subband is oc-
cupied, which removes any possible dephasing from inter-
subband interactions.28 While p-GaAs systems can show
magnetoresistance effects due to spin-orbit coupling these
only occur at high carrier density.21 At the low densities stud-
ied here spin-orbit effects are not important and hence are
not included in our analysis.

The inversion asymmetric potential of the 2D well that
the holes reside in is known to split the degeneracy of the
light-heavy holes leading to the formation of two carrier spe-
cies with masses ofm−

* in the ranges0.15–0.23dme (Refs. 29
and 30) andm+

* ,0.38me.
31 In view of this we take an aver-

age value ofm* =0.3me.
32

For each sample we measuredrxx andrxy at low B for a
variety of temperatures and densities. A typical example for
sample A1433/37 at a density of 4.531010 cm−2 is shown in
Fig. 3(a). Matrix inversion was performed on therxx andrxy
traces to produce the conductivitysxx andsxy as a function
of magnetic field,

sxxsBd =
rxx

rxx
2 + rxy

2 , sxysBd =
rxy

rxx
2 + rxy

2 , s14d

as shown in Fig. 3(b).
For high mobility samplesrxx andrxy are of comparable

magnitude(asrxx,rxy/Bm). Therefore there is a significant
negative parabolic magnetoconductivity insxxsBd arising
from the field dependence ofrxy. The dashed line in Fig. 3(b)
shows the negative magnetoconductivity in the absence of
weak localization. The positive magnetoconductivity due to
the weak localization is superimposed onto this negative
magnetoconductivity background. Figure 3(c) shows the
positive magnetoconductivity due to the weak localization
effect alone, and is the difference between the measuredsxx
trace and the dashed line in Fig. 3(b).

At small magnetic fields where the quantum Hall effect is
negligible(B&0.25 T in these samples) we use the semiclas-
sical Drude formalism to describe the transport in our 2D
samples. The negative magnetoconductivity arises from lo-
calization of the electrons in cyclotron orbits. We include
two quantum correction termsDswl due to the weak local-
ization (discussed in Sec. II) andDshh, due to the hole-hole
interaction. The conductivity is then

sxxsBd =
s0

1 +SetB

m* D2 + DswlsB,zd + Dshh, s15d

wheres0=pe2t /m* =se2/hdkFl.
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This approach is strictly valid only when the holes can be
treated as particlelike wave packets on the scale of the im-
purity separation, i.e.,kFl @1 (which is equivalent tos0
@e2/h). Equation(15) also assumes that the quantum cor-
rectionsDshh and Dswl are small compared to the Drude
term. At the low carrier densities we are using this theoretical
framework is near the limits of its validity but is consider-
ably more appropriate than models of hopping conduction,
which are only valid whens0!e2/h.

We use Eq.(15) to fit our magnetoconductivity traces. It
contains three fitting parameters:t (the momentum relax-
ation time), z (given byt /tf), andDshh (the contribution to
the magnetoconductivity from the hole-hole interaction). It is
known33 that the magnetic-field dependence of the conduc-
tivity due to hole-hole interaction,Dshh, is negligible for
gmBB!kBT. For our devicesgmBB&kBT even at our lowest
temperatures and highest fields. This means that the
magnetic-field dependence of the hole-hole contribution tos
is weak. Including the magnetic-field dependence of the sin-
glet channel interaction term33 changes the extracted values
of tf by <5%. Given the uncertainty about the field depen-
dence of the triplet term, we have neglected the hole-hole
interaction term and treatedDshh as a constant.

For the data analyzed here the perpendicular magnetic
field need to spin polarize the 2D system,EF /gmB is several
tesla. The fields used are&0.25T which will not greatly
affect the ratio of the spin populations and hence the hole-
hole interaction. Therefore the magnitude of the hole-hole
correction to the magnetoconductivity is treated as field in-
dependent.

Two things are necessary to extractt, z, andDshh from
the experimental data by fitting with Eq.(15). First, a method
must be available to calculate the contribution to the conduc-
tivity as a function ofb and z — this is one of the five
methods described in Sec. II. Second, a procedure is needed
to fit the weak localization contribution to the magnetocon-
ductivity data and estimate the value oftf.

The analysis of high-quality samples(whererxx,rxy) is
complicated by the overlap of the parabolic negative magne-
toconductivity and the positive magnetoconductivity due to
the weak localization. We detail two possible procedures to
take account of this, so that we can fit the weak localization
and hence extracttf. The first has been used previously in
the literature and the second we have developed and used
here. The two procedures produce approximately consistent
results.

In the first fitting procedure,11 shown in Fig. 4(a), the
Drude and hole-hole interaction terms are fitted to the high-
est magnetic-field data available before the quantum Hall
effect becomes significant,B*0.25 T. The first fit of the
high-field data fixest and allows the Drude and hole-hole
interaction contributions to the low-field magnetoconductiv-
ity [shown in Fig. 3(b) as the dashed line] to be determined.
The contribution of the weak localization to the magnetocon-
ductivity is then determined by subtracting the dashed line

FIG. 3. (a) Typical low fieldrxx andrxy data,(b) the derivedsxx

and the sum of the Drude and hole-hole interaction terms(dashed
line), and(c) the difference of thesxx data and the fitted Drude and
hole-hole terms. These data come from sample A1433/37 withp
=4.5031010 cm−2.

