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Excitonic effects in time-dependent density-functional theory: An analytically solvable model
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We investigate the description of excitonic effects within time-dependent density-functional {fiédry
DFT). The exchange-correlation kerrfgl introduced in TDDFT allows a clear separation of quasiparticle and
excitonic effects. Using a diagrammatic representatiorf,forwe express its excitonic pafrfg‘ in terms of the
effective vertex function\. The latter fulfills an integral equation that thereby establishes the exact correspon-
dence between TDDFT and the standard many-body approach based on the Bethe-Salpeter(BEBtion
The diagrammatic structure of the kernel in the equationAfauggests the possibility of strong cancellation
effects. Should the cancellation take place, already the first-order approximatiﬁfwimsuﬁicient. A potential
advantage of TDDFT over the many-body BSE method is thus dependent on the efficiency of the above-quoted
cancellation. We explicitly verify this for an analytically solvable two-dimensional two-band model. The
calculations confirm that the low-ordéX perfectly describes the bound exciton as well as the excitonic
effects in the continuous spectrum in a wide range of the electron-hole coupling strength.
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[. INTRODUCTION late (formally exactly the linear density-density response

Calculation of electronic excitation spectra remains one ogunctlon and thereby the excitation energieSince in the
the central problems of the quantum theory of solids. Offamework of DFT the exchange-correlatiore) effects are
special interest are two-particle electron-hole excitationslUMped in a locake potentialv,, the TDDFT equation for.
which determine the material's optical properties. In semi-N€ response function contains the variational derivative
conductors and insulators the electronic screening is suf2f Uxc  With  respect to  density f(r.t;r',t")
pressed by the energy gap and the interaction of the excited®xc(r,t)/on(r’,t’). This xc kernel f, is the central un-
quasiparticles may substantially modify the excitation specknown quantity of TDDFT in the linear response regime. In
trum. The excitonic effects stemming from this interactiontheir pioneering work Zangwill and Soveralculated the
comprise the formation of bound electron-hole states as welphotoabsorption in rare gases in a self-consistent field man-
as the alteration of the absorption in the continuum spectrurfier. They used what later became known as the adiabatic
above the band edge. The latter is commonly referred to ad@cal density approximatio®LDA ), simply substituting the
unbound exciton effects or the Sommerfeld absorption entime-dependent density in the LDAc potential vjs"
hancement. =v0(n(r,1)). The resultingc kernel is local in space and

In many-body perturbation theory two-particle excitationstime: f 2-P%=§(r —r")8(t-t')dvL>*/dn(r). ALDA has been
are characterized by the two-particle Green function that sassuccessfully applied to various finite systems like atoms or
isfies the Bethe-Salpeter equatid®SE).! Already in 1980 molecules:’°Typically in these systems already the random
Hanke and Sharfusing an approximate tight-binding rep- phase approximatiofRPA) response function calculated
resentation, showed that the BSE correctly describes theith KS eigenvalues and eigenfunctions gives good results.
strong excitonic features above the optical absorption edge ifihe correction due td Q(I:‘DA is quite small, which signifies
Si. In the current “state of the art” proceduisee Ref. 3 for that Hartree effects dominate in the response function. Un-
a recent reviewthe calculation of excitonic effects involves fortunately, f 2-°* remains insignificant also in extended
three steps. First, a density-functional the@FT) calcula- systems such as semiconductors or insulators, where KS-
tion in the local density approximatiaqi.DA) is performed. RPA gives a very poor description of the absorption
In the second stage, the LDA Kohn-ShalS) energies and spectrat®!1 Thus, whereas a correct accounting fereffects
wave functions are used as a starting point for 8 cal- becomes crucial in extended systems, the ALDA kernel
culation of the quasiparticle spectrum. Finally, the BSE isf QgDA fails to provide even a reasonable starting approxima-
solved numerically, using th@W eigenvalues and the LDA tion.
wave functions as input characteristics of the noninteracting In the late 1990s it has been realized that ALDA cannot
quasiparticles. The outlined procedure leads to highly accuserve as the basis approximation for the dynaxgicesponse
rate results, as has been shown for a number of relativelgf an inhomogeneous electron gas, because of the intrinsi-
simple systems, mostly bulk semiconductsse Ref. 3 and cally nonlocal nature of,.'? For extended systems with an
references therejinHowever, this method is extremely labo- energy gap this remains valid even in the static ¢asdé.
rious, and for more complex systems the calculations be- The importance of the nonlocality df. was highlighted
come prohibitively expensive. by the work of Reining and co-worket&}%who were able

A promising alternative that has been intensively develto describe the contributions of unbound excitons in several
oped over recent years relies on time-dependent densitgiamond or zinc-blende type semiconductors with a static
functional theory TDDFT).# This theory allows us to calcu- kernel proportional to 1f —r’|. Other examples for this are
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the exact exchange kerhét® and the results of de Boeit _T
al.,’® where in thegcontext of time-dependent current-density ®) Lt
functional theor§®2! the nonlocal effects were crucial for
accurately describing the effects of unbound exciféns. (b) I>=> +:E:b

It can be easily understood that a nonlo€glis crucial
for describing excitonic effects. Within TDDFT the proper % = xqp + M =<:>+<]>
polarization operator is defined via the RPA-like equation

Y(0) = xs(w) + xs(w) - fydw) - Y(w), eun;t(iB(;nl. Diagrammatic representation of the Bethe-Salpeter

where in a crystalline solig}, the Kohn-Sham response func-
tion ys andf,. are matrices in reciprocal space. The matrixof]c

structure ofy is responsible for local-field effects. However, f,. in terms of the three-point functioh. The latter satisfies

these are relatively small in typical semiconductors and can integral equation similar to the BSE that establishes the

be neglected fc_)r a qualltat'lve analysils. Keeping only diagog,, correspondence between TDDFT and common many-
nal elements with zero reciprocal lattice vectors, we can ea

) - L sb'ody theory. The main advantage of this approach is that the
lly solve for’y, obtaining possibility of cancellation effects, which have been conjec-
xs(,0) tured in Ref. 27, is directly seen in the kernel of the equation

