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We develop a semiclassical kinetic theory for electron spin relaxation in semiconductors. Our approach
accounts for elastic as well as inelastic scattering and treats Elliott-Yafet and motional-narrowing processes,
such as D’yakonov-Perel’ and variableg-factor processes, on an equal footing. Focusing on small spin polar-
izations and small momentum transfer scattering, we derive, starting from the full quantum kinetic equations,
a Fokker-Planck equation for the electron spin polarization. We then construct, using a rigorous multiple time

scale approach, a Bloch equation for the macroscopic(kW-averaged) spin polarization on the long time scale,
where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a fast
time scale, after the initial spin polarization has been injected, are incorporated and shown to give rise to a
weight function that defines the energy averages required for the calculation of the spin relaxation tensor in the
Bloch equation. Our approach provides an intuitive way to conceptualize the dynamics of the spin polarization
in terms of a “test” spin polarization that scatters off “field” particles(electrons, impurities, phonons). To
illustrate our approach, we calculate for a quantum well the spin lifetime at temperatures and densities where
electron-electron and electron-impurity scattering dominate. The spin lifetimes are nonmonotonic functions of
temperature and density. Our results show that at electron densities and temperatures where the crossover from
the nondegenerate to the degenerate regime occurs, spin lifetimes are particularly long.
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I. INTRODUCTION

The spin degree of freedom of an electron provides an
additional variable that potentially can be used to add new
functionality to electronic, optoelectronic, and magnetoelec-
tronic devices or to even build radically new devices entirely
based on the coherence of electron spin states. This has led to
the newly emerging field of spintronics.1,2A subclass of spin-
tronics device concepts relies on the capability to inject, con-
trol, and detect electron spin polarizations in nonmagnetic
semiconductors.3,4 The spin polarization, which would en-
able the device operation, is a nonequilibrium state and its
characterization, e.g., in terms of lifetimes and transport co-
efficients, has to be given within a kinetic theory.

Of particular interest is the lifetime of the nonequilibrium
spin polarization in nonmagneticn-type III-V semiconduc-
tors. Important spin-relaxation processes for itinerant elec-
trons in this class of materials include the Elliott-Yafet(EY)
process,5,6 which leads to spin-flip scattering and, in materi-
als without inversion symmetry, the D’yakonov-Perel’(DP)
process7 in which spin states precess because of spin off-
diagonal Hamiltonian matrix elements resulting from a com-
bination of spin-orbit coupling and inversion asymmetry. An
external magnetic field, in many cases required to control
and manipulate the electron spin, can also influence the elec-
tron spin dynamics. It quenches the DP process,8 thereby
tending to extend the spin lifetimes as a function of magnetic

field, and it opens a spin-relaxation channel due to thekW

dependence of the electrong factor, which forces the spin of
electrons in different quantum states to precess around an
external magnetic field with different rates.9,10 For brevity
we will refer to this mechanism as a variableg-factor (VG)
process.

Spin dynamics in semiconductors has been extensively
studied in magneto-optics11–14 using various spin-sensitive
emission, transmission, and reflection spectroscopies. These
spectroscopies are now readily adaptable to spatially and
time-resolved measurements,15–33 which, together with the
emergence of spintronics concepts, inspired new theoretical
investigations in bulk10,34–38 and dimension-reduced
semiconductors.39–53

The theoretical investigations are based on the early
work5–7 augmented by modern band structure theory for bulk
and dimension-reduced semiconductors. The EY spin-
relaxation rates are usually calculated using the golden rule
for spin-flip scattering, whereas the spin-flip rates due to
motional-narrowing(DP and VG) processes are, at least con-
ceptually, obtained from a semiclassical Boltzmann-type
equation for the nonequilibrium spin polarization, although
not always is the Boltzmann equation explicitly solved. In-
stead, a common procedure is to adapt the expression for the
spin-relaxation rate originally derived by D’yakonov and
Perel’7 to the scattering processes under consideration.

The D’yakonov-Perel’ expression for the spin-relaxation
rate, which results from the solution of the Boltzmann equa-
tion within the elastic approximation, treats all scattering
processes on-shell, even inelastic scattering events, e.g., due
to electron-electron or electron-phonon scattering. The ob-
tained spin-relaxation rates are therefore on-shell rates,
which have to be averaged over energy with an appropriate
weight function before a comparison with experiments can
be attempted. Usually, the difference of the distribution func-
tions for spin-up and spin-down electrons divided by the
total number of electrons contributing to the initial spin po-
larization is used as a weight function.7,40,43The ad-hoc en-
ergy averaging, which is necessary because of the incom-
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plete treatment of inelastic scattering processes, can lead to
substantial deviations from the spin-relaxation rates ob-
tained, e.g., from a full numerical solution of the Boltzmann
equation.35

We develop in this paper a systematic kinetic theory for
electron spin relaxation, applicable to spin-flip(EY) and
motional-narrowing(DP and VG) spin-relaxation processes
in bulk and quantum wells, which avoids the ad-hoc energy
averaging and gives a clear physical picture of the time evo-
lution of the optically or electrically injected nonequilibrium
spin polarization. We derive, starting from the full quantum
kinetic equations for the electron Green functions, a semi-
classical Fokker-Planck equation for the time evolution of
the nonequilibrium spin polarization, valid for small spin po-
larizations and for small momentum transfer scattering, and
employ a multiple-time-scale perturbation approach to sepa-
rate the fast spin-conserving from the slow spin-
nonconserving time evolution. As a result, we obtain on the
time scale of spin relaxation a Bloch equation for the mac-

roscopic (kW-averaged) nonequilibrium spin polarization,
which is the quantity measured in, e.g., time-resolved Fara-
day and Kerr rotation experiments.16–19,29,30 The weight
function defining the energy averages needed, e.g., for the
calculation of the spin-relaxation tensor and the spin-
relaxation rates, turns out to be directly related to the quasis-
tationary spin polarization, which is the terminating state of
the initial, fast spin-conserving time evolution of the injected
spin polarization. Our approach treats spin-flip(EY) and
motional-narrowing(DP and VG) processes on an equal
footing. Due to the different angle dependences, a
Matthiessen-type rule holds, however, for isotropic semicon-
ductors, where the total spin-relaxation tensor is simply the
sum of the individual spin-relaxation tensors.10 The diagonal
elements of the spin-relaxation tensor, the spin-relaxation
rates, are either given in terms of an energy-averaged spin-
flip rate (EY process) or an energy average of a generalized
relaxation time, which accounts for both on- and off-shell
scattering events, multiplied by a precession rate(DP and
VG processes).

In the next section we introduce a generic model for elec-
trons inn-type III-V semiconductors applicable to bulk and
quantum well situations. In Sec. III we give a complete de-
scription of our semiclassical kinetic theory for the electron
spin dynamics. As far as the formal development is con-
cerned, we treat EY, DP, and VG processes on an equal foot-
ing and also allow for quenching effects due to orbital mo-
tion of electrons in an external magnetic field. In Sec. IV we
apply our approach to the particular situation of DP spin
relaxation in an idealized quantum well at temperatures and
densities for which electron-electron and electron-impurity
scattering dominate. Our main findings are summarized in
Sec. V. Technical details concerning the calculation of the
quantum well collision integrals due to electron-electron and
electron-impurity scattering are relegated to an appendix.

II. MODEL HAMILTONIAN

We consider conduction-band(CB) electrons in III-V
semiconductors, e.g., GaAs, in the presence of an applied

magnetic field. The model used here applies to both bulk and
quantum well situations. Within an envelope-function
approach,54,55 which treats the two states at the conduction-
band minimum explicitly and includes a large set of states
perturbatively, the effective-mass Hamiltonian for the CB
electrons can be cast into the form

Haa8sK
W d = esKW ddaa8 +

"

2
VW L · sW aa8 +

"

2
fVW IAsKW d

+ VW gsKW dg · sW aa8, s1d

whereKW =kW −se/"cdAW srWd andAW srWd is the vector potential. The
“spin basis” for the CB electrons used to define the model(1)
is a=+ anda=−, wherea=+ sa=−d denotes a state which
is mostly spin up(spin down) with a small admixture of spin
down (spin up).

The first term denotes the dispersion of the Kramers de-
generate conduction band, which, depending on the sophis-
tication of the envelope-function approach, could contain

nonparabolicity effects. For quantum wellskW andeskWd denote
the in-plane momentum and the in-plane dispersion of the
conduction subband under consideration. The second term
comprises the Larmor precession due to the external mag-

netic field, with "VW L=mBg* BW the Larmor energy vector.
HeremB andg* denote the Bohr magneton and the electron
g factor. The third term describes spin off-diagonal Hamil-
tonian matrix elements arising from the coupling to higher-
lying states, the most important of which are the splitting of
the conduction band due to inversion asymmetry(IA ) and

the term that leads to akW-dependent electrong factor. For
bulk semiconductors, the two contributions are given by

"VW IAsKW d = 2d0kW IAsKW d, s2d

"VW gsKW d = 2a4K
2BW + 2a5hKW ,BW ·KW j + 2a6tWsKW ,BW d, s3d

respectively. The definition of the vectorskW IAsKW d andtWsKW ,BW d
and of the parametersd0 andai can be found in Refs. 54 and
55 and{.,.} denotes an anticommutator. The expressions for
conduction subbands in a quantum well are obtained by av-
eraging the bulk expressions(2) and (3) over the subband
envelope function.

In addition to bulk inversion asymmetry, dimension-
reduced semiconductors can have additional sources of
asymmetry due to interfaces that share no common atom31 or
due to layer design(structural inversion asymmetry39). Both
mechanisms can be cast into spin off-diagonal Hamiltonian
matrix elements and can be therefore treated in the same way
as the spin off-diagonal terms due to bulk inversion asym-
metry.

For a complete description, a collision term arising from
electron-impurity, electron-phonon, and electron-electron
scattering,

Hc = Hei + Hep+ Hee,

is added to the effective-mass Hamiltonian. The electron-
impurity term reads
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Hei = o
kWkW8

o
aa8

Maa8sk
W,kW8dckWa

†
ckW8a8, s4d

with a scattering matrix element given by

Maa8sk
W,kW8d = o

j

UskW − kW8deiskW−kW8d·rW jIaa8sk
W,kW8d. s5d

The Bloch states for the conduction band are not pure spin
states, because of spin-orbit coupling. The scattering matrix
element contains therefore an overlap factor

Iaa8sk
W,kW8d = kUa,kWuUa8,kW8l, s6d

which is of order unity fora=a8 (spin-conserving scatter-
ing) and is small, but not zero otherwise(spin-nonconserving
scattering). The electron-phonon collision term would have
the same structure as Eq.(4) but with phonon creation and
annihilation operators appearing in the matrix element

Maa8sk
W ,kW8d. The electron-electron scattering contribution has

the form

Hee=
1

2o
kWiai

Ma1a2a3a4
skW1,kW2,kW3,kW4dc

kW1a1

†
c

kW2a2

†
ckW3a3

ckW4a4
, s7d

where the scattering matrix element,

Ma1a2a3a4
skW1,kW2,kW3,kW4d

= VskW1 − kW4dIa1a4
skW1,kW4dIa2a3

skW2,kW3ddkW1+kW2,kW3+kW4
, s8d

contains two overlap factors. The functionsUskWd and VskWd
denote, respectively, the potential of a single impurity(neu-
tral or ionized) and the Coulomb potential between two con-
duction electrons.

The model Hamiltonian is characterized byeskWd, VW IAskWd,
VW gskWd, and Ia,a8sk

W ,kW8d. These quantities need to be obtained
by an electronic structure calculation. The formal structure of
the kinetic theory described in the next section is indepen-
dent of the particular form of these quantities.

III. SEMICLASSICAL KINETIC THEORY

In this section we give a systematic derivation of the
Fokker-Planck equation governing the electron spin relax-
ation in the limit of small spin polarizations. The derivation
is independent of dimensionality, applying to bulk semicon-
ductors and semiconductor heterostructures, and treats
motional-narrowing (DP and VG) spin-flip (EY) spin-
relaxation processes on an equal footing. To obtain a Fokker-
Planck equation, we restrict ourselves to the Born approxi-
mation, but collective effects giving rise to dynamical
screening of the Coulomb interaction can be approximately
incorporated at the level of a quantum analog to the Lenard-
Balescu equation.56 Besides its intuitive interpretation in
terms of a small “test” spin-polarization scattering off a bath
of “field” particles (impurities, electrons, and phonons),
causing dynamical friction, diffusion, and eventually relax-
ation for the “test” spin polarization, the Fokker-Planck
equation is the starting point for a multiple time scale analy-

sis that results in the derivation of a Bloch equation for the

macroscopic(kW-averaged) spin polarization. Its decay is usu-
ally characterized by the diagonal elements of a spin-
relaxation tensor, which are quadratures of either a spin-flip
rate(EY process) or a generalized relaxation time multiplied
by a precession rate(DP and VG processes).

