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We report a theoretical method for x-ray absorption spectroscopy(XAS) in condensed matter which is based
on the multichannel multiple scattering theory of Natoliet al. and the eigen-channelR-matrix method. While
the highly flexible real-space multiple scattering(RSMS) method guarantees a precise description of the
single-electron part of the problem, multiplet-like electron correlation effects between the photoelectron and
localized electrons can be taken account for in a configuration interaction scheme. For the case where corre-
lation effects are limited to the absorber atom, a technique for the solution of the equations is devised, which
requires only little more computation time than the normal RSMS method for XAS. The method is described
and an application to XAS at the CaL2,3 edge in bulk Ca, CaO, and CaF2 is presented.
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I. INTRODUCTION

Multiple scattering(MS) theory provides an accurate and
flexible scheme for the calculation of unoccupied electronic
states which are probed by various synchrotron experiments
such as x-ray absorption spectroscopy and resonant elastic
and in-elastic x-ray scattering. The standard theory relies on
the single-particle picture, that is, it neglects electron corre-
lation effects. This is a great shortcoming, since core-level
x-ray spectra are often strongly modified by electron corre-
lation, in particular by the Coulomb and exchange interaction
of the valence electrons with the core hole. In transition
metal and rare earth systems, this interaction can give rise to
pronounced atomic multiplet and satellite structures in the
spectra, which can only be accounted for through many-
electron calculations. A generalization of MS theory to
many-electron wave functions was developed by Natoliet
al.1 and is known as the “multichannel” MS theory. Probably
the most difficult part of this approach is the calculation of
the interchannel potential. Here, we propose a reformulation
of the theory, where the latter problem is completely
avoided. Instead, the multichannelT matrix is calculated
variationally using the eigen-channelR-matrix method.2–6

While R-matrix methods are well known in atomic spectros-
copy, they have, to our knowledge, never been used for con-
densed matter problems. Michielset al.7 presented a calcu-
lation of electron energy loss from NiO using anR-matrix
method. They used, however, an atomic model where all
solid state effects were described phenomenologically using
an crystal field and a reduced Coulomb interaction.

Here, we present a formalism for x-ray absorption in con-
densed matter, based on the multichannel MS theory and the
eigenchannelR-matrix method. It allows to take account for
local electron correlation effects in a multichannel, that is,
configuration interaction scheme. At present, the type of cor-
relations that can be handled on this level are limited to those
between one electron in a delocalized state and a finite num-

ber of electrons/holes in(sufficiently) localized orbitals. Suf-
ficiently localized means that the wave function is negligible
small beyond the atomic radius. This applies exactly to
inner-core shells and well to the 4f shell in rare earths. Ex-
tensions of the method to include correlation effects between
several delocalized electrons are under way.

In this paper, we present the formalism and report results
on the CaL2,3-edge absorption of different Ca compounds.
The CaL2,3 edge is an interesting test case for the method,
because theL2 and L3 absorption channels are strongly
coupled through the photoelectron–core-hole Coulomb inter-
action. This leads to a branching ratio of about 1:1, far from
the statistical ratio(2:1) which is obtained in single-particle
theory. From a point of view of atomic multiplet theory,8–10

the nonstatistical branching ratio is easily understood as a
case of strong intermediate coupling in thes2p53d1d final
state. The multipole and exchange part of the 2p-3d Cou-
lomb interaction(Slater integralsFk, Gk with k.0) is of
comparable strength as the 2p spin-orbit interaction, which
gives rise to correlated 2p53d1 final state wave functions,
where the 2p1/2 and 2p3/2 holes are strongly mixed. The fact
that the branching ratio does not change when going from
atomic Ca8 to various Ca compounds11 is empirical evidence
that this atomic multiplet picture remains valid in condensed
matter. However, a purely atomic model is not sufficient to
account for fine structure in theL2,3-edge spectra, which de-
pends strongly on the atomic environment11 (and which is
thereby of practical importance for structural and electronic
analysis.) Atomic models including the crystal field have
proved quite successful in reproducing the experimental
spectra at theL2,3 edge.10,11In that approach, all extra-atomic
effects are, however, treated in an empirical way, by intro-
ducing adjustable parameters for crystal field and(possibly)
band broadening. Zaanenet al.9 went beyond the atomic
model by considering a model Hamiltonian that included not
only the atomic 2p-3d multiplet coupling but also the single
electron density of states of bulk Ca. The electron-hole prob-

PHYSICAL REVIEW B 70, 245120(2004)

1098-0121/2004/70(24)/245120(10)/$22.50 ©2004 The American Physical Society245120-1



lem was solved exactly using a Green’s function technique.
While being physically sound, Zaanen’s method was not
fully based on first principle calculations, but introduced a
number of empirical parameters. Later on, Schwitalla and
Ebert12 calculated the spectra in the time-dependent local-
density approximation(TD-LDA ). For bulk Ca, they ob-
tained the correct branching ratio, but the fine structure of
their spectrum was quite different from the experimental one.
Recently, Ankudinovet al.13 studied the branching ratio
problem with a generalization of TD-LDA. By adding a fre-
quency and matrix-element dependent exchange-correlation
contribution to the TD-LDA kernel, they obtained a branch-
ing ratio in good agreement with experiment for Ca and the
whole transition metal series, while in Ref. 12 this was true
only for the lighter elements(from Ca to V). From the the-
oretical studies cited earlier, it may seem that the branching
ratio problem at theL2,3 edge of Ca has been thoroughly
investigated. Despite this, we have chosen the Ca system as
a test case for our method, which, we believe, provides in-
sight into other aspects of the problem, such as the orbital
relaxation around the core hole and the reason for the need of
a 20% reduction of the Slater integralsFk andGk in atomic
multiplet calculations.10 The present method comes in as an
implementation of the multichannel MS formalism and a true
application of R-matrix techniques to a condensed matter
problem. The combination of these two features will allow us
to shed some light on the two points mentioned earlier(or-
bital relaxation and reduction factors) and to present an ap-
plication to the Ca compounds CaO and CaF2, in which
ligand field effects and multiplet structure are treated in a
unique framework in anab initio way.