« This leads us to an expression for the excitonic part of

X(w,9) = : for A.
1= fxlo, Q) xs(w, ) In order to investigate the properties of our integral equa-
The macroscopic dielectric functian, is given by tion and the applicability of low-order approximations we
@xe.0) study a model two-band system. In this model both the BSE
A ~ a5 Ve(@)xs(w,q and TDDFT equation can be solved analytically, which of-
ow(@) =1 Jﬂvc(q)X(‘“’Q) =1 (!ml -f(w,9)xs(w,q)"  fers anideal test bed for approximations to the exgctwe

] ) ) - find that indeed there are strong cancellation effects in the
with the Coulomb interactioc(q) =4m€?/¢”. An additional  jntegral equation for in the energy range close to the band
excitonic peak iney(w) appears when the denominator van-gap_ For this reason both the shallow excitons and the un-
ishes. However, it is well known thak is proportional tay”  hound excitonic effects are well described with a first-order
in the limit g— O for systems with an energy g&p?*Hence  approximation to the excitonic part 6f,.
fxc must behave as 4 in this limit to counterbalancgs. The paper is organized as follows. In Sec. Il we investi-
Otherwise thexc kernel would have no effect osy(w) at  gate diagrammatic properties of the excitonic parf,gfand
all. For the static long-rangexk kernel of Reining and co- derive an exact correspondence between TDDFT and BSE.

workers we havé,(w,q)=4me’B/g” with some constanB.  |n Sec. Ill we introduce the model system that is used in
The macroscopic dielectric function thus reads further calculations. Sections IV and V are devoted to ana-
&2 lytic calculations of excitonic effects with a general short-
ey =1- 477—“5(“’) ranged and the Coulomb interaction, respectively. Finally, we
1 - 4m€”Bag(w) present our conclusions in Sec. VI.

where ag(w) is the macroscopic polarizability of the Kohn-
Sham systenag(w) =limq_oxs(w,q)/ g% For a typicalag(w)
close to the band edge this formula suggests the existence of The Bethe-Salpeter equation in the particle-hole channel
only oneexcitonic peak. However, one expects several peakis commonly formulated as an integral equation for the
from unbound excitons above the band gap and bound excparticle-hole propagator or the scattering mafrim the lad-
tons within the gap. Phenomenologically one could overder approximation. This integral equation is equivalent to a
come this problem by introducing a frequency-depengint summation of all ladder diagrams. The diagrammatic repre-
One though would need to introduce very rapid oscillationssentation of thé-matrix formulation is depicted in Fig.(a),
in the region of the Rydberg series of bound excitonic stateswhere the full lines are the quasiparticle Green functions and

Probably the most promising path in the quest for a goodhe dashed lines represent the screened interaction. In the
approximation tof,. is a direct comparison of the TDDFT context of a connection to TDDFT we are not interested in
formalism with the BSE®>25-2’Simply comparing the calcu- the four-point particle-hole propagator but rather in the re-
lated spectra, it was found that it is often sufficient to use arsponse functions. Therefore we consider a modified BSE
approximation tof, that is of the first-order in the screened where two of the external lines of the scattering matrix have
particle-hole interaction. Although these results are very enbeen contracted to form the three-point functionThe dia-
couraging, it is unclear why this approximation is so efficientgrammatic representation of the integral equationIfand
and what its range of validity is. its relation to the proper polarization operajpare depicted

In this paper we derive a diagrammatic expression thain Fig. 1(b). For our purposes this equation is equivalent to
exactly relates the excitonic part &f, to the BSE. We start the BSE. In the following we refer to the equation in Fig.
with splitting f,. into two parts, separately accounting for 1(b) as the Bethe-Salpeter equation.
quasiparticle and excitonic effects. We then apply the dia- In terms of TDDFT the proper polarization operafpis
grammatic rules we previously derivddo these two parts given as

II. DIAGRAMMATIC MEANING OF  f,
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M) = xs(w) + xs(0) - frw) - X(o), (1) @ 7 =& (LT Do
wherexs represents the density-density response function of Bx _ @
the noninteracting KS particles, i.e., a bare loop of two KS ® A

Green functions. Equatiofl) looks like the RPA equation, E:Dﬁuz}_w

although it relateg with the full y, which includes all self-

energy and ladder diagrams. We can therefore intefpyets FIG. 2. (a) Thenth order off E* and(b) the integral equation for

an effective interaction that describes self-energy and laddene three-point function\, which is an essential part ¢fx

diagrams in the annihilation channel. Thereky contains

both quasiparticle and excitonic effects. As in this paper wey(g). The summation of all ladder diagrams can be cast in an
are only interested in the excitonic effects, it is tempting tojntegral equation as displayed in Figh® If one insertsf Ex
separate these two contributionsftg, as suggested in pre- gptained by solving the equation of Fig(h into Eq. (3b)
vious works!>?This separation is indeed possible without and calculates the response funcfigrthe result will be the

approximations, because we have same as th§ obtained from the BSE. In this sense the equa-
S S N B R R tion of Fig. Ab) gives the exact “translation” of the BSE into
Fre=Xs =X =Xs ~Xop+ Xop~ X the TDDFT language.
=7 =5 ) At this point we would like to highlight the differences

