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We investigate the oblique incidence of electromagnetic waves on a randomly layered medium in the limit
of strong disorder. An approximate method for calculating the inverse localization length based on the assump-
tions of zero-energy flux and complete phase stochastization is presented. Two effects not found at normal
incidence have been studied: dependence of the localization length on the polarization and decrease of the
localization length due to the internal reflections from layers with small refractive indexes. The inverse local-
ization length(attenuation rate) for P-polarized radiation is shown to be always smaller than that ofS waves,
which is to say that long enough randomly layered sample polarizes transmitted radiation. The localization
length forP polarization depends nonmonotonically on the angle of propagation and under certain conditions
turns to infinity at some angle, which means that typical(nonresonant) random realizations become transparent
at this angle of incidence(stochastic Brewster effect).
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I. INTRODUCTION

Localization of classical waves and quantum particles in
one-dimensional(1D) disordered systems is well studied
theoretically(see, for example, Refs. 1 and 2 and references
therein). An important application of the theory is the propa-
gation of radiation in randomly layered media where the re-
fractive index depends on a single coordinate. In general,
however, this is a three-dimensional problem, which is re-
duced to a 1D one only when the direction of propagation is
normal to the layers. In this case the fieldcszd of a mono-
chromatic wave obeys a Schrödinger-type equation with
energy-dependent effective potential

−
d2cszd

dz2 + k2d«szdcszd = k2cszd, s1d

where thez axis is normal to the layers,k=Î«0v /c, v is the
frequency,d«szd=−D«szd /«0, and the dielectric constant of
the medium is given by

«szd = «0 + D«szd, s2d

with D«szd being a random function of the coordinate. The
important distinction of Eq.(1) from the corresponding
quantum-mechanical equation for electrons is that the “en-
ergy” k2 in Eq. (1) is always higher than the “potential”k2d«
(unless D« /«0,−1); i.e., only “above-barrier” scattering
takes place. In other words, total internal reflection never
occurs at normal incidence and localization in this case is
due to the interference of the multiply scattered random
fields.

The situation is, however, different when oblique(with
respect toz axis) incidence is considered. In this instance the
field can be presented ascsr d=expsikxx+ ikyydxszd (kx andky

arex andy components of the wave vector, respectively) and
the equation for thez-dependent termxszd takes the form

−
d2xszd

dz2 + k2d«szdxszd = sk2 − kx
2 − ky

2dxszd. s3d

Obviously the “energy”k2−kx
2−ky

2 may take any positive
value, in particular can be less than the “potential”k2d«. It
gives rise to an additional mechanism of localization, which
is due to the internal reflection and tunneling.

Another new effect, which is absent in pure 1D random
systems, comes about at oblique propagation of transverse
vector waves. In this case the symmetry with respect to the
direction of propagation is broken, and the localization
length depends significantly on the polarization of the radia-
tion. This phenomenon is a consequence of the dependence
of Fresnel reflection and transmission coefficients on the
wave polarization.3

In this paper we present an approximate method for cal-
culating the localization length in a randomly layered me-
dium based on the assumptions of the exponentially small
transmission and complete phase randomization(Sec. II). In
Sec. III we use this method to calculate the localization
length for two orthogonal linear polarizations. It is shown
that the localization length of the wave with the vector of the
electric field orthogonal to the plane of incidence(Swave) is
always larger than that ofP waves(with the electric vector in
the plane of incidence), for which a sort of stochastic Brew-
ster effect takes place. As the result, the radiation transmitted
through a long enough randomly layered sample is alwaysP
polarized(with an exponential accuracy). The effect on the
localization length of the internal reflection at the interfaces
between random layers is studied in Sec. IV. Some examples
of randomly layered media have been considered.