The paper is organized as follows. In Sec. II, the more
general aspects of the formalism are outlined. Further details
about the multichannel MS theory can be found in the Ap-
pendix. In Sec. III the formalism is applied to theL2,3-edge
absorption of 3d0 systems with an emphasis on the screened
electron-hole interaction in the final state. In Sec. IV some
numerical aspects are discussed. In Sec. V results are pre-
sented for bulk Ca, CaO, and CaF2. The section ends with an
outlook at the modifications needed for applying the theory
to the 3d elements. Finally, some conclusions are drawn in
Sec. VI.

II. GENERAL FORMALISM

In the present approach we go beyond the independent
particle model by considering a correlated wave function for
a finite number ofN electrons. All other electrons are de-
scribed within the independent particle approximation.
Among theN explicitly treated electrons, at most one is in a
delocalized orbital, all others necessarily occupy localized
orbitals. By definition, a localized orbital is one that is neg-
ligibly small outside the atomic sphere. This applies exactly
to inner shell orbitals but also to a good approximation to 4f
orbitals of the rare earths. In the ground state wave function,
theN electrons include the core electron that is excited in the
x-ray absorption spectroscopy(XAS) process plusN−1
other electrons in localized orbitals. The XAS final state
wave function then containsN−1 localized electrons and one

electron (the “photoelectron”) in a delocalized state above
the Fermi level. In other words, we consider a correlated
final state wave function that couples the photoelectron with
the core hole and and/or a finite number of other localized
electrons.

In order to make the derivation less abstract, we shall now
consider the specific case of XAS at the CaL2,3 edges. The
formulas are kept general and can easily be applied to other
systems to be described with correlated wave functions sat-
isfying the earlier requirements. For the ground state we con-
sider the six electron wave function made of the 2p core
electrons. The initial stateCg with energyEg is thus simply
given by the closed shell configurations2p6,1S0d. Final states
have energyE=Eg+"v and as2p5e1d configuration, wheree
denotes a(one-electron) state in the continuum above the
Fermi energy. The crucial point is that we take into account
multiplet effects through a configuration interaction ansatz
for the final state wave function, which is developed as

C = Ao
a

F̃asXdfasxd. s1d

Here F̃a is one of the six s2p5d states, labeled bya
=s jc,mcd s jc=1/2,3/2,mc=−jc. . . jcd; X collects all core-
electron coordinates. Thes2p5d multiplet energies areEa

=Eg−ecs jcd, whereecs jcd are the negative binding energies of

spin-orbit split 2ps jcd levels. For eachF̃a, there is a compo-
nentfa of the photoelectron wave function. The(radial, an-
gular, and spin) coordinate of the photoelectron is denoted
x=sr , x̂,sd. Finally, A denotes the antisymmetrization opera-
tor.

Multichannel multiple scattering. The total photoabsorp-
tion cross section is calculated using the multichannel mul-
tiple scattering method by Natoliet al.1 As shown in detail in
the Appendix, it is given by

ssvd ~ v ImHo
GG8

MG
* tGG8

00 MG8J . s2d

Here G=aLs is the set of all quantum numbers ofC, with
L; lm being the orbital ands the spin quantum numbers of
the photoelectron.MG=kCG

inuDuCgl are the transition matrix
elements; we consider only dipole transition in the length
approximation. CG

in is the inside solution that matches
smoothly onto the outside solution

CG
out = o

G8

FG8sXx̂sdZG8Gsrd/r . s3d

Here, we have introducedFG;F̃asXdYLsx̂dds,s. “Inside” and
“outside” refer to the atomic sphere of the absorber, i.e.,r
, r0 and r . r0, respectively,r0 being the muffin-tin radius.
The matrixZ of radial photoelectron functions is given by

ZGG8srd/r = j lskardft0
−1gGG8 − ikahl

+skarddGG8. s4d

Here,hl
+= j l + inl and j l, nl are the usual spherical Bessel and

Neumann functions.ka is the wave number of the photoelec-
tron, given byka

2 +V0=ea=E−Ea, whereV0 is the interstitial
potential. tGG8 is the multichannel atomicT matrix of the
absorber(at site i =0). In Eq. (2), tGG8

i j is the multichannel
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scattering path operator connecting sitesi and j . It is calcu-
lated for a finite cluster by inversion of the matrixm;t−1,
whose elements are given by

mGG8
i j = di jfti

−1gGG8 − daa8kaGLL8
i j skaddss8. s5d

Here,ti is the multichannel atomic scattering matrix of atom
i, and GLL8

i j are the real space Korringa-Kohn-Rostoker
(KKR) structure factors.14 Apart from the absorber, we treat
all atoms in the standard one-electron muffin-tin approxima-
tion, which implies ti,GG8= tilskaddGG8, for all i Þ0. Since
theseT matrices fori Þ0 as well as the structure factorsGLL8

i j

are single-channel quantities, the only channel-off-diagonal
terms ofm are located ini = j =0 block. This particular struc-
ture of them matrix allows us to use an efficient partitioning
technique for the inversion ofm.

Partitioning technique. We divide the system into ab-
sorber atomsi =0d and “environment,” i.e., all other atoms
with i Þ0, collectively labeled “e.” For the absorption cross
section we need only the absorber blockt00 of the t matrix.
Using simple matrix algebra, this quantity can be expressed
as

t00 = sm00 − m0efmeeg−1me0d−1 = st0
−1 − rd−1. s6d

In the second equality, we have usedm00= t0
−1 and introduced

the reflectivityr;m0efmeeg−1me0, which contains all the in-
formation we need from the environment. Oncer is known,
the remaining problem is a purely atomic one. Nowr is
diagonal in the channel indicesa since it does not involve
the i = j =0 block of them matrix. It can therefore be calcu-
lated using standard(single-channel) MS theory. Explicitly,
we have

rGG8 = daa8rLL8skaddss8, s7d

where

rLL8skd = k2 o GLL9
0i skdt̃L9L-

i j skdGL-L8
j0 skd. s8d

Here, the sum runs overL9, L-, i Þ0, j Þ0, and t̃ is the
single-channelt matrix of the system without absorber
(a-diagonal terms offmeeg−1).