between the integral equation of Figb2 and the equation
where xqp is the density-density response function for thefor the excitonic part of,. derived in Ref. 27Egs.(4) and
noninteracting quasiparticle@P). By definition, ff?cp and  (5) thereiri. The iterative equation of Marirt al?’ is for the
ffcx are the kernels of the following RPA-type equations: two-pointxc kernel and is based dffinite order approxima-
_ P tions tg the xc part of the response function and is logically
Xor©) = xs() + xs(w) - F (@) - xoplw), (39 analogous to our diagrammatic expansiorf.gfobtained in
~ - Ref. 28. However, the equation of Fig(t? is an integral
X(@) = xor@) + xgr(@) - f (@) - X(w). (3b) equation for a three-point function analogous to the BSE
The new|y introduced quantitidsXQCP and f Eé( describe qua- (Ref 33 and can be solvenhsteadof the BSE to obtain the
siparticle and excitonic effects, respectively. This can be vi-Same results.
sualized by app|y|ng the diagrammatic rules fQE as de- Unfortunately, the exact calculation bfg from the equa-
rived in Ref. 28. The structure of the diagrammatic tion of Flg zb) is at least as difficult as Obtaining an exact
representation of & and f EX is similar to the one foff,, so[ution of theE BSE. Howev'er, one can hopg tha}t the two-
except that forf & one has to use KS Green functions andPoint kermelf & is more suitable for approximations. An
should only account for all possible self-energy insertions irindication in this direction can be seen directly from the
every order of the perturbation theory. This clearly describegliagrammatic equation of Fig(t3. Comparing this equation
the quasiparticle corrections. FbfX one should use the qua- 0 Fig. Ib) we see that it can be obtained from the BSE by
siparticle Green functions with all possible particle-hole in-Substitution of the particle-hole propagator as shown in Fig.
teractions. Obviously, this reflects excitonic contributions. 1t3(@- This is the same replacement that was used in Ref. 28 to
is important to note that the general properties of the perturProve the cancellation of divergenciesfig at KS excitation
bative expansion of,. obtained in Ref. 28 remain valid energies. Similarly, it facilitates the cancellation of divergen-

separately forf @ andf EX. In particular,f & remains finite ~ Cies inf ;& at QP excitation energies.

at KS excitation energies in every order of the perturbation Alternatively we can interpret the difference between the
theory. The same holds fdrE* at excitation energies of the BSE and our equation fok as a modification of the inter-
noninteracting quasiparticle system. Note that bfjf is the action process in the second diagram of the right-hand side

same as thé "9" of Refs. 26 and 29. of the equation in Fig. (b). This change of the interaction is

Let us briefly outline the diagrammatic rules for the exci- displayed in Fig. &). As f 2 is responsible for translating

tonic part of f,.. According to Ref. 28 with the above- the ladder diagrams into the annihilation channel, it is non-
mentioned modifications we have to draw all loops with trivial only if the ladder channel and the annihilation channel
particle-hole interactions to construct tnéh order correc- are distinguishable. This is easily seen from the replacement
tion. These diagrams serve as parent graphs for the construf Fig- 3(0). Indeed the ladder and the annihilation channel
tion of thenth orderf £ To comply with the BSE we must coincide for nonrelativistic systems with a static point inter-
use the ladder approximation here as W&lTherefore, only ~ action. In this case the quasiparticle propagators in Kig. 3
one diagram witn interactions is left. To the two ends of the

diagram we have to attach wiggled lines represenjigh () - +_>vv\<
Next, we work out all possibilities to separate this parent —— ———

graph into two by cutting two fermionic lines. Then we join

the external fermionic lines of these parts, connect them by a b b

wiggled line, and change the sign of the resulting diagram. (b) _:_ - _:_ _>""“<

Obviously, the only way to separate the parent graph is to cut
between adjacent interaction lines. The cutting does not FIG. 3. Diagrammatic representation of the two possible inter-
change the ladder structure of the diagrams as seen in Figretations of the difference between BSE and our equatior for
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form a polarization loop which cancels the wiggled line. As a 0 0
result the two diagrams of Fig.(® cancel exactly. In the -2f -1
equation forA in Fig. 2(b) this means that the last two terms fxqe(@) _4| Sxap(@)
cancel and\ reduces to the first term. The excitonic part of /168 772 /A
the xc kernel then reduces to the interaction itself. One can --3

. . _ 1 1 | | | |
therefore expect that in systems with a short-ranged and al 805 1 15 2 1 1214 1618 2

most static effective interaction, the two terms of Figh)3 @ @
will cancel to a large extent, and a low-order approximation
to f EX will be sufficient. Conditions like this can, e.g., be
found in simple metals. On the contrary, in semiconductors
screening is less efficient and the effective interaction is U= }(1+A) _ /}(1_é> 8)
long-ranged. Further research is needed to verify to what k= Vo E,/’ Uk = 2 E./’
extent the cancellation is efficient. )

Cancellation effects as we are expecting them from our Note that this model can be understood as a two-

diagrammatic equation have been seen in Ref. 27. The sug€omponent(‘relativistic”) system. The interactions in the
cess of the lowest-orddi, found in Ref. 27 implies thatle ladder channel and in the annihilation channel in such a sys-

facto the cancellation can be efficient in materials with at€m are always distinct regardless whether the interaction is
band gap as well. long- or short-ranged. Therefore in this _modéé‘ is non-
trivial even in the case of a point interaction.
IIl. MODEL SYSTEM We are going to solve this model in the ladder approxi-
mation, i.e., ignoring self-energy terms and higher-order cor-

lr? this section we consider a mod(fefl system th?]t revealgections to the irreducible scattering matrix. Comparing to
both bound and unboupd excitonic effects and w ere bo”t]ne BSE this implies that refers to the independent quasi-
the BSE and the equation for can be solved analytically.

With the exactf X at hand we can verify under what circum- particles andV is the screened interaction between them.
XC . . ~
stances the first-order approximation fi&é( may be suffi- T_here_fore the one-partlcle Green functiongbére the qua-
cient. The approximate kernel must describe bound as wefiiParticle Green functions:
as unbound excitons. A simple system with a bound exciton : :
is given by the two-band Dirac model with a static density- G _ YWy VoW ok
o . . orlw,k) = — + . 9
density interaction. Moreover, we consider the two- w-E+id w+E-id
dimensional2D) case in order to avoid technical difficulties
with diverging integrals. The model Hamiltonian is given by Note that¥,, and¥, are two-component vectors aihp
is a 2X 2 matrix. To lowest order in the wave vectgrthe

H:f dzrzjﬁ(r)ﬂg//(r)+%fdzrfdzr’ﬁ(r)v(r —rAr), quasiparticle response functiaiys(w,q) is given by

FIG. 4. The real and the imaginary part of the exggp.