FIG. 4. (a) Comparison of fitted points(symbols) and experi-
mental data for each of the five methods using the two-stage pro-
cedure fit. The experimental data(solid line) come from A1433/37
with p=4.5031010 cm−2; symbols give best fit according to
method;n: Hikami; s, Kawabata;h, Wittmann;3, Zduniak;j,
Dmitriev. Each method is offset with associated experimental data
by 0.2e2/h for clarity. (b) Simultaneous three-parameter fit results,
again from sample A1433/37 withp=4.5031010 cm−2, each
method is offset by 0.2e2/h for clarity. Note that the experimental
data appears different in each fit in(b) because the scaling of the
reduced magnetic field depends ont.
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from the experimentally measuredsxx to give the data shown
in Fig. 3(c).

We can now extract the value oftf by fitting Dswl pre-
dicted by Eq.(4) (the Hikami method) or Eq. (7) using the
appropriate expressions forFA andFB (the Kawabata, Witt-
mann, Zduniak, or Dmitriev methods) as demonstrated in
Fig. 4(a). In each case we have fitted over the whole range of
available data and extracted the values fort andtf. For this
procedure the value oft extracted is independent of the
method of generatingDswl. We see that the four methods
valid beyond the diffusion approximation produce similar
values oftf while the method of Hikami gives a signifi-
cantly smaller one. This will be discussed in detail in the
following section.

Close examination of the fits in Fig. 4(a) shows that the
residuals34 are correlated to some extent, i.e., the fit deviates
from the experimental data through more than statistical er-
ror. This is not surprising as we have not included contribu-
tions to the magnetoconductivity that may arise from the
field dependence of the hole-hole interactions,35 spin
relaxation,7,19 and antilocalization due to subband filling or
interface roughness.28 In addition, as mentioned earlier, Eq.
(15) strictly applies only forkFl @1. Nevertheless the experi-
mental data can be reasonably well replicated by varying the
fitting parameterst, t, andDshh.

In the secondfitting procedure we use asimultaneous
three-parameter fit of Eq.(15) without separating the weak
localization contributions from the Drude magnetoconductiv-
ity. The parametert is used to generate the Drude term and
the parameterz and the magnetic fieldb are the inputs to the
five methods of generatingDswl. Typical three-parameter fits
are given in Fig. 4(b). The raw data in each case are identical
but the x-axis scaling differs slightly due to the different
values oft. These fits show the same small nonstatistical
deviations from the data as Fig. 4(a). Again we see that the
four methods valid beyond the diffusion approximation pro-
duce similar values oftf while Hikami produces a signifi-
cantly lower value.

The simultaneous three-parameter fitting procedure is
faster, simpler, and less subjective than the two-stage proce-
dure as no decision need be taken as to the fitting range of
the first stage. However the function which is being fitted to
the sxx data of Fig. 4(b) is the sum of the three terms in Eq.
(15) rather than only theDswl term to the data of Fig. 3(c)
and as such it is not as intuitively simple to interpret.

In both procedures the fitting for each method shown in
Figs. 4(a) and 4(b) is done over the full range of data. It is
known that the methods of Kawabata, Wittmann, Zduniak,
and Dmitriev are valid over the full range of data. In contrast
the method of Hikami is not theoretically valid over the full
range of data. However we have found that fitting Hikami
over all values ofb produces values oftf within ,10% of
those found by fitting only theb,0.5 data,10 i.e., limiting
the fit with Hikami tob,0.5 has no significant effect on the
resulting value oftf extracted.

We can see that in both fitting procedures the method of
Hikami gives at least as good a fit as the other methods even
though it is invalid over most of the range ofb. These results
emphasize that without a detailed analysis of the validity of
each of the methods it is impossible to judge — on the basis

of the fit alone — whether the method is valid under the
conditions of use and therefore whether the extracted param-
eters may be trusted.

Each of the two fitting procedures produce similar values
for tf

−1, within 15%. For each of the two fitting procedures
Hikami produces a value oftf significantly lower than the
other methods(for which tf is approximately the same).
There is however a small difference between the procedures,
for the methods valid beyond the diffusion approximation the
two-stage fit gives results fortf that are consistently lower
than those of the three-parameter fit results.