Eigenchannel R-matrix method. The remaining problem is
the calculation of the multichannelT matrix of the absorber
and the inner solutionsCG

in. This is done using the eigen-
channelR-matrix method.2–6 In the following we recall some
basic features of this method for the convenience of the
reader and in order to introduce our notation(which follows
most closely that of Ref. 5). TheR matrix is a multichannel
generalization of the logarithmic derivative of the radial
wave function. As reaction volume, we use the atomic(or
muffin-tin) sphere of the absorbing atom with radiusr0. With
Eq. (3), theR matrix can be defined as

o
G9

RGG9ŻG9G8sr0d = ZGG8sr0d. s9d

Here we have introduced the notationẊ;dX/dr. Using Eq.
(4) and its derivative with respect tor, the t matrix can be
readily calculated from theR matrix as

t−1 = iKsRJ̇− Jd−1sRḢ− Hd. s10d

Here all the quantities are matrices with indicesGG8 and are
evaluated atr =r0. Furthermore, the quantitiesK, J, H are
diagonal matrices with elementsKGG=ka, JGG=kar0j lskar0d,
andHGG=kar0hl

+skar0d.
In the eigenchannel method, theR matrix is obtained di-

rectly in diagonal form; for given energyE, a basis of eigen-
statesCk and eigenvaluesbk is found, by solving the follow-
ing generalized eigenvalue problem:5,6

sE − H − LdCk = QCkbk. s11d

HereH is the Hamiltonian,L;oi=1
N dsr i −r0ds1/r ids] /]r idr i is

the Bloch operator that restores Hermiticity ofH in the finite
reaction volume, i.e., the atomic sphere andQ;oi=1

N dsr i

−r0d projects onto its surface. Among all solutions of Eq.
(11), only those withubku,` are physically acceptable. Their
number equals the number of channelsG4. In order to solve
Eq. (11) we develop

Ck = o
Gn

CGncGn,k s12d

with trial functions of the form

CGn ; AhFGsXx̂sdPnsrd/rj. s13d

As radial basis functionsPn, we use solutions of the radial
Schrödinger equation for angular momentuml and a spheri-
cally symmetric, local one-electron potentialveffsrd. In the
present application, we take forveff the sum of the ground
state potentialvg and a partially screened core-hole potential
vc [see Eq.(16) later]. As usual in the eigen-channel method,
we use closed-type orbitals with boundary conditions
Pnsr0d=0, and open-type orbitals with boundary conditions
dPn /drsr0d=0. Since 2p→es transitions have negligible in-
tensity in the near-edge region, we here include onlyl =2,
i.e., d waves in the basis. The generalized eigenvalue prob-
lem in Eq.(11) is solved using standard numerical routines.15

The eigenvectors of theR matrix are given by WGk

;ÎNr0eFGCk, where the integration is overXx̂s and the
remaining radial coordinate ofCk is taken atr0.

5 The factor
ÎN comes from antisymmetrization. From the orthogonality
of the channel functionsFG and Eqs.(12) and(13) we have

WGk = o
n

cGn,kPnsr0d.

We normalize the generalized eigenvectorscGn,k (k fixed)
such thatoGuWGku2=1. ThenW is unitarian and theR matrix
is given by

RGG8 = − o
k

WGkbk
−1WkG8

† .

The inner solutions that match the outer ones are

CG
in = o

G8G9nk

CG8ncG8n,kWkG9
† ZG9Gsr0d.
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III. ELECTRON-HOLE INTERACTION

We describe the subsystem ofN electrons through a
Hamiltonian of the form

HsNd = H0 + V = o
i=1

N

h0sid + V.

Hereh0 is the one particle Hamiltonian of the chosen inde-
pendent electron model andi is an electron label. IfN was
the number of all electrons in the systemsNalld, the exact
perturbationV would be given by the bare two-particle
electron-electron interaction terms minus the effective
electron-electron potentialveff that is included inh0. How-
ever, since in our caseNÞNall, there is no(simple) exact
expression ofHsNd and the “best” approximation forV is not
necessarily given by the exact expression of the caseN
=Nall. The reason is thatveff and thush0 are determined by
Nall rather than onlyN electrons, and the Coulomb interac-
tion in V is screened by theNall−N other electrons.

For the system studied here, these considerations are of
interest only for the final state. The ground state, being a
closed shell configurations2p6,1Sd, is well described by a
single Slater determinant with thes2pd orbitals calculated
from h0. For thes2p5e1d final states, the perturbationV is the
screened photoelectron-core-hole Coulomb interaction.

We shall first take forV the unscreened interaction and
discuss the effect of screening below. We have to calculate
the matrix elements ofH, L, andQ for the basis states in Eq.
(13), which we denote asuGnl;u2p5nd1,Gl with G
= jcmcms. We have

kGnuH0uG8n8l = sEg − ecs jcd + enddGG8Snn8,

where

Snn8 ; E
0

r0

drPnsrdPn8srd

is the overlap integral,en is the energy of thePn orbital, and
the other quantities have been defined before. Note thatdGG8
is ensured by the orthogonality of the angular and spin func-
tions. For the calculation of the matrix elements ofV, we
make a basis transformation from the uncoupled states
u2p5jcmc,nd1msl to LS coupled statesu2p5nd1,sLSdJMl.16 In
the LS coupled basis, the matrix elements ofV are given by

kGnuVuG8n8l = fws2S+1Ldgnn8dGG8, s14d

where nowG=sLSdJM. Thew’s can be expressed in terms of
the following generalized Slater integrals

Fnn8
k ; E

0

r0

drE
0

r0

dr8P2psrdPnsr8d
2r,

k

r.
k+1P2psrdPn8sr8d,

Gnn8
k ; E

0

r0

drE
0

r0

dr8P2psrdPnsr8d
2r,

k

r.
k+1Pn8srdP2psr8d.