II. METHOD OF CALCULATION OF THE LOCALIZATION
LENGTH IN A RANDOMLY LAYERED MEDIUM

It is well known that the modulus of the reflection coef-
ficient R of a plane monochromatic wave incident on a ran-
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domly layered half-space is equal to 1 and there is no energy
flux inside the medium generated by the incident wave.1,2,4

When a randomly layered sample has a finite but large
enough lengthL, then uRsLdu differs from unity by an expo-
nentially small number 1−uRsLdu2~exps−2L / l locd (L@ l loc,
l loc is the localization length), and the flux along the system
is exponentially small,~exps−2L / l locd. This a priori infor-
mation enables one to assume that if a plane wave with fre-
quencyv is incident normally(along z axis) on a sample
from left, the field in eachj th layer inside the sample can be
considered(with an exponential accuracy) a standing wave
and presented as

c j = Aj expsivtdcosbkjsz− zjd + w jc. s4d

HereAj is the real amplitude,kj =njv /c, nj is the refractive
index, andw j is the (real) phase at the layer’s right-hand
boundary located at a pointzj. Such a presentation of the
phase is dictated by the fact that the transmission problem
for the wave incident from the left can be formulated as an
evolutional one with initial conditions given at the right edge
of the sample.4,5

Thus the wave propagation problem is reduced to the os-
cillatory one with a single unknown real amplitude and real
phase, Eq.(4). This simplifies the problem significantly as
compared to the conventional transfer matrix method,6–9

where the evolution of two independent waves in each layer
is considered. To calculate the localization length we use the
standard definition1

l loc
−1 = −K ln T

2L
L = − lim

L→`
S ln T

2L
D , s5d

whereT is the transmission coefficient of a random sample.
Notice that the inverse localization lengthl loc

−1 is a self-
averaging quantity, which means that the value measured at
any finite but long enough realization coincides with the ex-
ponential accuracy with its mean value.1

We represent lnT as

ln T = lnSAN+1

A0
D2

= 2 lnSAN+1

AN

AN

AN−1
¯

A1

A0
D = 2o

j=0

N

ln
Aj+1

Aj
,

s6d

whereN is the total number of layers,A0 andAN+1 are field
amplitudes to the left and to the right of the sample corre-
spondingly. By substituting Eq.(6) into Eq. (5) we obtain

l loc
−1 = − lim

N→`
SL−1o

j=0

N

ln
Aj+1

Aj
D . s7d

Note that limN→` L /N=ksjl;s, wheresj is the thickness of
the j th layer ands is the mean thickness of the layers. Since

lim
N→`

FN−1o
j=0

N

lnsAj+1/AjdG = klnsAj+1/Ajdl,

Eq. (7) becomes

l loc
−1 = s−1Kln

Aj

Aj+1
L . s8d

Thus the inverse localization lengthl loc
−1 is approximately

equal to the inverse average thickness of layers times the
mean logarithm of the ratio of field amplitudes in adjacent
layers. The connection betweensAj ,w jd and sAj+1,w j+1d
should be found from the boundary conditions at the corre-
sponding interfaces and can be written in the most general
form as

Aj = Aj+1fsw j+1 − D j+1,m j,m j+1d,

w j = gsw j+1 − D j+1,m j,m j+1d. s9d

Here f andg are some real functions that determine properly
the form of boundary conditions(see the examples in Secs.
III and IV below), D j =kjsj is the phase increment in thej th
layer, andm j is a set of parameters, describing the random
system(refractive index, impedance, density, etc.). The first
equation in Eqs.(9) shows the linear connection of the am-
plitudes due to the linearity of the problem. The second one
accounts for the phase change at the interface between two
neighboring layers[see Eq.(4) and the paragraph below].
From Eqs.(9) and (8) it follows that

l loc
−1 = s−1kln fsw j+1 − D j+1;m j,m j+1dl, s10d

wherek¯l stands for the averaging over all random param-
eters(sj andm j) the functionf depends on. The explicit form
of the distribution of phasesw j should be found from bound-
ary conditions(9), which is rather formidable task in the
general case. The problem, however, is simplified signifi-
cantly in the high-frequency limit, when the disorder is
strong enough that the phasessw j −D jd can be considered as
independent random variables homogeneously distributed in
the intervals0,2pd.1,4,6–11In this instance Eq.(10) takes the
form

l loc
−1 = s−1E E dm8dm9Psm8dPsm9d

3
1

2p
E

0

2p

dw8 ln fsw8,m9,m8d, s11d

wherePsmddm is the joint probability density distribution of
parametersm. Equation(11) enables calculation of the in-
verse localization constant in the high-frequency limit for
linear waves of any nature(electromagnetic, acoustic, or
seismic, etc.). The method is rather general and can be easily
modified for different kinds of random systems, for instance,
periodical in some parameter(s) or those containing several
types of layers with different dielectric properties and statis-
tics. Examples of such systems are considered in Secs. III
and IV.

