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We develop a semiclassical kinetic theory for electron spin relaxation in semiconductors. Our approach
accounts for elastic as well as inelastic scattering and treats Elliott-Yafet and motional-narrowing processes,
such as D’yakonov-Perel’ and varialiefactor processes, on an equal footing. Focusing on small spin polar-
izations and small momentum transfer scattering, we derive, starting from the full quantum kinetic equations,
a Fokker-Planck equation for the electron spin polarization. We then construct, using a rigorous multiple time
scale approach, a Bloch equation for the macroscd?am/erageyispin polarization on the long time scale,
where the spin polarization decays. Spin-conserving energy relaxation and diffusion, which occur on a fast
time scale, after the initial spin polarization has been injected, are incorporated and shown to give rise to a
weight function that defines the energy averages required for the calculation of the spin relaxation tensor in the
Bloch equation. Our approach provides an intuitive way to conceptualize the dynamics of the spin polarization
in terms of a “test” spin polarization that scatters off “field” particlesectrons, impurities, phononsTo
illustrate our approach, we calculate for a quantum well the spin lifetime at temperatures and densities where
electron-electron and electron-impurity scattering dominate. The spin lifetimes are nonmonotonic functions of
temperature and density. Our results show that at electron densities and temperatures where the crossover from
the nondegenerate to the degenerate regime occurs, spin lifetimes are particularly long.
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[. INTRODUCTION Spin dynamics in semiconductors has been extensively
_ _ studied in magneto-opti€s?* using various spin-sensitive

The spin degree of freedom of an electron provides apmijssjon, transmission, and reflection spectroscopies. These
functionality to electronic, optoelectronic, and magnetoelectime-resolved measuremenfs3® which, together with the

based on the coherence of electron spin states. This has ledjfgestigations in  bull®34-38 and dimension-reduced

the newly emerging field of spintronié2.A subclass of spin- semiconductord®-53
tronics device concepts relies on the capability to inject, con- The theoretical investigations are based on the early
trol, and detect electron spin polarizations in nonmagneticygks-7 augmented by modern band structure theory for bulk
semiconductoré# The spin polarization, which would en- znq dimension-reduced semiconductors. The EY spin-
able the device operation, is a nonequilibrium state and itge|axation rates are usually calculated using the golden rule
char_acterlzanon, e.g. in terr_ns_of Ilfe_tlm_es and transport cofqy spin-flip scattering, whereas the spin-flip rates due to
efficients, has to be given within a kinetic theory. motional-narrowing DP and VG processes are, at least con-
Of particular interest is the lifetime of the nonequilibrium ceptually, obtained from a semiclassical Boltzmann-type
spin polarization in nonmagnetic-type Ill-V semiconduc-  equation for the nonequilibrium spin polarization, although
tors. Important spin-relaxation processes for itinerant elecpy always is the Boltzmann equation explicitly solved. In-
trons in this class of materials include the Elliott-YafEtY) stead, a common procedure is to adapt the expression for the
process;® which leads to spin-flip scattering and, in materi- spin-relaxation rate originally derived by D'yakonov and
als without inversion symmetry, the D’yakonov-Per@P)  pere|7 to the scattering processes under consideration.
proces$ in which spin states precess because of spin off- The D'yakonov-Perel’ expression for the spin-relaxation
diagonal Hamiltonian matrix elements resulting from a com-rate which results from the solution of the Boltzmann equa-
bination of spin-orbit coupling and inversion asymmetry. Antion within the elastic approximation, treats all scattering
external magnetic field, in many cases required to controhrgcesses on-shell, even inelastic scattering events, e.g., due
and manipulate the electron spin, can also influence the elegy electron-electron or electron-phonon scattering. The ob-
tron spin dynamics. It quenches the DP procesisereby (ained spin-relaxation rates are therefore on-shell rates,
tending to extend the spin lifetimes as a function of maqnetiq,vhich have to be averaged over energy with an appropriate
field, and it opens a spin-relaxation channel due to khe weight function before a comparison with experiments can
dependence of the electrgrfactor, which forces the spin of be attempted. Usually, the difference of the distribution func-
electrons in different quantum states to precess around aions for spin-up and spin-down electrons divided by the
external magnetic field with different rat&&? For brevity  total number of electrons contributing to the initial spin po-
we will refer to this mechanism as a varialgdfactor (VG) larization is used as a weight functiéf®*3The ad-hoc en-
process. ergy averaging, which is necessary because of the incom-
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plete treatment of inelastic scattering processes, can lead toagnetic field. The model used here applies to both bulk and

substantial deviations from the spin-relaxation rates obgquantum well situations. Within an envelope-function

tained, e.g., from a full numerical solution of the Boltzmannapproacl?*>° which treats the two states at the conduction-

equation®® band minimum explicitly and includes a large set of states
We develop in this paper a systematic kinetic theory forperturbatively, the effective-mass Hamiltonian for the CB

electron spin relaxation, applicable to spin-fiigY) and electrons can be cast into the form

motional-narrowing(DP and VQ spin-relaxation processes

in bulk.and quantum wells, which avoiQs the ad—hog energy Hw,(g) - 6(@)5w, + ﬁﬁL Gyt +

averaging and gives a clear physical picture of the time evo- 2

lution of the optically or electrically injected nonequilibrium . .

spin polarization. We derive, starting from the full quantum +Q4(K)] - Toar, (1)

kinetic equations for the electron Green functions, a semi- > = - . .
classical Fokker-Planck equation for the time evolution ofVhereK=k-(e/Aic)A(r) andA(r) is the vector potential. The

the nonequilibrium spin polarization, valid for small spin po- -SPin basis” for the CB electrons used to define the metlel
larizations and for small momentum transfer scattering, and® @=+ anda=-, wherea=+ (a=-) denotes a state which
employ a multiple-time-scale perturbation approach to sepaS mostly spin uspin down with a small admixture of spin
rate the fast spin-conserving from the slow spin-down(spin up. . .

nonconserving time evolution. As a result, we obtain on the The first term denotes the dispersion of the Kramers de-
time scale of spin relaxation a Bloch equation for the mac-generate conduction band, which, depending on the sophis-
roscopic (Iz—averageyi nonequilibrium spin polarization, tication of _th_e envelope-function apprqach, CQUId contain
which is the quantity measured in, e.g., time-resolved Faradonparabolicity effects. For quantum wellande(k) denote

day and Kerr rotation experimerﬂ%—_lgvzgy3o The We|ght the in-plane momentum and the in-plane diSpel’Sion of the
function defining the energy averages needed, e.g., for th@onduction subband under consideration. The second term
calculation of the spin-relaxation tensor and the spin-comprises the Larmor precession due to the external mag-
relaxation rates, turns out to be directly related to the quasisetic field, with #Q =ugg* B the Larmor energy vector.
tationary spin polarization, which is the terminating state ofHere ug andg* denote the Bohr magneton and the electron
the initial, fast spin-conserving time evolution of the injectedg factor. The third term describes spin off-diagonal Hamil-
spin polarization. Our approach treats spin-flieY) and tonian matrix elements arising from the coupling to higher-
motional-narrowing(DP and VQ processes on an equal lying states, the most important of which are the splitting of
footing. Due to the different angle dependences, ahe conduction band due to inversion asymmetd) and
Matthiessen-type rule holds, however, for isotropic semicOnthe term that leads to k-dependent electrog factor. For

ductors, where the total spin-relaxation tensor is simply the,, |k semiconductors, the two contributions are given by
sum of the individual spin-relaxation tensdfsThe diagonal

elements of the spin-relaxation tensor, the spin-relaxation ﬁﬁlA(}Z):zgo,zlA(R), (2)
rates, are either given in terms of an energy-averaged spin-
flip rate (EY proces$ or an energy average of a generalized

h

1K)

relaxation time, which accounts for both on- and off-shell 104(K) = 2a,K?B + 2a5{K,B - K} + 2a57K,B),  (3)
f;éit;ﬁgggs:é:nts’ multiplied by a precession rde and respectively. The definition of the vectoﬁ;(ﬁ) and F(IZ,B?)

In the next section we introduce a generic model for elecand ogthe pdaramete@) and.ai can be foundhin Refs. 54 ancic
trons inn-type 11-V semiconductors applicable to bulk and 2> @nd{...} denotes an anticommutator. The expressions for
quantum well situations. In Sec. Il we give a complete de_conductlon subbands in a quantum well are obtained by av-

scription of our semiclassical kinetic theory for the electron®raging the bulk expression®) and (3) over the subband

spin dynamics. As far as the formal development is con€nVelope function. _ _ . .
In addition to bulk inversion asymmetry, dimension-

cerned, we treat EY, DP, and VG processes on an equal foot- . o
ing and also allow for quenching effects due to orbital mo-reduced semiconductors can have additional sources of

tion of electrons in an external magnetic field. In Sec. IV Weasymmletry due to interfacesl that share no common%to;n
apply our approach to the particular situation of DP spindu€ 0 layer desigstructural inversion asymmey. Bot

relaxation in an idealized quantum well at temperatures ananechanllsms can bg CaStb'ntﬁ splfn oﬁ-dlagcc)jn_al rl;lamlltonlan
densities for which electron-electron and electron-impurity"atrx elements and can be therefore treated in the same way

scattering dominate. Our main findings are summarized itS the spin off-diagonal terms due to bulk inversion asym-

Sec. V. Technical details concerning the calculation of theM€ly- ote descrit lisi sing f
guantum well collision integrals due to electron-electron and | For a complete lescrlptlorr\{ a coflision terlm arlsmglj rom
electron-impurity scattering are relegated to an appendix. electron-impurity, electron-phonon, and electron-electron

scattering,
Il. MODEL HAMILTONIAN He=Hei+ Hept Hee

We consider conduction-ban@CB) electrons in 1ll-V  is added to the effective-mass Hamiltonian. The electron-
semiconductors, e.g., GaAs, in the presence of an applieidhpurity term reads
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Ly ; : - .
GED S MK K')CE Chrars (4 SIS that res_uIEs in the derlv_atlon of a Eloch equatlor_1 for the

W aa! macroscopigk-averagegispin polarization. Its decay is usu-
_ ) ) ) ally characterized by the diagonal elements of a spin-
with a scattering matrix element given by relaxation tensor, which are quadratures of either a spin-flip

rate(EY procesor a generalized relaxation time multiplied
Maar (k k/) )y U(k k/)el(k 2 (k k’) 5 by a(pregessior? ral(eDgI]D and VG processgs P
] Since the derivation is quite lengthy and to some extent
The Bloch states for the conduction band are not pure spirather formal we first give a short outline of the main steps.
states, because of spin-orbit coupling. The scattering matri¥Ve start from the full quantum kinetic equations for the
element contains therefore an overlap factor Keldysh Green function¥ ¢ Each component of the
Keldysh Green function is a22 matrix in electron spin
Uy k), (6)  space. In the first step we derive, within the semiclassical
approximation, a kinetic equation for the density matrix. This
accounts to treating momentum scattering processes as in-
) S stantaneous on the time scale of spin relaxation, which is
scattering. The electron-phonon qoll|3|on term WO.UId have usually the case. Calculating the self-energies that appear in
the same structure as Eeb bUt.W'th. phonon creation and he semiclassical kinetic equation in the Born approximation,
annlhllatlon operators appearing in the matrix elemenij,qoarizing with respect to spin polarization, and expanding
M .a(K,k'). The electron-electron scattering contribution hasthe self- -energies up to second order in the momentum trans-

| (K K') = (U

which is of order unity fora=a’ (spin-conserving scatter-
ing) and is small, but not zero otherwiggpin-nonconserving

the form fer (diffusion approximation finally yield a Fokker-Planck
equation for the spin polarization, which we then analyze in
2 Ma1a2a3a4(kllk2!k3!k4)c ” Ck3“3C‘24“4' (7) terms of multiple-time-scale perturbation theory.
kozI

) ) A. Kinetic equations
where the scattering matrix element, i
For a spatially homogeneous systéwe assume a con-