Since the derivation is quite lengthy and to some extent
rather formal we first give a short outline of the main steps.
We start from the full quantum kinetic equations for the
Keldysh Green functions.57–60 Each component of the
Keldysh Green function is a 232 matrix in electron spin
space. In the first step we derive, within the semiclassical
approximation, a kinetic equation for the density matrix. This
accounts to treating momentum scattering processes as in-
stantaneous on the time scale of spin relaxation, which is
usually the case. Calculating the self-energies that appear in
the semiclassical kinetic equation in the Born approximation,
linearizing with respect to spin polarization, and expanding
the self-energies up to second order in the momentum trans-
fer (diffusion approximation) finally yield a Fokker-Planck
equation for the spin polarization, which we then analyze in
terms of multiple-time-scale perturbation theory.

A. Kinetic equations

For a spatially homogeneous system(we assume a con-

stant magnetic fieldBW ), the information about spin relaxation
is contained in the electronic density matrix, which, due to
the spin degree of freedom, is a 232 matrix in spin space,

Na1a2
skW,td = ksc

kWa1

†
ckWa2

dstdl, s9d

but diagonal inkW space. Here, the operators evolve in time
with the full Hamiltonian, including the time-dependent per-
turbation, which could be, e.g., a circularly polarized light
pulse applied at timet= t0. To perform the averaging in Eq.
(9) denoted byk[¯]l, we consider the system to be in ther-
modynamical equilibrium fort, t0, take the limit t0→−`,
and evaluate the expectation value in Eq.(9) with respect to
the equilibrium density matrix.60

To derive a kinetic equation for the density matrix it is
convenient to start from Keldysh Green functions.57,58 For a
constant magnetic field, the vector potential is a function of
rW. It is therefore necessary to initially work with kinetic equa-
tions in real space. In this section we set"=1. Introducing a
numerical index 1 that stands forrW1a1t1 and 2 forrW2a2t2, we
write in the notation of Ref. 59

iĜ12 = iSG12
++ G12

+−

G12
−+ G12

−−D . s10d

Note that each component of the Keldysh Green function is a
232 matrix in spin space. Introducing further a self-energy

Ŝ12 = SS12
++ S12

+−

S12
−+ S12

−−D , s11d

we set up two matrix Dyson equations, one where the time
differentiation is with respect tot1 and one where it is with
respect tot2:
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]t1
Ĝ12 = − i t̂zd12 − isêĜd12 − i t̂zsŜĜd12, s12d

]t2
Ĝ12 = i t̂zd12 + isĜêd12 + isĜŜd12t̂z, s13d

with d12=dst1− t2dds12d and the energy matrixê12=dst1
− t2dês12d=dst1− t2dt̂0ds12des−i¹W rW1

−se/cdAW srW1dd, where we
neglect nonparabolicities in the dispersion. We adopt the
convention that numerical indices written as a subscript con-
tain the time variable, whereas numerical indices written as
an argument do not. Matrix multiplication with respect to the
Keldysh indices is implied and internal variables are
summed(integrated) over; t̂z is a Pauli matrix andt̂0 is the
unit matrix in Keldysh space.

Subtracting Eq.(13) from Eq. (12) gives

fL̂,Ĝg12 = t̂zsŜĜd12 − sĜŜd12t̂z, s14d

where [·,·] denotes the commutator. To condense the nota-
tion, we introduced a differential operator

L̂13 = t̂0d13Ls3d = t̂0d13„i]t3
− es3d…. s15d

It is understood that in the second term of the commutator,

the operatorL̂32 acts to the left with the temporal differential
operator]t3

replaced by its adjoint −]t3
.

Equation (14) contains two time variables. To obtain a
kinetic equation for the electronic density matrix, which de-
pends only on a single time variable, it is necessary to per-
form the equal time limit. This is most conveniently done in
the (mixed) Wigner representation, where the equal time
limit reduces to an integration. Separating the self-energy
into a singular and a regular part,59

S12
pq = Dpqs12;t1ddpqdst1 − t2d + S̃12

pq, s16d

introducing relative and center variables,rW=rW1−rW2, RW =srW1

+rW2d /2, t= t1− t2, and T=st1+ t2d /2, and defining a Fourier
transformation with respect to the relative variables,

AsRW ,T,kW,vd =E
−`

`

dtE drWeivt−ikW·rWAsRW ,T,rW,td, s17d

together with a gradient operator60

GAB = exp
1

2i
f]T

A]v
B − ]v

A]T
B + ¹W

kW
A

·¹W
RW
B

− ¹W
RW
A

·¹W
kW
Bg, s18d

the equal time limit of the11 component of Eq.(14) can be
written as

DsRW ,T,kWd = FsRW ,T,kWd + CsRW ,T,kWd, s19d

with a driving term on the left-hand side(lhs),

DsRW ,T,kWd =E
−`

`

dv

2p
fGLGLsRW ,T,kW,vdG++sRW ,T,kW,vd

− GGLG++sRW ,T,kW,vdLsRW ,T,kW,vdg, s20d

and a rhs, which contains a molecular field term arising from
the singular part of the self-energy,

FsRW ,T,kWd =E
−`

`

dv

2p
fGDGD++sRW ,T,kWdG++sRW ,T,kW,vd

− GGDG++sRW ,T,kW,vdD++sRW ,T,kWdg, s21d

and a collision term due to the regular part

CsRW ,T,kWd =E
−`

`

dv

2p
fGS̃GS̃++sRW ,T,kW,vdG++sRW ,T,kW,vd

− GGS̃G++sRW ,T,kW,vdS̃++sRW ,T,kW,vd

+ GS̃GS̃+−sRW ,T,kW,vdG−+sRW ,T,kW,vd

− GGS̃G+−sRW ,T,kW,vdS̃−+sRW ,T,kW,vdg. s22d

The semiclassical approximation amounts to the assump-
tion that the Green functions and self-energies vary slowly

on the macroscopic scales,T andRW , respectively. It is there-
fore sufficient to keep in Eq.(19) only the leading order
terms in a gradient expansion. The leading order of the rhs of
Eq. (19) is the zeroth order, i.e., Eqs.(21) and (22) with
GAB→1. The lhs of Eq.(19), however, has to be determined
to first order, because the zeroth order vanishes. Using

LsRW ,T,v,kWd = v + esKW d, s23d

we explicitly obtain

DsRW ,T,kWd = iE
−`

`

dv

2p
f]TG++sRW ,T,kW,vdg

− ¹W RWesKW d ·¹W kWG
++sRW ,T,kW,vd

+ ¹W kWesKW d ·¹W RWG
++sRW ,T,kW,vd. s24d

To ensure gauge invariance of the kinetic equation we
follow Ref. 61 and consider the generalized momentum

KW =kW −se/cdAW sRW d as an independent variable instead of the

momentumkW. Using the two identities,61

¹W RWasKW d = ¹W KWasKW d ·¹W RWKW + ¹W KWasKW d 3 s¹W RW 3 KW d,

aW ·bW 3 s¹W RW 3 cWd = saW ·¹W RWcWd ·bW − sbW ·¹W RWcWd ·aW ,

Eq. (24) becomes
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DsRW ,T,KW d = S]T +
e

c
¹W KW esKW d · sBW 3 ¹W KW d

+ ¹W KW esKW d ·¹W RWDiE
−`

`

dv

2p
G++sRW ,T,KW ,vd.

s25d

We assume weak interactions and replace the full Green
functions by the noninteracting Green functions(quasiparti-
cle ansatz),

GpqsRW ,T,KW ,vd = uG0
pqskW → KW ,vduN0skWd→NsRW ,T,KW d, s26d

where the noninteracting density matrixN0skWd is replaced by

the full density matrixNsRW ,T,KW d. Performing thev integra-
tions in Eqs.(21), (22), and(25) then yields the semiclassical
kinetic equation for the electronic density matrix:

S]T +
e

c
¹W KW esKW d ·BW 3 ¹W KW + ¹W KW esKW d ·¹W RWDNsRW ,T,KW d

= ifNsRW ,T,KW d,D++sRW ,T,KW d + S̃++
„RW ,T,KW ,esKW d…g

+ iNsRW ,T,KW dS̃−+
„RW ,T,KW ,esKW d… + iS̃+−

„RW ,T,KW ,esKW d…

3f1 − NsRW ,T,KW dg. s27d

To obtain a closed kinetic equation for the electronic density
matrix, internal Green functions, which appear in the self-
energies, have to be of course also eliminated according to
Eq. (26). Details concerning the calculation of self-energies
are given in the next section.

For a homogeneous magnetic field, the electronic density

matrix does not explicitly depend onRW . The RW dependence
can be therefore neglected. For a quadratic dispersion,

esKW d=KW 2/2m* ("=1 in this section), the Lorentz term, more-
over, becomes

se/cd¹W KW esKW d 3 BW ·¹W KW = sKW 3 VW Cd ·¹W KW = − iVW C ·LW ,

s28d

whereVW C=eBW /m* c is the cyclotron energy vector andLW the

angular momentum operator inKW space, and we obtain the
kinetic equation for the electronic density matrix in a more
familiar form:

s]T − iVW C ·LW dNsT,KW d = ifNsT,KW d,D++sT,KW d

+ S̃++
„T,KW ,esKW d…g

+ iNsT,KW dS̃−+
„T,KW ,esKW d…

+ iS̃+−
„T,KW ,esKW d…f1 − NsT,KW dg.

s29d

This equation is the basis for the calculation of the spin
relaxation time in spatially homogeneous systems subject to
a constant magnetic field. The first term on the rhs describes
the coherent motion in a molecular field modified by corre-

lation effects. IfD++, S̃++, andN were scalar functions, as in
ordinary transport theory, this term would vanish. The mo-
lecular field term is therefore a consequence of the quantum-
mechanical treatment of the spin degree of freedom. To the
singular part of the self-energy contribute the spin off-
diagonal terms in the Hamiltonian and the Hartree-Fock
fields due to electron-electron scattering. Dissipation and re-
laxation originate from the regular part of the self-energy and
give rise to the second and third terms on the rhs. They are at
least second order in the interaction. Formally, they corre-
spond to the scattering-out and the scattering-in terms in a
matrix Boltzmann equation. The matrix structure is of course
a consequence of the full quantum-mechanical description of
the spin. Only momentum scattering is treated classically.

B. Calculation of the self-energies

The semiclassical approach to furnish the self-energies in
the matrix Boltzmann equation(29), valid for magnetic
fields, which do not restructure the electron dispersion, is to
represent interaction processes in terms of diagrams, calcu-
late the diagrams using the standard rules58 to obtain

S̃pqskW ,t ,t8d and DpqskW ,td, perform the zeroth-order gradient
expansion, and then replace all internal Green functions ac-
cording to Eq.(26). This heuristic strategy leads to self-
energies, which can be expressed in a manifestly gauge-
invariant form by writing the internal momentum

integrations in terms of the generalized momentumKW . The
formal structure of the self-energies is then the same as with-
out magnetic field. Within the semiclassical approach, the
magnetic field therefore gives rise only to the Lorentz term.

In Fig. 1 we depict the self-energies in the Born approxi-
mation for electron-electron(a–d), electron-impurity(e), and
electron-phonon(f) scattering. Diagram(g) corresponds to
the self-energy due to the spin off-diagonal term in the
Hamiltonian(1).

FIG. 1. Diagrammatic representation of self-energies in the
Born approximation for electron-electron(a)–(d), electron-impurity
(e), and electron-phonon scattering(f). Diagram (g) denotes the
self-energy due to spin off-diagonal Hamiltonian matrix elements.
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The Hartree-Fock diagrams(a) and (b) contribute to the
instantaneous self-energyD++. They are second order in the
spin polarization and therefore, for sufficiently small spin
polarizations, negligible. There are two second-order dia-
grams due to electron-electron scattering, the direct(c) and
the exchange(d) Born diagram. Anticipating that soft scat-
tering dominates, we neglect the exchange diagram(d). The

direct Born diagram contributes toS̃++, S̃+−, andS̃−+. It can

be shown, however, thatS̃++ is at least second order in the
spin polarization and therefore negligible in the limit of

small spin polarizations. TheS̃−+ andS̃+− components, con-
tributing to the collision integral, are in contrast linear in the
spin polarization and cannot be neglected. Diagrams(e) and
(f), corresponding to the Born approximation for electron-
impurity and electron-phonon scattering, only contribute to

S̃pq. As in the case of electron-electron scattering, the11
component can be again neglected, if the spin polarization is
small enough, whereas the12 and 21 components con-
tribute in linear order in the spin polarization to the collision
integral. Diagram(g), corresponding to the spin off-diagonal
part of the Hamiltonian(1), is linear in the spin polarization
and contributes toD++. Eventually it leads to a torque force
acting on the spin polarization.