III. POLARIZATION DEPENDENCE

In this section we study the oblique propagation of elec-
tromagnetic waves in a passive dielectric medium, which
consists of an alternating sequence of layers with random
thicknessessj and random real dielectric constants« j. The
electric E and magneticH fields of the wave are described
by Maxwell equations
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curl E − ik0H = 0,

curl H + ik0«szdE = 0, s12d

wherek0;v /c and «szd is the generalized telegraphic ran-
dom process. Without loss of generality we assume thatky
=0 and consider two mutually orthogonal waves withHy
=Ex=Ez;0, Ey=Eszd andEy=Hx=Hz=0, Hy=Hszd (SandP
waves, respectively). These waves are the independent
eigenmodes of the one-dimensionally inhomogeneous me-
dium that propagate without interaction and change of polar-
ization [this follows immediately from Eqs.(14) and (15)
below]. After the substitution

E → Eszdexpsikxxd,

H → Hszdexpsikxxd, s13d

the system of equations(12) can be reduced to two indepen-
dent equations for nonzero components ofP andS waves:

d2E

dz2 + kz
2E = 0, s14d

d2H

dz2 −
1

«

d«

dz

dH

dz
+ kz

2H = 0. s15d

Here

kzszd = Îk0
2n2szd − kx

2 = k0
În2szd − nc

2, s16d

where nszd=Î«szd is the (random) refractive index andnc

=kx/k0=sinq0 is its critical value(q0 is the angle between
the wave vector in vacuum andz axis). A layer is transparent
whenn.nc and reflecting whenn,nc (actually, in any case,
a finite layer has finite nonzero transmittance; however, at
n,nc, there are only evanescent modes exist in the layer).

To calculate the inverse localization length forS waves,
l locS

−1 , we use the general result of Sec. II: namely, Eq.(11),
where the explicit expression for the functionf should be
substituted. In accordance with Eq.(4), the electric fieldE of
the S wave in the j th layer [solution of Eq.(14)] can be
written as

Ej = Aj cosbkzj
sz− zjd + w jc. s17d

Then, from the continuity conditions for the tangential com-
ponent of the electric field and its normal derivative
dEy/dz,Hx at the interface between thej th and s j +1dth
layers it follows that

Aj cosw j = Aj+1 cossw j+1 − D j+1d,

Ajkzj
sinw j = Aj+1kzj+1

sinsw j+1 − D j+1d. s18d

From Eq.(18) we derive

Aj = Aj+1fSsw j+1 − D j+1,nj,nj+1d,

fS=Fcos2sw j+1 − D j+1d +
kzj+1

2

kzj

2 sin2sw j+1 − D j+1dG1/2

s19d

[see Eq.(9)]. Phase averaging—i.e., integration over the
variable w in Eq. (11) with f given by Eq. (19)—can be
performed taking into account that

1

2p
E

0

2p

lnsa2 sin2 w + b2 cos2 wddw = ln
sa + bd2

4
.

This gives

l locS

−1 = s−1E
n8.nc

dn8Fnsn8d

3En9.nc
dn9Fnsn9dlnH1

2
F1 +

kzsn8d
kzsn9d

GJ . s20d

Here kzsnd is given by Eq.(16), and Fn is the distribution
function of the refractive indicesnj of the layers. The limits
of integration in Eq.(20) follow from the simplifying as-
sumption that all layers are transparent. The effect of reflect-
ing layers is considered in Sec. IV.