Ma1a2a3a4(|211|2211231|24) stant magnetic fiel@), the information about spin relaxation
L Lo .o is contained in the electronic density matrix, which, due to
= V(ky = Ka)l oy, (K, Kol 0, (Ko Ka) S ki, (8)  the spin degree of freedom, is &2 matrix in spin space,

contains two overlap factors. The functiobik) and V(K) Nalaz(lz,t) :<(cEa Cha) (1)), 9

denote, respectively, the potential of a single impu¢itgu- R !

tral or ionized and the Coulomb potential between two con- but diagonal ink space. Here, the operators evolve in time

duction electrons. o with the full Hamiltonian, including the time-dependent per-
The model Hamiltonian is characterized bfk), Q4(k),  turbation, which could be, e.g., a circularly polarized light

ﬁg(lz), andlw,(lz,lz’). These quantities need to be obtainedpljlse applied at time=t,. To perform the averaging .in Eq.
by an electronic structure calculation. The formal structure 01(9) denoted by[--1), we consider the system to be in ther-

the kinetic theory described in the next section is mdepeandynalmlcal equilibrium fok <1y, take the limitty— e,
dent of the particular form of these quantities. and evaluate the expectation value in E9).with respect to

the equilibrium density matri%
To derive a kinetic equation for the density matrix it is
Ill. SEMICLASSICAL KINETIC THEORY convenient to start from Keldysh Green functiéri8® For a
In this section we give a systematic derivation of theconstant magnetic field, the vector potential is a function of

Fokker-Planck equation governing the electron spin relaxf- Itis therefore necessary to initially work with kinetic equa-
ation in the limit of small spin polarizations. The derivation tions in real space. In this section we #et1. Introducing a
is independent of dimensionality, applying to bulk semicon-numerical index 1 that stands fofa;t; and 2 forrast,, we
ductors and semiconductor heterostructures, and trea¥dfite in the notation of Ref. 59

motional-narrowing (DP and VQ spin-flip (EY) spin- Gt G

relaxation processes on an equal footing. To obtain a Fokker- iGp,= ( 12 12)
Planck equation, we restrict ourselves to the Born approxi-

mation, but collective effects giving rise to dynamical
screening of the Coulomb interaction can be approximatel
incorporated at the level of a quantum analog to the Lenard-
Balescu equatioff Besides its intuitive interpretation in N 1 215
terms of a small “test” spin-polarization scattering off a bath IS sTH oy
of “field” particles (impurities, electrons, and phonons 12 =12
causing dynamical friction, diffusion, and eventually relax-we set up two matrix Dyson equations, one where the time
ation for the “test” spin polarization, the Fokker-Planck differentiation is with respect to, and one where it is with
equation is the starting point for a multiple time scale analy+respect ta,:

= (10
Gp; G

Note that each component of the Keldysh Green function is a
X 2 matrix in spin space. Introducing further a self-energy

11
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&tlélzz_i}z‘le_i(%é)lZ_i}z(ié)lzn (12) .. dw .. ..
D(R,T.k):fZ—[QLGL(R,T,k,w)G++(R,T,k,w)
T

I, G12= 17,015+ 1(Ge) 1o+ 1(G2)1575, (13 L L
- GC'G™(R Tk, w)L(R T,k w)], (20)
with §,=8(t;—t,)8(12) and the energy matrixe;,=d(t;
~1)&(12)= 3(t, ~t,) 112 e(-iVy, ~ (e/C)A(Fy), where we
neglect nonparabolicities in the dispersion. We adopt the
convention that numerical indices written as a subscript con-
tain the time variable, whereas numerical indices written as
an argument do not. Matrix multiplication with respect to the
Keldysh indices is implied and internal variables are
summed(integrated over; 7, is a Pauli matrix andy, is the
unit matrix in Keldysh space.
Subtracting Eq(13) from Eq.(12) gives

and a rhs, which contains a molecular field term arising from
the singular part of the self-energy,

. d . .
F(RTK = f ﬁ[gAGA”(R,T,k)G**(R,T,k,w)

GO G R TKwAMRTKI], (21

and a collision term due to the regular part

[L,Gli2= 7(3G) 12~ (G2) 127, (14) o Tde e o
C(R!le) = J _[g2G2++(RIT1kiw)G++(R!T1k1w)
where [+,] denotes the commutator. To condense the nota- 2m
tion, we introduced a differential operator

~GEGHRT k03I RTKw)

L12= 7015L(3) = 7o0y(id,. — €(3)). (15) el .
13 0¢13 0¢13\1 4 +QEGEJr"(R,T,k,w)G_+(R,T,k,w)
It is understpod that in the secgnd term of the cgmmutgtor, _ gGiG*‘(Ii,T, lz, w)i-af(li’-r K o)]. (22)
the operatoL 3, acts to the left with the temporal differential
operatord, replaced by its adjomt& The semiclassical approximation amounts to the assump-

Equatlon (14) contains two time vanables To obtain a tion that the Green functions and self-energies vary slowly
kinetic equation for the electronic density matrix, which de-on the macroscopic scal€bg andR respectively. It is there-
pends only on a single time variable, it is necessary to perfore sufficient to keep in Eq(19) only the leading order
form the equal time limit. This is most conveniently done interms in a gradient expansion. The leading order of the rhs of
the (mixed) Wigner representation, where the equal timeEq. (19) is the zeroth order, i.e., Eq$21) and (22) with
limit reduces to an integration. Separating the self-energg”®— 1. The Ihs of Eq(19), however, has to be determined

into a singular and a regular p&Pt, to first order, because the zeroth order vanishes. Using

309= APY12;ty) Spedlty — o) + 285, (16) LR T,w.k) = w+ &), (23
. . . = we explicitly obtain
introducing relative and center variablessr;—r,, R=(r;
+7,) /2, 7=t;—-t,, and T=(t;+t,)/2, and defining a Fourier ©
transformation with respect to the relative variables, D(FE T,IZ) =i f d_w[ aTG"*(Ii T,IZ )

o
ART,Kw) = f dr f dido= kAR TP, 1), (17) - VgelK) - VG (R T,k )

+VieK) - VEG*(R T kw). (24

together with a gradient operaffr To ensure gauge invariance of the kinetic equation we
follow Ref. 61 and consider the generalized momentum

gAB—exp [aAa —AR+VEV E_ﬁg.ﬁg], (18) }Z:E—(e/c)é(li) as an independent variable instead of the
momentumk. Using the two identitie§?

the equal time limit of thet + component of Eq(14) can be
written as

Vea(K) = Via(K) - VaK + Via(K) X (Vg X K),
D(RT.K =F(RT.K+CRTK, (19) d-bX (Vax & =(E-Vid) -b-(b-Vid) -a
with a driving term on the left-hand sidéhs), Eq. (24) becomes
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D(RT,K) = (oT+ gﬁge(ﬁ) A(BX V) () (b)

- o o\ (do _,, - -
+VgeK) - Vi]i | —G(RT,K,w).
2
- C d
25 (©) (@
We assume weak interactions and replace the full Green

functions by the noninteracting Green functiqgsiasiparti-

cle ansaty, © )
e o -
qu(R,T,K,w) = Ggq(k—> Kvw)|N0(lz)—>N(liTIZ)! (26) ,’ \\ I, \\
T, :
where the noninteracting density mathi(k) is replaced by (@)

the full density matri>d\|(|3,T, IZ). Performing thew integra-
tions in Eqs(21), (22), and(25) then yields the semiclassical +

kinetic equation for the electronic density matrix: ) _ _ o
FIG. 1. Diagrammatic representation of self-energies in the

Born approximation for electron-electr¢a)—<d), electron-impurity
(e), and electron-phonon scatteririf). Diagram (g) denotes the
self-energy due to spin off-diagonal Hamiltonian matrix elements.

(aT+ Vkel(K) - BX Vi + Vke(K) -VF&)N(R,TN

=i[N(R T,K),A™(R,T,K) + (R T,K, e(K))]

+HINRT,KS R TK eK) +i3(RT.K, e(K)) lation effects. IfA**, $**, andN were scalar functions, as in
T Y ordinary transport theory, this term would vanish. The mo-
X[1-N(R,T,K)]. (27) lecular field term is therefore a consequence of the quantum-

. o . . __mechanical treatment of the spin degree of freedom. To the
To obtain a closed kinetic equation for the electronic dens'tysingular part of the self-energy contribute the spin off-
matrix, internal Green functions, which appear in the self-izgonal terms in the Hamiltonian and the Hartree-Fock
energies, have to be of course also eliminated according ts|ds due to electron-electron scattering. Dissipation and re-
Eq. (26). Details conceming the calculation of self-energies|yation originate from the regular part of the self-energy and
are given in the next section. _ _give rise to the second and third terms on the rhs. They are at
For a homogeneous magnetic field, the electronic density,5st second order in the interaction. Formally, they corre-
matrix does not explicitly depend dR. The R dependence spond to the scattering-out and the scattering-in terms in a
can be therefore neglected. For a quadratic dispersiomatrix Boltzmann equation. The matrix structure is of course
e(IZ):IZZIZm* (h=1 in this sectioi, the Lorentz term, more- a consequence of the full quantum-mechanical description of
over, becomes the spin. Only momentum scattering is treated classically.

- -

(e/c)ﬁge(lZ) % B. %IZ - (IZ % ﬁc) Vi=—-iQc- Z B. Calculation of the self-energies

(28) The semiclassical approach to furnish the self-energies in
the matrix Boltzmann equationi29), valid for magnetic
whereQc=eB/m* c is the cyclotron energy vector antithe  fields, which do not restructure the electron dispersion, is to
angular momentum operator " space, and we obtain the represent interaction processes in terms of diagrams, calcu-
kinetic equation for the electronic density matrix in a more/até the diagrams using the standard rtleto obtain

familiar form: >Pa(k,t,t") and qu(lz,t), perform the zeroth-order gradient
. . . . expansion, and then replace all internal Green functions ac-
(61— iQc - LIN(T,K) =i[N(T,K),A*™(T,K) cording to Eq.(26). This heuristic strategy leads to self-
~ I energies, which can be expressed in a manifestly gauge-
+37(T,K, e(K))] invariant form by writing the internal momentum
+iN(T, IZ)E‘*(T,}Z,E(IZ)) integrations in terms of the gengraljzed momentkimThe '
~ . _ formal structure of the self-energies is then the same as with-
+i27(T,K, e(K))[1 = N(T,K)]. out magnetic field. Within the semiclassical approach, the

(29) magnetic field therefore gives rise only to the Lorentz term.
In Fig. 1 we depict the self-energies in the Born approxi-
This equation is the basis for the calculation of the spinmation for electron-electrofa—d, electron-impurity(e), and
relaxation time in spatially homogeneous systems subject telectron-phonor(f) scattering. Diagrantg) corresponds to
a constant magnetic field. The first term on the rhs describethe self-energy due to the spin off-diagonal term in the
the coherent motion in a molecular field modified by corre-Hamiltonian(1).
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The Hartree-Fock diagram®) and (b) contribute to the polarization. Accordingly, we also write for the density ma-
instantaneous self-energy*. They are second order in the trix at arbitrary times
spin polarization and therefore, for sufficiently small spin
polarizations, negligible. There are two second-order dia- - - - 1. - - - o
grams due to electron-electron scattering, the difecand N(kt) = f(k) + of (k1) + 50 [Sodk) +6Sk,D)],  (32)
the exchangéd) Born diagram. Anticipating that soft scat-

tering dominates, we neglect the exchange diagid@mThe ) - - _ )
direct Born diagram contributes &', 3*-, andS™*. It can with f(k,t) and 65k, the changes induced by optical

be shown, however, th&t** is at least second order in the pumping or b.y electrical injection. We definad (k) for
spin polarization and therefore negligible in the limit of t—, thatis, it contains the electrons created by the pertur-

small spin polarizations. ThE™ and3* components, con- bation and bothéS(k,t) and 5f(k,t) have to vanish for

tributing to the collision integral, are in contrast linear in thet—* i ) . .

