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Localization of transverse waves in randomly layered media at oblique incidence
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We investigate the oblique incidence of electromagnetic waves on a randomly layered medium in the limit
of strong disorder. An approximate method for calculating the inverse localization length based on the assump-
tions of zero-energy flux and complete phase stochastization is presented. Two effects not found at normal
incidence have been studied: dependence of the localization length on the polarization and decrease of the
localization length due to the internal reflections from layers with small refractive indexes. The inverse local-
ization length(attenuation ratefor P-polarized radiation is shown to be always smaller than th& whves,
which is to say that long enough randomly layered sample polarizes transmitted radiation. The localization
length for P polarization depends nonmonotonically on the angle of propagation and under certain conditions
turns to infinity at some angle, which means that typ{canresonantrandom realizations become transparent
at this angle of incidencéstochastic Brewster effect
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I. INTRODUCTION _ dZX(Z)

o _ o +K3@x(2= K- K- K)x(2.  (3)
Localization of classical waves and quantum particles in dZ

one-dimensional1D) disordered systems is well studied Obviously the *

theoretically(see, for example, Refs. 1 and 2 and reference%lue’ in particular can be less than the “potentiée. It

the_reir). An imp_orta_nt application of the theo_ry is the propa- gives rise to an additional mechanism of localization, which
gation of radiation in randomly layered media where the re-

L . . 's due to the internal reflection and tunneling.
fractive index depends on a single coordinate. In general,

h his i hree-di ional bl hich i Another new effect, which is absent in pure 1D random
owever, this Is a three- Imensional probiem, which 1S r‘?'systems, comes about at obliqgue propagation of transverse
duced to a 1D one only when the direction of propagation i

) ; Srector waves. In this case the symmetry with respect to the
normal to the layers. In this case the fieldz) of @ mono- girection of propagation is broken, and the localization
chromatic wave obeys a Schrédinger-type equation Withenaih depends significantly on the polarization of the radia-
energy-dependent effective potential tion. This phenomenon is a consequence of the dependence

d(2) of Fresnel reflection and transmission coefficients on the
- —=—+K8e(2(2) = K2Y(2), (1)  wave polarizatiors.
dz In this paper we present an approximate method for cal-
where thez axis is normal to the layerk= \«"s_ow/c, wisthe culating the localization length in a randomly layered me-

- ; ; dium based on the assumptions of the exponentially small
frequency,ds(z)=-Ae(z)/ &y, and the dielectric constant of NS ;
the medium is given by transmission and complete phase randomizaiget. I)). In

Sec. lll we use this method to calculate the localization

£(2) = eo+ Ae(2), (2)  length for two orthogonal linear polarizations. It is shown

that the localization length of the wave with the vector of the

with Ae(z) being a random function of the coordinate. The electric field orthogonal to the plane of incider&wave) is
important distinction of Eq.(1) from the corresponding always larger than that &t waves(with the electric vector in
quantum-mechanical equation for electrons is that the “enthe plane of incidengefor which a sort of stochastic Brew-
ergy” k? in Eq. (1) is always higher than the “potentidk®se  ster effect takes place. As the result, the radiation transmitted
(unless Ae/gy<-1); i.e., only “above-barrier” scattering through a long enough randomly layered sample is alviays
takes place. In other words, total internal reflection neveipolarized(with an exponential accuragyThe effect on the
occurs at normal incidence and localization in this case igocalization length of the internal reflection at the interfaces
due to the interference of the multiply scattered randonbetween random layers is studied in Sec. IV. Some examples
fields. of randomly layered media have been considered.