Inverse localization length forP waves,l locP

−1 , can be cal-
culated in the same way, by using the continuity conditions
for the tangential component of the magnetic fieldH [Eq.
(15)] and for«−1dHy/dz,Ex. It is easy to show that in this
instance

Aj = Aj+1fPsw j+1 − D j+1,nj,nj+1d,

fP =Fcos2sw j+1 − D j+1d +
kzj+1

2 nj

kzj

2nj+1

sin2sw j+1 − D j+1dG1/2

.

s21d

Note that the expression forfP, Eq. (21), coincides with that
for fS, Eq. (23), after substitutionkzj

→kzj
/nj

2. Therefore, the
same substitution in Eq.(20) yields

l locP

−1 = s−1E
n8.nc

dn8Fnsn8d

3En9.nc
dn9Fnsn9dlnH1

2
F1 +

n92kzsn8d
n82kzsn9d

GJ . s22d

Equations(20) and(22) show that the localization lengths of
S and P waves are different. To compare them it is conve-
nient to rewrite expressions(20) and(22) in the symmetrical
with respect to the integration variablesn8 andn9 in the form

l locS

−1 = s2sd−1E
n8.nc

dn8Fnsn8dE
n9.nc

dn9Fnsn9dln Asn8,n9d,

A =
fkzsn8d + kzsn9dg2

4kzsn8dkzsn9d
, s23d
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l locP

−1 = s2sd−1E
n8.nc

dn8Fnsn8dE
n9.nc

dn9Fnsn9dln Bsn8,n9d,

B =
fn92kzsn8d + n82kzsn9dg2

4n82n92kzsn8dkzsn9d
. s24d

It is easy to show that

d = A − B =
sn82 − n92d2 sin2 q0

4n82n92kzsn8dkzsn9d
ù 0, s25d

which means that

l locS

−1 ù l locP

−1 . s26d

The equality in Eq.(26) corresponds to the “degenerate”
cases of normal incidence,q0=0, or to a homogeneous me-
dium, Fnszd=dsz−nd.

Thus theS wave is always stronger localized than theP
wave. From Eqs.(23) and(24) it also follows that the trans-
mission coefficients are different for different polarizations
TS,P=exps−2L / l locS,P

d. It means that randomly layered me-
dium acts as apolarizer for an obliquely propagating radia-
tion. Indeed, if an incident wave has a mixed polarization,
but the thickness of the randomly layered slab is large
enough, the transmitted wave will be(with exponential ac-
curacy) P polarized.

The difference in localization lengths grows with the in-
crease of the angle of incidence. For example, at small angles
of propagation,q0!1, sinq0=nc!nj, it can be readily
shown from Eqs.(23) and (24) that

l locS,P

−1 = l loc0

−1 ± aq0
2 + Osq0

4d,

a = s2sd−1E dn8Fnsn8d E dn9Fnsn9d
sn8 − n9d2

2n82n92 ,

s27d

wherel loc0

−1 is the inverse localization length at normal propa-
gationskx=sinq0=0, kz=k=k0nd. One can see that whenq0

increases,l locS

−1 grows andl locP

−1 decreases proportionally toq0
2

and symmetrically with respect tol loc0

−1 . Obviously, the fol-
lowing inequality holds:

l locS

−1 . l loc0

−1 . l locP

−1 . s28d

The rise of the localization length(weakening of localiza-
tion) of the P wave with q0 increasing stems from the de-
crease of the reflection coefficient from the interface between
two homogeneous media.3 If the media are infinite, the re-
flection coefficient for theP wave becomes zero atq0=qB,
whereqB is the so-called Brewster angle. In general, in the
case of a randomly layered medium the reflection coefficient
does not turn to zero; however, the inverse localization

length l locP

−1 reaches a minimum at some angleq0=q̃B that
can be found from the condition

UdllocP

−1

dq0

U
q0=q̃B

= 0. s29d

The dependencel locS,P

−1 sq0d for the case of rectangle distribu-
tion functionFsnd (see Sec. IV) is shown in Fig. 1.