spin polarization and cannot be neglected. Diagréensind Inserting the expansiof82) into the Boltzmann equation
(), corresponding to the Born approximation for electron-(30) Yiélds two kinetic equatlons: one for the charge compo-
impurity and electron-phonon scattering, only contribute tonent of(k,t) and one for the spin componeas(k,t). The
SPd. As in the case of electron-electron scattering, the  collision terms couple the two equations. If, however, only a
component can be again neglected, if the spin polarization igmall portion of the total number of elect[ons |n|tLaIIy con-
small enough, whereas the— and —+ components con- tributed to the spin polarization, i.e., #f(k,t)<f(k), the
tribute in linear order in the spin polarization to the collision coupling can be ignored and it suffices to focus on the equa-
integral. Diagrang), corresponding to the spin off-diagonal tjon for 65k, t) alone.

part of the Hamiltoniar{1), is linear in the spin polarization Since the total spin poIarizatioéeq(IZ)+6§(lz,t) is small.

and contributes ta\**. Eventually it leads to a torque force e linearize the Bom collision intearal with respect to both
acting on the spin polarization. We linearize in Ision integral wi p
Sq(k) and 8S(k,t). Thus,

Anticipating small spin polarizations, we negleéxt* and
the Hartree-Fock contribution tA**. Writing in the Born R
approximation furthermoreg[N]=Ig{N]+I1gIN]+I1g[N] for Ig[N]=Ig[Negl + Ig[f + 5, 55]. (33
the second and third term on the rhs of E2Q), the semi-
classical kinetic equation for the electronic density matrixif we now apply Tro{---] on both sides of Eq(30), use

reduces to Ig[Negl=0 as well asﬁ,A(Iz)xéeq(IZ):ﬁ, because, by con-
struction, the equilibrium density matrik (k) commutes

with H,,, and ignore furthermoréf in IB[f+5f,5§], we get

e a closed kinetic equation for the nonequilibrium spin polar-
+7Qy(K]-a]+1g[N], (30  jzation

where we relabeled the center timie-t and adjusted to the L . o oL
notation of Eq.(9); % is explicitly included and the general- (ho—ihQc - L)dSK,) = [ + A a(K) + 7 Q(K) ]
ized momentum is now denoted By

Equation(30) is a matrix Boltzmann equation similar to
the semiconductor Bloch equations frequently used to de- R .
scribe optically pumped semiconducté?sThus, numerical ~ with Jg[f, 8S]=Tralg[f, 5S].
techniques used for the solution of the semiconductor Bloch The collision integral can be further simplified if we split
equations can be adopted to the numerical solution of Ecthe spin-flip matrix into a leading spin-conserving diagonal
(30). Calculations of this kind have been successfully perpart and a small off-diagonal part which describes spin-flip
formed for various situation¥.3544.51-53 scattering. Since nonparabolicities are small, the diagonal

To avoid a numerical solution, we focus on small spinpart is approximately equal to the unit matrix and we get
polarizations and linearize the Born collision integral with |(k k')=1+6l(k,k’), with 8l(k,k')<1. Expanding the col-
respect to the spin polarization. lt is irpportant to note thaﬁ
the equilibrium density matriNek) =N(k,t— ) is not di-
agonal in the “spin basis.” Expanding the equilibrium density

(fi, - ihQc - LNK 1) = iE[N(IZt),[hﬁL + O a(K)

X 8S(K,t) + Jg[ f, 5S] (34)

ision integrals up to second order Bh(lz,lz’) gives

matix in terms of Pauli matrices yields Jelf,85] = Jg[f, 65]© + Jg[f, 65|V + Jg[f, 65 (35)
Neq(lz) = f(k) + l(; _ iq(g), (31  Thefirst-order tgrm]g)[f,éé] potentially mixes EY, DP, and
2 VG spin-relaxation channels, but for semiconductors with

- . - . ) high symmetry it does not contribute to the spin-relaxation
where f(k)=(1/2)TrNe(K)=[f, (k) +f_(K)]/2 is half of the [ates.

sum of the equilibrium distribution functions of the spin-up  The kinetic equation for the excess spin polarization be-
and spin-down electrons ar((k) is the equilibrium spin  comes therefore
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(ha, - ihﬁc ) E)éé(lz,t) =ﬁflL x 6§(l2,t) " [hﬁ,A(IZ) C. Diffusion approximation
o . . The simple form of the collision integral87) and (38)
+h1Q4(K)] X 85(kt) +Jf3°)[f,5S] suggests to conceptualize the dynamics of the nonequilib-
@ - rium spin polarization in terms of spin-polarized “test” elec-
+Jg'[f,65]. (36)  trons, scattering off an equilibrated bath of “field” particles

This equation contains motional-narrowit@P and V@ and ~ (Impurities, electrons, and phongnBlsually this picture can
spin-flip (EY) spin relaxation processes on an equal footing2€ t‘:”'Y applr|1ed t?h electrtc:n-_lmpunt)t/ andbelleC”Ot”'F(’jhf?”O”t

: o - scattering, where the scattering partners belong to differen
The Elliott-Yafet process is simply encoded J\§>[f,68], 9 gp 9

, ) species, and not to electron-electron scattering, where the
whereas the motional-narrowing processes result from th

bined . f th ¢ . by th cattering partners belong to the same species. It is only
combined action of the torque forces given by the SeConGinin the linearized spin dynamics, which essentially treats

term on the rhs and the spin-conserving scattering Processgs, electrons comprising the nonequilibrium spin polariza-

comprisingJy[f, 6S]. . tion as a separate species, that the “test-field-particle con-
Independent of the scattering process, the structure of theept” can be applied to electron-electron scattering as well.
collision integrals in Eq(36) is (v=ei, eg andep) We now take full advantage of the simplicity of the collision

Ors o1 PN - o integrals and expand the collision integrals with respect to
J,[f,68] = 2 [W(k+;d) oSk + 6, 1) - W(k; §) Sk, 1), the momentum transfaj. As a result the integrodifferential

a equation(36) becomes a differential equation.

(37) The on-shell spin-conserving process due to elastic
electron-impurity scattering yields

. BoTes=3 3, (07— a8k,
« 53K+ )], (38) B s

where, for concise notation, we introduced a spin-flip vectorW

JA[f,85] = 23, Wr(k + G; )G,k + ) X [G(K.K+ ) P
L0

(42)

hereas the inelastic spin-conserving processes due to
Im1,_(k,k") electron-electron or electron-phonon scattering give rise to

- - an off-shell contribution

dkk)=| Rel,_(kKk) | (39

- N - oo
0 Wfes= 2 X X ————C; (KSky,
v=eeep N iq,...| O " é)ki Lrn
. ndiing . ; n iy n
with 1,_(k,k’) the off-diagonal element of the overlap matrix 43
(6). This is a result of the Born approximation and the lin- (43)
earization with respect to the spin polarization. In generalwhere, in both cases, the moments are defined by
the structure of the collision integrals depends on the scatte(v=ei, ee ep)
ing process. Here, however, the scattering process enters

only through\/\/“(lz;d), the probabilities for a transition be- c

N - ip-
tween momentum statk—g and k. For electron—ionized-
impurity scattering, for instance,

-1 -
0= 22 W) (44)
" q

The transition probabilit)ANV(IZ;d) depends on the precise

Vvei(lz.q’) - 277N-|U(q)|25(s(lz— d) - S(Q)) (40) modeling of the elementary scattering process and also on
' ' ’ the dimensionality of the system. In the Appendix we give

while for electron-electron scattering, explicit expressions for electron-electron and electron-
- 2 D e el - impurity scattering in a quantum well. Note, for inelastic
Wek; @) = 4mV(a)| E {[1-f(k=a) - f(k" +PIf(k") scattering the differential operators act on the moments
K » >, . . .
) ) A ) Cil,...,in(k)’ whereas for elastic scattering the moments are in
+f(k=g)f(k' +g)}o(e(k) + (k') front of the differential operators.
- - Equationg42) and(43) involve partial differential opera-
—e(k-q) —e(k' +0)), (41)  tors of arbitrary order. To obtain tractable equations, the ex-

with U(g) and V(q) statically screened Coulomb potentials. pansion IS in many cases truncated after the sgcond—order
Similar expressions hold for electron-phonon scattering. Foferm (dlﬁu§|on approximatioh As a result, scattering pro-

_ _ _ L iDL 2 cesses with small momentum transfer are treated exactly
electron impurity scattering, which is elasti/'(k+d;d)  \yhereas scattering processes with large momentum transfer
=WF!(k; d); moreoverWF(k; g) is independent of the equilib- are treated approximately. Because the transition probability
rium distribution of the spin-up and the spin-down electronsfor the (unscreenedCoulomb potential diverges for small
In general, however, the transition probabilities depend omomentum transfer, soft Coulomb scattering events domi-
the equilibrium distribution of the electrons, and, in the casenate, and the diffusion approximation is expected to describe
of electron-phonon scattering, also on the equilibrium distri-Coulomb scattering reasonably well. A similar reasoning ap-

bution of the phonons. plies also to electron—LO-phonon scattering. The singular be-
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havior of the collision integrals is stronger in three than in
two dimensions. The diffusion approximation is therefore
somewhat better justified for bulk than for quantum well
situations384648.62Nevertheless, our numerical results sug-
gest that even for a quantum well the diffusion approxima- i
tion gives reasonable quantitative results for the spin-
relaxation time.
Keeping therefore only the second-order terms, we write

I, 85] = 3011, 65 + 38" f, o]
e 0 o P - o FIG. 2. Graphical illustration of the collision terms within the
= E A%(K)— + E Bij(k)_ oS(k,1) diffusion approximation: A “test” spin polarization scatters off a
: e ki dk;
! o e generalized bath of equilibrated “field” particlgsectrons, impuri-
9 R P R ties, and/or phononsWhereas spin-flip scattering is elastion-
+ E 2 EAiV(k) + 2 MBﬁ(k) shell) within our approximation, spin-conserving scattering can be
v=eeep| i N ij RO on- or off-shell, i.e. the “test” spin polarization can lose or gain
I, - e energy, because the “internal degrees” of the bath can absorb or
where the first two terms on the rhs come from elastic scat-
tering processes and the last two terms encode inelastic scat- In Fig. 2 we illustrate the physical content of the diffusion
tering events. In Eq(45) we introduced for the first and approximation encoded in Eq$45) and (48): the small

second moment&=ei,ee ep), “test” spin polarization §Sk,t) scatters off equilibrated
e - “field” particles, which, depending on the scattering process,
A= E gW'(k;q), (46) are either electrons, phonons, or impurities. Spin-conserving
q

scattering can be elastic and inelastic, because the “field”
particles can absorb or emit energy, the bath has “internal
B-”-(IZ) - 12 q-q-VV”(IZ'(i) (47) degrees.” Spin-nonconserving scattering, on the other hand,
1 25 o turns out to be elastic within the diffusion approximation.
. We now introduce scaled atomic units and measure en-
which have the meaning d&-dependent dynamical friction grgy in units of a scaled atomic RydbéRg=R,/s and length
and dlf_fUSl?_n c;)hefflcu_ants, respe_;gvel;;. W:lt'hl'n th_etdlffulsmn in units of a scaled atomic Bohr raditE=1Sa, with
approximation the spin-conservirigorn) collision integrals = -, _ Ao~ .
are therefore represented by a Fokker-Planck differential opROaO_hzl 2m, and ez._ 2\SRydo, Wheremy is the bare elgc-
erator(45). Each scattering process gives rise to a particula}.ron mass ands is a scale factc?r chosen to y|eld.
Fokker-Planck operator, with particular dynamical friction Ro=1 meV. Symmetry-adapted coordinates are then a radial
and diffusion coefficients. coordinates=k? and a generalized angle variale which,

In the same spirit, expanding the spin-flip collision inte- for bulk semiconductors comprises two angles, the polar

2 & ; angle ¢ and the azimuth anglé, and for quantum wells is
%ral Js [f,.ésl Lipfo secgnd order in the momentum tranSfersimply the polar anglep. Before we express the Fokker-
g, and usingg(k,k)=0, gives Planck equation in these symmetry-adapted coordinates, we

recall that the experimentally measured quantity is the mac-

@r¢ s3] = - R(K) 83k -
Jg'Lf, 651 = =Rk k), (48 roscopic (k-averageyl spin polarization. Normalizing the
with a spin-flip tensor macroscopic spin polarization ¥, the (small) number of
- oo - initially spin-polarized electrons and writing ttkantegral in
Rk)=4 :Eeep% B (KIG;(K), (49) symmetry-adapted coordinates, we define a “macroscopic”

spin polarizationper spin polarized electron
given in terms of the total diffusion coefficient and a tensor