Anticipating small spin polarizations, we neglectS̃++ and
the Hartree-Fock contribution toD++. Writing in the Born
approximation furthermoreIBfNg= IB

eefNg+ IB
epfNg+ IB

eifNg for
the second and third term on the rhs of Eq.(29), the semi-
classical kinetic equation for the electronic density matrix
reduces to

s"]t − i"VW C ·LW dNskW,td =
i

2
†NskWtd,f"VW L + "VW IAskWd

+ "VW gskWdg · sW ‡ + IBfNg, s30d

where we relabeled the center timeT→ t and adjusted to the
notation of Eq.(9); " is explicitly included and the general-

ized momentum is now denoted bykW.
Equation(30) is a matrix Boltzmann equation similar to

the semiconductor Bloch equations frequently used to de-
scribe optically pumped semiconductors.60 Thus, numerical
techniques used for the solution of the semiconductor Bloch
equations can be adopted to the numerical solution of Eq.
(30). Calculations of this kind have been successfully per-
formed for various situations.34,35,44,51–53

To avoid a numerical solution, we focus on small spin
polarizations and linearize the Born collision integral with
respect to the spin polarization. It is important to note that

the equilibrium density matrixNeqskWd=NskW ,t→`d is not di-
agonal in the “spin basis.” Expanding the equilibrium density
matix in terms of Pauli matrices yields

NeqskWd = fskWd +
1

2
sW ·SWeqskWd, s31d

where fskWd=s1/2dTrNeqskWd=ff+skWd+ f−skWdg /2 is half of the
sum of the equilibrium distribution functions of the spin-up

and spin-down electrons andSWeqskWd is the equilibrium spin

polarization. Accordingly, we also write for the density ma-
trix at arbitrary times

NskW,td = fskWd + dfskW,td +
1

2
sW · fSWeqskWd + dSWskW,tdg, s32d

with dfskW ,td and dSWskW ,td the changes induced by optical

pumping or by electrical injection. We definedNeqskWd for
t→`, that is, it contains the electrons created by the pertur-

bation and bothdSWskW ,td and dfskW ,td have to vanish for
t→`.

Inserting the expansion(32) into the Boltzmann equation
(30) yields two kinetic equations: one for the charge compo-

nent dfskW ,td and one for the spin componentdSWskW ,td. The
collision terms couple the two equations. If, however, only a
small portion of the total number of electrons initially con-

tributed to the spin polarization, i.e., ifdfskW ,td! fskWd, the
coupling can be ignored and it suffices to focus on the equa-

tion for dSWskW ,td alone.

Since the total spin polarizationSWeqskWd+dSWskW ,td is small,
we linearize the Born collision integral with respect to both

SWeqskWd anddSWskW ,td. Thus,

IBfNg = IBfNeqg + IBff + df,dSWg. s33d

If we now apply TrsW f¯g on both sides of Eq.(30), use

IBfNeqg=0 as well asVW IAskWd3SWeqskWd=0W, because, by con-

struction, the equilibrium density matrixNeqskWd commutes

with HIA, and ignore furthermoredf in IBff +df ,dSWg, we get
a closed kinetic equation for the nonequilibrium spin polar-
ization

s"]t − i"VW C ·LW ddSWskW,td = f"VW L + "VW IAskWd + "VW gskWdg

3 dSWskW,td + JBff,dSWg s34d

with JBff ,dSWg=TrsW IBff ,dSWg.
The collision integral can be further simplified if we split

the spin-flip matrix into a leading spin-conserving diagonal
part and a small off-diagonal part which describes spin-flip
scattering. Since nonparabolicities are small, the diagonal
part is approximately equal to the unit matrix and we get

IskW ,k8W d.1+dIskW ,k8W d, with dIskW ,k8W d!1. Expanding the col-

lision integrals up to second order indIskW ,k8W d gives

JBff,dSWg = JBff,dSWgs0d + JBff,dSWgs1d + JBff,dSWgs2d. s35d

The first-order termJB
s1dff ,dSWg potentially mixes EY, DP, and

VG spin-relaxation channels, but for semiconductors with
high symmetry it does not contribute to the spin-relaxation
rates.

The kinetic equation for the excess spin polarization be-
comes therefore
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s"]t − i"VW C ·LW ddSWskW,td = "VW L 3 dSWskW,td + f"VW IAskWd

+ "VW gskWdg 3 dSWskW,td + JB
s0dff,dSWg

+ JB
s2dff,dSWg. s36d

This equation contains motional-narrowing(DP and VG) and
spin-flip (EY) spin relaxation processes on an equal footing.

The Elliott-Yafet process is simply encoded inJB
s2dff ,dSWg,

whereas the motional-narrowing processes result from the
combined action of the torque forces given by the second
term on the rhs and the spin-conserving scattering processes

comprisingJB
s0dff ,dSWg.

Independent of the scattering process, the structure of the
collision integrals in Eq.(36) is (n=ei, ee, andep)

Jn
s0dff,dSWg = o

qW
fWnskW + qW ;qWddSWskW + qW,td − WnskW ;qWddSWskW,tdg,

s37d

Jn
s2dff,dSWg = 2o

qW
WnskW + qW ;qWdgWskW,kW + qWd 3 fgWskW,kW + qWd

3 dSWskW + qW,tdg, s38d

where, for concise notation, we introduced a spin-flip vector

gWskW,kW8d = 1Im I+−skW,kW8d

ReI+−skW,kW8d
0

2 , s39d

with I+−skW ,kW8d the off-diagonal element of the overlap matrix
(6). This is a result of the Born approximation and the lin-
earization with respect to the spin polarization. In general,
the structure of the collision integrals depends on the scatter-
ing process. Here, however, the scattering process enters

only throughWnskW ;qWd, the probabilities for a transition be-

tween momentum statekW −qW and kW. For electron–ionized-
impurity scattering, for instance,

WeiskW ;qWd = 2pNiuUsqdu2d„«skW − qWd − «skWd…, s40d

while for electron-electron scattering,

WeeskW ;qWd = 4puVsqdu2o
kW8

hf1 − fskW − qWd − fskW8 + qWdgfskW8d

+ fskW − qWdfskW8 + qWdjd„«skWd + «skW8d

− «skW − qWd − «skW8 + qWd…, s41d

with Usqd and Vsqd statically screened Coulomb potentials.
Similar expressions hold for electron-phonon scattering. For

electron impurity scattering, which is elastic,WeiskW +qW ;qWd
=WeiskW ;qWd; moreover,WeiskW ;qWd is independent of the equilib-
rium distribution of the spin-up and the spin-down electrons.
In general, however, the transition probabilities depend on
the equilibrium distribution of the electrons, and, in the case
of electron-phonon scattering, also on the equilibrium distri-
bution of the phonons.

C. Diffusion approximation

The simple form of the collision integrals(37) and (38)
suggests to conceptualize the dynamics of the nonequilib-
rium spin polarization in terms of spin-polarized “test” elec-
trons, scattering off an equilibrated bath of “field” particles
(impurities, electrons, and phonons). Usually this picture can
be only applied to electron-impurity and electron-phonon
scattering, where the scattering partners belong to different
species, and not to electron-electron scattering, where the
scattering partners belong to the same species. It is only
within the linearized spin dynamics, which essentially treats
the electrons comprising the nonequilibrium spin polariza-
tion as a separate species, that the “test-field-particle con-
cept” can be applied to electron-electron scattering as well.
We now take full advantage of the simplicity of the collision
integrals and expand the collision integrals with respect to
the momentum transferqW. As a result the integrodifferential
equation(36) becomes a differential equation.

The on-shell spin-conserving process due to elastic
electron-impurity scattering yields

JB
s0d,onff,dSWg = o

n
o

i1,. . .,in

Ci1,. . .,in
ei skWd

]n

]ki1
. . . ]kin

dSWskW,td,

s42d

whereas the inelastic spin-conserving processes due to
electron-electron or electron-phonon scattering give rise to
an off-shell contribution

JB
s0d,offff,dSWg = o

n=ee,ep
o
n

o
i1,. . .,in

]n

]ki1
¯ ]kin

Ci1,. . .,in
n skWddSWskW,td,

s43d

where, in both cases, the moments are defined by
sn=ei,ee,epd

Ci1,. . .,in
n skWd =

1

n! oqW
qi1

¯ qin
WnskW ;qWd. s44d

The transition probabilityWnskW ;qWd depends on the precise
modeling of the elementary scattering process and also on
the dimensionality of the system. In the Appendix we give
explicit expressions for electron-electron and electron-
impurity scattering in a quantum well. Note, for inelastic
scattering the differential operators act on the moments

Ci1,. . .,in
n skWd, whereas for elastic scattering the moments are in

front of the differential operators.
Equations(42) and(43) involve partial differential opera-

tors of arbitrary order. To obtain tractable equations, the ex-
pansion is in many cases truncated after the second-order
term (diffusion approximation). As a result, scattering pro-
cesses with small momentum transfer are treated exactly
whereas scattering processes with large momentum transfer
are treated approximately. Because the transition probability
for the (unscreened) Coulomb potential diverges for small
momentum transfer, soft Coulomb scattering events domi-
nate, and the diffusion approximation is expected to describe
Coulomb scattering reasonably well. A similar reasoning ap-
plies also to electron–LO-phonon scattering. The singular be-
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havior of the collision integrals is stronger in three than in
two dimensions. The diffusion approximation is therefore
somewhat better justified for bulk than for quantum well
situations.38,46,48,62Nevertheless, our numerical results sug-
gest that even for a quantum well the diffusion approxima-
tion gives reasonable quantitative results for the spin-
relaxation time.

Keeping therefore only the second-order terms, we write

JB
s0dff,dSWg = JB

s0d,onff,dSWg + JB
s0d,offff,dSWg

= Fo
i

AeiskWd
]

]ki
+ o

i j

Bij
eiskWd

]2

]ki]kj
GdSWskW,td

+ o
n=ee,ep

Fo
i

]

]ki
Ai

nskWd + o
i j

]2

]ki]kj
Bij

n skWdG
3dSWskW,td = DskWddSWskW,td, s45d

where the first two terms on the rhs come from elastic scat-
tering processes and the last two terms encode inelastic scat-
tering events. In Eq.(45) we introduced for the first and
second momentssn=ei,ee,epd,

Ai
nskWd = o

qW
qiW

nskW ;qWd, s46d

Bij
n skWd =

1

2o
qW

qiqjW
nskW ;qWd, s47d

which have the meaning ofkW-dependent dynamical friction
and diffusion coefficients, respectively. Within the diffusion
approximation the spin-conserving(Born) collision integrals
are therefore represented by a Fokker-Planck differential op-
erator(45). Each scattering process gives rise to a particular
Fokker-Planck operator, with particular dynamical friction
and diffusion coefficients.

In the same spirit, expanding the spin-flip collision inte-

gral JB
s2dff ,dSWg up to second order in the momentum transfer

qW, and usinggWskW ,kWd=0, gives

JB
s2dff,dSWg = − RskWddSWskWtd, s48d

with a spin-flip tensor

RskWd = 4 o
n=ei,ee,ep

o
i j

Bij
n skWdGi jskWd, s49d

given in terms of the total diffusion coefficient and a tensor

Gi jskWd, which describes the rate of change of the spin-flip

vectorgWskW ,kW8d:

Gi jskWd = 1 Oij
yy − Oij

xy 0

− Oij
yx Oij

xx 0

0 0 Oij
xx + Oij

yy2 , s50d

with

Oij
nm = F ]

]ki
g

kWkW8

n G
kW8=kW

F ]

]kj
g

kWkW8

m G
kW8=kW

. s51d

In Fig. 2 we illustrate the physical content of the diffusion
approximation encoded in Eqs.(45) and (48): the small

“test” spin polarization dSWskW ,td scatters off equilibrated
“field” particles, which, depending on the scattering process,
are either electrons, phonons, or impurities. Spin-conserving
scattering can be elastic and inelastic, because the “field”
particles can absorb or emit energy, the bath has “internal
degrees.” Spin-nonconserving scattering, on the other hand,
turns out to be elastic within the diffusion approximation.