There are two main reasons for the differences between
the two different fitting procedures. First, the two-stage pro-
cedure explicitly assumes that there is no effect due to the
weak localization correction at high field(b*1 in this case).
Although this is not true(Fig. 1 shows thatDswl is still
significant atb,1) this produces only a small change int.
This can be seen by comparing the values derived fort using
the two fitting procedures shown in Fig. 4, which agree to
within ,10%. Second, the two-stage procedure fixes the the-
oretical value ofsxxsB=0d to be identical to the experimental
value ofsxxsB=0d whereas the three-parameter fit allows the
curves to “float” over each other until the best fit is found.
This reduces the parameter space available to the two-stage
fit somewhat and also makes it vulnerable to systematic er-
rors that exist only at very small fields, for example, spin-
relaxation-induced antilocalization7,19 or subband/ interface
roughness effects.28 These systematic effects will also affect
the parameters induced from the three-parameter fit. How-
ever, the quality of the three-parameter fit will suffer less
because this procedure does not force the fit to be the same
as the experimental data at the point which the systematic
errors are at their largest. For this reason we fit all the re-
maining data with the three-parameter fitting procedure.

Having fit the full range of data we must first consider
another complication before we determine the temperature
dependence oftf. We must ensure that the temperature of
the holes is well known — it is not enough to simply monitor
the lattice temperature of the heterostructure and assume that
the two are the same. Unavoidable experimental limitations
(the lack of phonons to thermalize the holes at low tempera-
tures) frequently limit the temperature of the 2D hole system,
as distinct from the temperature of the crystal lattice, to
*100 mK.36 This has the effect that any temperature-
dependent quantity such as the phase breaking rate will ap-
pear to saturate as the measured temperature approaches
zero. We have therefore determined the hole temperature in-
dependent of the lattice temperature by using the 2D hole
system as its own thermometer. This was achieved by mea-
suring the resistivity at then=2 Shubnikov de Haas minima,
and fitting it to an exponential activation function, as shown
in Fig. 5(a). The plotted points deviate from the expected
activation behavior exponential at low temperature when the
hole temperature deviates from the lattice temperature. The
relationship of the lattice temperature and hole temperature
determined in this way is shown in Fig. 5(b). For tempera-
tures above 200 mK, the two are always in good agreement.
However significant deviations are found at lower tempera-
tures. Thereforetf is analyzed as a function of the tempera-
ture of the 2D hole system itself,Thole, determined from the
Shubikov de Haas oscillations.
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To summarize, we have found a preferred fitting proce-
dure [distinct from the five different methods of generating
Dswlsbd described in the preceding section], which shows
that significantly different values oftf may be extracted
from the same conductivity data depending whether Hika-
mi’s method or one valid beyond the diffusion approximation
is used. Having also used the correct hole(not lattice) tem-
perature, we are in a position to analyze data for both
samples at differentp and T to investigate the temperature
and density dependence oftf.

IV. RESULTS AND DISCUSSION

A. Extracting tf from experimental data

To determine the effect of using the five different methods
of generatingDswl on the derived value oftf, we analyze
the magnetoconductivity data for both samples using each
method. We also compare the values oftf that we extract
with others in the literature forp-GaAs systems.

First, it is important that the density dependence ofs is
understood. As the carrier density increases the weak local-
ization correction becomes harder to observe in the Drude
magnetoconductivity, because the Drude contribution be-

comes larger and more strongly peaked asp increases. The
density dependence of the Drude term can be understood
from Eq.(15) noting thatt increases with increasingp. Thus
the small weak localization signal is lost in the rapidly in-
creasing conductivity. In contrast at lower densities the weak
localization description breaks down as the two-dimensional
hole system breaks up into isolated “islands” and charge be-
comes strongly localized, transport taking place by variable
range hopping.4 Therefore there is only a limited range over
which weak localization is clearly observable. It is this “win-
dow” that forces us to work close to the limit ofkFl ,1,
where the Drude picture becomes invalid.

Figure 6(a)–6(c) shows magnetoconductivity data for
A1433/37 at three different hole densities,p=4.4131010,
4.5031010, and 5.1531010 cm−2. Data are presented at the
lowest attainable hole temperature and for the full range of
density over which weak localization is observed in these
samples. Over this density range the device has a conductiv-
ity of .2.5 e2/h which just satisfies the condition for valid-
ity of Eq. (15) and Fermi-liquid theory,s@e2/h. Each trace
shows both the positive magnetoconductivity at low mag-
netic fields due to the weak localization and the negative
magnetoconductivity at higher fields caused by magnetic lo-
calization. The magnitude of the weak localization correction
at zero magnetic field,DswlsB=0d, is approximately constant
over the full range of density. This can be seen by comparing
the absolute magnitude of the positive magnetoconductivity
in Figs. 6(a)–6(c). There is no sign that the magnitude is
strongly suppressed by the increasing carrier density, agree-
ing with Refs. 9 and 36 though in contrast to Ref. 37.

The magnetoconductivity data were fitted using the three-
parameter fit procedure described in Sec. III and each of the
five methods of generatingDsxx described in Sec. II. The
values of tf produced were inverted and plotted in Figs.
6(d)–6(f). We note that the values extracted for the four
methods valid beyond the diffusion approximation are the
same within&10% with the Hikami model predictions being
significantly greater. In addition, we plot as solid and dashed
lines the predictions of Fermi-liquid theory fortf

−1 in the
limit kBTt /"!1 most appropriate to our samples(discussed
below).