The situation is, however, different when obliqueith
respect ta axis) incidence is considered. In this instance the
field can be presented aér) =exp(ikx+ikyy) x(2) (ks andk,
arex andy components of the wave vector, respectiyelyd It is well known that the modulus of the reflection coef-
the equation for the-dependent terny(z) takes the form ficient R of a plane monochromatic wave incident on a ran-

energy’k’~k~ki may take any positive

II. METHOD OF CALCULATION OF THE LOCALIZATION
LENGTH IN A RANDOMLY LAYERED MEDIUM
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domly layered half-space is equal to 1 and there is no energy Thus the inverse localization lengtfj. is approximately

flux inside the medium generated by the incident whté.

equal to the inverse average thickness of layers times the

When a randomly layered sample has a finite but largenean logarithm of the ratio of field amplitudes in adjacent

enough length., then|R(L)| differs from unity by an expo-
nentially small number 1}R(L)|?<exp(—2L/lise) (L> e

layers. The connection betweed,¢;) and (A1, @j+1)
should be found from the boundary conditions at the corre-

loc is the localization length and the flux along the system sponding interfaces and can be written in the most general
is exponentially smallpcexp(—2L/1,0). This a priori infor-  form as
mation enables one to assume that if a plane wave with fre-
quency w is incident normally(along z axis) on a sample
from left, the field in eachjth layer inside the sample can be
consideredwith an exponential accuragy standing wave
and presented as

;= A expliot)cogki(z-z) + ¢

A= Aj+1f(<Pj+1 - Aj+11ﬂjrﬂj+l).
@ = 9(@je1 = Ajrrs M 1) - 9

Heref andg are some real functions that determine properly
the form of boundary condition&ee the examples in Secs.
[ll'and IV below), A;=k;s; is the phase increment in thn
layer, andy; is a set of parameters, describing the random
system(refractive index, impedance, density, gtd.he first

. . equation in Eqs(9) shows the linear connection of the am-
boundary located at a poirf. Such a presentation of the rRlitudes due to the linearity of the problem. The second one

phase is dictated by the fact that the transmission proble for the ph h he interf b
for the wave incident from the left can be formulated as anaC(_:O#t;]ts_ orlt €p aseé: azge "g the Interface he;wleen two
evolutional one with initial conditions given at the right edge heighboring layergsee Eq.(4) and the paragraph belgw

of the samplé:5 From Egs.(9) and(8) it follows that

Thus the wave propagation problem is reduced to the os-

cillatory one with a single unknown real amplitude and real i
phase, Eq(4). This simplifies the problem significantly as Where(:--) stands for the averaging over all random param-

compared to the conventional transfer matrix metfrdd, ©ters(sj andy;) the functionf depends on. The explicit form
where the evolution of two independent waves in each layePf the distribution of phases; should be found from bound-
is considered. To calculate the localization length we use th@y conditions(9), which is rather formidable task in the
standard definitioh general case. The problem, however, is simplified signifi-
cantly in the high-frequency limit, when the disorder is
() ml)

strong enough that the phas@gg—A,) can be considered as
independent random variables homogeneously distributed in
whereT is the transmission coefficient of a random sample
Notice that the inverse localization lengtf. is a self-

the interval(0, 27r).148-11n this instance Eq(10) takes the
form
averaging quantity, which means that the value measured at
any finite but long enough realization coincides with the ex-
ponential accuracy with its mean valtie.
We represent IT as

(4)

Here A; is the real amplitudek;=n;w/c, n; is the refractive
index, andg; is the (rea) phase at the layer’s right-hand

lioe = S XIN F(@j41 = Ajars s 1j+0)) (10)

nT
2L

nT

=-lim
2L

L—oo

(5

|Et — S—lf f d,u’d,u"P(,u')P(,u")

1 27T
Xz_f de" Inf(e", u",u'), (11
mJo

oA\ <AN+1 Av Al A1
InT—In< A, ) =2In Ay Avr A _220 In A whereP(u)du is the joint probability density distribution of
6 parametersu. Equation(11) enables calculation of the in-
©®) verse localization constant in the high-frequency limit for

whereN is the total number of layersy, and Ay, are field  linear waves of any naturéelectromagnetic, acoustic, or
amplitudes to the left and to the right of the sample correSeismic, etg. The method is rather general and can be easily
spondingly. By substituting Eq6) into Eq.(5) we obtain modified for different kinds of random systems, for instance,
( periodical in some parametey or those containing several

types of layers with different dielectric properties and statis-
Note that lim,_.. L/N=(s;)=s, wheres; is the thickness of

tics. Examples of such systems are considered in Secs. I
and IV.
the jth layer ands is the mean thickness of the layers. Since