2
“@ Xor(®,q) =i f de d—kztrGQP(e+ ,k +q)Ggpl€,k)
wheref(r)=¢'(r)y(r) is the density operatoy/(r) is a two- 2m ) (2m)
component field operator, andr —r’) describes the interac- o [@*+1 1+ 1
tion between the particles. The Hamiltonian for the noninter- =" 16 A( —3 In——- Tz), (10
. - T, 2w -0 o

acting particles reads

o . (A K ) where w=w/(2A). The real and the imaginary part of this

H=kox+ kyoy + Ao, =| | , (5)  function are displayed in Fig. 4. A nonvanishing imaginary

-A part occurs only at frequencies above the quasiparticle gap

_ LA A >1, when the argument of the logarithm becomes nega-
where oy, are the Pauli matrices, =k.£ik,, the 2D mo-  tiye. Note that one sees here explicitly tiedependence of
mentum operatok =(k,,k,), and the band gap equala\2 the response functions mentioned in the Introduction.

The energy dispersion for the noninteracting particles has In principle, we are now in the position to solve the BSE
two branches that we laba&l and v for the (unoccupiegl in this model analytically. However, to proceed further we

conduction band and th@ccupied valence band: need to introduce some technical issues. Due to the matrix
= +E = +A711@ structu_re.ofGQp one has to gompute. traces when calculating
Eo(K) = £ E= £ VAT+K". (6)  xop Similarly; the three-point functionE and A are 2x 2

matrices and traces have to be calculated over internal indi-

The eigenvectors ol are ces in the diagrams of Figs(a) and 2b). Since all these

Uy K. matrices have nonvanishing off-diagonal elements, evalua-
_ | T vk tion of these traces becomes quite tedious. Therefore it is
Vy=| ke |, Wu=| kK (7) . . - .
?vk U convenient to choose the eigenstatedHofis the basis. The
K Green functiorGgp becomes then a diagonal matrix with the
with elements
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cktq ck ck ck vK band states differ from Egg12) and (13) only by sign
v(a,k) = } alkk)="7% g ga2(k, K') = “"": changes or complex conjugation.
vk From now on we use a diagram technique with two dif-

_ _ _ ferent types of full lines representing conduction- and
FIG. 5. The diagrammatic representation of the “bare” vertexyalence-band states. With these lines we associate the scalar

and the “charges” of Eq¢12) and(13). Green functions of Eq1). Vertices are associated with the
scalar functions of Eqg12) and(13).
1 There is an alternative interpretation of this basis transfor-
Gep(@, k) = STEis (11)  mation. Consider one of the traces that has to be calculated
k= for XQPI
We thus can abandon the matrix notation altogether and use
the two scalar Green functior®, andG, instead of the now (W gerq¥ ferg) (W W) (14

diagonal 2¢2 malrix Ggp. Now, every full line is either a o o oniheses show the grouping of the matrix multipli-
conduction- or a valence-state propagatad). This, of tion pOne thus has to calcugfate pthe? outer products of ?WO
course, increases the number of diagrams we need to drafif"on: : : . P

\ﬁéctors, multiply the resulting matrices, and in the end take

because we have to consider all possible combinations CE o trace. However. this arouning can be chanaed as follows:
conduction- and valence-band states. However, in all dia- ' ’ grouping 9 :

grams the “upper” and “lower” Green functions that consti- try TR T Y /A /S SR PR P
tute a particle-hole propagator must always be of a different aicrg(Watcrg ¥ o) Wi = (Wokerg V) (Vi Wk
type (c or v). The diagrams withc-c or v-v two-particle (19

propagators vanish due to the integration over frequencKI . .
. p . “ " . . “Now one computes inner products of two vectors and multi-
since both “upper” and “lower” Green function have their

pole in the same half of the complex plane. This means tha[glies the resultingscalar functions. Taking the trace is ac-
these diagrams do not contribute to the polarization. Thé:ounted for automatically in Eq.15). The change of the

same holds for the three-point functioisand A. Instead of diagram t.echmque puth_ned above is n effect a way to incor
) . . - porate this regrouping into the formalism.
one equation for the 2 2 matrixI" as depicted in Fig. (b) o . :
: ) As noted above, working in the basis of the conduction-
we obtain two coupled equations for the scalar functibgs

andl',.. ForT'., the upper line is a conduction-band state andand valence-band states we have to split the BSE of kg. 1

the lower line a valence-band state, wheread{grit is vice Into two scal_ar equations fai'g,(w,q,k) and Iue(w,q, k).
versa. Note that whilel', andT",. depend on two momenta, they

The transfer to the diagonal representation Gp is depend only on one frequency for a frequency-independent

equivalent to a corresponding transformation of the field Op_!nteractmn. These two three-point functions are in fact not

erators in Eq(4). This transformation generates the “bare” independent but _reIatgd by the replacemgnt qo—-o
vertex, describing interaction with an external field in the‘f’.‘nd complgx conjugation. We can therefore derive one equa-
polarization diagrams, as well as the “interaction vertices.’IIOn for Lo,

In _the orlglnal representatiqi®) all these vertices are S|r_nply_ Ty(@,9,k) = Ty (w,,k)

unit matrices. They become, however, nontrivial matrices in .

the diagonal representation. In fact, only three matrix ele- +Sv 91K, K )T gy (w,9,k")gy (K", K)

ments of these vertices are essential. These are depicted in kik? 2By -

Fig. 5. To the lowest order in the transfered wave vegtor
the bare vertex computes to

K’

gZ(kik,)F::U(_ W, qik,)QZ(kI!k)

+ 2, Vikr
vttt (o o] Sun S
K) = + vk = A2 - " + | - 12
Y(Q ) ck+q k ZEk ukq Uk Kk q ( ) (]_Ga)
Note thaty(q,k) is linear inq because of the opposite parity
of ¢ andv eigenfunctions ak=0. Thus the lineaig depen- -3 01(k,k")¥(q,k")g,(k",k)
dence stems from the off-diagonal momentum operator in the I'y(w.9.k) = ; Vick! 2E - w
Hamiltonian(5). This is actually the cause of thg depen- K
dence of the response function we referred to above in con- ga(k, k)Y (—a,k")gy(k’,k)
juction with Eq.(10) and in the Introduction. The “charges,” +2 Vick! 2E., + o :
i.e., the vertices associated with the interaction, are given by k' K
) (16b)

N —apt — ko k+
91k, k') = WaWaer = Ui +7 vy (188 i that we omit the] dependence in the “chargeg; and
g, as well as in the energy denominators, as we are only
Kk ’ interested in the lowest-order expansiongnwhich stems
gz(kvk,):\PIk\Puk’:IUkuk’_ukvk’g- (13b  from the dipole matrix elements in the external vertices.
HereVy . are the matrix elements of the interaction between

All other possible combinations of valence- and conductionthe particles. Now we investigate this equation for two dif-
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ferent types of interaction: a general short-range interaction ¢ v
and the long-ranged Coulomb interaction. [y = ®+ @
v C
IV. A SHORT-RANGE INTERACTION FIG. 6. The diagrammatic expression fdy..