Here, r.s,d is the larger(smaller) of r and r8. The expres-
sions for thews2S+1Ld are given in Ref. 17:

ws1Pd = − F0 − F2/5 + 4G1/49,

ws3Pd = − F0 − F2/5,

ws1,3Dd = − F0 + F2/5,

ws1Fd = − F0 − 2F2/35 + 18G3/49,

ws3Fd = − F0 − 2F2/35,

where, in our case, all quantities are matrices with indices
snn8d. The matrix elements of the other operators needed in
the eigen-channel method are easily calculated

kGnuEuG8n8l = EdGG8Snn8,

kGnuQuG8n8l = dGG8Pnsr0dPn8sr0d,

kGnuLuG8n8l = dGG8Pnsr0d
Pn8

dr
sr0d.

The dipole operator selectss1Pd basis states and thus only
J=1 final states give a contribution. The reduced matrix el-
ements are non-zero forG=s2S+1L1,M =1d and given by

kCguur uuCG
inl = − 2o

nkG8

I2p,ncG0n
skd WkG8

† ZG8Gsr0d s15d

with G0=s1P1,M =1d and I2p,n=e0
r0P2psrdrPnsrddr.

Screening model.As it is well known from cluster and
impurity model calculations,9 the monopole term of the
electron-hole Coulomb interaction(corresponding to the
Slater integralF0) is drastically screened, while the higher
order multipole and all exchange terms(Slater integralsFk,
Gk with k.0) are essentially unscreened. Let us note that in
multiplet calculations also the higher order terms are gener-
ally reduced from the calculated values.9,10 The need for this
reduction of some 20% is, however, not due to screening, but
comes mainly from the neglect of configuration interaction
in the single-configuration multiplet approach.18 As will be-
come apparent in the next section, the relevant configuration
interaction is included in our approach, so that there is no
need for reduction of the Slater integrals withk.0.

We therefore apply screening only to the monopole
term −2/r. of the electron-hole Coulomb operator
V=−2/ux−x8u. This defines the(unscreened) multipole part

Ṽ;−2/ux−x8u+2/r. of the interactionV. In the space of
trial functions CGn we have chosen, the operator −2/r. is
diagonal inG. Within this space, it is therefore equivalent to
a one-electron potentialvusrd, namely the Hartree potential
of a spherically symmetric core hole which is given by:
vusrd=−edr8fP2psr8dg2/ r.. We can thus handle screening of
the monopole term on a single-particle level by replacing the
unscreened core-hole potentialvusrd by a screened onevcsrd,
which we add toh0. In this way the effective potentialveff
used inh0 will not be the ground state self-consistent poten-
tial vg but veff=vg+vc.

A simple approximation forveff is given by the fully stati-
cally screened potentialvsupercell which is obtained from a
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self-consistent supercell calculation with a core hole on the
absorber site. This effective potential, which features full or-
bital relaxation around the core hole, is frequently used in
single-electron XAS calculations. We shall denote the corre-
sponding core-hole contribution byvs, i.e., vs;vsupercell−vg.
As will become apparent in the results section later, the line
shapes obtained withvs are not satisfactory. We shall there-
fore allow for incomplete screening by using a linear mixture
between the unscreened core-hole potentialvu and the fully
screened onevs:

vcsrd = avusrd + s1 − advssrd, s16d

whereaP f0,1g is an empirical parameter. As can be seen
from the results later, a value ofa<0.1 gives best agreement
with experiment. This fact indicates that orbital relaxation
around the core hole is overestimated invsupercellwhich, we
recall, is obtained from a supercell calculation in the LDA.
This finding was to be expected, since it is known that in
LDA the self-interaction of an electron is not exactly com-
pensated as in the Hartree-Fock scheme, giving rise to over-
relaxation and band gaps that are systematically too small
compared to experiment. Probably the same calculation with
self-interaction corrections would cure this drawback. This
will be the subject of a future investigation. In the meantime
we regard a as useful parameter describing the correct
amount of relaxation.

It is clear that nonzero values ofa increase the parameter
S0

2 [i.e., the square of the overlap between the unrelaxedsN
−1d-electron initial state and the relaxed final state wave
function] as calculated from the initial and final state LDA
self-consistent potentials. In a first order Taylor expansion
DS0

2 should be proportional toa, so the exact value of this
latter should depend on one side on the details of LDA cal-
culations(e.g., with or without HubbardU) and on the other
side on the physics of the atomic relaxation. Based on this
observation we anticipate a kind of “universality” for the
valuea=0.1 in all cases where a simple LDA scheme is used
and no intrashell correlation is at work, as exemplified by our
Ca calculations(the a value seems to be independent of the
chemical environment). However, the presence of other 3d
electrons along the first transition metal series, and the re-
sulting correlation within the 3d shell, might modify this
state of affairs.

Let us also note that ana priori estimate ofa could be
obtained in a multichannel MS theory that starts from the
fully relaxed state and mixes in very many charge transfer
excitations. This possibility shall also be explored in the fu-
ture.

In summary, the present treatment of screening consists in
(i) replacing the screened electron-hole Coulomb interaction

V by its unscreened multipole partṼ=−2/ux−x8u+2/r. and
(ii ) adding the partially screened core-hole potentialvcsrd in
Eq. (16) to the single-particle Hamiltonianh0. Point (ii ) re-
sults in a modification of all radial wave functionsPnsrd and
corresponding energiesen, whereas point(i) simply removes
all monopole termssFnn8

0 d from the interaction matrix(14).