We now introduce scaled atomic units and measure en-

ergy in units of a scaled atomic RydbergR̃0=R0/s and length
in units of a scaled atomic Bohr radiusã0=Îsa0, with

R̃0ã0
2="2/2m0 and e2=2ÎsR̃0ã0, wherem0 is the bare elec-

tron mass ands is a scale factor chosen to yield

R̃0=1 meV. Symmetry-adapted coordinates are then a radial
coordinate«=k2 and a generalized angle variablev, which,
for bulk semiconductors comprises two angles, the polar
angleu and the azimuth anglef, and for quantum wells is
simply the polar anglef. Before we express the Fokker-
Planck equation in these symmetry-adapted coordinates, we
recall that the experimentally measured quantity is the mac-

roscopic (kW-averaged) spin polarization. Normalizing the
macroscopic spin polarization toNs, the (small) number of

initially spin-polarized electrons and writing thekW integral in
symmetry-adapted coordinates, we define a “macroscopic”
spin polarization(per spin polarized electron),

dSWstd =
1

Ns
o
kW

dSWskW,td =
1

s2pddns
E
0

`

d«E dvJs«ddSWs«,v,td,

s52d

with d the dimension,ns=Ns/L
d the density of initially spin-

polarized electrons, andJs«d the energy-dependent part of
the Jacobian, which arises from the transformation to the
symmetry-adapted coordinates. Note that due to the normal-

ization, dSWs0d is a unit vector in the direction of the initial
spin polarization. For bulk,d=3, dv=dfdu sinu, and

FIG. 2. Graphical illustration of the collision terms within the
diffusion approximation: A “test” spin polarization scatters off a
generalized bath of equilibrated “field” particles(electrons, impuri-
ties, and/or phonons). Whereas spin-flip scattering is elastic(on-
shell) within our approximation, spin-conserving scattering can be
on- or off-shell, i.e. the “test” spin polarization can lose or gain
energy, because the “internal degrees” of the bath can absorb or
emit energy.
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Js«d=Î« /2, while for quantum wellsd=2, dv=df, and
Js«d=1/2. Instead of setting up the Fokker-Planck equation

for dSWs« ,v ,td it is more convenient to directly construct the
Fokker-Planck equation for

dSW8s«,v,td =
Js«d

s2pddns
dSWs«,v,td. s53d

The differential operator describing spin-conserving scat-

tering processes in the Fokker-Planck equation fordSW8 reads
in symmetry-adapted coordinates

DskWd = −
]

]«

«

t fs«d
+

]2

]«2

«2

tds«d
−

1

4t's«d
L2svd

= Ds«d −
1

4t's«d
L2svd, s54d

where the operatorL2svd denotes the total angular momen-
tum operator in momentum space. To obtain this generic
form for both bulk and quantum wells it is essential to in-
clude Js«d into the definition of the spin polarization. The
off-shell term Ds«d originates from inelastic scattering
events, e.g., due to electron-electron or electron-phonon scat-
tering. The relaxation rates 1/t fs«d and 1/tds«d denote the
rate with which the “test” spin polarization loses energy and
the rate with which the “test” spin polarization diffuses in
energy space, respectively. The on-shell term, describing ran-
domization of the angle variable, is given by the last term on
the rhs of Eq.(54). It is proportional to the total on-shell
relaxation rate 1/t's«d due to both elastic and inelastic scat-
tering processes.

The rates characterizing the differential operatorDskWd are

obtained from a direct calculation of the coefficientsAi
nskWd

andBij
n skWd and casting the resulting differential operatorDskWd

in the specific form given in Eq.(54). An explicit calculation

of the symmetry-adapted form of the relaxation tensorRskWd,
which is defined in terms of the total diffusion coefficient

BijskWd, due to both elastic and inelastic scattering processes,
shows moreover that it can be expressed in terms of the same
scattering rates. Thus, the three scattering rates 1/t fs«d,
1 /tds«d, and 1/t's«d completely specify the two collision

integralsJB
s0dff ,dSWg andJB

s2dff ,dSWg. In the Appendix we give
explicit expressions for the relaxation rates due to electron-
electron and electron-impurity scattering in a quantum well.

The dimensionless, symmetry-adapted Fokker-Planck

equation fordSW8, which is the basis for the calculation of the
spin-relaxation rates presented in the next section, can be
therefore written as

]

]t
dSW8s«,v,td = FDs«d −

1

4t's«d
L2svd

+ iVW C ·LW svdGdSW8s«,v,td + VW L 3 dSW8s«,v,td

+ fVW IAs«,vd + VW gs«,vdg 3 dSW8s«,v,td

− Rs«,vddSW8s«,v,td. s55d

It contains spin relaxation due to motional narrowing(DP
and VG processes) and spin-flip scattering(EY process). The
former arises from the combined action of the off- and on-
shell spin-conserving scattering events encoded in the differ-
ential operatorsDs«d andf1/t'svdgL2svd, respectively, and

the torque forces due toVW IAs« ,vd and VW gs« ,vd, while the
latter originates from the spin-flip tensorRs« ,vd. Note that if
more than one scattering process is considered, the relaxation
rates characterizing the differential operators and the spin-
flip tensor are total relaxation rates, due to whatever elastic
and inelastic scattering processes are included in the model.
The orbital motion of the electrons, which leads to a quench-
ing of the motional-narrowing spin-relaxation processes, is

given by the termiVW C·LW svd on the rhs of Eq.(55). In the
next section we develop a scheme that separates the fast
spin-conserving scattering processes from the slow spin-
decay-causing processes and directly yields the time evolu-
tion of the macroscopic spin polarization.

D. Multiple-time-scale analysis

The Fokker-Planck equation(55) determines the time
evolution of the nonequilibrium spin polarization on the fast,
spin-conserving time scale, where randomization of the
angle variables(direction of the momentum) and energy re-
laxation and diffusion occurs, and on the long time scale,
where spin-nonconserving processes lead to the decay of the
spin polarization. The two time scales are well separated.
The fast, spin-conserving stage, whose scale is given by the
first term on the rhs of Eq.(55) and therefore by the off- and
on-shell relaxation times(as well as the time it takes to com-
plete one cyclotron orbit), terminates in a quasistationary
state, which then evolves on the time scales set by the
Elliott-Yafet term, the torque forces due to the spin off-
diagonal Hamiltonian matrix elements, and the external mag-
netic field (Larmor precession). Experimentally relevant is
usually the time evolution on the long time scale. In this
section we employ therefore a multiple-time-scale approach
to extract from the Fokker-Planck equation(55) a Bloch
equation, which controls the time evolution of the macro-

scopic(kW-averaged) spin polarization on the long time scale.
To simplify the notation, we suppress the prime. It is under-

stood that the spin polarizationdSWs« ,v ,td contains the factor
Js«d / s2pddns.

As a preparatory step we first consider that part of the
Fokker-Planck equation(55), which is spin-conserving:

]

]t
dSWs«,v,td = FDs«d −

1

4t's«d
L2svd

+ iVW C ·LW svdGdSWs«,v,td. s56d

To find the stationary solution of Eq.(56) we set the lhs to
zero, write
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dSWsts«,vd = ps«dCW sts«,vd, s57d

with ps«d defined by

Ds«dps«d = 0, s58d

and obtain for the auxiliary vectorCW sts« ,vd the differential
equation

FD * s«d −
1

4t's«d
L2svd + iVW C ·LW svdGCW sts«,vd = 0,

s59d

with

D * s«d =
«

t fs«d
]

]«
+

«2

tds«d
]2

]«2 , s60d

the adjoint operator toDs«d. The simplest solution of Eq.
(59) is a constant vector

CW sts«,vd = eW , s61d

giving rise to a stationary solution

dSWsts«,vd = ps«deW . s62d

The particular form ofps«d does not matter at this point.
We now turn to the full Fokker-Planck equation(55). The

spin-conserving stage of the time evolution, described by the
first term on the rhs, occurs on a very fast time scale and is
usually experimentally not resolved. Hence, it is not neces-
sary to explicitly keep track of it. Instead, it is sufficient to
use the final state of the fast, spin-conserving time evolution,
i.e., the stationary solution of the spin-conserving part of the
Fokker-Planck equation[viz., Eqs. (56)–(62)], as an initial
state for the time evolution on the slow time scale, where
spin decay occurs. We write the initial condition therefore as

dSWsts«,v,0d = ps«deW , s63d

whereeW is now the direction of the initial spin polarization.
This initial condition is general enough, because neither elec-
trical nor optical spin injection produces anisotropic initial
spin polarizations. Accordingly, we write for arbitrary times

dSWs«,v,td = ps«dCW s«,v,td, s64d

where the time-dependent auxiliary vectorCW s« ,v ,td satisfies
now the time-dependent equation

]

]t
CW s«,v,td = FD * s«d −

1

4t's«d
L2svd

+ iVW C ·LW svdGCW s«,v,td + fVW L + VW IAs«,vd

+ VW gs«,vdg 3 CW s«,v,td − Rs«,vdCW s«,v,td,

s65d

with an initial conditionCW s« ,v ,0d=eW. Note that Eq.(65) is
the adjoint Fokker-Planck equation. The functionps«d satis-
fies the homogeneous differential equation(58) and is there-

fore defined only up to a normalization constant. From the
initial condition for the macroscopic spin polarization,

dSWs0d=eW, we conclude thatps«d has to be normalized accord-

ing to ed«edvps«d=1 [recall that we redefineddSW such that
it contains the factorJs«d / s2pddns]. Thus,d«edvps«d can be
interpreted as the probability density for finding a spin-
polarized “test” electron in the energy intervalf« ,«+d«g.

To proceed further we scale each term in Eq.(65) to its
typical value. In the case of degenerate electrons the typical
values would be the ones at the Fermi energy, whereas for
nondegenerate electrons the typical values could be the ones
at the average thermal energy. Denoting typical values by a
caret, we introduce scaled quantitiest8= t / t̂, t f8=t f / t̂ f,

td8=td/ t̂d, t'8 =t' / t̂', VW IA8 =VW IAt̂IA, VW g8=VW gt̂g, VW L8=VW Lt̂L,

R8=Rt̂R, and VW C8 =VW Ct̂C. The rescaled equation for

CW 8s« ,v ,t8d becomes(suppressing the arguments of the vari-
ous functions)

]

]t8
CW 8 = F t̂

t̂ f

«

t f8

]

]«
+

t̂

t̂d

«2

td8

]2

]«2 −
t̂

t̂'

1

4t'8
L2 +

t̂

t̂C

iVW C8 ·LWGCW 8

+
t̂

t̂L

VW L8 3 CW 8 +
t̂

t̂IA

VW IA8 3 CW 8 +
t̂

t̂g

VW g8 3 CW 8

−
t̂

t̂R

R8CW 8. s66d

We identify three time scales. A fast time scale given by the
spin-conserving relaxation timest̂i si = f ,d, ' d and the time
it takes to complete a cyclotron orbitt̂C, an intermediate time
scale given by the time it takes to complete a precession
around the intrinsic magnetic fields(due to the spin off-
diagonal Hamiltonian matrix elements) t̂IA andt̂g, and a long
time scale, on which Larmor precession and spin-flip scatter-
ing occur,t̂L and t̂R, respectively. For representative experi-
mental setups, the typical time scalet̂, on which the spin
polarization has to be tracked(“observation time”), and the
three typical intrinsic time scales obey the following order-
ing t̂ / t̂ f , t̂ / t̂d, t̂ / t̂' , t̂ / t̂C=Osh−1d, t̂ / t̂IA , t̂ / t̂g=Osh0d, and
t̂ / t̂L , t̂ / t̂R=Osh1d, where we introduced a small parameterh.
Accordingly, we classify each term in Eq.(66) by the small-
ness parameterh. Suppressing the primes, Eq.(66) is rewrit-
ten as

]

]t
CW =

1

h
FD * −

1

4t'

L2 + iVW C ·LW GCW + sVW IA + VW gd

3 CW + hVW L 3 CW − hRCW . s67d

Equation(67) is in a form where fast and slow processes
can be clearly identified. The fast spin-conserving terms and
the orbital motion enter in orderh−1, the precession around
the internal magnetic fields enters in orderh0, whereas the
Larmor precession and the spin-flip scattering terms appear
in orderh1. Naturally, taking as much advantage as possible
of the existence of the small parameterh, the first thought is
to expand all quantities with respect toh and apply pertur-
bation theory. The structure of Eq.(67) indicates, however,
that regular perturbation theory will lead to nonuniformity in
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the long-time regime, i.e. precisely in that regime in which
we are interested. To obtain the correct long-time behavior of
the solution of Eq.(67) a multiple-time-scale approach is
required.