A. The solution of the BSE . .
large k. This divergence can be removed by the standard

In this section we solve Eq16) for a short-ranged inter- enormalization of the interaction
action, i.e., an interaction with a characteristic length scale
shorter tham™ . The final results are expressed in terms of V= v _. 4_77a (20)
the physicalrenormalizedgi scattering length, which includes 1-VY 1/(4E,) A
the high-energy contribution to the integrals in E46).
Having in mind this renormalization we can formally use a
momentum independent bare interactign. =V in Eq. (16).
Note that this does not maleféC trivially equal to the inter-
action itself as discussed in the last paragraph of Sec. iNg equation:
because for our two-band model the annihilation channel and

where we introduce the d|menS|onIess scattering lergth
With this renormalized interactiofs (w) fulfills the follow-

'cv

— S
the ladder channel remain different even for a contact inter- CU)(“’) =Vr(o) +VK°(w)F(°U)(w) @D
action. From Eq(16) we see, that thk dependence df ., is  with
given by the “charges” from Eq13) and has the same gen- 2
eral form as for the bare vertgt2). The same is true for the Ko(w) = Ko(w) - 2 —=> M (22)
g dependence. Therefore we can write the following ansatz k 4B 4Ek(4EE_ )

for I',: . . .
@ Equation(21) has the obvious solution

k-
I'ey(w,9,k) =u F(S)w+<v >+(d)a). 17 IV,
w(@,0,K) = kq () ky, ) d CU( ) (17) F(s( w) = Y(w) (23)
Inserting this ansatz into E¢16) we obtain two coupled 1= VKO(w)
equations: Calculating the 2D integrals in Eq22) and y;(w) in Eq.
4 4 (19), we obtain
r<sw)v2<“"—”") 1+9)2 1 A
+ +
k 2Ex (2Ek w) (2Bt w) Ko(w)‘ Al+e) In f’ = —F(®) (24)
4w -0 47
+V o Tg(w) +V I (- w),
% 2E () + Ek: 2Ek I'e, (- o) and
- 1 [1+2)? 1+ 1 12 1
SR )
T R Sy R TeA L
F(d)( )= VE ( u‘k1 _ vﬁ ) (25
k 2Bk (2Ek+w) (2B~ w) Inserting these integrals into the soluti¢dl) we can
4 compute the response functlonfs partll.=x—xop and its
+VY, ( )+V> F(S> (- w). first-order apprommaﬂorﬂ . In diagrammatic forml, is
k 2Ek k2Bt displayed in Fig. 6. The results are
W age g([F(E))-%]2+ [F*(—a>—%]2)
From these equations it immediately follows tHE@S)(w) xe 16mA %\ 1 -aF(®) 1-aF (- o)
—F(d) (-w) and the equation to solve reduces to (26)
4
Uy o and
Iol(w) =V o= ( - )
R M Ga=-—22 {F@)-}T{F*(—w-lr
u of Vs R T 2] )
+V + re
2<2Ek w 2Ek+w> (@) (27
—Vyy(o) +VKO((u)F§)(w). (19) where the functiorF(w) is defined in Eq(24).

The equation forA given in Fig. Zb) can be solved in a

At this point it is convenient to perform the above- similar fashion, which allows us then to calculate the exci-
mentioned renormalization of the interaction by splittidg  tonic part of the exackc kernel. However, it is easier to
into a low- and a high-energy part, the latter being equal tabtainf | Ex < directly from Eq.(2) and the exact response func-
2¢1/(4Ey). The high-energy part logarithmically diverges at tion y= XQP+H><C with II,. from Eq. (26):

245119-6



EXCITONIC EFFECTS IN TIME-DEPENDENT.

10
5

Rx(@) 0
¢%/16xA
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FIG. 7. The real and the imaginary parts of the exacull) and

the’y based orf Eg(” (dashegfor the scattering length=0.25. The
real and the imaginary part gfop are shown by the dotted line.

_ Xor@,0)(®,9) xoH(@, )
1 +X<_glp(a’:Q)ch(70.Q) .

From here the first-order approximation It&é‘ immediately
follows:

fB(@,q)

(28)

(1) ~ 1~ ~ 1~
£ 2(@,0) = Xos@, DML (@, D) xs@,q). (29

. . . . .
Inserting thisf Eg‘l in Eq. (3b) we arrive at an approximate

solution for the response function& part

1Y (@,q)

Hf(l)('d),q) — X L .
X° 1 -1 (@,9) XoH®,)

(30)

@ . ,
Note that althougtf £ is based oIV, this formula does

Xc’?
not coincide with H)((lc). In accordance with Eq3b) it ac-

counts for an infinite series of diagrams instead. This way,

the excitonic pole inll,., Eqg. (26), which has been lost in
Y, Eq.(27), reappears in Eq30).

xc’

B. Results

PHYSICAL REVIEW B 70, 245119(2004

0.6

RiEx/a
167A/¢*

04 QfEx/a
Joa 167A/q?

2 1 12 14 16 18 20
7

(]

FIG. 9. The real and the imaginary part of the ethg/a for
a=0.05 (doty, a=0.1 (dashey a=0.25 (long dashes anda=0.6
1

(dot-dashescompared withf ECX( '1a (full).

e=2exg--—|.
a

The approximate response function of HE§0) which is
based orf -® has a pole

1 - xoH @, I (@,q) = 0.