Eq. (7) becomes

)

im

— 00

I—l —
loc ™

N A
—im{ LY In —J+—1)
N j=0 Aj

N IIl. POLARIZATION DEPENDENCE

N In(Aj1/A)
j=0

lim

N—oo

In this section we study the oblique propagation of elec-
tromagnetic waves in a passive dielectric medium, which
consists of an alternating sequence of layers with random
thicknessess; and random real dielectric constants The
electricE and magnetidd fields of the wave are described
by Maxwell equations

] =(In(A11/A)),

A>'

|k = s‘l<ln —L

8
- (®)
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curl E - |koH =0, A] = Aj+lfS((Pj+l - Aj+1,nj,nj+1),
2 12
Zii1 .
curl H +ikge(2E =0, (12 fs= 0032((Pj+1_ Aj) + _ka_l S|r12((p]-+1— Ajir)
7.
]
whereky,= w/c and £(2) is the generalized telegraphic ran- (19)

dom process. Without loss of generality we assume khat
=0 and consider two mutually orthogonal waves witk [see EQ.(9)]. Phase averaging—i.e., integration over the
=E,=E,=0, E,=E(2) andE,=H,=H,=0,H,=H(z) (SandP variable ¢ in Eg. (11) with f given by Eq.(19—can be
waves, respectlve)y These waves are the independentperformed taking into account that

eigenmodes of the one-dimensionally inhomogeneous me-

dium that propagate without interaction and change of polar- 1 o In(a? sir? o + b? co€ ¢)de = In (a+ b)zl
ization [this follows immediately from Eqs(14) and (15) 27 ),
below]. After the substitution

This gives

E — E(2explikx),
o = s‘lf dn'F.(n’)
s n'>n¢

H — H(2)exp(ik,x), (13
the system of equatiorid2) can be reduced to two indepen- fn”>n dn’F n(n”)ln{ [ kel ,,)H. (20)
dent equations for nonzero componentsPaiind S waves: 2 k(")
&E Here_kz(n) is given by_ Eq_.(1_6), andF, is the distribu_tio_n
—+ sz 0, (14) function of the refractive indices; of the layers. The limits
dZ of integration in Eq.(20) follow from the simplifying as-
sumption that all layers are transparent. The effect of reflect-
d2H 1ds dH ing layers is considered in Sec. IV.
— - +k2H=0. (15 Inverse localization length foP waves, |, , can be cal-
dZ edzdz . . Pl .
culated in the same way, by using the continuity conditions
Here for the tangential component of the magnetic field[Eq.
(15)] and fore™'dH,/dz~E,. It is easy to show that in this
k(=2 - =k -2, (g "SENCe

wheren(z)=1/s(2) is the (random refractive index anch, A= Ajealp(@jen = Ajrns M),

=k,/ky=sin is its critical value(?, is the angle between §.+1 j v
the wave vector in vacuum arzhxis). A layer is transparent fp=| coS(ejer— Ajen) + k_zjn_ SIM(¢je1~ Ajr)
whenn>n. and reflecting when<n. (actually, in any case, 7+l

a finite layer has finite nonzero transmittance; however, at (21)

n<n., there are only evanescent modes exist in the jJayer

To calculate the inverse localization length ®waves, Note that the expression fdp, Eq.(21), coincides with that
|BES, we use the genera| result of Sec. II: name|y, aq), for fS, Eq.(23), after SUbStItUtIOfk —>k /n Therefore, the
where the explicit expression for the functiénshould be ~Same substitution in Eq20) yields
substituted. In accordance with Hg), the electric fielcE of
thg S wave in thejth layer [solution of Eq.(14)] can be m)lc :S—lf dn'F(n’)
written as P n'>n,