In the spirit of multiple-time-scale perturbation theory,63

we consider thereforeCW as a function of three time variables
tn=hnt, n=−1,0,1, which are assumed to be independent,
and substitute a second-order expansion of the form

CW s«,v,td = CW s0ds«,v,t−1,t0,t1d + hCW s1ds«,v,t−1,t0,t1d

+ h2CW s2ds«,v,t−1,t0,t1d s68d

into Eq. (67), where the time derivative is extended to
]t=h−1]t−1

+]t0
+h]t1

. Equating coefficients of like powers of

h yields a hierarchy of equations for the functionsCW snd. Up
to Oshd they read

]

]t−1
CW s0d = FD * −

1

4t'

L2 + iVW C ·LW GCW s0d, s69d

]

]t−1
CW s1d +

]

]t0
CW s0d = FD * −

1

4t'

L2 + iVW C ·LW GCW s1d

+ sVW IA + VW gd 3 CW s0d, s70d

]

]t−1
CW s2d +

]

]t0
CW s1d +

]

]t1
CW s0d

= FD * −
1

4t'

L2 + iVW C ·LW GCW s2d

+ sVW IA + VW gd

3 CW s1d + VW L 3 CW s0d − RCW s0d. s71d

For the analysis of this set of equations it is convenient to

split CW snd into an angle-averaged and a remaining part,

CW snds«,v,t−1,t0,t1d = aW snds«,t−1,t0,t1d + daW snds«,v,t−1,t0,t1d,

s72d

whereaW snd=kCW sndlv, with an angle average defined by

ks¯dlv =E dvs¯d s73d

and kdaW sndlv=0 by definition. Since the angle variables are
periodic, this partitioning is always possible. From the initial

condition, CW s« ,v ,0d=eW, we infer the intitial conditions
aW snds« ,0 ,0 ,0d=eWdn,0, and daW snds« ,v ,0 ,0 ,0d=0. Recalling
that the factorJs«d / s2pddns is included in the definition of

dSWs« ,v ,td, the macroscopic nonequilibrium spin polarization
defined in Eq.(52) can now be rewritten as

dSWstd =E
0

`

d« ps«daWs«,td = kaWs«,tdl«, s74d

where we defined an energy average

ks¯dl« =E
0

`

d«ps«ds¯d. s75d

Note that the functionps«d, which determines the terminat-
ing state of the fast, spin-conserving time evolution, enters
here naturally as a weight function. Formally, the weight
function appears in our theory because of the ansatz(64),
which enabled us to switch to the adjoint Fokker-Planck

equation. The expansion ofCW implies an analogous expan-

sion for the macroscopic(kW-averaged) spin polarization:

dSWstd = dSW s0dst−1,t0,t1d + hdSW s1dst−1,t0,t1d + h2dSW s2dst−1,t0,t1d.

s76d

We now calculate the leading-order contributiondSW s0dstd uni-
formly valid for all times. As a result, we will obtain a Bloch
equation that determines the long-time behavior of the mac-
roscopic spin polarization.

1. O„h−1
… equation

With the substitution(72), theOsh−1d equation(69) splits
into two independent equations, one for the angle-averaged
part and one for the angle-dependent part:

]

]t−1
aW s0d = D * aW s0d, s77d

]

]t−1
daW s0d = FD * −

1

4t'

L2GdaW s0d. s78d

Solutions of Eqs.(77) and (78) compatible with the two

initial conditions, aW s0ds« ,0 ,0 ,0d=eW and daW s0ds« ,0 ,0 ,0d=0W,
are aW s0ds« ,t−1,t0,t1d=aW s0dst0,t1d, with aW s0ds0,0d=eW, and

daW s0ds« ,v ,t−1,t0,t1d=0W. Using Eqs.(74) and (76), we find
therefore

dSW s0dst0,t1d = aW s0dst0,t1d, s79d

that is, due to our choice of the initial condition, the macro-
scopic zeroth-order spin polarization is independent of the
fast spin-conserving time scalet−1 and solely evolves on the
long time scalest0 and t1.

2. O„h0
… equation

To determine the time evolution of the macroscopic spin
polarization on the long time scalest0 and t1, we study the
Osh0d equation. Substituting Eq.(72) into Eq.(70), the latter
splits into two independent equations:

]

]t−1
aW s1d = −

]

]t0
aW s0d + D * aW s1d, s80d

]

]t−1
daW s1d = FD * −

1

4t'

L2 + iVW C ·LW GdaW s1d

+ sVW IA + VW gd 3 aW s0d, s81d

where we have useddaW s0d=0W, kVW IAlv=0W, and kVW glv=0W. Ap-

SEMICLASSICAL KINETIC THEORY OF ELECTRON… PHYSICAL REVIEW B 70, 245210(2004)

245210-11



plying the energy averageks. . .dl« on both sides of Eq.(80)
yields

]

]t−1
dSW s1d = −

]

]t0
dSW s0d − kD * aW s1dl«, s82d

which, using in the second term partial integration and the
definition of ps«d, reduces to

]

]t−1
dSW s1d = −

]

]t0
dSW s0d. s83d

The vanishing of the second term on the rhs of Eq.(82) is the
result of the spin conservation of the differential operatorD,
which in turn is ensured by the identity

U d

d«

«2

tds«d
U

«=0
= U «

t fs«d
U

«=0
. s84d

It is crucial to note that the rhs of Eq.(83) is independent
of the fast timet−1, becauseaW s0d is independent oft−1. Inte-
grating Eq.(83) with respect tot−1, the rhs therefore gives
rise to a secular term, i.e., a term that is proportional tot−1.

As a result,dSW s1d can be larger thandSW s0d for sufficiently large
times. The expansion(76) would be valid only for short
times, i.e., the expansion is nonuniform. Within multiple-
time-scale perturbation theory, secular terms can be avoided
by an appropriate choice of the time evolutions on the vari-
ous time scales. The secular term in Eq.(83) can be particu-
larly simply removed by forcing the rhs to be zero, which
gives rise to the condition

E
0

`

d«ps«d
]

]t0
aW s0dst0,t1d = 0. s85d

That is, aW s0dst0,t1d=aW s0dst1d, which, using Eq.(79), leads to

dSW s0dst1d=aW s0dst1d, i.e., the time evolution of the zeroth-order
macroscopic spin polarization(and therefore the spin decay)
occurs solely on the long time scalet1. Since the rhs of Eq.

(83) is made to vanish, we also obtaindSW s1dst−1,t0,t1d
=dSW s1dst0,t1d, i.e., dSW s1d is independent of the fast time vari-

able t−1. Using the definition ofdSW s1d, we furthermore con-
clude thataW s1ds« ,t−1,t0,t1d=aW s1ds« ,t0,t1d. We need both re-
sults in the analysis of theOsh1d equations, which is
necessary to determine the time evolution on the remaining
time scalet1.

3. O„h1
… equations

To investigate theOsh1d equation(71), we substitute Eq.
(72) into Eq. (71). Averaging over the angle and energy, we
find

]

]t−1
dSW s2d = −

]

]t0
dSW s1d −

]

]t1
dSW s0d + ksVW IA + VW gd 3 daW s1dl«,v

+ VW L 3 dSW s0d − kRl«,vdSW s0d, s86d

where we useddaW s0d=0, kVW IAl«,v=0W, kVW gl«,v=0W, and

kD* aW s2dl«,v=0W. The third term on the rhs of Eq.(86) contains

daW s1d, which has to be obtained from Eq.(81), the angle-
dependent part of theOsh0d equation. Before we proceed
with the analysis of Eq.(86) let us therefore turn to Eq.(81).
Integration of Eq.(81) with respect to the fast timet−1 pro-

duces a secular term,sVW IA+VW gd3aW s0dt−1, which cannot be

removed, because bothVW IA+VW g andaW s0d are finite. A way to
avoid the resulting nonuniformity is to demand

]

]t−1
daW s1d = 0W , s87d

i.e., to enforcedaW s1ds« ,v ,t−1,t0,t1d=daW s1ds« ,v ,t0,t1d, which
reduces Eq.(81) to

FD * −
1

4t'

L2 + iVW C ·LW GdaW s1d + sVW IA + VW gd 3 dSW s0d = 0W ,

s88d

where we used in the last termaW s0dst1d=dSW s0dst1d. The condi-
tion (87) is reminiscent of the quasistationarity assumption
usually invoked in the calculation of the D’yakonov-Perel’
relaxation rates.7 The multiple-time-scale approach enables
us to identify the time scale on which this assumption holds.

We now return to Eq.(86). SincedaW s1d, dSW s1d, anddSW s0d are
independent of the fast time variablet−1, the whole rhs of Eq.
(86) is independent oft−1. Integration with respect tot−1 thus
gives rise to a secular term that has to be removed. We force
therefore the rhs of Eq.(86) to vanish, which can be certainly
accomplished if we separately demand

]

]t0
dSW s1d = 0W , s89d

]

]t1
dSW s0d = VW L 3 dSW s0d + ksVW IA + VW gd 3 daW s1dl«,v − kRl«,vdSW s0d.

s90d

From the first equation we find

E
0

`

d« ps«d
]

]t0
aW s1ds«,t0,t1d = 0W , s91d

that is,aW s1d is independent oft0, a result that we need below.
The second equation is already a precursor of the Bloch

equation fordSW s0dst1d. Although it determinesdSW s0dst1d for a
given daW s1dst0,t1d, it is, however, not yet a Bloch equation
because, at this point of the calculation,daW s1d is still a func-
tion of t1 and t0.

To obtain a closed Bloch equation on the time scalet1
alone, we now examine thet0 dependence ofdaW s1dst0,t1d.
Towards that end, we consider the angle-dependent part of
the Osh1d equation(71), which reads

]

]t−1
daW s2d = FD * −

1

4t'

L2 + iVW C ·LW GdaW s2d

+ sVW IA + VW gd 3 aW s1d + sVW IA + VW gd 3 daW s1d

− ksVW IA + VW gd 3 daW s1dlv
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− RaW s0d + kRlvaW s0d −
]

]t0
daW s1d. s92d

Except for the first term, all terms on the rhs are independent
of t−1, and therefore give rise to secular terms. To remove the
secular terms, we set the undesired terms on the rhs to zero:

]

]t0
daW s1d = sVW IA + VW gd 3 daW s1d − ksVW IA + VW gd 3 daW s1dlv

− fR − kRlvgaW s0d + sVW IA + VW gd 3 aW s1d. s93d

The last two terms on the rhs of this equation are indepen-
dent of t0 and therefore again give rise to a secular term if
Eq. (93) is integrated with respect tot0. In general, the last
two terms are finite. Thus, to avoid nonuniformity we de-
mand thatdaW s1d is independent oft0, that is, we enforce
daW s1ds« ,v ,t0,t1d=daW s1ds« ,v ,t1d. With this constraint, Eq.
(93) could be used to determineaW s1ds« ,t1d and eventually
dSs1dst1d.

BecausedaW s1d is independent oft0, Eq. (90) is in fact a
Bloch equation on the time scalet1 alone. The function

daW s1ds« ,v ,t1d satisfies Eq.(88), which, throughdSW s0dst1d,
contains t1 only as a parameter. Therefore, the function
daW s1ds« ,v ,t1d instantaneously adjusts to the function

dSW s0dst1d, which, in this sense, acts like a “slave field” for
daW s1ds« ,v ,t1d.

To make the equations determining the decay of the mac-
roscopic spin polarization explicit, we recalltn=hnt and go
back to the original, unscaled time variable and functions. As
a result Eq.(90) becomes a Bloch equation for the macro-
scopic spin polarization,

]

]t
dSW s0dstd = VW L 3 dSW s0dstd − fGEY + GMNgdSW s0dstd, s94d

with initial condition dSWs0d=eW. The Elliott-Yafet and
motional-narrowing spin-relaxation tensors are given by

GEY = kRl«,v, s95d

GMNdSW s0dstd = − ksVW IA + VW gd 3 daW s1dl«,v, s96d

respectively, anddaW s1d is obtained from Eq.(88), which for
convenience we state here again:

FD * −
1

4t'

L2 + iVW C ·LW GdaW s1d + sVW IA + VW gd 3 dSW s0d = 0W .

Equations(94)–(96) are the main result of this section. They
control the time evolution of the macroscopic spin polariza-
tion on the long time scale, where spin relaxation, i.e., decay,
occurs. Equation(96) is an implicit definition of the spin
relaxation tensorGMN. The explicit form ofGMN can be ob-
tained by inserting the solution of Eq.(88), which is always

linear in dSWstd, and performing the angle and energy aver-
ages. In the next section we illustrate this procedure for a
doped quantum well subject to a small magnetic field.