Gij(IZ), which describes the rate of change of the spin-flip - 1 5 -1 -
VeCtorQ(lz, |2’): oS(t) = Ws : o9(k,t) = —(27T)dns de | dwd(e)8S(e,w,t),
0

o [oF -of 0 (52)
Gik=[-or o o | 50

i E X oy (50 with d the dimensionn,=N¢/LY the density of initially spin-

0 0 O +0j polarized electrons, and(e) the energy-dependent part of
with the Jacobian, which arises from the transformation to the
symmetry-adapted coordinates. Note that due to the normal-
oy = [ig&l} {ig&,] _ (51)  ization, 65(0) is a unit vector in the direction of the initial
P Lok TR Jo il ok T spin polarization. For bulk,d=3, dw=d¢d#sing, and
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J(s):\Elz, while for quantum wellsd=2, dw=d¢, and ~R(e w)5§,(8 o). (55)
J(e)=1/2. Instead of setting up the Fokker-Planck equation ' .

for 6S(e, w,t) it is more convenient to directly construct the |t contains spin relaxation due to motional narrowi(iP

Fokker-Planck equation for and VG processgsnd spin-flip scatterin¢ggY process The
© former arises from the combined action of the off- and on-
2 _ ) & shell spin-conserving scattering events encoded in the differ-
&S (e w,1) = (277)dn358(8'w’t)' (53) ential operatord(e) and[1/7, (w)]£3(w), respectively, and

The differential operator describing spin-conserving scat{N€ torque forces due (e, w) and Qy(e, ), while the

. . 2 latter originates from the spin-flip tensBf ¢, w). Note that if
Fermg processes in the Fokker-PIanck equationsisrreads more than one scattering process is considered, the relaxation
in symmetry-adapted coordinates

rates characterizing the differential operators and the spin-

R J e P &2 1 flip tensor are total relaxation rates, due to whatever elastic
D) =-— +— - L3 w) and inelastic scattering processes are included in the model.
de 7(e) 08" 1(e) AT (e) The orbital motion of the electrons, which leads to a quench-
1 ing of the motional-narrowing spin-relaxation processes, is
=D(e) - LH(w), (54) - iQ-- [
) given by the termQ¢-L(w) on the rhs of Eq(55). In the

next section we develop a scheme that separates the fast
where the operatof?(w) denotes the total angular momen- spin-conserving scattering processes from the slow spin-
tum operator in momentum space. To obtain this generi¢lecay-causing processes and directly yields the time evolu-
form for both bulk and quantum wells it is essential to in- tion of the macroscopic spin polarization.
clude J(g) into the definition of the spin polarization. The
off-shell term D(e) originates from inelastic scattering
events, e.g., due to electron-electron or electron-phonon scat-
tering. The relaxation rates #{e) and 1/ry(e) denote the The Fokker-Planck equatios5) determines the time
rate with which the “test” spin polarization loses energy andevolution of the nonequilibrium spin polarization on the fast,
the rate with which the “test” spin polarization diffuses in Spin-conserving time scale, where randomization of the
energy space, respectively. The on-shell term, describing rar@ngle variablegdirection of the momentupand energy re-
domization of the angle variable, is given by the last term orlaxation and diffusion occurs, and on the long time scale,
the rhs of Eq.(54). It is proportional to the total on-shell Where spin-nonconserving processes lead to the decay of the

relaxation rate 1#, (¢) due to both elastic and inelastic scat- Spin polarization. The two time scales are well separated.
tering processes. The fast, spin-conserving stage, whose scale is given by the

The rates characterizing the differential oper@ﬁﬁ) are first term on thg rhS.Of Eq55 and therefore 'by the off- and
on-shell relaxation timegs well as the time it takes to com-

obtained from a direct calculation of the coefficie®Sk)  plete one cyclotron orbjt terminates in a quasistationary
andBj(k) and casting the resulting differential operafa(k) state, which then evolves on the time scales set by the
in the specific form given in Eq54). An explicit calculation  Elliott-Yafet term, the torque forces due to the spin off-

of the symmetry-adapted form of the relaxation terR¢k), diagonal Hamiltonian matrix elements, and the external mag-
which is defined in terms of the total diffusion coefficient N€tic field (Larmor precession EXperlmen_taIIy relevant is
usually the time evolution on the long time scale. In this

Bjj(k), due to both elastic and inelastic scattering Processesy tion we employ therefore a multiple-time-scale approach
shows moreover that it can be expressed in terms of the Samg axiract from the Fokker-Planck equatigss) a Bloch
scattering rates. Thus, the three scattering rates(d)/

1/m(5) d 1k (o) letel iy the t lisi equation, which controls the time evolution of the macro-
, an completely speci e two collision - . o .
Ta\® L8 P y sp scopic(k-averagey spin polarization on the long time scale.

integralsJg[f, 5S] and J¢[f, 5S]. In the Appendix we give To simplify the notation, we suppress the prime. It is under-

explicit expressions fqr the _relaxat|on. rates due to electronétood that the spin polarizatia?§(e, w,t) contains the factor
electron and electron-impurity scattering in a quantum well

. i ) i J(e)/ (2)%ns.
The ~dimensionless, - symmetry-adapted Fokker Plancl% As a preparatory step we first consider that part of the

equation foréé’, which is the basis for the calculation of the Fokker-Planck equatiof5), which is spin-conserving:
spin-relaxation rates presented in the next section, can be ’
therefore written as

D. Multiple-time-scale analysis

1
471(8)

O%(Sé(s,w,t) = {D(s) - L3 w)

1
47, (&)

iéé’(s,w,t) - [D(s) - £2(w)
+iﬁc-5(w)]5§(8,w,t). (56)
+ iﬁc-z(w)]ﬁé’(s,w,t) +Q, X 55 (g, 0,1)

. . . To find the stationary solution of E¢56) we set the |hs to
+[Qa(e, 0) + Qg(e,w)] X 65 (g, 0,1) zero, write
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& — I fore defined only up to a normalization constant. From the
yw) = Yyle,w), 57 L " ) . o
_ _ 5(2,0) = ple)¥sle,w) S initial condition for the macroscopic spin polarization,
with p(e) defined by 55(0) =&, we conclude thap(e) has to be normalized accord-
D(e)p(e) =0, (58)  ing to fde [dwp(e)=1 [recall that we redefinedS such that

_ B . _ _ it contains the factod(e)/(27)%ng]. Thus,de [ dwp(e) can be
and obtain for the auxiliary vectoP¢(e,w) the differential  interpreted as the probability density for finding a spin-

equation polarized “test” electron in the energy intenjal, ¢ +de].
1 L _ To proceed further we scale each term in Ep) to its
D* (g) = L) +i1Qc - L(w) |V(e,0) =0, typical value. In the case of degenerate electrons the typical
47, (s) values would be the ones at the Fermi energy, whereas for

(59 nondegenerate electrons the typical values could be the ones
at the average thermal energy. Denoting typical values by a

with caret, we introduce scaled quantitigs=t/t, 7{=7/7;,
2 ’ ~ o ~ S A A~ Sr—A A N —A A
D* (8) - & i + & i (60) TdZTd/Td, TJ__TL_)/TL!_)QlA_QIATIAI Qg—Qg’Tg, QL—QLTL,
m(e) de  74(e) e?’ R'=R7z, and Q;=Q¢7. The rescaled equation for
the adjoint operator td(e). The simplest solution of Eq. V'(¢,®,t') becomegsuppressing the arguments of the vari-
(59) is a constant vector ous functiong
o . T T 2 2 2 N oo
Ve, 0) =€, 6) L= ;£i+;8—§—2—;iﬁz+;iﬂ’c-£ v
o _ _ _ at’ T Tt dE  TqTydet T AT Tc
giving rise to a stationary solution R R -
t-, - 1. Lot ..
o — 2 +TQLX‘I”+A—Q{AX‘I"+A—Q’X\I"
55(e,w) = ple)é. (62 TL o 7 8
The particular form ofp(e) does not matter at this point. T
We now turn to the full Fokker-Planck equati¢sb). The - —R'¥’. (66)
spin-conserving stage of the time evolution, described by the R

first term on the rhs, occurs on a very fast time scale and igve identify three time scales. A fast time scale given by the
usually experimentally not resolved. Hence, it is not necesspin-conserving relaxation timés (i=f,d, 1) and the time
sary to explicitly keep track of it. Instead, it is sufficient to it takes to complete a cyclotron orfig, an intermediate time
use the final state of the fast, spin-conserving time evolutionscale given by the time it takes to complete a precession
i.e., the stationary solution of the spin-conserving part of theground the intrinsic magnetic fieldslue to the spin off-
Fokker-Planck equatiofviz., Egs.(56)+(62)], as an initial  diagonal Hamiltonian matrix elements, and,, and a long
state for the time evolution on the slow time Scale, Wherqime Sca|e, on which Larmor precession and Sp|n-f||p scatter-
spin decay occurs. We write the initial condition therefore a3ng occur,7;. and 7, respectively. For representative experi-
> _ - mental setups, the typical time scdleon which the spin
3Sy(e,0,0) =ple)é, (63) polarization has to be track&tiobservation timej, and the
whereé€ is now the direction of the initial spin polarization. three typical intrinsic time scales obey the following order-
This initial condition is general enough, because neither eledng t/7,1/74,1/7, ,t/7c=0(™Y, t/7a,1/7,=0(7°), and
trical nor optical spin injection produces anisotropic initial t/7, ,t/7R=0(7"), where we introduced a small parameter
spin polarizations. Accordingly, we write for arbitrary times Accordingly, we classify each term in E¢6) by the small-
ness parametey. Suppressing the primes, E§6) is rewrit-

8(e,0,0) = pe) Ve, 0,1), 64 tenas

where the time-dependent auxiliary vec@)(s,w,t) satisfies d-_1 1 5 = |- = >
now the time-dependent equation G V= 7 D*- TLL FiQc L)W+ (Qia+ Q)

J - 1 A S 7

E\I’(s,w,t)=[D* (8)—4 ( )Ez(w) X W+ XW¥-9RV. (67)

T \E
. Equation(67) is in a form where fast and slow processes
+i0- L W o)+ 0 +0 , can be clearly identified. The fast spin-conserving terms and
c (w)} (8,00 +[ 0 + Yia(e,0) the orbital motion enter in orden™?, the precession around

- - - the internal magnetic fields enters in ordgt, whereas the
+Q4(e,0)] X ¥(e,0,1) - R(g,0)¥(g,w,1), Larmor precession and the spin-flip scattering terms appear
(65) in order 5. Naturally, taking as much advantage as possible
. of the existence of the small parameigrthe first thought is
with an initial condition¥(e,w,0)=€. Note that Eq(65) is  to expand all quantities with respect ipand apply pertur-
the adjoint Fokker-Planck equation. The functiofz) satis-  bation theory. The structure of E¢67) indicates, however,
fies the homogeneous differential equat{68) and is there- that regular perturbation theory will lead to nonuniformity in
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the long-time regime, i.e. precisely in that regime in which *

we are interested. To obtain the correct long-time behavior of N —

the solution of Eq.(67) a multiple-time-scale approach is ( )>8_fd8p(8)( )- (79
required. 0

In the spirit of multiple-time-scale perturbation thed?y, Note that the functiorp(e), which determines the terminat-
we consider therefor@ as a function of three time variables ing state of the fast, spin-conserving time evolution, enters

t,=7"t, n=-1,0,1,which are assumed to be independent,here naturally as a weight function. Formally, the weight
and substitute a second-order expansion of the form function appears in our theory because of the an&@dy,
which enabled us to switch to the adjoint Fokker-Planck
equation. The expansion &f implies an analogous expan-