At first glance there are two puzzling things about the
values oftf extracted by the five methods. The first is that
the values oftf

−1 extracted using Hikami are dramatically
significantly larger than those from the four methods valid
beyond the diffusion approximation, thoughDswl predicted
by the Hikami method is qualitatively similar to the others.
The second is the surprising similarity of the predictions of
the four methods valid beyond the diffusion approximation,
given the large differences inDswlsBd that each predicts.
Over the ranges ofb and z that the data span(0.01&b
&1.2 and 0.02&z&0.1) DswlsBd varies by up to,200%
between the four methods whiletf only varies by&10%.

We can resolve both of these puzzling observations about
thetf results by considering the fitting process and the shape
of the curves plotted in Fig. 2. In the simultaneous three-
parameter fit the presence of the hole-hole interaction term is
identical in effect to a magnetic-field-independent offset to
the magnitude ofDswlsbd. This means that a fit of two meth-
ods (Dmitriev and Kawabata, for example) which predict a

FIG. 5. (a) Activation plots for three different sample densities
for A1433/37. The lines are least-squares fits to the five highest-
temperature points.(b) Thole vs Tlattice plots for each sample at the
extremes of the density range studied.
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difference inDswlsbd which is only a field-independent con-
stant will produce exactly the same value oftf but a differ-
ent value ofDshh. A similar argument applies to the two-
stage fitting procedure described in Sec. III in which the
magnitude of the weak localization is offset explicitly to
zero. This occurs when it is assumed that the theoretical and
experimental values ofDswlsbd are identical atb=0 and the
remainder of the fitting procedure done relative to the value
of Dswlsb=0d. This explains the similarity of the values of
tf given in Fig. 4 for the two fitting methods.

Therefore, using either fitting procedure, the magnitude of
the conductivity correction is much less important than the
predicted field dependencedDswlsbd /db, over the range ofb
andz used for data fitting. As Fig. 2 showsdDswlsbd /db is
almost the same in each of the four methods valid beyond the
diffusion approximation, but much larger in the Hikami
method. We can now understand why each of the methods
valid beyond the diffusion approximation give such a similar
estimate oftf: apart from the field-independent offset the
magnetoconductivity correction for each method is very
similar in shape. It is also clear why the method of Hikami
produces such a different prediction oftf than the other
methods — the field dependence of its predictedDswlsbd is
much steeper. Therefore to fit the same experimental data(as
is shown in Fig. 4) it returns a much smaller value oftf. We
can sum up both these effects by observing that for extract-
ing tf it is the gradient of the magnetoconductivity correc-
tion plotted in Fig. 2 that is important, not its magnitude.

It is interesting to compare our analysis of our experimen-
tal data with recent numerical simulations of the magneto-
conductivity beyond the diffusion approximation. At first
glance our results are different from another previously re-
ported study by Minkovet al.35 which found a reasonable
agreement between the methods of Hikami and Wittmann.
We note that there is a critical difference between our
method and that of Minkovet al. In our fits the parametera,
defined in Eq.(7), is fixed at the theoretical value of 1.
Minkov et al. use as a fitting parameter in the Hikami

method and find values ofa,0.5. The values extracted for
a andtf are not independent, so if Minkovet al. had fixed
a=1, then values oftf in close agreement with ours would
have been extracted. Thus the numerical simulations and our
analysis are in fact consistent.

In addition, there has been recent interest in the difference
between isotropic(from short-range potentials) scattering
and anisotropic(from wide potentials) scattering.22 Most the-
oretical work has concentrated on isotropic scattering, which
will occur in Si metal-oxide-semiconductor field-effect tran-
sistor, whereas in high-quality modulation doped GaAs sys-
tems the scattering may be anisotropic. However, both pro-
duceDswlsBd traces which have similar values ofdDswl /db
and hence by a similar argument to that above(for the dif-
ferent fitting methods valid beyond the diffusion approxima-
tion) can be expected to produce similar values oftf. There-
fore these methods can be used to extracttf even from
samples in which the scattering is anisotropic although val-
ues ofDshh will be less reliable.

B. Analysis of the phase breaking rate inp-GaAs

Comparablep-GaAs devices to those studied here have
been fitted previously using the method of Hikami.10,13 Both
studies find values oftf three to five times smaller than
those predicted from Fermi-liquid theory. Phase breaking
ratestf

−1 have also been extracted and compared to theoreti-
cal values in other material systems, for example,p-SiGe,9,15

and Si.12 In all these cases where the method of Hikami was
used to fit the data, the value oftf extracted was found to
differ by the factor of 3–5 from the theoretical value. We
explain this discrepancy as being due to the use of the
Hikami method in a range beyond its validity in these high-
quality samples, where the diffusion approximation can no
longer be relied upon. To our knowledge the five various
fitting methods have not been directly compared so this de-
pendence on the fitting method has not previously come to
light.