Interestingly, in the particular case of a layered medium
built of alternating layers of two dielectrics with refractive
indices n1 and n2 and random thicknesses, there exists a
Brewster angleq0=qB at which the reflection coefficient of
the P wave turns to zero and localization is absent:l locP

−1 =0.
In this case the inverse localization lengths can be calculated
explicitly. To do this, boundary conditions(18) and (19)
should be applied twice: for the transition from a layern1 to
the adjacent layern2 and from the layern2 to the next layer
n1. A similar problem for normal propagation was solved in
Refs. 6–11. By multiplying together two equations like Eq.
(19) we find

Aj−1 = Aj+1f̃Ssw j+1 − D j+1,w j − D j,n1,n2d,

f̃S=Fcos2sw j+1 − D j+1d +
kz1

2

kz2

2 sin2sw j+1 − D j+1dG
3Fcos2sw j − D jd +

kz2

2

kz1

2 sin2sw j − D jdG , s30d

where kz1,2

2 =k0
2n1,2

2 −kx
2. After substituting Eq.(30) into an

FIG. 1. (Color online) Dependencesl locS

−1 andl locP

−1 on the angle of
incidence,q0. The curves are obtained by numerical calculations of
Eqs. (41), (20), and (21) with rectangle distribution function(42)
and the following values of the parameters:nmin=0.5, nmax=1.5, s

=1, andk0=100. Atq0=q̃B<0.5 functionl locP

−1 sq0d has a minimum;

the angle q̃B is an analog of the Brewster angle. Atq0

.arcsinnmin<0.52 both functions rapidly increase because of the
influence of reflected layers, which increase in number withq0

increasing.
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equation similar to Eq.(11) and averaging over the phases
w j+1−D j+1 andw j −D j, we obtain

l locS

−1 =
1

s0
ln

skz1
+ kz2

d2

4kz1
kz2

, s31d

l locP

−1 =
1

s0
ln

skz1
n2

2 + kz2
n1

2d2

4kz1
kz2

n1
2n2

2 . s32d

Heres0=s1+s2 is the mean thickness of the pair of the lay-
ers, ands1,2 are the mean thicknesses of the layers with re-
fractive indicesn1,2, respectively. Ifkz1n2

2=kz2n1
2, the inverse

localization length of theP wave, Eq.(32) turns to zero. This
determines the Brewster angle for the considered layered me-
dium:

qB =
n1n2

În1
2 + n2

2
. s33d

If q0=qB, localization is absent for theP wave. This circum-
stance is related to the fact that quantitykz/n

2 plays role of
the effective longitudinal wave number of theP wave. Then,
if kz1

/n1
2=kz2

/n2
2, the medium is effectively homogeneous.

IV. EFFECT OF THE INTERNAL REFLECTION

In Sec. II the localization length have been calculated
under the assumption that the refractive index of all random
layers was larger than a critical valuenj .nc=kx/k0=sinq0.
This guaranteed that the angle of incidence at any interface
between thej th ands j +1dth layers was always smaller than
the angle of the total internal reflection,q j

stotd, which corre-
sponded to the above-barrier reflection of a quantum particle.
In the general case, however, this restriction must be re-
moved; i.e., for some layers inside the random system the
inverse inequalitynj ,nc may take place. It means that for
these layers the local angle of incidence exceedsq j

stotd, and
strong internal reflection from them should be taken into
account. In what follows we call such layers “reflecting” to
distinguish them from the “transparent”(with no internal re-
flection) ones. The longitudinal wave numberkzj

, Eq. (16),
inside thej th reflecting layer is an imaginary number; there-
fore, the wave exponentially decays along thez axis. Never-
theless, the transmission coefficient is finite, and a wave with
a finite amplitude is incident on thes j +1dth layer (we as-
sume thatnj+1.nc). Note that even a small amount of re-
flecting layers can contribute significantly to the inverse lo-
calization length—i.e., reduce dramatically the total
transmission at typical realizations.

In calculating the inverse localization length for theS
wave we follow the general procedure presented in Sec. II
and start from Eq.(7). Since both transparent(tr) and reflect-
ing (ref) layers are present, it is advantageous to separate the
sum in Eq.(7) into two, each of them related to a particular
type of layers. In doing this it is worthwhile to couple each
reflecting layer with its left-hand-side transparent neighbor.
The number of such pairs is equal to the number of reflecting
slabs,Nref, while the amount of the remaining(uncoupled)

transparent slabs isNtr−Nref (Ntr is the number of transparent
layers). Taking this into account we can rewrite Eq.(7) as

l loc
−1 = − lim

N→`
L−1S o

j=1

Ntr−Nref

ln
Aj+1

Aj
+ o

j=1

2Nref

ln
Aj+1

Aj−1
D . s34d

Under the assumption that the mean thicknesses of reflected
and transparent layers are the same,s, the expression, Eq.
(8), for the inverse localization length takes the form