_ _ 1 nrer n’
Ej = A cosk;(2-2) + ¢l (17) xfnu>ncdrf’Fn(n”)|n{§[1+WZEN;]}. (22)
Z
Then, from the continuity conditions for the tangential com-
ponent of the electric field and its normal derivative
dE,/dz~H, at the interface between thgh and (j+1)th
layers it follows that

Equationg20) and(22) show that the localization lengths of
S and P waves are different. To compare them it is conve-
nient to rewrite expression0) and(22) in the symmetrical
with respect to the integration variable’sandn” in the form

Aj cos@; = Aji1 €O @41~ Ajiy),

I;}CS: (257t dn’Fn(n’)f dn’F,(n")In A(n",n"),
n’'>n, ">n,

Ak, sing; = A1k,  sin(eigq—Aiy). (18

PR e T k) + (M2

= , 23
From Eq.(18) we derive 4k, (n")k,(n") 23
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0.20
Iﬂ)lcp= (23)‘1f dn’F,(n") dn’F,(n")In B(n’,n"),
n’>n,

1
n">ng

_ [n/IZkZ(n/) + n/ZkZ(nn)]2

24 0.15 4
4n/2n//2kz(n/)kz(nn) ( ) B
It is easy to show that ~
0.10 4
( 12 _ 712)2 SII']2 ﬂO
d=A-B= =0, 25
4n12nr12k (n )k (n/r) ( )
0.05
which means that
IE‘l:s = IEj:(l:F" (26) 0.00 T T T T T T T T 1

The equality in Eq.(26) corresponds to the “degenerate” 2]
cases of normal incidencé&,=0, or to a homogeneous me- 0
dium, F () =8(Z—n).

Thus theS wave is always stronger localized than the FIG. 1. (Color onling Dependenceky_andljqc_ on the angle of
wave. From Eqs(23) and(24) it also follows that the trans- incidence,%,. The curves are obtained by numerical calculations of
mission coefficients are different for different polarizations Eds: (41), (20), and(21) with rectangle distribution functio42)
Tgp=exp(- 2L/|Iocs ). It means that randomly layered me- and the following values of the parametens;,=0.5, Nypa=1.5,8
dium acts as goiarizer for an obliquely propagating radia- =1 andko=100. At =g~ 0.5 functionlj,; () has a minimum;
tion. Indeed, if an incident wave has a mixed polarizationthe angle 193 is an analog of the Brewster angle. Aty
but the thickness of the randomly layered slab is |arge>arcsmnmm~0 52 both functions rapidly increase because of the
enough, the transmitted wave will @ith exponential ac- influence of reflected layers, which increase in number with
curacy P polarized. increasing.

The difference in localization lengths grows with the in-

crease of the angle of incidence. For example, at small angles d%lc
of propagation,J,<1, sindy=n.<n;, it can be readily = _ =0. (29
shown from Eqs(23) and (24) that ddy 99=9g
L = %}: + a2+ O(9), The dependenclq-DC (1‘}0) for the case of rectangle distribu-
S,P

tion functionF(n) (see Sec. IYis shown in Fig. 1.

, Y Interestingly, in the particular case of a layered medium
a=(2s) fdn Fln )fdﬂ Fo(n ) on'2n"2 ! built of alternating layers of two dielectrics with refractive
27 indices n; and n, and random thicknesses, there exists a

Brewster angled,=g at which the reflection coefficient of
the P wave turns to zero and localization is absdfg’gpzo.