IV. NUMERICAL ASPECTS

The standard MS calculation for the reflectivity of
the environmentrLL8skd has been performed using the
CONTINUUM code.19 Finite clusters containing at least nine
nearest neighbor shells around the absorber were used for all
systems, such that the XAS spectra were well converged
with respect to cluster size. The effective single-particle po-
tential was calculated self-consistently in the local density
approximation using the linear-muffin-tin-orbital method.20

In all systems we used space-filling(and thus partially over-
lapping) atomic spheres. In the compounds CaO and CaF2,
we chose the relative atomic radii in such a way that the
potential value on the sphere was approximately equal for Ca
and the ligand, while keeping the overlap volume small. For
CaO, a ratio of 3:2 between the Ca and O radii was found
appropriate. For CaF2, the insertion of one empty sphere(E)
per formula unit was necessary to keep the overlap small. We
chose the ratio of the sphere radii of Ca:O:E to be 6:4:5,
approximately. The fully screened core-hole potentialvs was
obtained from supercell calculations with a(spherically sym-
metric) 2p hole on the absorber atom. We used a 32 atom
simple cubic supercell for Ca metal, and a fcc 23232 su-
percell for CaO and CaF2. We found that the core hole has
only a small effect on the potentials of theneighboringatoms
and that, consequently, it makes hardly a difference for the
spectra whether the reflectivity is calculated with or without
the core-hole potential. On the absorber atom, however,vcsrd
is strong and has a dramatic effect on the line shape as will
become apparent later.

For reasons of numerical stability, the reflectivity was cal-
culated at complex energies with a small imaginary part,
such that the spectra are effectively broadened with a Lorent-
zian function of about 0.3 eV full width at half maximum
(FWHM). In order to simulate finite experimental resolution,
the spectra in theresults sectionwere further broadened with
a Gaussian function of 0.3 eV FWHM.

In the eigenchannel method, convergence with respect to
the number of radial basis functions has to be achieved. In
Fig. 1 we show this convergence in the example of CaO. The
different basis sets are indicated assnc,nod, wherenc snod is
the number of closed-type(open-type) functions. We start
from functions without nodes in 0, r , r0 and increase the
number of nodes one by one. For example, the(3,1) spec-
trum was obtained with three closed type functions of zero,
one and two nodes and one open-type function of zero nodes.
Figure 1 shows the converged spectrum with basis set(6,2)
in the upper panel and difference spectra with respect to(6,2)
in the lower panel. It can be seen that five closed-type and
only one open-type function are sufficient for good conver-
gence. For the spectra in the results section below, we have
used the(5,1) basis set.

It is interesting to note that one can considerably improve
the spectrum calculated with the minimal(1,1) basis set by
reducing the values of the Slater integralsFk, Gk (artificially)
by some 20%. Figure 2 shows the(1,1) spectrum with full
(a) and 20% reduced(b) values of the Slater integrals, along
with the converged spectrum(c), which was multiplied by
1.4 for easy comparison of the peak ratios. Clearly, a 20%
reduction of Slater integrals improves considerably the(1,1)
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line shape, both as far as peak positions and relative peak
intensities are concerned. Apart from the overall amplitude,
which is about 40% too big, the spectrum almost coincides
with the converged one. This result is closely related to the
fact that in atomic single configuration multiplet calcula-
tions, reduction factors of 10%–25% for the Slater integrals
are generally needed to make the relative multiplet energies
and line strengths agree with experiment.10,18 Such a rescal-
ing procedure effectively accounts for configuration interac-
tion that lies beyond the single configuration calculation,18

namely coupling to higher lying electronic configurations.
Precisely this feature is seen in Fig. 2, when one realizes that
in the minimal set(1,1) describes essentially only the 3d
orbital, while in the(5,1) basis set of the converged spec-
trum, all nd orbitals up ton=7 are included.

In the practical implementation of the method, we first
calculate the reflectivity matrixrLL8skd on a fine mesh in the
relevant(photoelectron) energy interval. In a second step the
atomic multichannel calculation is performed for each total
energyE=Eg+v. The R matrix and the inner solutionsCG

in

are calculated through the eigenchannel method and then the
atomic multichannelT-matrix t0 and the dipole transition
matrix elements are readily obtained from Eqs.(10) and(15).
We get the reflectivityrLL8skad at the photoelectron energies
ka of the different channelsa, needed in Eq.(7) by interpo-
lation in k. Finally, we invert the matrixt0

−1−r [Eq. (6)] and
obtain the XAS cross section from Eq.(2).

By virtue of the separation between environment and ab-
sorber through the partitioning technique, the present imple-
mentation of the multichannel MS method is numerically
only a little heavier than the standard(single-channel) MS
method. Indeed, in the present application, the atomic multi-
channel calculation(second step above) was an order of
magnitude faster than the reflectivity calculation by the stan-
dard MS technique.

V. RESULTS FOR THE Ca L2,3 EDGE

Figure 3 shows theL2,3-edge absorption of bulk Ca cal-
culated in different approximations, along with the experi-
mental spectrum(e) taken from Ref. 11. The numbers in
parentheses indicate the value of the screening parametera
of the core-hole potentialvc in Eq. (16). The spectra labeled
(g) have been obtained with the ground state potential(i.e.,
vc=0). The spectra in full(dashed) lines have been calcu-
lated with (without) the multipole part of the electron-hole

interaction Ṽ. For easy comparison of the line shapes, all
spectra are aligned at threshold and normalized with respect
to the height of their main peak. Note that before normaliza-

tion, the intensity of the spectra withoutṼ (dashed lines) was

considerably bigger than the corresponding spectra withṼ
(full lines). The relative renormalization factors between the

FIG. 1. Convergence of the spectra with respect to the number
of radial basis functions in the example of CaO. The numbers of
closed-typesncd and open-typesnod basis functions are indicated as
snc,nod.

FIG. 2. CaO spectra obtained with the minimal basis set
snc,nod=s1,1d, along with the converged one(c). The latter was
multiplied by a factor 1.4 for easy comparison. Spectrum(b) was
calculated with the Slater integralsFk, Gk reduced by 20%.