Similarly to the solution(32) of the exact equatio(31), for
a small binding energy this equation can be approximately
solved by

~ ;{ 1 1—a—\’1—2a—a2>
e=2exg—-—+ ,
a 2a

which differs from the exact resu(B2). However, e.g., at
a=0.2 this is only about 14% larger than the exact solution
(32), which givese=~0.013. For a smaller scattering length
and therefore a smaller binding energy the agreement be-
tween the exact result and the one basedf 5@1) is even

(32)

(33

(34)

better.

In Fig. 7 the real and the imaginary part of the exaeind
the ¥ based onf EZ(” are shown for the scattering length
=0.25. For comparisonyqp is also displayed. One clearly
observes a very good agreement between the exact and the

Having calculated the exact and the approximate expre2PProximate response functions. Both main features, the en-

sions for the excitonic part of thec kernel and for the re-

hancement of the imaginary pafthe Sommerfeld factor

sponse function we are now in the position to compare thes@nd the excitonic peak are correctly reproduced. The latter is
results. Let us start with the excitonic peak in the absorptiodndicated by the arrows on the plots of the imaginary part.
spectrum. In both the exact and the approximate response'€ apparent difference between the exact and the approxi-
functions the excitonic peak originates from the divergencé“ated response function is the exact position of the excitonic

of the xc part. The exactl,. in Eq. (26) has a pole at

l1-aF(w)=0 (31

for positivea and O<w< 1. When the dimensionless exciton

binding energye=1-w is small, Eq.(31) has an approxi-
mate solution

: , 0
or o \ i
20 |- \ ! -0.1
L) I | S— | z _SX@)
P/16rA o |=s H —0.2 ¢%/167A
- v
\
1
il R R I -03

FIG. 8. The real and the imaginary parts of the exadull) and
1
the’y based orf Eg( : (dashegfor the scattering length=0.6.

peak as described above. The oscillator strengths should also
be different, which is not, however, reflected in the figure.

From the above discussion one could conjecture that the

. . . Exl .
approximation for the response function basedfg(g“ is
always sufficient. This is, of course, not true, as we can see
from Fig. 8, where the approximate and the exact response
function are compared for the larger value of the scattering
lengtha=0.6. With this large interactidfithe position of the
excitonic peak in the approximate response function is
clearly wrong. In addition, the imaginary part has the wrong
magnitude above the band gap.

To uncover the background of the good agreement be-
tween the exact and the approximate response functions for a
“weak” interaction, let us compare™” with the exactf £
for different interaction strengths. We note first thiiﬁ(l) is
proportional to the scattering length Therefore, more ad-

_ (1) . -
equate is to compareE* " /a with f E¥/a, as done in Fig. 9.
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It is clearly visible thatf is a very good approximation to
the exactf EX in a frequency range close to the band gap.
Actually, for =1 we obtain from our exact expressions

167A
q2

KD

fE

(w=1)=~ (35

a

and

16mA a
TR ¢ 1-adl4’ (36

Thus even for a very strong interactionasf 0.6 wheref | EX

fa@=1)

PHYSICAL REVIEW B 70, 245119(2004
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FIG 10. The real and the imaginary parts tiifEX/a2 (f
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dashe}; anda=0.6 (dot-dashes

mteractlon where the response funct|on stemmmg from
fEx is quite wrong, the first-order kernéEC is still very

leads to the rather poor response function of Fig. 8, “there '@ood close tom=1. This is the reason for the success of

only a 10% error irf | EX atw 1. In the static case the errors
are larger, as we get fas=0:

1), 167A 9
o @=0=- 7 & (37)
and
- 167A9 a
MMo=0=- 7 8l+a (39)

Here a 10% error is already reached &sr0.1, as the ratio of
f B and f & is of ordera, whereas it is of ordea? at &
=1.

It is also interesting to Iook at the differenc# EX be-
tween the exactf £ and f EX " for different |nteract|on
strengths. Since the leading ‘order termdfr is of the order
a?, we normalize these differences &% when plotting them

in Fig. 10. The general behavior of the different curves is
quite similar, which indicates that it is mostly the second-

order approximatior Ex? that contributes taf EX . One may

fEX in describing the bound excitonic states as shown in
the preceding section. Since arouad 1 the first-order ker-

nel f Eg(l) is a good approximation, if theexac) bound ex-

citonic state lies within this regiont Eé( will describe it

correctly. If, however, the binding energy is outside this re-
gion, f E;‘(l) will fail. Note that as seen from Fig. 9 this region
gets smaller as the interaction increases and at the same time
the binding energy of the exciton increases. Hence the error
in the exciton binding energy increases with the increase of
the interaction strength.

Can we understand the good agreement betvﬁ{;gﬁ)
andf X for w~ 1 in terms of the integral equation far? For
this we explicitly calculate the diagrams involved in the re-
placement shown in Fig.(B). Working with separate Green
functions for the valence- and conduction-band states we
have four possible combinations of the external lines and can
therefore split this replacement into four parts according to
these combinations. At energies close to the band gap the
two-particle propagator with a conduction-band state in the

be surprised that the curves for stronger |nteract|on are closgjpper line should dominate. Hence, the most important part

to 0 for <1, which might indicate thaf £ "is a better
approximation forstrongerinteractions. However, this is not

. (3) . . ~
the case. This only tells us thafX" is positive form<1.
C. The validity of the first-order approximation

From the preceding section we can conclude ﬂf@t is
a good approximation td EX close to the band gap=1

of this replacement is the diagram with a conduction-band
state in the upper line on both sides of the graphs. This
diagram together with its translation into quantities intro-
duced in the preceding section is displayed in Fig. 11. Note
that we use the bare interactidn here, as the interaction
renormalization in these diagrams means simply a replace-

mentV— V.
Insertingg;,I'1, xop @nd y in the expression in Fig. 11

practically for any interactlon strength. Even for a strongand taking the limitw— 1 we obtain:

Vai(k k') = Ty(@=1,0,k) xoh® = 1,9) (k'

k.