In this case the inverse localization lengths can be calculated

’ r/)Z

Whereliio is the inverse localization length at normal propa-

gation (k, sinﬁo 0, k;=k=kgn). One can see that whef explicitly. To do this, boundary condition&l8) and (19)
increasesl;g._ grows and . decreases proportionally 8 spoyid be applied twice: for the transition from a layegrto

and symmetncally with respect ﬂ%c Obviously, the fol-  the adjacent layen, and from the layen, to the next layer

lowing inequality holds: n,. A similar problem for normal propagation was solved in
Refs. 6—11. By multiplying together two equations like Eqg.
|EJ}:S> 'Echo> Iklcp' (28) (19 we find
The rise of the localization lengttweakening of localiza- A1 =A@ = Ajrg, @) = ANy, Ny),
tion) of the P wave with 9, increasing stems from the de-
crease of the reflection coefficient from the interface between 2
two homogeneous medalf the media are infinite, the re- To=| coR(@iaq - A, 2 G — A
. h : = ¢ )+ Sin(@ja1 = Ajrr)
flection coefficient for the® wave becomes zero ;= g, S e T 32 e
where 93 is the so-called Brewster angle. In general, in the
case of a randomly layered medium the reflection coefficient % 20— A +§2 20 — A 30
does not turn to zero; however, the inverse localization cos(e; =~ 4y K2 sin(e; =4y |, (30
1

length I;}CP reaches a minimum at some anglg=1J that
can be found from the condition where k2 _=kjn? ,—K;. After substituting Eq.(30) into an
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equation similar to Eq(11) and averaging over the phases transparent slabs ¥, —N,¢s (N, is the number of transparent
¢j+1~Aj4 and gj—Aj, we obtain layers. Taking this into account we can rewrite E@) as

1 (kz + kz )2 Nir~Nref A 2Nref A
loe,= = In———*-, (31) l=—iim LY S n22e S 2t (39
S SO 4k21k22 loc N—oo =1 A] =1 Aj—l
1 (kn2+k,nd)? Under the assumption that the mean thicknesses of reflected
Il ==n——2 (32)  and transparent layers are the samethe expression, Eq.
P % 4k, Ky nin; (8), for the inverse localization length takes the form
Heresy=s,+s; is the mean thickness of the pair of the lay- N, — N A N A
ers, ands, , are the mean thicknesses of the layers with re- IQ,1C= - ("N—rEf In —X—l + N—mf In ;Jﬂ )
fractive indicesn, ,, respectively. Iﬂ(zlnizkzzni, the inverse S 1/ s 171/ ref
localization length of th& wave, Eq(32) turns to zero. This ~ Ng=Nrer,o1 - 2N,
determines the Brewster angle for the considered layered me- = N ||oc"+ N IIocref' (35
dium:
an Herel;,lClr stands for the inverse localization length in the
Og = 21:22 (33 medium that consists of transparent layers only, while
N+
o o - A
If 99=13g, localization is absent for the wave. This circum- |k = (23)‘1<In —J—1> (36)
stance is related to the fact that quantigyn?® plays role of © j+1/ ref

the effective longitudinal wave number of tRewave. Then,

h . ) X denotes the inverse localization length in the medium built of
if k, /né=k, /n5, the medium is effectively homogeneous. g

alternating transparent and reflected layers. Given the distri-
bution function of the refractive indek,,(n), the numbers of

IV. EFFECT OF THE INTERNAL REFLECTION layers can be calculated as

under the assumption that the refractive index of all random
layers was larger than a critical valeg> n.=k,/ky=sin d;. 37)
This guaranteed that the angle of incidence at any interface

between thgth and(j+1)th layers was always smaller than \yhen N =0 orlX =" Eq.(35) turns, as it must, into
the angle of the total internal reflectio™, which corre- 8) © 106et 106

sponded to the above-barrier reflection of a quantum particle. ;I'o f}nd the ratios of the amplitudes involved in EG5)