FIG. 6. (a)–(c) Magnetocon-
ductivity data for sample
A1433/37 at the density and tem-
peratures indicated, and(d)–(f)
tf

−1 computed by each method of
generatingnswl. D, Hikami; s,
Kawabata;h, Wittmann; 3, Zu-
duniak; and j, Dmitriev. The
solid and dashed lines show pre-
dictions of Fermi-liquid theory ac-
cording to Eq. (16) with F0

s

=−0.3 and 0, respectively.
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It is interesting to note that the magnitude ofDswlsBd is
important for extractingDshh, and while the size of the hole-
hole correction is not explored in this paper the choice of
methods valid beyond the diffusion approximation produce
significant differences in this parameter.

We now use the values oftf extracted by the Dmitriev
method to probe the nature of the hole state in our high-
quality samples. At high carrier densities 2D systems are
known to be a Fermi liquid but as the density is lowered the
ratio of the interaction energy to the kinetic energy,rs, be-
comes large and the nature of the 2D system is uncertain.
Recently it has been suggested that Fermi-liquid theory,
which does not take into account strong particle-particle in-
teractions, can be modified to account for them.38 We there-
fore compare the temperature dependence of the dephasing
ratetf

−1 to the predictions of this modified version of Fermi-
liquid theory.

Fermi-liquid theory predicts dephasing due to inelastic
particle-particle interactions with a characteristic rate(i.e.,
tf

−1) that has both a linear and a quadratic temperature-
dependent component. These arise from the Coulomb inter-
action of the particles with and without the mediation of an
impurity, respectively.39 The prefactors of theT andT2 terms
depend on the whether the Fermi surface is smeared by tem-
perature or disorder: they are only well defined in the limits
kBTt /"!1 andkBTt /"@1 and in either case vary slightly
between different theoretical treatments.38

For the traces presented in Fig. 6, sample A1433/37, we
have 0.04,kBTt /",0.41. For all carrier densities the tem-
perature dependence oftf appears linear(for each method of
generatingDswl) with little sign of aT2 contribution, thereby
justifying our choice of thekBTt /"!1 limit. While the val-
ues oftf

−1 extracted from the fits are proportional tom* , the
effective mass of the holes in GaAs, this does not affect the
linearity of the data. The temperature dependence of the

phase breaking rate predicted by Fermi-liquid theory includ-
ing the effects of interactions is given by38

tf
−1 = F1 +

3sF0
sd2

s1 + F0
sds2 + F0

sdGkBT

"

e2

hs0
lnFhs0

e2 s1 + F0
sdG

+
p

4
F1 +

3sF0
sd2

s1 + F0
sd2G skBTd2

"EF
lnFhs0

2e2G , s16d

where s0=pem is the Drude conductivity andF0
s is the

Fermi-liquid constant, a measure of the strength of the hole-
hole interactions. For the noninteracting limitsF0

s=0d Eq.
(16) reduces to that given in Refs. 39 and 40.

We extract a value ofF0
s,−0.3 for both our devices using

the method of Ref. 41. We find that the inclusion ofF0
s

makes only a modest difference of,20% to the predicted
phase breaking rate[plotted in Figs. 6(d)–6(f) as the solid
and dashed lines] at all carrier densities.

Figs. 6(d)–6(f) show thattf
−1 decreases with increasing

carrier density. This behavior is in qualitative agreement with
Fermi-liquid theory, which predicts less hole-hole scattering
with increasing hole density. While it might be intuitively
thought that a higher hole density would lead to more hole-
hole scattering in fact the increase in hole screening reduces
the importance of the particle-particle interactions.

The temperature dependence of the phase breaking rate
derived from the Dmitriev method agrees reasonably well
with the prediction of Fermi-liquid theory in thekBTt /"
!1 limit, as Figs. 6(d)–6(f) show. This suggests that Fermi-
liquid theory, modified to account for particle-particle
interactions38 provides an accurate, quantitatively predictive
theory of the nature of the 2D electronic system atrs,12.

We also performed magnetoconductivity measurements
on the ultrahigh-quality sample T402/5, wherers,23, over
the complete range of densities at which weak localization
can be clearly observed. We used the same three-parameter
fitting procedure to extract values oftf in order to investi-

FIG. 7. (a)–(c) Magnetocon-
ductivity data for sampleT402/5
at the density and temperatures in-
dicated and(d)–(f) tf

−1 computed
each method of generatingnswl.
D, Hikami; s, Kawabata; h,
Wittmann; 3, Zuduniak; andj,
Dmitriev. The solid and dashed
lines show predictions of Fermi-
liquid theory according to Eq.(16)
with F0

s=−0.3 and 0, respectively.
For (a) this produces a negative
prediction of tf in the F0

f=−0.3
case as discussed in the text.
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gate the nature of the hole system at this high value ofrs.
The raw magnetoconductivity data of the ultrahigh-

quality sample T402/5 is plotted in Figs. 7(a)–7(c). It shows
weak localization similar to that of A1433/37 but because
T402/5 is of higher quality it has a smaller weak localization
correction for a similar temperature. However the magnitude
of the weak localization effect is again approximately con-
stant over the range of density studied, showing no sign of
sudden disappearance as the carrier density in increased.