A +<£ )2(_
Eo) \k'% \k*

2
=V[u§u§,(l— k’) +

Not surprisingly the whole expressi@89) is proportional to

the interactionV (or V after renormalization In the propor-
tionality factor in square brackets all summands contain

)
K}

2 2
Ko%= A
K Uk/) ( q ) Ek, :| . (39)

K !
2
2?Ukukuk/vk/g + Uk<

—-A/Ey) (or powers theregf For the first summand this is

directly visible, in the others it is “hidden” iny. Let us look
at this factor more closely. When the diagram of Fig. 11 is

245119-8
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C C C v A C v \Z C C
T ke ek RO RGO OO O,
- ! \' v v (o} C v c [ v v

vk vk vk vk
. . ) .. ~
= Vgi(k, K) - [y (w, 9, k)xgh(w, a)r*(a, K FIG. 13. Approximation fodl,; in the limit of smalle.
FIG. 11. Explicit calculation of one replacement. Har@ndq u=~1 and v,=0. (42

are the transferred energy and momentum. . i i i
Solving the BSE thus reduces to solving the positronium

problem in 2D for particles with a mass i.e., for a reduced

g‘\/S:rrltﬁdh'géotéhSequﬁg?:]ggk _?Lg'r%aingl;:fﬂEjﬁg;a?:rt‘hismassA/ 2. The response function can be written in the spec-
P : tral representation &s

integral comes from small momenta, due to the small energy

denominators in the particle-hole propagator. However, for Hw.q) = | 0)|22 [n(r = 0)|?
th(laEse small momenta the expressi(9) is small asA X =M oA e
= k,'

We can therefore conclude that close to the band gap the _ O [o(r = 0)|? 43
kernel in the equation foA is indeed small for those states =~ |¥(a,0)| w—(2A -5 20 -e)’ (43

that mainly contribute to the integral. Thus we explicitly ob- _ ) _ _

serve the cancellation we qualitatively discussed in Sec. IIwhere they;, are the eigenfunctions with eigenvalueg
This cancellation explains the excellent agreement betweefPositive for bound statgs of the above-mentioned
ffé( and f Ecx(l) for H~1. Schrodinger equation. The approximation in E&B) is valid

A complimentary interpretation can be obtained fromclose to the excitonic peak of thes §round state, in which
we are interested in here. The ftvave function needed in

looking at the diagrammatic expansion of the response funct-h. mation is i b
tions. In Fig. 12 the third-order term in the expansion of the IS approximation Is given by

exacty and they based orf & is displayed. The difference _ [2Ag ron
between the two expressié%s is similar to the replacements Yolr) = T exp(= VAeor} (44)
discussed in Sec. Il. This remains true in all orders of the ) o )

perturbation theory. From the previous calculation of the ef-2nd the exciton binding energy is

fect of this [gplacement follows, that the exgcand they go=€*A. (45)
based orf £~ are almost identical in the vicinity of the band
gap, independently of the position of the excitonic peak.

Introducing dimensionless variablésandz,=gq/(24), we
arrive at

5 o~
~ q €0
V. THE COULOMB INTERACTION X(E’(U ~ (46)

ZWAEO_E

In this section, we consider the 2D Dirac model of E4). 5 o
with the Coulomb interaction between the particles, i.e.,  for € close to the excitonic peak of thes ground state.
We now want to compare the position and the oscillator

strength of the excitonic peak of the ground state with the

Vb= = Ir=r'|’ (40 results obtained front Eé((l). For this we first expangqp of
Eq. (10) for smalls,
wheree is the particle’s charge. Note that E40) is the 3D 2
interaction although our model systgm i§ 2_D. We yviII not Xor(z,0) = q {In(:) - 1] (47)
attempt to solve exactly the BSE with this interaction, but 167A €

rather focus on the properties of shallow excitons. The Weall< d btairf & | d . ﬂatl)
binding limit§=1-a<1 is, in fact, a “nonrelativistic” limit |1 Order to obtaint ¢ we aiso need an expression idf;
where the BSE reduces to the two-particle Schrédingel? the limit of smalle. In diagrammatic formil, ; is given by

equatiors® The quasiparticle energy eigenvalues are approxi& Single graph as displayed in Fig. 13. There are four possi-
bilities to distribute the conduction- and valence-band states

matel
Y in the two particle-hole propagators. The particle-hole propa-
K2 gators with a conduction-band state in the upper line and a
Ex= A+Z, (41)  valence-band state in the lower line divergeast1. The

particle-hole propagators with a valence-band state in the
upper line and a conduction-band state in the lower line di-
verge afw=-1. Therefore, in the limit where the energy goes
to the band gajor equivalentlyz is smal), the main contri-
(2) @ (b) bution to I’ comes from the diagram with both particle-
hole propagators of the upper line belonging to the
FIG. 12. Third-order term in the expansion @ the exacfy  conduction-band state and the lower line to the valence-band
and (b) the’y based orf Eg‘(l) in terms of the interaction. state. Neglecting the other contributions is our first approxi-

and for the eigenvectors holds
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mation in calculating'[f(lc). The other approximation is using more precise, the error is below 10% f& between 1/165
Egs.(41) and(42). With these approximations we obtain ~ and 1/222. Itis below 20% fd&¥, between 1/148 and 1/271.
5 , Note that in the range of energies where the approximation
H(l) (3,q) ~ ICHY > V(k —k’) gives good results; is indeed small, so that our approxima-
xe 8y S [3(kA2+3][5(k 182 +5] tion is consistent. It is interesting to note that for the Cou-
' lomb interaction—in contrast to a short-range interaction—
(48) one does not get the correct exciton binding energy from
whereV(k-k')=27€?/|k—k’| is the Fourier representation fng(” in the limit of the interaction strength going to zero.
of V(r-r’) from Eq. (40). The easiest way to solve this Note also that while the exact solution of the 2D hydrogen
double integral is to look at it in the real space, instead of thgroblem gives rise to an infinite series of excitonic peaks in
Fourier space, where it becomes a single integral. The 2Ehe exact response function, we obtain owolye excitonic
Fourier transformation of the particle-hole propagatorpeak in the approximate approach. This problem was already