In the general case, however, this restriction must be rege note that the electric fielf; inside thejth reflected layer
moved; ie, fori some layers inside the random system thg, superposition of two nonpropagating modes:
inverse inequalityn; <n. may take place. It means that for

these layers the local angle of incidence exceg¥, and E; = A exp(- 7;2) + B exp(y2), (39
strong internal reflection from them should be taken into
account. In what follows we call such layers “reflecting” to With
distinguish them from the “transparenivith no internal re- ) = s
flection) ones. The longitudinal wave numbky, Eq. (16), 7=~ ikg =Nk kg =ko\nZ - n?. (39
e oy Sty i R 1 The lectic ield n e et~ and(j+ 1) ars

theless, the transmission coefficient is finite, and a wave witR@rént layers is given by E¢L7). The explicit form of gen-
a finite amplitude is incident on thg +1)th layer (we as- eral connection$9) follows from the conditions of continu-

sume than;,; >n,). Note that even a small amount of re- ity of the fields and their derivatives at the boundaries:
j+1~ Tlc)-
flecting layers can contribute significantly to the inverse lo- A

calization length—i.e., reduce dramatically the total !
transmission at typical realizations.

In Sec. Il the localization length have been calculated Nterf F.(n)dn’, Nref:Nf F.(n')dn'.
n'>n, n’'<n,

_1C0S¢pj_1 = A + By exp(- v;s),

In calculating the inverse localization length for tige Ky Aj-1SIN¢j-1 = 7A] ~ 7jBj expl- ¥;s),
wave we follow the general procedure presented in Sec. Il
and start from Eq(7). Since both transparef(ir) and reflect- Aj expl— y;8)) + B = A1 CO@ja1 — Ajuy),

ing (ref) layers are present, it is advantageous to separate the

sum in Eq.(7) into two, each of them related to a particular )

type of layers. In doing this it is worthwhile to couple each YA eXp= 18) — 7By = Ky, Aja SIN(@ja1 — Ajs)
reflecting layer with its left-hand-side transparent neighbor. (40)
The number of such pairs is equal to the number of reflecting

slabs,N,, while the amount of the remainin@incoupled ~ From Eqgs.(40) one can derive
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AZ 1 K, Kas 2 ¥ medium consisted of statistically independent random layers
—J— COSP— —=sing, ] | 1+5- with rectangle distribution function of the refractive index
2 J J 2
Al AT i : Fu
2
1 ~ K - - Nmax— Mmin) % Pimin < £ < Nimase
+5<COSZ et ;21 Sird (Pj+1)(1_k3/2 ) Fn(é): (0 max mln) min < { max
i Z_q1 , {<Nmip  OF > Npay-
EE + 1= 1+ i “
4 COSQji1 71 FsinGju 2 ) Reflecting layers exist ifii,<ne. When 1-ngi/n.<1, the
-

relative numbers of reflecting and transparent slabs are
(41)
Niet  Ne = Nppi N Nmax— N
whereT';=exp(— 7]sj)<1 and @1 = @1~ A —== ﬁ <1, ﬁ =
Thus to calculatdzmc » one has to perform the averaging mex.min
in Eq. (36) with A, 1/AJ+l substituted from Eq(41). In ac-  In this case after substitution of E¢5) into Eq. (44) one

cordance with Eq(ll) in the short-wave limit we first aver- obtains

~1. (46)

Nmax ™ Nmin

age over uniformly distributed random phaggs;, which in ko(Ng— i) (M
the first approximation in the small paramefgr<1 after 5= C—m”‘ZJ \J’nﬁ—n’zdn’
rather cumbersome calculations yields 2(Nax = Niin) Nimin
1 (7 A Kon2(Ne = Nynin) n'\ |
— | m=2dp=InT[1+0T?)]=~ys. (42 =~ = i) i
2w)y Aj—l ¢ J[ ])] %3 ) 2(Nax— nmln)2 Ne Prmin
Equation(42) shows that change of the amplitude caused by koni Nrnin | 572
the tunneling through a reflected layer is determined mainly =~ o\t (47)
\’Z(nmax_ nmin) Ne

by the attenuation rate inside the layer and is practically

independent on the parameters of the adjacent transparent The contribution to the inverse localization length from