Values of tf
−1 extracted are plotted in Figs. 7(d)–7(f) at

three densities which again span the range of clearly observ-
able weak localization. For T402/5 the conductivity is nec-
essarily closer to the limit ofs0=e2/h than A1433/37 be-
cause of the higher quality of the sample. We see that the
phase breaking rates estimated using the five methods of
generatingDswl are again approximately linear for each
method as in sample A1433/37. However the magnitude of
tf

−1 and it’s sensitivity to the temperature are both lower in
T402/5. This may be understood from Eq.(16) noting that
this close tos0=e2/h the logarithmic term dominates the
linear temperature dependence.

The values oftf extracted with each of the methods valid
beyond the diffusion approximation are very similar. As with
the previous sample the Hikami method predicts a much
larger phase breaking rate than the other methods. This indi-
cates that the same mechanism(the field sensitivity ofDswl)
is producing the variation in the value oftf extracted from
the same data. The values oftf extracted using the Dmitriev
method agree closely with those of similarp-GaAs samples11

where the method of Wittmann was used.
While the temperature dependence oftf is linear there

appears to be a nonzero intercept atT=0 for each of the
densities examined. Proskuryakovet al.11 found a similar
result and interpreted their data by adding an offset to the
Fermi-liquid prediction oftf. This offset is of great interest
theoretically as extrapolating the data suggests a finite phase
breaking rate atT=0. However, caution must be exercised
due to the closeness of the data tos=1 and the effect that
this has on the validity of using weak localization to extract
tf.

Due to the linearity of thetf
−1 data and because for this

data 0.06,kBTt /",0.58 we compare the T402/5 data to
Fermi-liquid theory in thekBTt /"!1 limit. For the higher
densities, presented in Figs. 6(b) and 6(c), there is good
quantitative agreement between the values of the phase
breaking rate extracted from the experimental magnetocon-
ductivity using the Dmitirev method and the Fermi-liquid
theory prediction of Eq.(16). As the density is decreased
further, this agreement becomes rapidly worse and for the
lowest density studied,p=1.1531010 cm−2, Eq. (16) gives
an unphysical(negative) value oftf for F0

s=−0.3. This is a
sign that at these low densities Eq.(16) is outside its range of
validity and the system is entering the hopping conduction
regime. Nevertheless it is remarkable that Fermi-liquid
theory produces a good quantitative agreement with the ex-
perimentally extracted values oftf for kFl as low as 1.2.

In summary, Fermi-liquid theory is successful in explain-
ing the phase breaking rate in our high-qualityp-GaAs
samples, untilkFl approaches 1. This indicates that the nature
of the hole(or electron) state at these high values of up to

rs,23 may be closely related to that atrs,12, which is well
explained by Fermi-liquid theory if the correct phase break-
ing rate is extracted from the experimental data.

V. CONCLUSIONS

We have presented a detailed comparison of five methods
of analyzing weak localization data. We demonstrate that the
methods of generatingDswl fall into two groups when used
to extract the phase breaking rate. The first consists of the
Hikami method for diffusive transport and the other of the
four methods which are valid beyond the diffusion approxi-
mation. We have quantified the range of validity of the
Hikami method to beb&0.1 andz&0.2. We have shown
that the method of Hikami, when applied beyond its range of
validity, produces a phase breaking rate approximately three
times larger than methods that are valid beyond the diffusion
approximation. This largely resolves a puzzling historical
discrepancy between Fermi-liquid theory and experiment in
which experimentally extracted values of the phase breaking
rate were three to five times larger than those predicted by
theory.8,9,12–15

The four methods valid beyond the diffusion approxima-
tion produce very similar values for the phase breaking rate
despite differences in the magnitude of the weak localization
correctionDswl of up to ,100%. We attribute this to the
similarity of the field dependence of the weak localization
conductivity correction,dDswl /db, in each of the methods.

For our high-qualityp-GaAs samples all four methods
valid beyond the diffusion approximation predict phase
breaking rates with a linear temperature dependence. We also
find that Fermi-liquid theory provides a good quantitative
prediction oftf, even atrs,23. However askFl approaches
1 Fermi-liquid theory becomes invalid and the agreement
breaks down. Thus Fermi-liquid theory explains the sample
properties over its range of validity.

Of the four methods which produce accurate values oftf,
only the method of Dmitriev20 (which includes the phase-
coherent nonbackscattering mechanism) also produces accu-
rate values ofDswl. Failure to use the Dmitriev method may
result in errors inDswl of ,20% at low field andz, and
,200% when eitherb*1 or z*0.2 (when either the sample
quality or temperature is high). However the method of Dmi-
triev does not include spin-relaxation effects, so in samples
where these are important then the method of Zduniak
should be used. At present there seems to be no method in
the literature which takes account of both spin-orbit and the
phase-coherent nonbackscattering mechanism, and this may
be a profitable avenue for further theoretical work.
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APPENDIX A

Typographical errors in several references discussed in
this paper[in addition to Eq.(13)] are corrected below. Note
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that the equations below appear exactly as they should in the
original works and do not follow the notation adopted in this
paper.