FIG. 3. X-ray absorption spectra at the CaL2,3 edge in bulk Ca.
Curve (e) is the experimental spectrum taken from Ref. 11. In the
theoretical spectra,(g) was obtained from the ground state potential,
and the others with a(partially) screened potential with the screen-
ing factor indicated assad. In all cases, the one-electron spectrum

(without Ṽ) is shown with a dashed line and the multichannel cal-

culation (including Ṽ) with a full line.
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two types of spectra, that have been used in Fig. 3, are 1.8
(g), 2.3 (0), 3.3 (0.1), and 3.8(0.15).

Probably the most striking feature of the spectra in Fig. 3
is the effect of the multipole part of the electron-hole inter-

action Ṽ: in all cases, it leads to a big transfer of spectral
weight from theL3 edge(lower energy peak) to theL2 edge.

The branching ratio thus changes from 2:1 withoutṼ to
somewhat less than 1:1, which is in good agreement with
experiment. This spectral weight transfer comes from the
mixing between the 2p1/2 and the 2p3/2-hole states(which
correspond, in the one-electron approximation, to theL2 and
L3 edges, respectively). It is a genuine atomic multiplet ef-
fect which was first explained by Zaanenet al.9 As can be
seen from a “vertical” comparison in Fig. 3, the choice of the
core-hole potentialvc has only a minor effect on the branch-
ing ratio, but it changes the line shape of the two edges
individually, as it can be expected from a single-particle
quantity. Going from(g) to (0), or increasing the parametera
has the effect of shifting the peak positions of the two edges
to lower energy and of reducing their width. It moreover
leads an overall shift of the whole spectrum to lower energy.
This shift, which is roughly 1 eV forsgd→ s0d, s0d→ s0.1d,
and s0.1d→ s0.15d, is, however, not apparent from Fig. 3,
because we have aligned the spectra at threshold. When com-

paring the spectra includingṼ with the experimental one, it
is clear that(g) and (0) have much too broad peaks. More-
over, their peak positions relative to threshold are at too high
energy, especially for(g). Good agreement for both peak
width and positions is obtained for spectra(0.1) and (0.15).
The only disagreement is that these two theoretical spectra
show a weak fine structure which was not observed experi-
mentally. A possible explanation for this discrepancy is the
presence of further broadening mechanisms, other than cou-
pling to the band, which is included here by the multiple
scattering of the photoelectron. Himpselet al. suggested that
the broadening might be due to strong autoionization. The
discrepancy could, however, also reveal limitations of the
present screening model, which neglects charge fluctuations.
Let us note that our spectrum(g) looks identical with the one
obtained by Schwitallaet al.12 within time-dependent local
density approximation. This shows that their method does
not take account of the monopole part of the electron-hole
interaction.

For a contrast to themetallicbulk Ca, we have applied the
method also to twoinsulating Ca compounds: CaO and
CaF2. The results are shown in Fig. 4. As in Fig. 3, the
spectra have been normalized and aligned at threshold. For
the latter, the spectra(g) have been shifted by 3.5 eV to
lower energy relative to the others in both compounds. The
meaning of labels and line styles is the same as in Fig. 3. The
spectra(g), which correspond to a total neglect of the core

hole and the multipole termsṼ, are again completely at odds
with the experimental spectrum(e). When using a screened
core-hole potentialvc with a=0.1, but still neglecting the

multipole termsṼ [dashed line(0.1)], the spectra consist of
four narrow lines(the finite width comes entirely from the
added Lorentzian+Gaussian broadening). The splitting of the
L3 andL2 peaks into two doublets is due to a strong ligand

field effect. By symmetry resolved MS calculations, we have
checked that for CaO, the lower(higher) energy peaks cor-
respond tot2g segd symmetry states in theOh point group. In
CaF2 the order betweent2g and eg peaks is reversed. These
spectra are, however, still very different from the experimen-
tal ones. When finally also the multipole part of the interac-

tion Ṽ is taken into account[full line (0.1)], very good agree-
ment with experiment is obtained for both compounds. It
should be noted that Himpselet al.,11 who used an atomic
crystal field model, could also get very good agreement with
experiment. However, in that work the crystal field is intro-
duced empirically and its parameter values are adjusted to
experiment.

Outlook at the modifications needed for applying the
theory to the3d elements. When going along the 3d series
the experimentalL2/L3 branching ratio increases monotoni-
cally from slightly below 1 for Ca to a little over 2 for Ni.9,13

The value 2 is the statistical value, which is expected in a
single particle picture for a ground state without orbital po-
larization. As we have seen from the foregoing, the small
(and highly nonstatistical) value of the branching ratio in Ca
is due to the multiplet interaction in thes2p53d1d final state,
which leads to a transfer of spectral weight fromL3 to L2.

9

The experimental finding of increasing branching ratio sug-
gests that thisL3-L2 channel mixing gets quickly less impor-
tant towards the end of the 3d series. This can be understood
from the following two arguments.

(i) The L3-L2 channel mixing is mainly controlled by the
G1s2p,3dd Slater integral and the 2p spin-orbit splittingDSO.
The bigger the ratioG1/DSO, the more spectal weight is
transferred fromL3 to L2. While G1 varies rather little over
the 3d series,DSO increases strongly(from 4 to 18 eV) when
going from Ca to Ni, and so the branching ratio increases
and approaches the statistical value of 2.

(ii ) When going tos3dnd ground state configurations the
exchange interaction between the photoelectron(the
“n+1”th 3d electron in the final state) and the core hole is
effectively reduced by the presence of the othern 3d elec-
trons. This effect can most easily be understood if we look at

FIG. 4. X-ray absorption spectra at the CaL2,3 edge in CaO and
CaF2. Labels and line styles have the same meaning as in Fig. 3,
i.e., (e) experiment,(g) ground state potential,(0.1) vc with a
=0.1. A full (dashed) line corresponds to a calculation with(with-

out) Ṽ.
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the extreme case of ans3d9d ground state(which we assume
orbitally unpolarized) and if we apply standard, i.e., single
configuration atomic multiplet theory. The transition is
s2p63d9d→ s2p53d10d. Since both ground and final states are
one-hole configurations, 2p-3d exchange is not effective,
L3-L2 channel mixing cannot take place and so the branching
ratio is statisticals=2d.