layers. transparent Iayeri;l'olct, is given by Eqs(23) and(24). If, for
Finally, taking into account Eqg11), (36), (39), and(42)  example, the values Of,, andNya— N, are of the order of

for the contribution of the reflecting layers to the inverseq Nmax Nimax—Nmin~ 1, it is easy to show that

localization length we obtain

liog, ~ 7 (48)
'L =(29)" fds’F (s’)f dn’'F,(n")s’ ¢(n’) . . .
10Cre s o<, n From comparison Eq48) with the Eq.(47) the following

conditions can be obtained for the contribution of the reflect-

_ k_o dn'E,(n') -2 43) ing layers to be of the same order as that of the transparent
2 J)en nt Ve ' ones:
C
Evidently, this contribution does not depend on the wave N ~n.— 1 (49)
polarization. Therefore, the resulting inverse localization M ng(kes) 2R

length for S-polarized orP-polarized waves can be obtained

from Eq. (35) with I substituted by Eqs(23) or (24, ‘When the angle of propagatioo~n,, is fixed, and

respectively. Nimin Nain 1
When N,/Ny<1 (in the opposite limit the effect of Yo ~ > PV, t (k925" (50)

transparent layers is negligible and the exponential decay of
the transmission coefficient has nothing to do with localiza-when n,;, is fixed. Note that the angle¥, in Eq. (50) is
tion), Eq. (35) with account made for Eqg37) and (43)  always larger thartk,s) ™. Hence, whendo< (kos)/3<1,

transforms to the influence of the reflecting layers is small independently
-1 __ -1 2Nref g Nt on n_min- . _
lioe = lioe, + & 6= IIocref Ko , Fn(n")dn Figure 1 §h0ws the typical depen_derltt,g]gsp(ﬁo) cglcu-
n<ne lated numerically for the rectangle distribution function, Eq.
(49
an//<nan(n,,) \'I’l - n” dl’f’ (44)

. . . V. CONCLUSION
It is easy to see that the rati® I|0ctrocl|ocref/ I,oclr is propor-

tional to kys> 1, which means that the influence of the re- Transmission of a plane monochromatic transverse wave

flecting layers can be significant even when their number i®bliquely incident on a randomly layered medium has been
small. studied, and the inverse localization length determined as

To demonstrate characteristic physical features of the lohge=—(In T/2L) has been calculated in the high-frequency
calization in the presence of reflecting layers we consider &strong disorder in terms of Ref.) 8imit. The method of
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calculation takes advantage of the fact that in the localizatiothese layers can reduce significantly the total transmission.
regime the energy flux at typical realizations is zéwoth  This reduction is described by an additive term in the inverse
exponential accuragy and therefore the field inside each localization length, which depends on the number of layers
layer can be considered as a standing wave. The assumptitimat are reflecting at the given angle of incidence and on the
is also used that the phases at the interfaces of layers asgatistics of their parametefwidth and dielectric constants
uniformly distributed in the intervdl0, 27). The approach is The conditions for this term to be comparable with the con-
rather general and simplifies calculations significantly adribution from transparent layers have been discussed. The
compared to the conventional transfer matrix approach. Withievealed dependence of the localization length on the angle
this method we have shown that the inverse localizatiorof propagation could play a vital part in formation of the
length of S waves increases with the angle of propagationfield of a source radiating in different directions and enhance
and is always larger than the localization lengthPofvaves,  significantly the waveguiding effect in randomly layered
which, in contrast, goes down as the angle of incidencenedial?
grows and reaches a minimum at some aigflechastic ana-

log of the Brewster effegt The effect is most pronounced in

a medium consisting of alternating layers of two dielectrics

with random widths. In this cask,.— > at the Brewster The work was partially supported by INTA$Grant
angle; i.e., the localization is absent fBrwaves. If in a No. 03-55-192}, Ukrainian President Grant for Young Sci-
random sample there are layers with the refractive indexentists GP/F8/51, and Israeli Science Foundag®rant No.
small enough,n<sin, strong internal reflection from 328/02.
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