Equation(A4) from Kawabata17 should read8

Q0 =Îp

2
exp

s2

2
erfcS s

Î2
D . sA1d

In Wittmann and Schmid18 equations(22), (28), (29) and
(31) (Ref. 11) should be replaced by the following:

j −1e−j =E
0

`

dt ts1 + t2d−1/2J0sjtd, sA2d

Cmsbd =
1

mH2

b
fCm−1sbd − s− 2dm−1g − o

k=0

m−1

s− 2dm−1−kCksbdJ ,

sA3d

cnsbd = f1 + s2n + 1dbg−1/2

3 o
k=0

`

Mn
k s− 1dk

2kk!
S1

2
D

n
F b

1 + s2n + 1dbGk

, sA4d

D2gsBd =
− g0

s1 + gd2Fo
n=0

N
bcn

3sbd
1 + g − cnsbd

− ln
1 + g

g
G .

sA5d

APPENDIX B

This appendix describes the solution of Eqs.(5) and (13)
(i.e., the method of findingPn andPn

m). This allows calcula-
tion of the weak localization correction to the conductivity
Dswl for the Kawabata, Wittmann, Zduniak, and Dmitriev
methods[it is not necessary for the Hikami method as Eq.
(4) is analytic] using Eq.(15) with FA andFB defined appro-
priately for the method as described in Sec. II.

Several techniques exist in the literature to calculatePn.
Kawabata17 gave a recursive technique, Wittmann18 pro-
posed both a recursive technique, and one based around a
series expansion of Eq.(5). Zduniak19 and Dmitirev20 used
numerical integration of Eq.(5) [and Eq.(13) for Dmitriev].

Each of these techniques for calculatingPn has a different
range of validity(in a two-dimensionalb-n space). From the
various techniques we must mix and match different tech-
niques to calculatePn over the full range ofn necessary. The
recipe given here is valid for the range 0.01,b,1000 and
0.001,z,0.5. These ranges are sufficient to analyze any
currently available experimental device.

As well as its intrinsic validity each technique also has an
associated computational complexity. If an iterative fitting
approach is taken to a large body of data the computational
burden imposes an additional constraint on the applicable
range of each technique. In particular, we note that accurate
numeric integration becomes computationally expensive for
the iterative solution of a large volume of data at quite mod-
est values ofn (,20 on a desktop PC). This rules out nu-

merical integration as a practical technique for fitting large
volumes of experimental data. Extreme care must also be
taken in numerical integration at large values ofn due to the
rapid oscillation ofPnsbd. Problems may also arise from tak-
ing the exponent ofs2/2 at low b, however, these can be
resolved by expanding erfcss/Î2d as a series and canceling
the exponent terms.

Figure 8(a) presentsPn for the different calculation tech-
niques at the extremes of the range ofz with low b. In order
to study the validity of the various techniques of findingPn
over the range ofb andz, we replot the data of Fig. 8(a) on
a logarithmic scale in Fig. 8(b) and add the equivalent plots
for largeb.

The two recursion methods are only stable at relatively
low n. This can be seen in Fig. 8(a) where the recursion
technique solutions both deviate abruptly from the series
truncation and numerical integration solutions atn,7. In
contrast Fig. 8(b) shows that they are stable to largern
,250 at highb. This behavior is due to their sensitive de-
pendence on the initial value and the inverse exponential
dependence of the first term[given by Eq.(A1)] on b. For
largen we find Pn~n−1/2 with a transition at lowern whenb
is large. This may be understood by examining Eq.(A4) and
noting thatcn~ Pn and that the sum tends to unity at largen.
This allowsPn to be efficiently found by truncating the series
expansion at largen andb.

FIG. 8. (a) Pn generated by the techniques described in text for
z=0.01 andz=0.5 with b=0.01, (b) Pn generated forz=0.01 and
z=0.5 atb=0.01 or 10 for the two groups of curves as indicated.
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At high b the numerical integration and recursion relation
solution oscillate at lown, but the series expansion does not
replicate this behavior. Therefore the series expansion should
be avoided at lown and highb.

No one technique is valid over the whole range ofb, z,
andn. It would be awkward to specify the ranges of validity
of the various techniques over a space of three variables, so
we considered the possibility of ignoring eitherb or z in the
choice of technique used to calculatePn. Figure 8(b) dem-
onstrates the sensitivity ofPn to variation inb andz over the
range ofb andz that we will need to analyze our experimen-
tal data.Pn varies dramatically in form asb is changed from
its minimum through to its maximum withz fixed but only
modestly asz is swept from its minimum to maximum with
b fixed. That is, the value ofPnsb,zd is sensitive tob but
insensitive toz. Therefore for simplicity the value ofz is
ignored when choosing the technique used to generatePn, so
that the technique used is dependent only onb andn.