The macroscopic spin-relaxation tensor contains the EY
process and the motional-narrowing(DP and VG) processes.
Due to the different angle dependences of the two main

motional-narrowing spin relaxation processes, DP and VG
processes, Eq.(96) splits for isotropic semiconductors into
two separate terms,GDP andGVG. Accordingly, for isotropic
semiconductors, a Matthiessen-type rule holds for the total
spin-relaxation tensor,G=GEY+GDP+GVG, and, as a conse-
quence, for the spin-relaxation rates, which are the diagonal
elements of the relaxation tensors.10 The quenching of the
motional-narrowing processes due to the orbital motion is

contained in Eq.(88) through the term proportional toVW C.8,10

The on- and off-shell relaxation rates appearing in Eq.(88)
are total relaxation rates due to whatever scattering processes
are included. A Matthiessen rule holds separately for the on-
and off-shell rates. The energy averageks¯dl« is defined in
Eq. (75). Most importantly, it contains a weight functionps«d
defined as the solution of Eq.(58). This function describes
the energy dependence of the quasistationary spin polariza-
tion, which appears on the short time scale because of fast,
spin-conserving inelastic scattering processes, i.e., because
of energy relaxation and diffusion. Once the quasistationary
spin polarization is established, it slowly decays on the long
time scale set by the spin-nonconserving terms in the
Fokker-Planck equation.

IV. APPLICATION TO QUANTUM WELL STRUCTURES

In this section we apply the formalism to a quantum well
at low enough temperatures, where electron-impurity and
electron-electron scattering dominate. We are here particu-
larly interested in the effects of Pauli blocking and inelastic-
ity. For illustration, we focus therefore only on the DP pro-
cess, which, for small to moderate magnetic fields, is usually
the dominant spin-relaxation process. Moreover, if the mag-
netic field is small enough, the timet̂C it takes to complete a
cyclotron orbit is much longer than any of the intrinsic scat-
tering timest̂i si = f ,d, ' d, and the quenching effect of the
magnetic field can be ignored.

We consider a symmetric GaAs quantum well, grown in
the[001] direction, which is also the quantization axis for the
electron spin. Due to the assumed structural symmetry, there
is only bulk inversion asymmetry giving rise to DP spin
relaxation.40As in the bulk case, we treat the two states at the
conduction-band minimum explicitly and include a large set
of states perturbatively, up to third order, to include the effect
of bulk inversion asymmetry. For energies close to the band
minimum, the Hamiltonian for the quantum well can be cast
into the form(1). The spin off-diagonal term in the quantum
well Hamiltonian is the bulk spin off-diagonal term averaged
over the envelope function of the conduction subband. As-
suming for simplicity infinite confinement and restricting the
calculation to the lowest conduction subband, we find(ne-

glecting cubic terms inkW)

"VW IA
QWs«,fd = 2d0

Î«Sp

L
D21− cosf

sinf

0
2 =

1

tIAs«d
kW IAsfd,

s97d

where we have defined a precession rate 1/tIAs«d=CIA
QWÎ«

with CIA
QW=2d0sp /Ld2.
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Since we are only interested in the DP spin relaxation

tensor, we neglect in Eq.(88) the torque force due toVW g.
Because we furthermore assume small magnetic fields, we
also ignore the orbital motion of the electrons. The separa-
tion ansatz,

daW s1ds«,f,td = ts«dkW IAsfd 3 SW s0dstd, s98d

then reduces Eq.(88) to a scalar differential equation,

FD * −
1

4t's«dGts«d +
1

tIAs«d
= 0, s99d

which determines the generalized relaxation timets«d. Be-
cause the differential operatorD* accounts for inelastic scat-
tering, we have to conclude that even on the long time scale,
where the spin polarization decays, inelasticity cannot be ig-
nored. Thus, inelastic scattering processes not only deter-
mine the initial condition for the decay stage but they di-
rectly affect the time evolution(of the macroscopic spin
polarization) in the decay stage. Multiplying from the left
Eq. (99) by ps«dts«d, integrating the resulting equation over
«, and using condition(84) yields an equivalent differential
equation,

FD −
1

4t's«dGps«dts«d +
ps«d

tIAs«d
= 0, s100d

which can be also used to determinets«d.
Inserting Eq.(98) into (96), ignoring theVg term, and

performing the angle and energy averages finally yield for
the DP spin relaxation tensor

GDP =
1

tDP1
1 0 0

0 1 0

0 0 2
2 , s101d

with the DP spin relaxation rate given by

1

tDP
= pK t

tIA
L

«

, s102d

where the energy average is defined in Eq.(75). To deter-
mine the functionps«d, we integrate Eq.(58), which gives

F− vs«d +
d

d«
ws«dGps«d = 0, s103d

where we used again condition(84) and introduced the dy-
namical friction and diffusion coefficients in« space,
vs«d=« /t fs«d and ws«d=«2/tds«d, respectively. Integrating
once more, we obtain

ps«d = ps0dexpSE
0

«

d«8
vs«8d − w8s«8d

ws«8d D , s104d

with w8s«d=dws«d /d« and a normalization constantps0d,
which we fix according to

E
0

2p

dfE
0

`

d«ps«d = 1. s105d

Note, because of condition(84), the integral in Eq.(104) is
zero for«→0. That is,ps«d is well defined for«→0.

The Bloch equation(94) for the macroscopic spin polar-
ization has to be solved with the spin relaxation tensor(101)
and taking the particular geometry of the experimental setup
into account. Here, we consider the case of Kerr or Faraday
rotation experiments, where the small magnetic field, which
causes the spin precession, is along thex axis. The propaga-
tion direction of the pump and probe pulses is assumed to be
perpendicular to the quantum well plane, i.e., parallel to the
z axis (growth axis). The initial spin polarization is therefore
along thez axis, i.e.,eW =s0,0,1dT, and the probe pulse moni-
tors the decay of a spin polarization that precesses in theyz
plane. Note that the spin decay in theyzplane is not isotropic
sGyyÞGzzd. AssumingtDP@1/VL, the solution of the Bloch
equation is

dSWstd = 1 0

− sinVLt

cosVLt
2e−Gt, s106d

where the decay rate of the spin polarization is given by the
arithmetic mean of the decay rates iny and in z direction:
G=sGyy+Gzzd /2=3/s2tDPd.

The results presented below are for aL=25 nm GaAs

quantum well. The parameter needed to specify"VW IA
QWskWd is

d0=0.06"3/Îs2m*d3eg.
13 The remaining parameters, such as

the effective CB electron mass or the static dielectric con-
stant eb (needed for the Coulomb matrix element) can be
found in standard databases.64 Numerically, we first calculate
vs«d=« /t fs«d, ws«d=«2/tds«d, which define the differential
operatorD, and the on-shell rateus«d=1/4t's«d, taking
electron-electron and electron-impurity scattering into ac-
count (see Appendix). We then determineps«d from Eqs.
(104) and (105). Finally, we solve the differential equation
(100) for ts«d numerically and obtain the DP relaxation rate
1/tDP by numerically integrating Eq.(102).

In Figs. 3 and 4 we show, forT=10 K, the dimensionless
functions vs«d=« /t fs«d, ws«d=«2/tds«d, and us«d
=1/4t's«d for a modulation-doped quantum well with elec-
tron densityn=43109 cm−2 (nondegenerate electrons) and
n=431011 cm−2 (degenerate electrons), respectively. In a
modulation-doped quantum well electron-impurity scattering
is negligible because of the spatial separation between the
dopants and the electrons, we take therefore only electron-
electron scattering into account. The physical content of the
functions vs«d and ws«d is that of dynamical friction and
diffusion coefficients(in « space) for the “test” spin polar-
ization resulting from the scattering between the spin-
polarized “test” electrons and the equilibrated “field” elec-
trons. The functionus«d denotes the on-shell scattering rate
arising from the “test” electron’s elastic scattering off “field”
electrons. It randomizes the anglef; henceus«d can be in-
terpreted as an angle randomization coefficient.
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In Figs. 3 and 4 we also show the electron distribution
functions that characterize the equilibrated state att→`. Be-
cause of our assumption that only a small portion of the total
number of electrons initially contributed to the “test” spin

polarization[i.e., dfskW ,td! fskWd], the equilibrium distribution
functions are used to determine the friction, diffusion, and
angle randomization coefficients(see Sec. III B). In other
words, we approximated att,` the distributions of the fric-
tion and diffusion causing spin-balanced “field” electrons by
the distributions of the equilibrated electrons att→`, de-
spite the fact that att,` of course a small number of elec-
trons is still out of equilibrium and contributes to the finite
spin polarization. Obviously, this is only permissible close
enough to equilibrium.

Inelastic scattering encoded invs«d=« /t fs«d and
ws«d=«2/tds«d gives rise to spin-conserving energy relax-
ation and diffusion, which in turn yields a quasistationary

spin polarizationdSWsts« ,fd=ps«deW, towards which any initial
spin polarization relaxes very quickly without losing spins.
The time scale on which this spin-conserving relaxation
takes place is set by the relaxation timestis«d, i = f ,d,'. In
Fig. 5 we showps«d for T=10 K and three densities:n=4
3109 cm−2, n=431011 cm−2, and n=431012 cm−2. In the
inset we again depict the corresponding distribution func-
tions for the electrons that characterize the equilibrated state
at t→`. At very low densities, where the electrons are non-
degenerate,ps«d is centered around«=0, while at high den-
sities, where the electrons are degenerate,ps«d is centered
around the Fermi energy for the electrons. Note, however,

that ps«d describes the spin polarization att=0 while fs«d is
the equilibrium distribution of the electrons att→`.

At this point, a brief discussion about the applicability of
the diffusion approximation for the linearized collision inte-

FIG. 3. Distribution function (for the equilibrated state at
t→`), dynamical friction coefficient, dynamical diffusion coeffi-
cient, and angle randomization coefficient(from top to bottom) for
a modulation doped quantum well at an electron density
n=43109 cm−2 and T=10 K. For the calculation of the coeffi-
cients, only electron-electron scattering is taken into account. The
unit of « is 14.93 meV. The units of the functionsv, w, andu, are
22.68 meV/ps, 338.44smeVd2/ps, and 1.52 1/ps, respectively.

FIG. 4. Distribution function (for the equilibrated state at
t→`), dynamical friction coefficient, dynamical diffusion coeffi-
cient, and angle randomization coefficient(from top to bottom) for
a modulation-doped quantum well at an electron densityn=4
31011 cm−2 and T=10 K. As in Fig. 3, for the calculation of the
coefficients, only electron-electron scattering is considered. The
units of «, v, w, andu are the same as in Fig. 3.

FIG. 5. Weight function for a modulation-doped quantum well
at T=10 K and three electron densitiesn=43109 cm−2 (solid line),
n=431011 cm−2 (dotted line), n=1012 cm−2 (dashed line), taking
only electron-electron scattering into account. The inset shows the
corresponding electron distribution functions in the equilibrated
state att→`.
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gral Jee
s0d is in order. The diffusion approximation is expected

to be applicable because Eq.(37) has the form of a master
equation and can thus be formally expanded with respect to
the momentum transferqW. For a sufficiently rapidly decaying
transition probabilityWeeskW ;qWd, the expansion can then be
truncated after the second-order term as in Eq.(45). The
validity of the diffusion approximation depends therefore on
the transition probability, which in dimensionless form reads
[see Eq.(A5) in the Appendix]

WeeskW ;qWd =E
−`

`

dvuMsqdu2ffsk2 − vd + ns− vdg

3Im x̃sq,vddSkW ·qW −
q2

2
−

v

2
D , s107d

with Msqd=1/sq+qsd the Coulomb matrix element,qs the
Thomas-Fermi screening wave number, andfsxd andnsxd the
Fermi and Bose functions, respectively. Note, in Eq.(107)
we do not expand the distribution functions and energies. As
a result, cutoff problems are avoided and the friction and
diffusion coefficients,Ai

eeskWd andBij
eeskWd, respectively, can be

calculated without restricting theqW integration. Thus, the dif-
fusion approximation does not ignore hard scattering pro-
cesses with large momentum transfer; it only treats them
approximately, whereas soft scattering processes are treated
exactly. Moreover, from Eq.(107) it follows that Jee

s0d is ac-
tually a “phonon-type” collision integral, the role of phonons
being played by the collective excitations of the spin-
balanced “field” electrons. Indeed, replacingMsqd by the
electron-phonon matrix element and Imx̃sq,vd by the pho-
non spectral function, Eq.(107) gives the transition probabil-
ity for spin-polarized “test” electrons scattering off equili-
brated phonons. This analogy already suggests that a
diffusion approximation is applicable toJee

s0d. To demonstrate
its validity, it is, however, necessary to show that for typical
values ofkW the transition probabilityWeeskW ;qWd indeed decays
sufficiently rapidly for largeqW.