Point (i) is a pure two-particle effect due to the photoelec-
tron core-hole interaction in the final state. It is thus indepen-
dent of the ground stated-electron number. Consequently,
our theory can account for this effect even if we keep the
perturbation termV in the present form[although that form
was derived for asp5d1d final state].

Point (ii ), on the contrary, depends directly on the ground
stated-electron number. In order to handle this effect, we
need to use as perturbationV the full multiplet interaction of
a sp6dnd→ sp5dn+1d transition. The corresponding multiplet
calculations are quite involved and their inclusion into the
present scheme is currently under development. In order to
focus on the formalism of multichannel multiple scattering
combined with anR-matrix method, we have decided to
present here only results for the most simple case, i.e., asd0d
ground state, leaving the general casesdnd for a future pub-
lication.

VI. CONCLUSIONS

In summary, we have presented a method for x-ray ab-
sorption in condensed matter where single-electron features
are described in the MS approach, while local multielectron
effects are taken into account in a configuration interaction
scheme. The method features a multichannel extension of
MS theory and the use of anR-matrix technique in con-
densed matter.

The method has been applied to the CaL2,3-edge absorp-
tion of several Ca systems. The electron-hole Coulomb inter-
action was divided into its monopole and its(higher order)
multipole part. The latter, which is responsible for the non-
statisticalL3:L2 branching ratio, was taken unscreened. We
showed that no rescaling for this part is needed in our
method in contrast to single configuration multiplet calcula-
tions. For the monopole term, a mixture between an un-
screened and a statically screened core-hole potential was
applied. A mixing factor of about 10% yields line shapes in
good agreement with experiment in all cases.

Nonlocal correlation effects such as charge transfer exci-
tations have been neglected in the present work. Let us men-
tion, however, that such effects can, in principle, be included
when theR-matrix reaction volume is extended from a single
atom to a small cluster of atoms around the absorber. Com-
pared to recent approaches based on time dependent density
functional theory,12,13 we believe that the present, configura-
tion interaction based method provides more insight in the
correlation mechanisms at play. Moreover, the present ap-
proach can easily be applied to problems where the applica-
bility of TD-density functional theory has yet to be proved,
namely core-level spectroscopies that involve more than one
hole (such as Auger processes) or open 4f shells. Compared
to atomic multiplet methods,10 the present approach does not

rely on adjustable crystal field parameters. Instead, ligand
field and band effects are described in anab initio manner
through the MS theory.
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APPENDIX: DERIVATION OF X-RAY ABSORPTION
CROSS SECTION FORMULA IN MULTICHANNEL

MULTIPLE SCATTERING THEORY

In this section we derive an x-ray absorption cross section
formula within the multichannel multiple scattering method.
Most of the results of this section are not new, but can be
found as special cases of the more general derivation given
in Ref. 1. Nevertheless, we think it is worth including this
section for the convenience of the reader, because the deri-
vation is simpler than the one in Ref. 1 and it lends itself
better to the form of theN-electron wave functions used in
the present work.

We start from the general multielectron formula for the
total optical absorption cross section in the dipole
approximation1

s = 4p2avo
f

zkC fuDuCglz2dsEf − Eg − vd. sA1d

Here, Cg and C f are N-electron wave functions, for initial
s=groundd and final state, respectively, in the absorption pro-
cess of a photon with energyv. In case of degenerate ground
states, a sum overg is understood.D;e ·oi=1

N xi is the dipole
operator,a=1/137 the fine structure constant. We use the
units "=1, Bohr radius for length, Rydberg for energy. Thus
Ekin=k2, e2=2.

For the ground state, we explicitly take into account only
localized electrons of the absorbing atom. Thus we assume
that the ground state wave functionCg is confined to the
atomic sphere of the absorber with radiusr0: Cgsx1. . .xNd
=0 if ∃i : uxiu. r0. As for the final state wave functionC f, we
assume thatN−1 electrons remain in localized orbitals and at
most one electron(the “photoelectron”) is promoted to a
continuum orbital. We chose boundary conditions such that
in the remote past, the photoelectron is free, i.e., its eigen-
states are plane waves expsikxd times a spin functionxsssd
=dss. The rest system is in one of the eigenstates
Fasx1. . .xN−1d of the N−1 electron Hamiltonian with a core
hole: HN−1Fa=EaFa. Thus, the “incoming part” ofC f is
given byFa3expsikxdxsssd. In the multichannel scattering
theory, not only elastic, but also inelastic scattering processes
are taken into account, which correspond to excitationsFa

→Fb. In the present approach, these excitations are limited
to atomiclike ones, such as multiplet excitations, due to the
local character ofFa. (Note that this is in contrast to the
more general theory in Ref. 1). By expanding the scattered
part of C f over the eigenfunctionsFa, we can write
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Csaksd = Fa expsikxdxsssd + o
b

Fbfb
saksdsxsd.

Here fb
saksdsxsd behaves asymptoticallysr →`d like a purely

outgoing spherical wave. In the earlier form ofC f, antisym-
metrization between the photoelectron and theN−1 other
electrons has been disregarded. We indeed neglect antisym-
metrization for the “outside solution,” i.e., when the photo-
electron is outside the atomic sphere of the absorber. For the
solution inside the atomic sphere, however, antisymmetriza-
tion between all electrons is correctly taken into account
through the eigenchannel method(see main text). Note that
in this work we have, for simplicity, assumed the muffin-tin
or more precisely atomic sphere approximation for the one-
electron potential, i.e., the atomic cells are replaced by space
filling spheres with spherically symmetric potential inside.
The difficulties of multiple-scattering theory arising from
nonmuffin-tin potentials are essentially independent of the
electron correlation problem we are dealing with here. The
present multichannel approach could easily be generalized to
nonmuffin-tin multiple scattering methods in which the
muffin-tin spheres are replaced by space-filling atomic cells.
The main change would consist in calculating theR matrix
for a sphere surrounding the atomic cell and where the po-
tential in the so-called “moon-region”(the space outside the
cell and inside the sphere) has been put to zero.