l loc
−1 = − SNtr − Nref

Ns
Kln

Aj+1

Aj
L

tr
+

Nref

Ns
Kln

Aj+1

Aj−1
L

ref
D

;
Ntr − Nref

N
l loctr

−1 +
2Nref

N
l locref

−1 . s35d

Here l loctr

−1 stands for the inverse localization length in the
medium that consists of transparent layers only, while

l locref

−1 = s2sd−1Kln
Aj−1

Aj+1
L

ref
s36d

denotes the inverse localization length in the medium built of
alternating transparent and reflected layers. Given the distri-
bution function of the refractive index,Fnsnd, the numbers of
layers can be calculated as

Ntr = NE
n8.nc

Fnsn8ddn8, Nref = NE
n8,nc

Fnsn8ddn8.

s37d

When Nref=0 or l locref

−1 = l loctr

−1 , Eq. (35) turns, as it must, into
Eq. (8).

To find the ratios of the amplitudes involved in Eq.(35)
we note that the electric fieldEj inside thej th reflected layer
is a superposition of two nonpropagating modes:

Ej = Aj exps− g jzd + Bj expsg jzd, s38d

with

g j = − ikzj
= Îkx

2 − nj
2k0

2 = k0
Înc

2 − nj
2. s39d

The electric field in the adjacents j −1dth ands j +1dth trans-
parent layers is given by Eq.(17). The explicit form of gen-
eral connections(9) follows from the conditions of continu-
ity of the fields and their derivatives at the boundaries:

Aj−1 cosw j−1 = Aj + Bj exps− g jsjd,

kzj−1
Aj−1 sinw j−1 = g jAj − g jBj exps− g jsjd,

Aj exps− g jsjd + Bj = Aj+1 cossw j+1 − D j+1d,

g jAj exps− g jsjd − g jBj = kzj+1
Aj+1 sinsw j+1 − D j+1d.

s40d

From Eqs.(40) one can derive
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Aj−1
2

Aj+1
2 =

1

4G j
2Scosw̃ j+1 −

kzj+1

g j
sin w̃ j+1D2S1 +

g j
2

kzj−1

2 D
+

1

2
Scos2 w̃ j+1 −

kzj+1

2

g j
2 sin2 w̃ j+1DS1 −

g j
2

kzj−1

2 D
+

G j
2

4
Scosw̃ j+1 +

kzj+1

g j
sin w̃ j+1D2S1 +

g j
2

kzj−1

2 D ,

s41d

whereG j =exps−g jsjd!1 andw̃ j+1=w j+1−D j+1.
Thus, to calculatel locref

−1 , one has to perform the averaging
in Eq. (36) with Aj−1/Aj+1 substituted from Eq.(41). In ac-
cordance with Eq.(11) in the short-wave limit we first aver-
age over uniformly distributed random phasesw̃ j+1, which in
the first approximation in the small parameterG j !1 after
rather cumbersome calculations yields

1

2p
E

0

2p

ln
Aj+1

Aj−1
dw̃ = ln G jf1 + OsG j

2dg < g jsj . s42d

Equation(42) shows that change of the amplitude caused by
the tunneling through a reflected layer is determined mainly
by the attenuation rateg inside the layer and is practically
independent on the parameters of the adjacent transparent
layers.

Finally, taking into account Eqs.(11), (36), (39), and(42)
for the contribution of the reflecting layers to the inverse
localization length we obtain

l locref

−1 = s2sd−1E ds8Fsss8dE
n8,nc

dn8Fnsn8ds8gsn8d

=
k0

2
E

n8,nc

dn8Fnsn8dÎnc
2 − n82. s43d

Evidently, this contribution does not depend on the wave
polarization. Therefore, the resulting inverse localization
length forS-polarized orP-polarized waves can be obtained
from Eq. (35) with l loctr

−1 substituted by Eqs.(23) or (24),
respectively.