[3(k/a)2+%]™ gives the modified Bessel function of the touched upon in the Introduction. AlthoughtX” is fre-

second kindK,, so that we can write quency dependent, it does not contain the rapid oscillations
202 % needed to describe the whole series of excitonic states.
H(l) 3,q) = _q_ deg(p)_ (49) To compare the approximate response function_of(Eb). .
8mANZe Jo to the exact one from E@46) and determine the residual it is

£(1) R
The integral oveK3 computes tq7/2)?, and we arrive at best to expand’ ~ aroundz. This can be done by calculat-
ing the first-order Taylor expansion of the denominator in
1) q
I, Ga =

2 2 [3 5o EHBD:
16mA 2 V&~ |y ~
or © ,..f(l)(,,, o) ~ o (T\ESE, B

Now we have all ingredients to builﬂfé _XQPH(l)XQP and 167A £ — (2783 €~ %o
insert it in Eq.(3b). This gives the following approximation

for the response function based bf’

(55)

In the case where the exciton energy is exactly reproduced,
i.e., forg(=%q, the second fraction in Eg55) is about 16.6.

e xop(®,0) The oscillator strength is thus too large by a factor of 2
X (9= @) inspite of the fact that the binding energy is exact. The value
H ( q)XQP(N ) of this second fraction is almost constant for a large range of
o [In(2/) - 1] ratios /o, so that mainly thé( in the numerator of the
= - = third fraction in Eq.(55) produces additional errors in the
16mA 1 -[In(2fz) - 1] ™ (#*12)\E /& oscillator strength. The larger oscillator strength is not too
(52) surprising, as the excitonic oscillator strength is distributed
_ o _ _ over more peaks in the exact response function.
Note that this equatlon is valid only for small since we Similar to the results for the short-range interaction of the
derived xqp andH . only for small values OE. preceding section, we observe that the cancellation effects

From Eq.(52) we clearly see tha}f contains an addi- are also effective for the long-ranged Coulomb interaction.
tional pole where the denominator vanishes. This is the exHowever, the general structure of this cancellation is differ-
citonic peak in this approximation and its enefglyis de-  ent and cannot be universally characterized. Hence the accu-

. ) .
fined by racy of f 2" has to be checked for every particular system.
5 1.2 7 The integral equation foA together with the replacement
{m( ) - 1} > ~—? =0. (52) procedure of Fig. 3 provides an appropriate tool for this task.
€o €o
To evaluate the approximation used let us reformulate Eqg. VI, SUMMARY AND CONCLUSIONS
(52) as '
4 ~ = We have investigated the excitonic effects within the lin-
€ =% = Zf—?exp{— <_ A2+ 1)} (53) ear response TDDFT._ In general, two different types of cor-
2 € £g relation effects are important for the response function.

These are the excitonic and the quasiparticle effects, which
are both absent in the adiabatic local density approximation.
Within TDDFT both types of correlations are contained in
et ? 1 the exchange-correlation kerng).. As we have shown in
—=%p=2exg-|—=+1 ~ 189 (54)

We see that the approximate binding enéggynd the exact
binding energyg, are identical for

2 2 * Sec. Il, thexc kernel can be unambiguously split into a qua-
siparticle partf Pand an excitonic parf E* <, Which sepa-
In other words, for the interaction strength that correspondgately describe these two effects. We focus on the excitonic
to this quite r(eal|st|c exciton binding energy, the approxima-part in this paper and did not consider the quasiparticle part.
tion usingf ;¢ EX™ gives the exact binding energy. For strongerThe latter is usually accounted for by using B/ approxi-
and weakermteractlon strength there is some error. To bemation.
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In the absorption spectrum of semiconductors and insula- We approached this question using analytic calculations
tors the two-particle excitonic correlations produce two typedor a model two-band semiconductor with different interac-
of effects: sharp peaks in the band gap stemming from bountions. For a short-ranged interaction we computed the exact
excitons and broad peaks above the band gap due to thiespons%)function as well as the response function derived
Coulomb correlation between the electron and the EX ; ; -
bound excitons These effects are commonly descr?gé?j byfrgg:j faxc . comparing thesg two fgncnons we find very _

e X greement for a weak interaction, where both the bind
the BSE within standard many-body theory. Solving the BSE 4 anergy of the shallow exciton and the Sommerfeld factor

is very demanding in the general case, though. TDDFT couldiemming from unbound excitons are correctly described by
provide a significant simplification, if a good approximation e first-order kernel. We were able to trace this to the strong
for f,c is available. To link TXD,DFT with the BSE we have cancellation in the kernel of the equation ferfor energies
expressed the excitonic per in terms of an effective ver-  ¢|ose to the band gap. Calculations with the Coulomb inter-
tex function A, for which we diagrammatically derived an action give similar results, though the deficienciesf 53‘(1)

integral equation. This equation is structurally similar to the . ; ;
BSE and establishes the connection between the commdH€ somewhat worse in this case. The cancellation effects

many-body theory and TDDFT. However, solving this inte- °SCUr in both cases, and we were able to explicitly calculate
gral equation is at least as difficult as solving the BSE. Nev—the_}m' Fo; i[l _g|ver; mode_:lljlw? gaveka criterion I(')f tthe c?ncel-
ertheless this approach has a certain advantage. Namely, t lon, yet It IS not possible 1o make a generaiization for an

kernel of the integral equation fof shows the possibility of ar 'It[rzae:syesgjltc(?l?ét'ons represent an example that the intearal
cancellation effects. If the cancellation were compld uiatl P xamp integ

. . . ) equation forA can serve as a tool for evaluation of the va-
would be simply equal to the first-order approximatfdg . lidity of low-order approximations té £%. Testing the predic-

. . L &) ;
This suggests that in some situatioh§’ ~ can provide a tive power of this approach for other systems will be the
good substitute forf Eg( Generally, the possibility to use subject of future work.

@ . _ Lo
f 5 instead off £ is a tremendous simplification, as there
would beno need to solve an integral equatitmobtainf £ ACKNOWLEDGMENT
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