For that purpose we investigate

Psktyp;qd =E dfqWeeskWtyp;qWd, s108d

which is essentially the angle-averaged zeroth-order moment
of WeeskW =kWtyp;qWd with f the angle betweenkWtyp andqW. [The
first and second moments appear in the calculation of the

friction and diffusion coefficientsAi
eeskWd andBij

eeskWd.] For de-
generate electronsktyp is the Fermi wave numberkF while for
nondegenerate electronsktyp is the wave number correspond-
ing to the thermal energy. In Fig. 6 we show for the two
parameter sets used in Figs. 3 and 4, respectively, the zeroth-
order momentPsktyp;qd together with the cumulant

Csktyp;qd =

E
0

q

drPsktyp;rd

E
0

`

drPsktyp;rd
, s109d

from which we can estimate the relative importance of scat-
tering processes with momentum transfer up toq. In the

upper panel of Fig. 6 we see thatPsktyp;qd indeed decays
with increasingq. In the degenerate regimeq=2kF scattering
is clearly visible, but one order of magnitude less probable
than theq→0 scattering process. From the cumulants, dis-
played in the lower panel, we infer moreover that in the
nondegenerate as well as degenerate regime, soft scattering
processes withqøktyp give the main contribution(around
80–90%). In both cases we expect therefore the diffusion
approximation to produce reasonable quantitative results for
the DP spin-relaxation time. To estimate the error precisely is
complicated. It would require a detailed investigation of the

full momentum dependence ofWeeskW ;qWd together with a ref-
erence calculation that does not invoke the diffusion approxi-
mation. The spin-relaxation times we obtain as a function of
temperature and density compare favorably with experimen-
tal results, indicating that the modeling of scattering pro-
cesses within a diffusion approximation is sufficient for the
calculation of DP spin-relaxation times.

We now turn to the numerical results for the DP spin
lifetime tDP. Figure 7 showstDP as a function of electron
density for a modulation-doped quantum well at three tem-
peraturesT=10, 20, and 30 K. Since in a modulation-doped
quantum well electron-impurity scattering is negligible, we
take only electron-electron scattering into account. For fixed
temperature, the spin lifetime first increases with electron
density, reaches a maximum, and then decreases again. The
nonmonotonic density dependence of the spin lifetime fol-
lows the density dependence of the electron-electron scatter-
ing rate. At low densities, the scattering rate is small because
of lack of scattering partners, while at high densities the
scattering rate is suppressed because of efficient Pauli block-

FIG. 6. The upper panel showsPsktyp;qd for T=10 K and two
electron densities:n=43109 cm−2 (nondegenerate electrons) and
n=431011 cm−2 (degenerate electrons). For nondegenerate elec-
trons, the typical momentumktyp corresponds to the thermal energy
(vertical solid line), whereas for degenerate electrons,ktyp is the
Fermi wave number(vertical dashed line). In the lower panel we
present the cumulantCsktyp;qd, defined in Eq.(109), which is a
measure of the relative importance of the scattering processes with
a momentum transfer less thanq.
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ing. At intermediate densities, where the crossover from non-
degenerate to degenerate electrons occurs, the electron-
electron scattering rate and thus the DP spin lifetime are
maximal. The position of the maximum shifts with decreas-
ing temperature to lower densities because the density, where
the crossover from a nondegenerate to a degenerate electron
gas takes place, decreases with temperature. The relaxation
time of photocurrents in optically pumped semiconductors
shows a similar nonmonotonic density dependence.65

For a fixed electron density, the DP spin lifetime de-
creases with temperature in the low-density regime and in-
creases with temperature in the high-density regime. The lat-
ter is because of the temperature-induced reduction of the
Pauli blocking, giving rise to an increasing electron-electron
scattering rate and therefore to an increasing DP spin life-
time. In the low-density regime, on the other hand, increas-
ing temperature broadens the electron distribution function,
i.e., electrons occupy states higher up in the band. The aver-
age thermal energy therefore increases and the spin decay
occurs preferentially from states higher up in the band, where
the torque force induced by the bulk inversion asymmetry is
larger. As a consequence, the DP spin lifetime decreases with
temperature in the low-density regime.

In Fig. 7 we also plot experimental data forT=10 K from
Ref. 30. For electron densities aboven=531010 cm−2 the
agreement between theory and experiment is quite good,
given the fact that our calculation is based on an idealized
quantum well with infinitely high confinement potential. In
this density regime, we expect our results to even underesti-
mate the spin lifetimes, because the model for the electronic
structure of the quantum well most probably overestimates

"VW IA
QW. Indeed, the constant defining the magnitude of the

splitting of the conduction subbandCIA
QW,sp /Ld2,E1

`, with
E1

` the confinement energy of the lowest conduction sub-
band. For a finite confinement potential,E1 is smaller than
E1

`="2p2/2m* L2, giving rise to a smaller splitting and, con-

sequently, to a largertDP. To obtain in this density regime
better agreement between experimentally measured and
theoretically calculated spin lifetimes an improved electronic
structure calculation is clearly necessary. At lower densities,
on the other hand, electrons are most likely localized to do-
nors (at T=10 K thermal ionization is negligibly small) and
our theory, which is based on a band picture, does not apply.

In quantum wells that are not modulation doped, electron-
impurity scattering due to donors and acceptors(in compen-
sated samples) provides an additional, very efficient scatter-
ing process. The DP spin lifetime increases with scattering
rate. As a result, we expect the spin lifetimes in quantum
wells that are not modulation doped to be substantially
longer than in modulation-doped quantum wells. This can be
seen in Fig. 8, where we plot the electron density depen-
dence of the DP spin lifetime atT=40 K for x=0 (modula-
tion doped), x=1 (uncompensated quantum well with equal
impurity and electron density), andx=4 [compensated quan-
tum well with impurity (donor and acceptor) density four
times the electron density]. As expected, the spin lifetimes
increase withx for all electron densities. The increase is,
however, not uniform, with the largest increase taking place
at high electron densities, where Pauli blocking very effec-
tively suppressed the DP spin lifetime in the modulation-
doped quantum well. The electron-impurity scattering rate is
not affected by Pauli blocking and leads therefore to a sub-
stantial enhancement of the DP spin lifetime at high doping
levels.

For a fixed density the character of the electron gas also
changes with temperature. In particular, increasing tempera-
ture pushes the electron gas into the nondegenerate regime.
For some temperature, the crossover from a degenerate to a
nondegenerate electron gas occurs, electron-electron scatter-

FIG. 7. D’yakonov-Perel’ spin lifetime due to electron-electron
scattering for a 25-nm modulation-doped quantum well as a func-
tion of electron density at three temperaturesT=10 K, T=20 K,
andT=30 K. The solid dots are experimental data atT=10 K from
Ref. 30.

FIG. 8. D’yakonov-Perel’ spin lifetime for a 25-nm quantum
well at T=40 K and three values of ionized(donor and acceptor)
impurity concentrations: no impuritiessx=0d, ionized impurity con-
centration equal to the electron densitysx=1d, and ionized impurity
concentration equal to four times the electron densitysx=4d. For
x=0, only electron-electron scattering contributes to the spin life-
time, whereas forxÞ0 both electron-electron and electron-impurity
scattering determine the spin lifetime.
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ing is particularly strong, and we expect spin lifetimes to be
enhanced.48 This effect is demonstrated in Fig. 9, where we
plot for an electron densityn=331010 cm−2 the temperature
dependence of the spin lifetime forx=0, 1, and 4. In the
modulation-doped casesx=0d the enhancement of the spin
lifetime in the temperature range where the crossover from
degenerate to nondegenerate takes place can be most clearly
seen. For finitex, the spin lifetimes are for all temperatures
longer than forx=0. The enhancement is again not uniform.
At high temperatures it is very small, while at low tempera-
tures it is very large, because in that range the Pauli blocking
leads to a strong suppression of the DP spin relaxation rate in
modulation-doped quantum wells. In fact, the spin lifetimes
at low temperatures saturate by a value set by the electron-
impurity scattering rate. The maximum in the spin lifetime is
therefore less pronounced(or even disappears completely) in
quantum wells that are not modulation doped.

In Fig. 10, we finally compare for a 10 nm modulation-
doped GaAs quantum well with an electron densityn=1.86
31011 cm−2 the theoretically obtained temperature depen-
dence of the D’yakonov-Perel’ spin lifetime with the experi-
mentally measured temperature dependence of the
D’yakonov-Perel’ spin lifetime.47 Below 50 K the agreement
between the experimental data points and the theoretical re-
sults is quite reasonable, suggesting that in this temperature
range electron-electron scattering is the main source of elec-
tron spin relaxation in these samples. This conclusion is also
supported by the theoretical results obtained by Glazov and
co-workers.48 In contrast to the theoretically predicted non-
monotonic behavior with a maximum atT<50 K, the ex-
perimental results suggest that, for this electron density, the
D’yakonov-Perel’ spin lifetimetDP grows monotonically
with temperature. This is probably due to the neglect of

phonons in the theoretical modeling. The maximum oftDP is
a consequence of electron-electron scattering. Additional
scattering processes destroy the maximum. For instance,
electron-impurity scattering increases the spin lifetimes at
low temperatures, resulting in a monotonically decreasing
spin lifetime(seexÞ0 curves in Fig. 9). The samples in Ref.
47 are high-quality quantum wells, where electron-impurity
scattering should be negligible. The electron density
n=1.8631011 cm−2 is, however, rather high. As a result, the
temperature, at whichtDP is expected to be maximal, falls in
a temperature range, where electron-phonon scattering is sig-
nificant. We expect a calculation, which takes electron-
electron and electron-phonon scattering into account, to pro-
duce a monotonically increasingtDP.

In this section we illustrated our semiclassical kinetic
theory of spin relaxation by calculating the DP spin lifetime
for an (idealized) quantum well, at temperatures and electron
densities where electron-electron and electron-impurity scat-
tering dominate. Electron-electron scattering has been cho-
sen to illustrate the effects of inelasticity and Pauli blocking.
Electron spin lifetimes due to electron-electron scattering
have been also calculated in Refs. 38, 44, 46, 48, and 66,
using, however, different approaches and focusing mostly on
different aspects. In particular, the nonmonotonic tempera-
ture and density dependence has not been addressed until
quite recently.47,48 In modulation-doped quantum wells, spin
lifetimes turn out to be particularly long for electron densi-
ties and temperatures, where the crossover from the nonde-
generate to degenerate regime occurs. In this regime, many-
body effects beyond the Born approximation are most
probably important and should be included in a more quan-
titative calculation of the spin-relaxation times. We expect,
however, our main conclusions to be independent of the par-
ticular modeling of the Coulomb interaction.

V. CONCLUSIONS

Starting from the full quantum kinetic equations for the
electron Green functions we derived a(semiclassical)

FIG. 9. D’yakonov-Perel’ spin lifetime for a 25-nm quantum
well as a function of temperature at an electron densityn=3
31010 cm−2 and three values of ionized(donor and acceptor) im-
purity concentrations: no impuritiessx=0d, ionized impurity con-
centration equal to the electron densitysx=1d, and ionized impurity
concentration equal to four times the electron densitysx=4d. As in
Fig. 8, for x=0, only electron-electron scattering contributes to the
spin lifetime, whereas forxÞ0 both electron-electron and electron-
impurity scattering determine the spin lifetime.

FIG. 10. D’yakonov-Perel’ spin lifetime for a 10-nm
modulation-doped GaAs quantum well as a function of temperature
at an electron densityn=1.8631011 cm−2 (solid line). The solid
boxes are experimental data from Ref. 47.
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Fokker-Planck equation for the nonequilibrium spin polariza-
tion, assuming small spin polarizations and soft scattering.
The Fokker-Planck equation conceptualizes the nonequilib-
rium spin dynamics in terms of a “test” spin polarization,
comprising a small number of spin-polarized “test” elec-
trons, which scatter off an equilibrated bath consisting of
impurites, phonons, and spin-balanced “field” electrons. Be-
cause of the scattering, the bath causes for the spin-
polarization dynamical friction, diffusion, and relaxation(de-
cay). We then empolyed a multiple-time-scale perturbation
approach to separate the fast spin-conserving from the slow
spin-nonconserving time evolution. As a result, we extracted
from the Fokker-Planck equation a Bloch equation that con-

trols the time evolution of the macroscopic(kW-averaged) spin
polarization on the long time scale, where the spin polariza-
tion decays. Our semiclassical approach accounts for elastic
and inelastic scattering and avoids the ad-hoc energy averag-
ing of on-shell spin relaxation rates. Instead we show that the
weight function is intimately linked to the “quasistationary”
spin polarization, which is the terminating state of the fast,
spin-conserving time evolution taking place immediately af-
ter spin injection. The diagonal elements of the macroscopic

(kW-averaged) spin-relaxation tensor are the spin lifetimes.
They are either given by an energy averaged spin-flip rate
(EY process) or an energy average of a generalized relax-
ation time multiplied by a precession rate(DP and VG pro-
cesses).