When Nref/Ntr!1 (in the opposite limit the effect of
transparent layers is negligible and the exponential decay of
the transmission coefficient has nothing to do with localiza-
tion), Eq. (35) with account made for Eqs.(37) and (43)
transforms to

l loc
−1 < l loctr

−1 + d, d =
2Nref

N
l locref

−1 = k0E
n8,nc

Fnsn8ddn8

3En9,nc
Fnsn9dÎnc

2 − n92dn9. s44d

It is easy to see that the ratiod / l loctr
~ l locref

/ l loctr
is propor-

tional to k0s@1, which means that the influence of the re-
flecting layers can be significant even when their number is
small.

To demonstrate characteristic physical features of the lo-
calization in the presence of reflecting layers we consider a

medium consisted of statistically independent random layers
with rectangle distribution function of the refractive index
Fn:

Fnszd = Fsnmax− nmind−1, nmin , z , nmax,

0, z , nmin or z . nmax.
G

s45d

Reflecting layers exist ifnmin,nc. When 1−nmin/nc!1, the
relative numbers of reflecting and transparent slabs are

Nref

N
=

nc − nmin

nmax− nmin
! 1,

Ntr

N
=

nmax− nc

nmax− nmin
< 1. s46d

In this case after substitution of Eq.(45) into Eq. (44) one
obtains

d = U k0snc − nmind
2snmax− nmind2E

nmin

nc Înc
2 − n82dn8

=
k0nc

2snc − nmind
2snmax− nmind2 arcsinSn8

nc
DU

nmin

nc

<
k0nc

3

Î2snmax− nmind2S1 −
nmin

nc
D3/2

. s47d

The contribution to the inverse localization length from
transparent layers,l loctr

−1 , is given by Eqs.(23) and(24). If, for
example, the values ofnmax andnmax−nmin are of the order of
1, nmax,nmax−nmin,1, it is easy to show that

l loctr

−1 , s−1. s48d

From comparison Eq.(48) with the Eq.(47) the following
conditions can be obtained for the contribution of the reflect-
ing layers to be of the same order as that of the transparent
ones:

nmin , nc −
1

ncsk0sd2/3, s49d

when the angle of propagation,q0,nc, is fixed, and

q0 ,
nmin

2
+Înmin

2

4
+

1

sk0sd2/3, s50d

when nmin is fixed. Note that the angleq0 in Eq. (50) is
always larger thansk0sd−1/3. Hence, whenq0, sk0sd−1/3!1,
the influence of the reflecting layers is small independently
on nmin.

Figure 1 shows the typical dependencesl locS,P

−1 sq0d calcu-
lated numerically for the rectangle distribution function, Eq.
(45).

V. CONCLUSION

Transmission of a plane monochromatic transverse wave
obliquely incident on a randomly layered medium has been
studied, and the inverse localization length determined as
l loc
−1 =−kln T/2Ll has been calculated in the high-frequency

(strong disorder in terms of Ref. 6) limit. The method of
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calculation takes advantage of the fact that in the localization
regime the energy flux at typical realizations is zero(with
exponential accuracy), and therefore the field inside each
layer can be considered as a standing wave. The assumption
is also used that the phases at the interfaces of layers are
uniformly distributed in the intervalf0,2pd. The approach is
rather general and simplifies calculations significantly as
compared to the conventional transfer matrix approach. With
this method we have shown that the inverse localization
length of S waves increases with the angle of propagation
and is always larger than the localization length ofP waves,
which, in contrast, goes down as the angle of incidence
grows and reaches a minimum at some angle(stochastic ana-
log of the Brewster effect). The effect is most pronounced in
a medium consisting of alternating layers of two dielectrics
with random widths. In this casel loc→` at the Brewster
angle; i.e., the localization is absent forP waves. If in a
random sample there are layers with the refractive index
small enough,n,sinq0, strong internal reflection from

these layers can reduce significantly the total transmission.
This reduction is described by an additive term in the inverse
localization length, which depends on the number of layers
that are reflecting at the given angle of incidence and on the
statistics of their parameters(width and dielectric constants).
The conditions for this term to be comparable with the con-
tribution from transparent layers have been discussed. The
revealed dependence of the localization length on the angle
of propagation could play a vital part in formation of the
field of a source radiating in different directions and enhance
significantly the waveguiding effect in randomly layered
media.12
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