+ 772\17(2)(s,w,t_1,t0,t1) (68) sion for the macroscopigk-averagey spin polarization:

into Eq. (67), where the time derivative is extended t0 sgt) = 5SO(t_y,to,t;) + 76SV(t_y, to,ty) + 720S2(t1,toyty).
o= ﬂ_lﬁt,l*' Gyt M- Equating coefficients of like powers of

\I-;(Slwlt) = \fr(O)(sywnt—litOitl) + n@(l)(slw;t—lit()itl)

: . : - (76)
7 yields a hierarchy of equations for the functio#s”. Up _
to O(7) they read We now calculate the leading-order contributi®®?(t) uni-
9 1 formly valid for all times. As a result, we will obtain a Bloch
a7 (O {p* - L2+i0¢ - Z:|\I_;(O)7 (69)  equation that determines the long-time behavior of the mac-
-1 T roscopic spin polarization.
1. O(1) equation
I Guy PGgo-|pr X r2iig . F lgw _ - _ .
ot o 4r, c With the substitutior(72), the O(7 ™) equation(69) splits
. . . into two independent equations, one for the angle-averaged
+(Qa+ Q) X pO, (70 part and one for the angle-dependent part:
[ -
i\f,(z) + i«f;(l) + i\f,(o) c?t_a(O) =p* 30, (77
a_y dto oty 1
1 2 6. Fleg@ 9_ =0 1 2| ss0
=|D*- —L2+iQc- L |V —8d%=|D*- —r?|5d7. (78)
4t -1 T
+(Qa+ Q) Solutions of Egs(77) and (78) compatible with the two
. N initial conditions, &°(¢,0,0,0=¢ and 8a%(¢,0,0,0=0
(1) (0) _ (O) N Ll N ) H il ) N il il _)1 H
XWHE+ € X W - RYE. 7D are a9, t_q,t0,t)=a(ty,t,), with &°(0,0=€, and

For the analysis of this set of equations it is convenient tas3° (e, w,t_;,t,t;)=0. Using Eqs.(74) and (76), we find
split ¥ into an angle-averaged and a remaining part, therefore

T (g, w,t_1,to ty) = 87(e, 11, to ty) + 38V (e, 0,11, to,ty) 859 (to,t,) = (1o ty), (79)

(72)  that is, due to our choice of the initial condition, the macro-
=) — /(1) ) i scopic zeroth-order spin polarization is independent of the
wherea™=(W"),, with an angle average defined by fast spin-conserving time scalg and solely evolves on the

long time scales, andt;.
<(---)>m=fdw(~--) (73)

and (™M), =0 by definition. Since the angle variables are 10 determine the time evolution of the macroscopic spin

periodic, this partitioning is always possible. From the initial polaorization'on the long time scalégandt,, we study the

condition, W( 0)=€, we infer the intitial conditions O(") equation. Substituting Eq72) into Eq. (70), the latter
E,W - . . . .

- ! Lo L e . splits into two independent equations:

&"(s,0,0,0=88,0, and 8"(e,,0,0,0=0. Recaling " P q

th:’;\t the factord(e)/(2m)%ng is included in the definition of d A0 = _ ié(o)+p* 50 (80)

8S(e, w,t), the macroscopic nonequilibrium spin polarization oty o

defined in Eq(52) can now be rewritten as

2. O(%°) equation

J . 1 R
—daV=|D*- —L2+iQ¢- L |58V

=~ — T
o8() = f de ple)d(e,t) = (&, 1), (74 ' .
0 +(Qa+Qg) X a?, (81)
where we defined an energy average where we have usedé(o):é, (ﬁm)w:ﬁ, and(ﬁg>w:6. Ap-
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plying the energy averagg...)), on both sides of Eq80)  sa¥, which has to be obtained from E(81), the angle-

yields dependent part of th®(7°) equation. Before we proceed
with the analysis of Eq86) let us therefore turn to E¢81).
i5§1) - iégo) —(D*&W),, (82) Integration of Eq(81) V\iith reispect to the fast time, pro-
Mg Mo duces a secular ternfs+Qg) x a%_;, which cannot be

which, using in the second term partial integration and theemoved, because bofE,A+ﬁg andd® are finite. A way to

definition of p(e), reduces to avoid the resulting nonuniformity is to demand
J = J = J N
— 858V =-—559, 83 —saV=0 87
o Py (83 ) : (87)

The vanishing of the second term on the rhs of @) isthe  i.e., to enforcesaV(e,w,t_1,tg,t;)=6aY (e, ,to,t;), which
result of the spin conservation of the differential operd®r reduces Eq(81) to
which in turn is ensured by the identity
d s
de 74(e)

1 . - - - -
D*— —L2+iQc- L |88 + (Ya+ Q) X 559 =0,
. (84) 4t
e=0 (88)

€

e=0 - Tf(S)

It is crucial to note that the rhs of E¢83) is independent . . - )
of the fast timet_,, becaus&® is independent of . Inte-  Where we used in the last teraf’(t,) = 65°(t,). The condi-
grating Eq.(83) with respect tot_;, the rhs therefore gives tion (87) is reminiscent of the quasistationarity assumption
rise to a secular term, i.e., a term that is proportional fo ~ usually invoked in the calculation of the D’yakonov-Perel
As a result,§§1) can be larger thaas© for sufficiently large relaxa}t|on .rateé.T'he muIt|pIe-t|me.-scaI<—:: approach' enables
times. The expansioii76) would be valid only for short us to identify the time scale on which th|§ assump;uon holds.
times, i.e., the expansion is nonuniform. Within multiple- e now return to Eq(86). Sincesa”, 65, andssS® are
time-scale perturbation theory, secular terms can be avoidéfdependent of the fast time variatilg, the whole rhs of Eq.
by an appropriate choice of the time evolutions on the vari{86) is independent of_;. Integration with respect t, thus
ous time scales. The secular term in Bp) can be particu- 9ives rise to a secular term that has to be removed. We force

larly simply removed by forcing the rhs to be zero, which therefore the rhs of Eq86) to vanish, which can be certainly

gives rise to the condition accomplished if we separately demand
o J - -
9 — 83V =0, (89)
f dep(e)—a9(ty,t;) = 0. (85) o
o
0

9 = = - . R -
That is, a9(ty,t;)=a(t,), which, using Eq(79), leads to 5155(0) = X SV +((Qa+ Q) x 8aY), ,—(R), ,65°.

859(t,)=d0(t,), i.e., the time evolution of the zeroth-order (90)
macroscopic spin polarizatiqiand therefore the spin decay

occurs solely on the long time scale Since the rhs of Eq. From the first equation we find

(83) is made to vanish, we also obtaidSY(t_,to,t;) %

=6SV(ty,1,), i.e., 8SY is independent of the fast time vari- f
ablet_;. Using the definition ofsSY, we furthermore con- o
clude thatd¥(e,t_,ty,t))=aY(e,ty,t;). We need both re- that is,a is independent of,, a result that we need below.
sults in the analysis of the(5) equations, which is The second gquation is already a precursor of the Bloch
necessary to determine the time evolution on the remainingquation for8S°(t,). Although it determinessS%(t,) for a
time scalet;. given saV(t,t,), it is, however, not yet a Bloch equation
because, at this point of the calculatiaig? is still a func-

tion of t; andt,.

J -
de p(e)—aY(e,to,t;) =0, (91
0 dto

3. O(Y) equations

To investigate th@(ﬂl? equation(71), we substitute Eq. To obtain a closed Bloch equation on the time sdale
(_72) into Eq.(71). Averaging over the angle and energy, we alone, we now examine thg dependence oBa™(t,t,).
find Towards that end, we consider the angle-dependent part of

J - g - 9 - . R the O(7') equation(71), which reads

5802 L 580 - L 650 4 (g + ) X 3AY),

oty ato oty ' R i
A ) ) —&a? = D¥= L0 L s4?

+0, X 859 - (R), 650, (86) s T

where we usedsd©=0, @W&w:d @g%’w:d and +(Qa+ Q) X Y+ (Qp + Q) X 58P

(D*&@), ,=0. The third term on the rhs of E¢86) contains —((Qa+Qg) X 5dY),,

245210-12



SEMICLASSICAL KINETIC THEORY OF ELECTRON.. PHYSICAL REVIEW B 70, 245210(2004)

-0 20 9 =) motional-narrowing spin relaxation processes, DP and VG
-Ra”V+(R),a” - 553 . (92 processes, Eq96) splits for isotropic semiconductors into
0 two separate termd;pp andI'yg. Accordingly, for isotropic
Except for the first term, all terms on the rhs are independergemiconductors, a Matthiessen-type rule holds for the total
of t_;, and therefore give rise to secular terms. To remove thgpin-relaxation tensol,=I'gy+I'pp+I'yg, and, as a conse-
secular terms, we set the undesired terms on the rhs to zerquence, for the spin-relaxation rates, which are the diagonal
elements of the relaxation tensdfsThe quenching of the

J > > > > . . . . .
I&é(l):(Q,A+Qg) X 88Y = ((Qa+ Qg) x 88V, motional-narrowing processes due to the orbital motion is
0 contained in Eq(88) through the term proportional .80
-[R-(R),]a® + (§|A+ﬁg) % 3. (93)  The on- and off-shell relaxation rates appearing in &8)

) ) . are total relaxation rates due to whatever scattering processes

The last two terms on the rhs of this equation are indepengre included. A Matthiessen rule holds separately for the on-
dent oft, and therefore again give rise to a secular term ifanq off-shell rates. The energy average-)), is defined in
Eq. (93 is integrated with respect . In general, the last gq (75) Most importantly, it contains a weight functigate)
two terms ar finite. Thus, to avoid nonuniformity we de- jefineq as the solution of E¢58). This function describes
m?{)]d thatad |sa(|8dependent Qto, that IS, we _enforce the energy dependence of the quasistationary spin polariza-
627, w,t,ty)=6a (e, 0,1y). WLtT) this constraint, EQ. jon which appears on the short time scale because of fast,
(933 could be used to determing®(e,ty) and eventually spin-conserving inelastic scattering processes, i.e., because
85V(ty). . of energy relaxation and diffusion. Once the quasistationary

Becausesd™ is independent ofy, Eq. (90) is in fact a  gpin polarization is established, it slowly decays on the long
Bloch equation on the time scalg alone. The function time scale set by the spin-nonconserving terms in the
saV(e,w,t;) satisfies Eq.(88), which, through 8S9(t;),  Fokker-Planck equation.
containst; only as a parameter. Therefore, the function
saV(e,w,t;) instantaneously adjusts to the function

5§°>(t1), which, in this sense, acts like a “slave field” for  In this section we apply the formalism to a quantum well
saV(e, w,1y). at low enough temperatures, where electron-impurity and
To make the equations determining the decay of the macglectron-electron scattering dominate. We are here particu-
roscopic spin polarization explicit, we recall= %"t and go larly interested in the effects of Pauli blocking and inelastic-
back to the original, unscaled time variable and functions. Adty. For illustration, we focus therefore only on the DP pro-
a result Eq.(90) becomes a Bloch equation for the macro- cess, which, for small to moderate magnetic fields, is usually
scopic spin polarization, the dominant spin-relaxation process. Moreover, if the mag-
netic field is small enough, the ting it takes to complete a
i5§<0>(t) = ﬁL X 699(t) - [Ty + FMN]5§O)(t)1 (94)  cyclotron orbit is much longer than any of the intrinsic scat-
ot tering timesT; (i=f,d, L), and the quenching effect of the
magnetic field can be ignored.
We consider a symmetric GaAs quantum well, grown in
the[001]] direction, which is also the quantization axis for the

IV. APPLICATION TO QUANTUM WELL STRUCTURES

with initial condition 5§(0):é. The Elliott-Yafet and
motional-narrowing spin-relaxation tensors are given by

Iey =(R)s 0 (95)  electron spin. Due to the assumed structural symmetry, there
is only bulk inversion asymmetry giving rise to DP spin
Tun8SO() = - (Qp + dg) x &by, ., (96) relaxation?®As in the bulk case, we treat the two states at the

conduction-band minimum explicitly and include a large set
respectively, andsa? is obtained from Eq(88), which for  of states perturbatively, up to third order, to include the effect

convenience we state here again: of bulk inversion asymmetry. For energies close to the band
1 L L L minimum, the Hamiltonian for the quantum well can be cast
D*= —L2+iQ¢- L [8dY + (Qpa + Qg) X SV =0. into the form(1). The spin off-diagonal term in the quantum
47, well Hamiltonian is the bulk spin off-diagonal term averaged