The formal development of our approach is based on a
generic model for nonmagnetic III-V semiconductors and
treats EY and motional narrowing(DP and VG) spin-
relaxation processes on an equal footing. We also allowed for
orbital motion of the electrons in a strong magnetic field,
which potentially leads to a quenching of the motional
narrowing-type spin-relaxation processes. The derivation of
the Fokker-Planck equation is independent of dimensionality
and, as long as a soft scattering regime can be identified, also
of the scattering processes, which enter the Fokker-Planck
equation in the form of dynamical friction and diffusion co-
efficients, which have to be worked out separately for each
scattering process.

To illustrate our formalism we applied it to a quantum
well at low temperatures, where electron-electron and
electron-impurity scattering dominate. We explicitly con-
structed the friction, diffusion, and angle randomization co-
efficients characterizing the(symmetry-adapted) Fokker-
Planck equation for that particular situation and calculated
the DP spin lifetime at vanishingly small magnetic field as a
function of electron density and temperature. We found that
for fixed temperature(density) the density(temperature) de-
pendence is nonmonotonic. Spin lifetimes are particularly
long for densities and temperatures, where the crossover
from a nondegenerate to a degenerate electron gas occurs.
Spin lifetimes in compensated quantum wells are always
longer than in modulation-doped quantum wells with the
same electron density. The enhancement of the spin lifetime
is particularly strong for densities and temperatures where
Pauli blocking is most efficient in suppressing the DP spin
lifetime (due to electron-electron scattering) in modulation-
doped quantum wells.

Various extensions of our approach are conceivable and
constitute research directions for the future. Semiconductor
structures with structural inversion asymmetry39 and/or na-
tive interface asymmetry31 can be studied within our ap-
proach by augmenting the model Hamiltonian by the corre-
sponding spin off-diagonal Hamiltonian matrix elements. In

particular, the role of the linear collision integralJB
s1dff ,dSWg,

which does not affect spin lifetimes in isotropic semiconduc-
tors, should be reinvestigated, e.g., for an asymmetric quan-
tum well where spin lifetimes can be particularly long be-
cause motional narrowing processes due to bulk and
structural inversion asymmetry can be made to cancel each

other.43,49 SinceJB
s1dff ,dSWg potentially mixes spin-relaxation

channels, it could affect the cancellation. A Fokker-Planck
equation of the form(27), perhaps augmented by additional
driving terms, could be the starting point for a systematic
calculation of spin transport coefficients(e.g., spin-diffusion
length) for spatially inhomogeneous systems, such as inter-
faces or biased heterostructures. Finally, nonlinear effects
due to large spin polarizations could be studied either at the
level of the matrix Boltzmann equation for the electronic
density matrix51,52 or, if the diffusion approximation is used
to simplify the collision terms, at the level of a “Fokker-
Planck-Landau equation” for the spin polarization, where the
differential operator describing spin-conserving scattering
events as well as the spin-flip tensor explicitly depend on the
spin polarization and the distribution of the spin-polarized
electrons.
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APPENDIX: CALCULATION OF RELAXATION RATES

In this appendix we calculate for a quantum well the dy-

namical friction and diffusion coefficientsAiskWd and BijskWd
taking electron-electron and electron-impurity scattering into
account. As a result, we obtain the relaxation rates 1/t fs«d,
1 /tds«d, and 1/t's«d, which define the differential operator

DskWd as well as the spin-flip tensorRskWd. Since we discuss in
this paper only the DP process quantitatively, which origi-
nates from the interplay of the momentum scattering en-

coded in the differential operatorDskWd and the torque force
due to inversion asymmetry, it suffices to give explicit ex-

pressions only for the differential operatorDskWd. The deriva-

tion of the spin-flip tensorRskWd proceeds along the same
lines.

Within the diffusion approximation, the spin-conserving

collision integralJn
s0dff ,dSWg becomes a Fokker-Planck differ-

ential operator(45) with dynamical friction and diffusion
coefficients,Ai

n andBij
n , defined in Eqs.(46) and(47), respec-

tively. First, we consider electron-electron scattering and cal-
culateAi

ee andBij
ee. To avoid the cutoff problem at large mo-

mentum transfers, which usually plagues the diffusion
approximation to electron-electron scattering, we keep the
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full integrands in Eqs.(46) and (47), i.e., we do not expand
the distribution functions and energies with respect to the

momentum transferqW. Using the identities fskWdfskW ±qWd
=ffskW ±qWd− fskWdgn(«skWd−«skW ±qWd) and d(«skWd+«skW8d−«skW −qWd
−«skW8+qWd)=edvd(«skWd−«skW −qWd−v)d(«skW8d−«skW8+qWd+v),
we rewrite the transition probability(41) into

WeeskW ;qWd = 2E
−`

`

dvuVsqdu2Im xsq,vdfns− vd

+ fskW − qWdgd„«skWd − «skW − qWd − v…, sA1d

where we introduced the susceptibility of noninteracting
electrons

Im xsq,vd = 2po
kW

ffskW + qWd − fskWdgd„«skW + qWd − «skWd − v….

sA2d

The Coulomb potentialVsqd is taken to be statically
screened with the screening length given by the Thomas-
Fermi expression. Had we allowed for dynamical screening,
Vsqd→Vsq,vd=V0sqd /esq,vd. If esq,vd is approximated by
the RPA expression, the resulting Fokker-Planck equation
would be at the level of a quantum analog to the Lenard-
Balescu equation.56 The calculation of the relaxation rates
presented below could be also performed with this more gen-
eral expression for the Coulomb matrix element. For simplic-
ity we present here, however, only the results for the stati-
cally screened Coulomb potential.

To proceed, we introduce dimensionless quantities, mea-
suring energies and lengths in scaled Rydbergs and Bohr

radii, respectively. In particular, we useR̃0=R0/s, ã0=Îsa0,

with R̃0ã0
2="2/2m0 ande2=2ÎsR̃0ã0, and chooses such that

R̃0=1 meV. The dimensionless Fokker-Planck operator has
the same form as in Eq.(45) with dynamical friction and
diffusion coefficients given by

Ai
eeskWd = Cee

m E dqWqiW
eeskW ;qWd, sA3d

Bij
eeskWd =

Cee
m

2
E dqWqiqjW

eeskW ;qWd, sA4d

with Cee
m =sm* / «b

2pm0 and

WeeskW ;qWd =E
−`

`

dv
Fsk2,v,qd
sq + qsd2 dSkW ·qW −

q2

2
−

v

2
D , sA5d

whereqs is the Thomas-Fermi screening wave number and
«b is the static dielectric constant. The functionFsk2,v ,qd
originates from the statistics of the electron gas and is given
by

Fsk2,v,qd = Im x̃sq,vdNsk,vd, sA6d

Im x̃sq,vd =E dkWffsk2 + vd − fsk2dgdSkW ·qW +
q2

2
−

v

2
D ,

sA7d

Nsk,vd = fsk2 − vd + ns− vd, sA8d

with fsxd and nsxd the Fermi and Bose functions, respec-

tively. To calculateAi
eeskWd and Bij

eeskWd for a [001] quantum
well, we first evaluate the integrals for a fixed coordinate

system in whichkW =kêx and then rotate to an arbitrary coor-
dinate system. The result can be cast into the form

Ai
eeskWd = −

8

k
Gskdki , sA9d

Bij
eeskWd =

2

k
Hskddi j +

2

k3Eskdkikj , sA10d

respectively, with three functions defined by

Gskd = −
Cee

m

4k
E

−`

k2

dvE
qmin

qmax

dq
qFsk2,v,qd

sq + qsd2

z
Î1 − z2

,

sA11d

Hskd =
Cee

m

2
E

−`

k2

dvE
qmin

qmax

dq
q2Fsk2,v,qd

sq + qsd2
Î1 − z2,

sA12d

Eskd = −
Cee

m

2
E

−`

k2

dvE
qmin

qmax

dq
q2Fsk2,v,qd

sq + qsd2

1 − 2z2

Î1 − z2
.

sA13d

Note that these integrals are well defined. The range of inte-
gration originates from thef integration, which also gives
rise to the factor involvingz=sq2+vd /2kq. With Eqs.(A9)
and (A10) and a transformation to the radial variable«=k2,
the spin-conserving part of the dimensionless electron-
electron collision integral is given by[recall that in two di-

mensions dSWs« ,f ,td contains the factor Js«d / s2pd2ns

=1/8p2ns],

Jee
s0dff,dSWg = DeeskWddSWs«,f,td, sA14d

with

DeeskWd = −
]

]«
vees«d +

]2

]«2wees«d − uees«dL2. sA15d

Here we have introduced the total angular momentum opera-

tor in two dimensions,L̂=−i] /]f, and the friction, diffusion,
and angle randomization coefficients,vees«d, wees«d, and
uees«d, which are linear combinations of the functionsGskd,
Hskd, andEskd taken atk=Î«. Specifically, they read

vees«d = −
2Cee

m

«1/2 E
−`

«

dvE
qmin

qmax

dq
vFs«,v,qd

sq + qsd2

1
Î1 − z2

,

sA16d

wees«d = 4Cee
mÎ«E

−`

«

dvE
qmin

qmax

dq
q2Fs«,v,qd

sq + qsd2

z2

Î1 − z2
,

sA17d
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uees«d =
Cee

m

«3/2E
−`

«

dvE
qmin

qmax

dq
q2Fs«,v,qd

sq + qsd2
Î1 − z2.

sA18d

The range of integration depends on the sign ofv,

qmax= qmax
− s«,vdQs− vd + qmax

+ s«,vdQsvd,

and

qmin = qmin
− s«,vdQs− vd + qmin

+ s«,vdQsvd,

with

qmin
− s«,vd = − Î« + Î« − v, v ø 0 sA19d

qmax
− s«,vd = Î« + Î« − v, v ø 0 sA20d

qmin
+ s«,vd = Î« − Î« − v, 0 ø v ø « sA21d

qmax
+ s«,vd = Î« + Î« − v, 0 ø v ø «. sA22d

The functionsvees«d and wees«d are the dynamical friction
and diffusion coefficients for the spin polarization in« space.
They originate from the scattering of the “test” electrons
comprising the spin polarization with the equilibrated, spin-
balanced “field” electrons. Because the scattering is inelastic,
the “test” electrons gainsv,0d or lose sv.0d energy by
scattering off “field” electrons. The on-shell functionuees«d
describes randomization of the anglef. The integrals defin-
ing vees«d, wees«d, and uees«d have to be done numerically.
The singularities are integrable and Gaussian integration
proved to be efficient. The limiting values are
lim«→0 uees«d=u0/«, lim«→0 wees«d=0, and lim«→0 vees«d
=v0. Moreover, wees«d=v0« for «→0, i.e., dwees0d /d«
=vees0d, which is essential to guarantee spin conservation of

the differential operatorDeeskWd [cf. Eq. (84)]. The structure
of the differential operator suggests that we writevee=« /t f

ee,

wee=«2/td
ee, anduee=1/4t'

ee, with 1/t f
ee, 1 /td

ee, and 1/t'
ee re-

laxation rates describing energy relaxation, diffusion, and
randomization of the angle due electron-electron scattering,
respectively.

The calculation of the(on-shell) relaxation rate due to
electron-impurity scattering proceeds along the same lines.
The starting point is Eq.(37), specialized to electron-

impurity scattering, that is, withWnskW ,qWd given by Eq.(40).
Going through the same steps as in the case of electron-
electron scattering yields for the spin-conserving part of the
dimensionless electron-impurity collision integral[as before

dSWs« ,f ,td contains the factor 1/8p2ns]

Jei
s0dff,dSWg = DeiskWddSWs«,f,td, sA23d

where the differential operator is now given by

DeiskWd = − ueis«dL2, sA24d

with

ueis«d =
Cei

m

«3/2E
0

2Î«

dq
q2

sq + qsd2
Î1 − z2, sA25d

Cei
m=ss4pm* niã0

2/«b
2m0d, andz=q/2Î«, whereni is the sheet

density of the impurities. Because of the elasticity of
electron-impurity scattering, the differential operator con-
tains only an on-shell term. The functionuei=1/4t'

ei defines
the relaxation time due to electron-impurity scattering. It
only causes randomization of the anglef. The total spin-
conserving collision integral, taking electron-electron and
electron-impurity scattering into account, is given by

DskWd=DeeskWd+DeiskWd.
Similar expressions can be derived for electron-phonon

scattering. For bulk semiconductors the calculation proceeds
along the same lines with the obvious modifications due to
the additional angle integration.
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