With the final state quantum numbersaks, the sum in Eq.
(A1) becomes oasedk3/ s8p3d. We have edk3/ s8p3d
=edk̂e0

`deÎe / s16p3d, wheree=k2 is the kinetic energy of the
photoelectron. This yields

s =
av

4p
o
as

kaE dk̂azkCsakasduDuCglz2,

whereka
2 =Eg+v−Ea from energy conservation. It is conve-

nient to work in an angular momentum basis, i.e., to use

spherical rather than plane waves. We haveedk̂uklkk u
=16p2oLukLlkkLu, wherekx ukLl= j lskrdYLsx̂d;JLskxd. Here,
j l are the usual spherical Bessel functions andYL are spheri-
cal harmonics. The cross section now becomes

s = 4pavo
aLs

kazkCsaLsduDuCglz2. sA2d

Here CsaLsd is the scattering state that evolves from the in-
coming wave

Cinc = FaJLskaxdxsssd. sA3d

Following the standard multiple scattering theory, we write
the scattered part of the wave as a sum of outgoing irregular
waves from all the centersi:

C = Cinc + o
i

Ci
sc.

In the following we consider points where the photoelectron
coordinatex lies outside any muffin-tin sphere(or atomic
cell). For such points the potential is zero and we have

Ci
sc= − io

aLs

FakaHLskaxidxsssdBiaLs
0 . sA4d

Here xi ;x−Ri and HLskxd;hl
+skrdYLsx̂d where hl

+= j l + inl

is a Hankel andnl a spherical Neumann function. As indi-
cated by the superscript 0, the amplitudesBiaLs

0 depend on
the quantum numbers ofCinc, which we shall denotea0L0s0
from now on. We use the well-known reexpansion theorems

JLskx jd = o
L8

JL8skxidDL8L
ij skd, sA5d

− iHLskx jd = o
L8

JL8skxidGL8L
ij skd, sA6d

where DL8L
ij and GL8L

ij are the real space KKR structure
constants.14 Developing Cinc and the C j

sc’s around some
given centeri and using Eqs.(A5) and (A6), respectively,
yields

C = o
aLs

FaxshJLskaxidAiaLs
0 − ikaHLskaxidBiaLs

0 j sA7d

with

AiaLs
0 = daa0

dss0
DLL0

i0 skad + kao
jL8

GLL8
i j skadBjaL8s

0 , sA8d

where the usual conventionGLL8
ii ;0 has been used.

Next we express the exciting wave amplitudesAiaLs
0 in

terms of the scattered wave amplitudesBiaLs
0 at the same site

i through the inverse atomic scattering matricessti
−1daLs,a8L8s8

as

AiaLs
0 = o

a8L8s8

sti
−1daLs,a8L8s8Bia8L8s8

0 . sA9d

This holds by definition of theti matrices, and relies only on
the most basic assumption of the multiple scattering theory,
namely that the potential can be written as a sum of atomic
cell potentials. Note that there is no restriction on the form of
the atomic potentials, which may, as it is the case for the
absorber potential in the present work, include nonlocal and
correlation effects.(Note, however, that in the present ap-
proach the calculation of this complicated potential is
avoided by virtue of the eigenchannel method.) Assuming
the atomict matrices to be known, we may use Eq.(A9) to
eliminate theAiaLs

0 ’s in Eq. (A8), and then solve for the
BiaLs

0 ’s. This yields

BiaLs
0 = o

jL8

taLs,a0L8s0

i j
DL8L0

j0 ska0
d, sA10d

wheret is the(multichannel) scattering path operator which
is defined by its matrix inverse

st−1dGG8
i j ; di jsti

−1dGG8 − daa8kaGLL8
i j skaddss8, sA11d

where we have introduced the collective indexG;aLs.
Equations(A7)–(A11) are the generalized multiple scattering
equations.

We shall proceed by calculating the x-ray absorption cross
section from an atom placed at the originRi =0. Using Eq.
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(A9), the wave function in Eq.(A7) around sitei =0 (index
suppressed) reads

CG0
= o

GG8

F̃GZGG8srd/rBG8
G0, sA12d

where

F̃G ; FaYLsx̂dxsssd sA13d

and

ZGG8srd/r ; j lskardst−1dGG8 − ikahl
+skarddGG8. sA14d

We recall that Eq.(A7) or (A12) is valid only in the space
outside atomic spheres. For the region inside the atomic
sphere of the absorber, we may write

CG0
= o

G

CG
inBG

G0, sA15d

whereCG
in is a solution of the Schrödinger equation inside

the atomic sphere, that matches smoothly onto the outside

wave functionoG8F̃G8ZG8Gsrd / r.
Putting this into the absorption cross section formula, Eq.

(A2), we obtain

s = 4pav o
GG8G0

kCguD†uCG
inlkG0

BG
G0BG8

G0*kCG8
in uDuCgl.

sA16d

Note that the restriction toCin in the calculation of the ma-
trix elements is valid since we have assumed thatCg van-
ishes outside the atomic cell. A further simplification of the
formula can be achieved if we use the optical theorem,
whose validity in the multichannel case was proved in Ref.
1:

o
G0

kG0
BiG

G0BjG8
G0* = −

1

2i
st − t†dGG8

i j . sA17d

If we, moreover, introduce the notationMG;kCG
inuDuCgl we

finally obtain

s = − 4pav 3 JHo
GG8

MG
* tGG8

00 MG8J . sA18d

In this form, the cross section formula reads exactly as the
well-known one-particle expression(see, e.g., Ref. 21). The
fundamental difference is that the quantum numbersG con-
tain internal degrees of freedom of the absorbing atom(chan-
nels a), which in the present case correspond to different
multielectron states.
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