Equationg94)<96) are the main result of this section. They over the envelope function of the conduction subband. As-
control the time evolution of the macroscopic spin polariza-Suming for simplicity infinite confinement and restricting the
tion on the long time scale, where spin relaxation, i.e., decay¢@lculation to the lowest conduction subband, we fine-
occurs. Equation96) is an implicit definition of the spin glecting cubic terms irk)
relaxation tensol’yy. The explicit form ofI"y,y can be ob-
tained by inserting the solution of E8), which is always . 2
inear in 63 - mOWMe, ¢) = 26Ve| — | | sing |= ——7n(e)
linear in 6S(t), and performing the angle and energy aver- A (&,¢ Vel | (®) Kia(),
ages. In the next section we illustrate this procedure for a 0 A
doped quantum well subject to a small magnetic field.
- ; . (97

The macroscopic spin-relaxation tensor contains the EY _
process and the motional-narrowit@P and VQ processes. Where we have defined a precession ratelé)=CR\e
Due to the different angle dependences of the two maimwith CRV=28,(/L)%

— COS¢
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Since we are only interested in the DP spin relaxation 2m *
> J dqﬁJ dep(e) = 1. (105
0 0

tensor, we neglect in Eq88) the torque force due té).
Because we furthermore assume small magnetic fields, we

also ignore the orbital motion of the electrons. The separagote, because of conditiof84), the integral in Eq(104) is

tion ansatz, zero fore —0. That is,p(¢) is well defined fore — 0.
) . 20 The Bloch equatiori94) for the macroscopic spin polar-
saW(e,¢,t) = () kia(¢) X SO(1), (98)  jzation has to be solved with the spin relaxation ter@6r)
and taking the particular geometry of the experimental setup
into account. Here, we consider the case of Kerr or Faraday
1 rotation experiments, where the small magnetic field, which

{D* - :|T(g) + =0, (99) causes the spin precession, is alongxfaxis. The propaga-

47, () 7ia(e) tion direction of the pump and probe pulses is assumed to be
which determines the generalized relaxation tinge). Be-

perpendicular to the quantum well plane, i.e., parallel to the
cause the differential operat®r* accounts for inelastic scat-

then reduces Eq88) to a scalar differential equation,

z axis (growth axig. The initial spin polarization is therefore
along thez axis, i.e.,6=(0,0,1, and the probe pulse moni-
. o . . YSors the decay of a spin polarization that precesses irythe
where the spin polarization decays, inelasticity cannot be ig- lane. Note that the spin decay in §plane is not isotropic

nored. Thus, inelastic scattering processes not only deteFT ; ;
. e . . #1I',). Assumin >1/Q, the solution of the Bloch
mine the initial condition for the decay stage but they di- . Y ) 97oe L

rectly affect the time evolutior{of the macroscopic spin equation is
polarization in the decay stage. Multiplying from the left 0
Eqg. (99) by p(e)7(e), integrating the resulting equation over . .
e, and using conditiori84) yields an equivalent differential 8S(t) =| —sint e, (106)
equation, cos( t
1 ple) _ where the decay rate of the spin polarization is given by the
{D 4TL(8)}p(8)T(8) " miale) 0. (100 arithmetic mean of the decay ratesyrand in z direction:

FZ(Fyy+F27)/2=3/(27Dp).
which can be also used to determirie). The results presented below are forLz25 nm GaAs
Inserting Eq.(98) into (96), ignoring the (), term, and quantum well. The parameter needed to speﬁﬂi&w(ﬁ) is
performmg the ang_le and energy averages finally yield f°r50:0.0813/\u(2T)3osg.13 The remaining parameters, such as
the DP spin relaxation tensor the effective CB electron mass or the static dielectric con-
stant g, (needed for the Coulomb matrix elemgmtan be
found in standard databas@d\Numerically, we first calculate
, (109) v(e)=el r¢(g), W(g)=€?/74(¢), which define the differential
operator D, and the on-shell ratel(e)=1/4r,(e), taking
electron-electron and electron-impurity scattering into ac-
with the DP spin relaxation rate given by count (see Appendix We then determing(s) from Eqgs.
1 < . > (104 and (105. Finally, we solve the differential equation

1
I'pp=—
op

o O B
o O
N O O

— = (102 (100 for 7(e) nu_meric_ally and_ obtain the DP relaxation rate
Top 1/mpp by numerically integrating Eq.102).
) ] ) In Figs. 3 and 4 we show, foF=10 K, the dimensionless
Where the energy average is defined in Hﬁ)._To Qeter- functions uv(e)=elm(e), wW(e)=e2/74e), and u(e)
mine the functiomp(e), we integrate Eq(58), which gives  —1,4. () for a modulation-doped quantum well with elec-

tron densityn=4x 10° cm™ (nondegenerate electronand
[_ v(e) + iw(s)} p(e) =0, (103  N=4x10"cm™ (degenerate electropsrespectively. In a
de modulation-doped quantum well electron-impurity scattering
. . ) is negligible because of the spatial separation between the
where we used again conditi¢B4) and introduced the dy- gopants and the electrons, we take therefore only electron-
namical friction and diffusion coefficients iz space, gjectron scattering into account. The physical content of the
v(e)=el71(e) and W(§)=82/Td(s), respectively. Integrating  fynctions v(e) and w(e) is that of dynamical friction and
once more, we obtain diffusion coefficients(in & spacg for the “test” spin polar-
. , L ization resulting from the scattering between the spin-
p(e) = p(O)exp(f dgrv(s )_V,V (e )), (104) polarized “test” glectrons and the equilibrated “field” elec-
0 (e") trons. The functioru(e) denotes the on-shell scattering rate
arising from the “test” electron’s elastic scattering off “field”
with w'(g)=dw(e)/de and a normalization constamt(0), electrons. It randomizes the angfe henceu(s) can be in-
which we fix according to terpreted as an angle randomization coefficient.

TIA
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FIG. 3. Distribution function(for the equilibrated state at 00 0'5 : 1‘5 2
t— o), dynamical friction coefficient, dynamical diffusion coeffi- ) é ’

cient, and angle randomization coefficig¢from top to bottom for o . .
a modulation doped quantum well at an electron density FIG. 4. Distribution function(for the equilibrated state at

n=4x10° cm2 and T=10 K. For the calculation of the coeffi. t— ). dynamical friction coefficient, dynamical diffusion coeffi-
cients, only electron-electron scattering is taken into account. Th&i€Nt and angle randomization coefficigfrom top to bottom for
unit of & is 14.93 meV. The units of the functions w, andu, are ~ @ Modulation-doped quantum well at an electron densityt

1 o2 - in Ei ;
22.68 meV/ps, 338.44meV)?/ps, and 1.52 1/ps, respectively. Xlol_ cm* and T=10 K. As in Fig. 3, for the calculation of the
coefficients, only electron-electron scattering is considered. The

. . .. units ofe, v, w, andu are the same as in Fig. 3.
In Figs. 3 and 4 we also show the electron distribution

functions that characterize the equilibrated state-atc. Be- hat q ibes th . larization tat0 while f(s) i
cause of our assumption that only a small portion of the tota‘ha p(s).l. escribes the spin p;osrlzall lon while f(e) is
number of electrons initially contributed to the “test” spin "€ €quilibrium distribution of the electrons .

o ~ > . o At this point, a brief discussion about the applicability of
polarization[i.e., 6f(k,t) <f(k)], the equilibrium distribution

) . . N the diffusion approximation for the linearized collision inte-
functions are used to determine the friction, diffusion, and

angle randomization coefficienisee Sec. Il B. In other
words, we approximated && o the distributions of the fric-
tion and diffusion causing spin-balanced “field” electrons by
the distributions of the equilibrated electronstat o, de-
spite the fact that at<« of course a small number of elec- 1.5
trons is still out of equilibrium and contributes to the finite
spin polarization. Obviously, this is only permissible close
enough to equilibrium.

Inelastic scattering encoded irv(e)=¢e/7(e) and
w(e)=g?/4(e) gives rise to spin-conserving energy relax-
ation and diffusion, which in turn yields a quasistationary
spin polarizatiorﬁést(s,gzs):p(s)é, towards which any initial 05
spin polarization relaxes very quickly without losing spins.
The time scale on which this spin-conserving relaxation
takes place is set by the relaxation timglg), i=f,d, L. In
Fig. 5 we showp(e) for T=10 K and three densitiesi=4
X1 cm?, n=4x 10" cm™2, andn=4x10% cm™2. In the
inset we again depict the corresponding distribution func- g5 5. Weight function for a modulation-doped quantum well
tions for the electrons that characterize the equilibrated statg 110 k and three electron densities 4 x 16° cm2 (solid line),
att—o. At very low densities, where the electrons are non-p=4x 10t cni2 (dotted ling, n=10'2 cm2 (dashed ling taking
degeneratep(e) is centered around=0, while at high den-  only electron-electron scattering into account. The inset shows the
sities, where the electrons are degenerpte) is centered corresponding electron distribution functions in the equilibrated
around the Fermi energy for the electrons. Note, howevertate att— c.

2

—~
w 1
N’
=
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gral Jgg is in order. The diffusion approximation is expected 10’
to be applicable because E®7) has the form of a master
equation and can thus be formally expanded with respect tc

the momentum transfej. For a sufficiently rapidly decaying

transition probabilityW*9k;q), the expansion can then be
truncated after the second-order term as in Ef). The
validity of the diffusion approximation depends therefore on
the transition probability, which in dimensionless form reads
[see Eq(A5) in the Appendix

— n=4*10’cm’
— — n=4%10"cm’

Wedk; ) = f do/M(@)[[f(k* - @) + n(- )]

2
X|m5((q,w)5<k'ﬁ—q——2>, (107)
2 2
with M(g)=1/(g+qs) the Coulomb matrix elements the ‘ ‘
Thomas-Fermi screening wave number, &0d andn(x) the 0.5 1.0 1.5 2.0
Fermi and Bose functions, respectively. Note, in E07) momentum transfer q
we do not expand the distribution functions and energies. As . _
a result, cutoff problems are avoided and the friction and . ~'G- 6 The upper panel showky,;q) for T=10 K and two

- ~ electron densitiesn=4x 10° cm™? (nondegenerate electrgnand
e - o o )
diffusion coefficientsA¥1k) and Bije(k)’ respectively, can be -4 1011 cny2 (degenerate electronsFor nondegenerate elec-

calculated without restricting thggintegration. Thus, the dif- o, the typical momentutiy, corresponds to the thermal energy
fusion approximation does not ignore hard scattering progyertical solid ling, whereas for degenerate electrokgy, is the
cesses with large momentum transfer; it only treats thefermi wave numbetvertical dashed ling In the lower panel we
approximately, whereas soft scattering processes are treatgfhsent the cumular®(kyp;q), defined in Eq.(109), which is a

. 0) -
exactly. Moreover, from Eq(107) it follows that 3%is ac-  measure of the relative importance of the scattering processes with
tually a “phonon-type” collision integral, the role of phonons g momentum transfer less than

being played by the collective excitations of the spin-

balanced “field” electrons. Indeed, replacin(q) by the upper panel of Fig. 6 we see thBtk,;q) indeed decays
electron-phonon matrix element and ¥, w) by the pho-  with increasing. In the degenerate regintg= 2kg scattering

non spectral function, Eq107) gives the transition probabil- is clearly visible, but one order of magnitude less probable
ity for spin-polarized “test” electrons scattering off equili- than theq— 0 scattering process. From the cumulants, dis-
brated phonons. This analogy already suggests that played in the lower panel, we infer moreover that in the
diffusion approximation is applicable ﬂgg To demonstrate nondegenerate as well as degenerate regime, soft scattering
its validity, it is, however, necessary to show that for typicalprocesses witlg=<k,, give the main contributiortaround

values ofk the transition probability\*k: g) indeed decays 80-90%. In both cases we expect therefore the diffusion

sufficiently rapidly for larged. approximation to produce reasonable quantitative results for
For that purpose we investigate the DP spin-relaxation time. To estimate the error precisely is
complicated. It would require a detailed investigation of the
P(Kiyp: @) :J d¢qv\/39(|2typ;q), (108  full momentum dependence ¥9k;q) together with a ref-

erence calculation that does not invoke the diffusion approxi-

which is essentially the angle-averaged zeroth-order momeration. The spin-relaxation times we obtain as a function of
of Wee(E:Et :d) with ¢ the angle betweeﬁty andd. [The temperature and density compare favorably with experimen-
yp; p :

i an sk mmnts appar i e Cfaaton f S, nicaten e el of st e
friction and diffusion coefficient&{k) and Bﬁe(k).] For de- bp