Pn has an appreciable value up to large values ofn at low
b. This means that the series of Eq.(6) must be summed to
largen for an accurate estimate ofDswl. Figure 9 shows the
effect of truncation of the series at too low an by plotting the
predictions of the Zduniak and Dmitriev methods(Hikami
and Kawabata do not suffer this problem) for n up to 10, 102,
103, 104, or 105. The problem can be seen to be far more
severe for Zduniak(and Wittmann) than for Dmitriev as for
Dmitriev the largen contributions for the backscattering and
nonbackscattering mechanisms cancel out to some extent
(see below).

It can be seen that terms up ton=105 are necessary to
produce accurate results down tob,0.01 in the Zduniak
(and Wittmann) method and forz.0.1 terms up ton=`
must be included. The effect of truncating at too low an
closely resembles that of spin-relaxation-induced
antilocalization,19 so it is important to select a sufficiently
high n to avoid confusing the two.

We can now specify ranges inb and n over which the
different techniques must be used. To account for the various
ranges of validity of the different techniques four regions are
specified inn with boundariesnS, nM, and nL (for small,
medium, and large). As pictured in Fig. 10,nS=nM =250 for
b.10 andnL=105 for all b. At n,nS the recursion relation
due to Kawabata is used, as this was found to be slightly
more numerically stable than the Wittmann recursion rela-
tion. As b increases the range of stability of the recursion
relations increases. Therefore the recursion relations, which
are fast and accurate until they become unstable, are used
over a greater range ofn at highb.

For nS.n.nM the series expansion method of Wittmann
and Schmid is used. This produces accurate and efficient
results at intermediaten but fails at highb and lown where
it does not reproduce the oscillating behavior of the solution,
see Fig. 8(b).

At large n we see thatPn has an inverse square-root de-
pendence onn, demonstrated by the linear regions of Fig.
8(b). Therefore we can improve the speed of our fitting by
truncating Wittmann’s series expansion[the actual equation
that we truncate is Eq.(A4) as the summation term in it tends
to 1 at largen andcn=s1+zdPn]. For nM .n.nL truncation
of Wittmann’s series expansion(note the different definition
of b by Wittmann and Schmid) gives

Pnsbd =
1

f1 + z+ s2n + 1dbg1/2. sB1d

Beyond n=nL the assumptionPn!1 enables us to pro-
duce an analytic sum to infinity forFA from the power-law
dependence. Forn@1 andPn!1 this sum may be expressed
in terms of Riemann series. Common numerical tools24 allow
the contribution forn.nL to be found, in the casenL=105,

FAsn . 105d = S 1

2b
D3/2S6.3293 10−3 +

1
Î2b

10−5D ,

sB2d

up to terms in 1/n2 in Eq. (12).

FIG. 9. Dswl generated with a truncated series expansion for(a)
Zduniak and(b) Dmitriev methods. Each expansion is truncated at
n=10, 102, 103, 104, or 105 terms as indicated.

FIG. 10. Diagram of computation method used to calculatePn.
Beyondn=105 Pn is calculated using Eq.(B2) for all b. The small,
medium, and large boundariesnS, nM, and nL are marked atb
=0.01.
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So far we have devoted considerable effort to the solution
of Eq. (5). Rather than repeat this entire process for Eq.(13)
we expressPn

m in terms ofPn using the identities24,42

Ln
1st2d = −

d

dst2d
Ln+1st2d sB3d

and

Ln
a−1st2d = Ln

ast2d − Ln−1
a st2d. sB4d

From the latter we find

Ln
1st2d = o

i=0

n

Li
0st2d. sB5d

The integral of Eq.(13) may be solved by using Eq.(B3) and
integrating by parts to give, form=1,

2E
0

`

dt t Ln
1st2de−st−t2/2 = 1 − s1 + zdPn+1 −E

0

`

dt tfLn+1
1 st2d

− Ln
1st2dge−st−t2/2. sB6d

Use of Eq.(B5) then enables us to rewrite this as the recur-
sion relation

E
0

`

dt t Ln
1st2de−st−t2/2 = 1 − s1 + zdPn

−E
0

`

dt t Ln−1
1 st2de−st−t2/2

sB7d

with the zeroth term given by

E
0

`

dt t L0
1st2de−st−t2/2 = 1 −ses2/2Îp

2
erfcS s

Î2
D , sB8d

which finally gives

Pn
m =

s
În + s1 − md/2

S1 − s1 + zdPn−s1+md/2

−
În − 1 + s1 − md/2

s
Pn−1

m D . sB9d

Equation(13) can now be computed from the known values
of Pn up to n=105. HoweverPn

m decreases slowly with in-
creasingn and terms beyondn=105 cannot be safely ne-
glected ifz is large[if z is small Eqs.(B2) and(B11) cancel
to leading order]. Therefore aboven=105 we approximate
Eq. (B9) as

Pn
m =

s

2În
f1 − s1 + zdPng. sB10d

Substituting this and Eq.(B1) into Eq. (12) allows us to find
the contribution fromPn

m for n.105 to be

FBsn . 105d = −
s1 + zd2

s2bd3/2 S6.3293 10−3 −
1 + 2z
Î2b

10−5D ,

sB11d

including terms up to 1/n2 in Eq. (12). This allowsDswlsBd
to be found for all methods.
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