: . ) calculation of DP spin-relaxation times.
generate electrorlg, is the Fermi wave numbég: while for

) We now turn to the numerical results for the DP spin
nondegenerate electroks, is the wave number correspond- |itetime 7,,. Figure 7 showsryp as a function of electron

ing to the thermal energy. In Fig. 6 we show for the tWo yensity for a modulation-doped quantum well at three tem-
parameter sets used in Figs. 3 anpl 4, respectively, the ZerOtBératuresT: 10, 20, and 30 K. Since in a modulation-doped
order momenP(ki,; q) together with the cumulant quantum well electron-impurity scattering is negligible, we

q take only electron-electron scattering into account. For fixed
drP(Kiyp;T) temperature, the spin lifetime first increases with electron

Cllypi@) = o, (109 density, reac_hes a maximum, and then decregsgs a}gain. The
* . nonmonotonic density dependence of the spin lifetime fol-

fo drP(Kyp;r) lows the density dependence of the electron-electron scatter-

ing rate. At low densities, the scattering rate is small because
from which we can estimate the relative importance of scatof lack of scattering partners, while at high densities the
tering processes with momentum transfer upqgtoln the  scattering rate is suppressed because of efficient Pauli block-
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FIG. 7. D'yakonov-Perel’ spin lifetime due to electron-electron  F|G. 8. D'yakonov-Perel’ spin lifetime for a 25-nm quantum
scattering for a 25-nm modulation-doped quantum well as a funcyell at T=40 K and three values of ionizedonor and acceptpr

tion of electron density at three temperatuies10 K, T=20 K, impurity concentrations: no impuritigg=0), ionized impurity con-
andT=30 K. The solid dots are experimental datalatl0 K from  centration equal to the electron dengity 1), and ionized impurity
Ref. 30. concentration equal to four times the electron denéity4). For

) ) ) - x=0, only electron-electron scattering contributes to the spin life-
ing. At intermediate densities, where the crossover from nontme, whereas fok# 0 both electron-electron and electron-impurity

degenerate to degenerate electrons occurs, the electrogtattering determine the spin lifetime.
electron scattering rate and thus the DP spin lifetime are
maximal. The position of the maximum shifts with decreas'sequently, to a largefpp. To obtain in this density regime
ing temperature to lower densities because the density, whefgRytier agreement between experimentally measured and
the crossover from a nondegenerate to a degenerate electrigfyqretically calculated spin lifetimes an improved electronic
gas takes place, decreases with temperature. The relaxatighyctyre calculation is clearly necessary. At lower densities,
time of photocurrents in optically pumped semiconductorsyy, the other hand, electrons are most likely localized to do-
shows a similar nonmonotonic density dependefice. nors(at T=10 K thermal ionization is negligibly smaland

For a fixed electron density, the DP spin lifetime de- o theory, which is based on a band picture, does not apply.
creases with temperature in the low-density regime and in- |, quantum wells that are not modulation doped, electron-
creases with temperature in the high-density regim_e. The Ia"mpurity scattering due to donors and accepi@scompen-
ter is because of the temperature-induced reduction of thgyieq samplegrovides an additional, very efficient scatter-
Pauli blocking, giving rise to an increasing eIec:tron—eIectroryng process. The DP spin lifetime increases with scattering
scattering rate and therefore to an increasing DP spin lifezae  As a result, we expect the spin lifetimes in quantum
time. In the low-density regime, on the other hand, increasyq|is that are not modulation doped to be substantially

ing temperature broadens the electron distribution function|Onger than in modulation-doped quantum wells. This can be
i.e., electrons occupy states higher up in the band. The aveg&,en in Fig. 8, where we plot the electron density depen-

age thermal energy therefore increases and the spin dec@¥nce of the DP spin lifetime at=40 K for x=0 (modula-
occurs preferentially from states higher up in the band, whergg, doped, x=1 (uncompensated quantum well with equal
the torque force induced by the bulk inversion asymmetry isimpurity and electron densityandx=4 [compensated quan-
larger. As a consequence, th_e DP s_pin lifetime decreases Wity well with impurity (donor and acceptprdensity four
temperature in the low-density regime. times the electron densityAs expected, the spin lifetimes

In Fig. 7 we also plot experimental data ﬂj;:go K_;‘rom increase withx for all electron densities. The increase is,
Ref. 30. For electron densities abome 5X 10t cm™ the  however, not uniform, with the largest increase taking place
agreement between theory and experiment is quite goody high electron densities, where Pauli blocking very effec-
given the fact that our calculation is based on an |deaI|zeqive|y suppressed the DP spin lifetime in the modulation-
quantum well with infinitely high confinement potential. In doped quantum well. The electron-impurity scattering rate is
this density regime, we expect our results to even underestyoi affected by Pauli blocking and leads therefore to a sub-
mate the spin lifetimes, because the model for the electronigisntial enhancement of the DP spin lifetime at high doping
structure of the quantum well most probably overestimategsye|s.
ﬁQ&W_ Indeed, the constant defining the magnitude of the For a fixed density the character of the electron gas also
splitting of the conduction subbar@f~ (7/L)?~E7, with  changes with temperature. In particular, increasing tempera-
E; the confinement energy of the lowest conduction subture pushes the electron gas into the nondegenerate regime.
band. For a finite confinement potenti&d, is smaller than For some temperature, the crossover from a degenerate to a
ET=A%72/2m* L2, giving rise to a smaller splitting and, con- nondegenerate electron gas occurs, electron-electron scatter-
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FIG. 9. D’yakonov-Perel’ spin lifetime for a 25-nm quantum ; , . o
well as a function of temperature at an electron density3 FIG. 10. Dyakonov-Perel' spin lifetime for a 10-nm
X 101 cmi2 and three values of ionize@onor and acceptpim- modulation-doped GaAs quantum well as a function of temperature

o 1 o .

purity concentrations: no impuritie&=0), ionized impurity con-  at an electron densitp=1.86x 10" cm? (solid line). The solid
centration equal to the electron dengity 1), and ionized impurity ~ °0Xes are experimental data from Ref. 47.
concentration equal to four times the electron density4). As in
Fig. 8, forx=0, only electron-electron scattering contributes to the
spin lifetime, whereas fox+ 0 both electron-electron and electron-
impurity scattering determine the spin lifetime.

phonons in the theoretical modeling. The maximunrgf is

a consequence of electron-electron scattering. Additional
scattering processes destroy the maximum. For instance,
electron-impurity scattering increases the spin lifetimes at
ing is particularly strong, and we expect spin lifetimes to be!0W temperatures, resulting in a monotonically decreasing
enhanced? This effect is demonstrated in Fig. 9, where we SPin lifetime(seex+0 curves in Fig. § The samples in Ref.
plot for an electron densityg=3x 10'° cm™ the temperature 47 {atre.hlgh—c;]ualllgy qbuantuml.w_%llls, W_H(]are ellec:ron-m;pun.tty
dependence of the spin lifetime fer=0, 1, and 4. In the fﬁal gg;glolsl grl;_z is iovr\;g\%?lraﬁher hi%he:scarc;gsulfrtﬁay
r_nO(_quat!on—doped cas=0) the enhancement of the spin temperature, at whichyp is expected to be maximal, falls in
lifetime in the temperature range where the crossover fro

temperature range, where electron-phonon scattering is sig-
degenerate to nondegenerate takes place can be most clegflficant We expect a calculation, which takes electron-

seen. For finitex, the spin lifetimes are for all temperatures gjectron and electron-phonon scattering into account, to pro-
longer than forx=0. The enhancement is again not uniform. qyce a monotonically increasingp.

At high temperatures it is very small, while at low tempera- |y this section we illustrated our semiclassical kinetic
tures it is very large, because in that range the Pauli blockingheory of spin relaxation by calculating the DP spin lifetime
leads to a strong suppression of the DP spin relaxation rate ifor an (idealized quantum well, at temperatures and electron
modulation-doped quantum wells. In fact, the spin lifetimesdensities where electron-electron and electron-impurity scat-
at low temperatures saturate by a value set by the electronering dominate. Electron-electron scattering has been cho-
impurity scattering rate. The maximum in the spin lifetime is sen to illustrate the effects of inelasticity and Pauli blocking.
therefore less pronouncedr even disappears completely Electron spin lifetimes due to electron-electron scattering
guantum wells that are not modulation doped. have been also calculated in Refs. 38, 44, 46, 48, and 66,
In Fig. 10, we finally compare for a 10 nm modulation- using, however, different approaches and focusing mostly on
doped GaAs quantum well with an electron densityl.86  different aspects. In particular, the nonmonotonic tempera-
X 10 cm? the theoretically obtained temperature depen-ture and density dependence has not been addressed until
dence of the D’yakonov-Perel’ spin lifetime with the experi- quite recently*“8In modulation-doped quantum wells, spin
mentally measured temperature dependence of théfetimes turn out to be particularly long for electron densi-
D'yakonov-Perel spin lifetim¢? Below 50 K the agreement ties and temperatures, where the crossover from the nonde-
between the experimental data points and the theoretical rgenerate to degenerate regime occurs. In this regime, many-
sults is quite reasonable, suggesting that in this temperatutzdy effects beyond the Born approximation are most
range electron-electron scattering is the main source of eleg@robably important and should be included in a more quan-
tron spin relaxation in these samples. This conclusion is alstitative calculation of the spin-relaxation times. We expect,
supported by the theoretical results obtained by Glazov antlowever, our main conclusions to be independent of the par-
co-workers®® In contrast to the theoretically predicted non- ticular modeling of the Coulomb interaction.
monotonic behavior with a maximum at=50 K, the ex-
perimental results suggest that, for this electron density, the V. CONCLUSIONS
D’yakonov-Perel” spin lifetimerpp grows monotonically Starting from the full quantum kinetic equations for the
with temperature. This is probably due to the neglect ofelectron Green functions we derived @emiclassical

245210-18



SEMICLASSICAL KINETIC THEORY OF ELECTRON.. PHYSICAL REVIEW B 70, 245210(2004)

Fokker-Planck equation for the nonequilibrium spin polariza- Various extensions of our approach are conceivable and
tion, assuming small spin polarizations and soft scatteringconstitute research directions for the future. Semiconductor
The Fokker-Planck equation conceptualizes the nonequilibstructures with structural inversion asymmétrand/or na-
rium spin dynamics in terms of a “test” spin polarization, tive interface asymmet?y can be studied within our ap-
comprising a small number of spin-polarized “test” elec-proach by augmenting the model Hamiltonian by the corre-

trons, which scatter off an equilibrated bath consisting ofsponding spin off-diagonal Hamiltonian matrix elements. In

impurites, phonons, and spin-balanced “field” electrons. B?' articular, the role of the linear collision integrﬁif[f,éé],

cause O.f the scattering, the _bath causes for 'Fhe SPR¥hich does not affect spin lifetimes in isotropic semiconduc-
polarization dynamical friction, diffusion, and relaxatigie- tors, should be reinvestigated, e.g., for an asymmetric quan-

cay. We then empolyed a mu|t|p|e-t|me-sc_ale perturbatlontum well where spin lifetimes can be particularly long be-
approach to separate the fast spin-conserving from the slog

! o : ause motional narrowing processes due to bulk and
spin-nonconserving time eVO"%"O”- As a result, we extracte tructural inversion asymmetry can be made to cancel each
from the Fokker-Planck equation a Bloch equation that con- ther4349 S J<1>[f 5§] rentiall i . laxati

. . - . 4349 Sin nti mix in-relaxation
trols the time evolution of the macroscoglcaveragegspin ome celp LT, potentially ©S spin-refaxatio

o . . .__channels, it could affect the cancellation. A Fokker-Planck
polarization on the long time scale, where the spin polariza-

tion decays. Our semiclassical approach accounts for elast%ﬂ\lji{; t'go?e?r;tshecgoljgzbg’ t%eerh:t‘grsﬂs;gg?nqt?grbg gjgtglr%r;ilc
and inelastic scattering and avoids the ad-hoc energy averag: . \=ion of'spin transport coefficiengs.g., spin-diffusion

ing of on-shell spin relaxation rates. Instead we show that th?en iy for spatially inhomogeneous s s.te.r,ns such as inter-
weight function is intimately linked to the “quasistationary” 9 b Y 9 y ’

spin polarization, which is the terminating state of the fastfaces or biased heterostructures. Finally, nonlinear effects

spin-conserving time evolution taking place immediately af-due o large spin 'polanzatlons could be studied either at Fhe
A . .level of the matrix Boltzmann equation for the electronic

ter spin injection. The diagonal elements of the macroscopic,_ . 5152 o e U
density matrix’:52 or, if the diffusion approximation is used

(k-averagegl spin-relaxation tensor are the spin lifetimes. 5 simplify the collision terms, at the level of a “Fokker-

They are either given by an energy averaged spin-flip ratg|anck-Landau equation” for the spin polarization, where the
(EY process or an energy average of a generalized relaxifferential operator describing spin-conserving scattering
ation time multiplied by a precession raf@P and VG pro-  eyents as well as the spin-flip tensor explicitly depend on the

cessep i spin polarization and the distribution of the spin-polarized
The formal development of our approach is based on &jectrons.

generic model for nonmagnetic 1llI-V semiconductors and
treats EY and motional narrowingDP and VQ spin-
relaxation processes on an equal footing. We also allowed for
orbital motion of the electrons in a strong magnetic field, This work was supported by the Los Alamos Laboratory
which potentially leads to a quenching of the mOtiona|Directed Research and Deve]opment program.
narrowing-type spin-relaxation processes. The derivation of

the Fokker-Planck equation is mdependent of dl|menlsl|onal|ty APPENDIX: CALCULATION OF RELAXATION RATES

and, as long as a soft scattering regime can be identified, also

of the scattering processes, which enter the Fokker-Planck |n this appendix we calculate for a quantum well the dy-
equation in the form of dynamical friction and diffusion co- namical friction and diffusion coefficientAi(IZ) and Bij(lz)

efficients, which have to be worked out separately for each,ying electron-electron and electron-impurity scattering into
scattering process. account. As a result, we obtain the relaxation rates(%J,

To illustrate our formalism we applied it to a quantumdlle(s), and 1/r, (), which define the differential operator
well at low temperatures, where electron-electron an

electron-impurity scattering dominate. We explicitly con- P(k) as well as the spin-flip tensét(k). Since we discuss in
structed the friction, diffusion, and angle randomization co-this paper only the DP process quantitatively, which origi-
efficients characterizing thésymmetry-adapted Fokker- ~ nates from the interplay of the momentum scattering en-
Planck equation for that particular situation and calculateccoded in the differential operatdp(k) and the torque force
the DP spin lifetime at vanishingly small magnetic field as adue to inversion asymmetry, it suffices to give explicit ex-
func.tion of electron densit_y and temperature. We found thabressions only for the differential operatE(IZ). The deriva-

for fixed temperaturédensity the density(temperaturgde- . - -

pendence is nonmonotonic. Spin lifetimes are particularl)}_Ion of the spin-flip tensoR(k) proceeds along the same
long for densities and temperatures, where the crossové'PeS: ) T L : .
from a nondegenerate to a degenerate electron gas occurs, Vithin the diffusion approximation, the spin-conserving
Spin lifetimes in compensated quantum wells are alwaysollision integrald”[f, 5S] becomes a Fokker-Planck differ-
longer than in modulation-doped quantum wells with theential operator(45) with dynamical friction and diffusion
same electron density. The enhancement of the spin lifetimeoefficients A" andByj, defined in Eqs(46) and(47), respec-

is particularly strong for densities and temperatures wherdvely. First, we consider electron-electron scattering and cal-
Pauli blocking is most efficient in suppressing the DP spinculate A’ andB;*. To avoid the cutoff problem at large mo-
lifetime (due to electron-electron scatterjnig modulation- mentum transfers, which usually plagues the diffusion
doped quantum wells. approximation to electron-electron scattering, we keep the
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full integrands in Egqs(46) and(47), i.e., we do not expand Nk, w) = f(k? - ) + n(- w), (A8)

the distribution functions and energies with respect to the

momentum transferd. Using the identities f(K)f(Kq) \tNltr: f(? an? nfxi t:ei(kl;erm; ;Se((jk)B;) >° fug(()::ons rizspec-
- - - - - - > ively. To calculateA and B or a uantum

=[f(l<tci)—f(k)]n(e(kz—g(k;x(jZ) and 5(8£k)+8(|f’)_f(k_q) weII,ywe first evaluate the inte”grals for a[ fixc]edqcoordinate

—e(k'+@)=[dwde(k) ~e(k-g) ~w) de(k’) ~e(k+0) + w), system in whichk=k&, and then rotate to an arbitrary coor-

we rewrite the transition probability41) into dinate system. The result can be cast into the form

) = - 2 _ - 8
Weqk; ) 2]_@ do|V(9)|°Im x(q, ®)[n(- w) AT =~ Gk, (A9)
+Hik=@1oeR ~ek-G -0), (AL) . 2 5
€ - — . —_— LK.
where we introduced the susceptibility of noninteracting Biie(k)_ |(H(k)8”+ k3E(k)k'k’ (A10)
electrons ] ] ) ]
R R R _ respectively, with three functions defined by
Im x(d,w) = 277% [f(k+) - f(R]o(e(k+ &) - 8(K) - w). S0 _ee @ fqmax aF(,0.0) 2
- + 2 ’/T’
(A2) Gn AT 09T N1-Z
. . : (A11)
The Coulomb potentiaM(qg) is taken to be statically
screened with the screening length given by the Thomas- K2 Inax  RF (K2, o q)
Fermi expression. Had we allowed for dynamical screening, H(k) = — f —
V(g) —V(q,w)=Vy(q)/ e(q, w). If e(q,w) is approximated by Amin ( +y)
the RPA expression, the resulting Fokker-Planck equation (A12)
would be at the level of a quantum analog to the Lenard-
Balescu equatioPf The calculation of the relaxation rates k2 qmax PF(, w,q) 1 - 222
presented below could be also performed with this more gen- E(k) = f 0P 12
eral expression for the Coulomb matrix element. For simplic- Gmin (Q+09° V1-

ity we present here, however, only the results for the stati- (A13)
cally screened Coulomb potential.
To proceed, we introduce dimensionless quantities, me

suring energies and lengths in scaled Rydbergs and Bo
rse to the factor involving=(g+ w)/2kq. With Egs.(A9)

radi, respecztlvely In particular, we USR%’ Rols, 8o= \sao, and(A10) and a transformation to the radial variaklek?,
with Rgg=h2/2my and€?=2\sR7,, and chooss such that  he spin-conserving part of the dimensionless electron-

EQO 1 meV. The dimensionless Fokker-Planck operator haglectron collision integral is given bjrecall that in two di-
the same form as in Eq45) with dynamical friction and  mensjons 6(e, #,t) contains the factorJ(e)/(2m)%ns

d\lote that these integrals are well defined. The range of inte-
|grat|on originates from theb mtegratlon which also gives

diffusion coefficients given by =1/8m2ng,
ASS(K) = C™, f ddgWesk; §), (A3) JO[f,85] = Ded k) 8(e, 1), (A14)
with
Cot P
BK) —— déjaioWeik; ), (A4) DedK) = —vee(s 2 Wed®) ~Ude) L2 (A15)
with Cll=sm*/ e2rm, and Here we have introduced the total angular momentum opera-
F(K?, w,q) . ¢ o tor in two dimensionsL =-id/ d¢, and the friction, diffusion,
Wed(k; d) = J W k-G- 5 "5/ (A5 and angle randomization coefficients,ds), Weds), and

Ued €), Which are linear combinations of the functioGgk),
whereqs is the Thomas-Fermi screening wave number andH(k), and E(k) taken atk=1e. Specifically, they read
gp IS the static dielectric constant. The functifik?, w,q)

Amax
originates from the statistics of the electron gas and is given  y (g) = - 1/2 wF(S’w’g) ! ,
by G (ATO)° V1-7
F(¢,0,0) = Im X(q, 0)N(k, ), (A6) (A16)
2 qmax °F(s,0,q) 2

2 _f(12 ST W 4CT, J d f — ,

Im%(q,w) = Jdk[f(k +w) - f(K )]5( 4+, 2), od®) = 4Cque ® - q+qs)2 N
(A7) (A17)
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max  PF(g,w,q) — Wee=82/ 755 anduee=1/47%¢ with 1/75¢ 1/755 and 145 re-
dqw\" -7 laxation rates describing energy relaxation, diffusion, and
randomization of the angle due electron-electron scattering,
(A18)  respectively.

The calculation of thgon-shel) relaxation rate due to
electron-impurity scattering proceeds along the same lines.
Omax= Omad & @) O (= @) + Gae, 0)O(w), The starting point is Eq(37), seecialized to electron-
impurity scattering, that is, witW”(k,qd) given by Eq.(40).

Cm &
Usde) = ﬁf dw

Amin

The range of integration depends on the sign of

and Going through the same steps as in the case of electron-
Omin = Ormin(&, @) O (= @) + Gi(&, ©)O(w), electron scattering yields for the spin-conserving part of the
i dimensionless electron-impurity collision integfak before
Wi 89(e, ¢,t) contains the factor 1/8n]
—(g,0) = — Ve + Ve - w, <0 Al19 > > >
qmm(S w) vetive—w, o ( ) ‘]t(e(i)>[f’ 58] - Dei(k) 5Y(e, ¢,t) , (A23)
Omal&:0) =Ve+ Ve -0, 0=<0 (A20)  where the differential operator is now given by
- — ) — 2
Oin(e, @) =Ve-Ve-w, Oswse (A21) Dei(k) = =~ uei(e) L7, (A24)
_ with
Ona&:0) =Ve+Ve—0, O0<w<s. (A22) os
The fl_JnctionSUee(s_) _and Wed€) are.the dy_narr_lica! friction Uy(e) = CT%“,ZJ q o 2\*“'—1 —2. (A25)
and diffusion coefficients for the spin polarizationdrspace. € (q+0s

They originate from the scattering of the “test” electrons

comprising the spin polarization with the equilibrated, spin-creqzs(47.,m* a3/ etmy), andz=q/2\e, wheren; is the sheet
balanced *field” electrons. Because the scattering is inelastiqensity of the impurities. Because of the elasticity of
the “test” electrons gaitw<0) or lose (w>0) energy by  ejectron-impurity scattering, the differential operator con-
scattering off “field” electrons. The on-shell functiegdz)  tains only an on-shell term. The functia;=1/4+"" defines
describes randomization of the angbe The integrals defin-  the relaxation time due to electron-impurity scattering. It
ing vede), Wede), andUede) have to be done numerically. only causes randomization of the angle The total spin-
The singularities are integrable and Gaussian integratiogonserving collision integral, taking electron-electron and
proved to be efficient. The limiting values are electron-impurity scattering into account, is given by
lim, o Uede)=Up/e, lim,_owede)=0, and lim_,qvede) D(E):Dee(lz)"'Dei(lz)-

=vo. Moreover, Wede)=voe for e—0, i.e., dw.d0)/de Similar expressions can be derived for electron-phonon
=ved0), which is essential to guarantee spin conservation ofcatiering. For bulk semiconductors the calculation proceeds
the differential operatoD dk) [cf. Eq. (84)]. The structure along the same lines with the obvious modifications due to

of the differential operator suggests that we writg=¢/7{5  the additional angle integration.
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