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We investigate the description of excitonic effects within time-dependent density-functional theory(TD-
DFT). The exchange-correlation kernelfxc introduced in TDDFT allows a clear separation of quasiparticle and
excitonic effects. Using a diagrammatic representation forfxc, we express its excitonic partf xc

Ex in terms of the
effective vertex functionL. The latter fulfills an integral equation that thereby establishes the exact correspon-
dence between TDDFT and the standard many-body approach based on the Bethe-Salpeter equation(BSE).
The diagrammatic structure of the kernel in the equation forL suggests the possibility of strong cancellation
effects. Should the cancellation take place, already the first-order approximation tof xc

Ex is sufficient. A potential
advantage of TDDFT over the many-body BSE method is thus dependent on the efficiency of the above-quoted
cancellation. We explicitly verify this for an analytically solvable two-dimensional two-band model. The
calculations confirm that the low-orderf xc

Ex perfectly describes the bound exciton as well as the excitonic
effects in the continuous spectrum in a wide range of the electron-hole coupling strength.
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I. INTRODUCTION

Calculation of electronic excitation spectra remains one of
the central problems of the quantum theory of solids. Of
special interest are two-particle electron-hole excitations,
which determine the material’s optical properties. In semi-
conductors and insulators the electronic screening is sup-
pressed by the energy gap and the interaction of the excited
quasiparticles may substantially modify the excitation spec-
trum. The excitonic effects stemming from this interaction
comprise the formation of bound electron-hole states as well
as the alteration of the absorption in the continuum spectrum
above the band edge. The latter is commonly referred to as
unbound exciton effects or the Sommerfeld absorption en-
hancement.

In many-body perturbation theory two-particle excitations
are characterized by the two-particle Green function that sat-
isfies the Bethe-Salpeter equation(BSE).1 Already in 1980
Hanke and Sham,2 using an approximate tight-binding rep-
resentation, showed that the BSE correctly describes the
strong excitonic features above the optical absorption edge in
Si. In the current “state of the art” procedure(see Ref. 3 for
a recent review) the calculation of excitonic effects involves
three steps. First, a density-functional theory(DFT) calcula-
tion in the local density approximation(LDA ) is performed.
In the second stage, the LDA Kohn-Sham(KS) energies and
wave functions are used as a starting point for theGW cal-
culation of the quasiparticle spectrum. Finally, the BSE is
solved numerically, using theGW eigenvalues and the LDA
wave functions as input characteristics of the noninteracting
quasiparticles. The outlined procedure leads to highly accu-
rate results, as has been shown for a number of relatively
simple systems, mostly bulk semiconductors(see Ref. 3 and
references therein). However, this method is extremely labo-
rious, and for more complex systems the calculations be-
come prohibitively expensive.

A promising alternative that has been intensively devel-
oped over recent years relies on time-dependent density-
functional theory(TDDFT).4 This theory allows us to calcu-

late (formally exactly) the linear density-density response
function and thereby the excitation energies.5 Since in the
framework of DFT the exchange-correlationsxcd effects are
lumped in a localxc potentialvxc, the TDDFT equation for
the response function contains the variational derivative
of vxc with respect to density fxcsr ,t ; r8 ,t8d
=dvxcsr ,td /dnsr8 ,t8d. This xc kernel fxc is the central un-
known quantity of TDDFT in the linear response regime. In
their pioneering work Zangwill and Soven6 calculated the
photoabsorption in rare gases in a self-consistent field man-
ner. They used what later became known as the adiabatic
local density approximation(ALDA ), simply substituting the
time-dependent density in the LDAxc potential vxc

ALDA

=vxc
LDA(nsr ,td). The resultingxc kernel is local in space and

time: f xc
ALDA =dsr −r 8ddst− t8ddvxc

LDA /dnsr d. ALDA has been
successfully applied to various finite systems like atoms or
molecules.5,7–9Typically in these systems already the random
phase approximation(RPA) response function calculated
with KS eigenvalues and eigenfunctions gives good results.
The correction due tof xc

ALDA is quite small, which signifies
that Hartree effects dominate in the response function. Un-
fortunately, f xc

ALDA remains insignificant also in extended
systems such as semiconductors or insulators, where KS-
RPA gives a very poor description of the absorption
spectra.10,11Thus, whereas a correct accounting forxc effects
becomes crucial in extended systems, the ALDA kernel
f xc

ALDA fails to provide even a reasonable starting approxima-
tion.

In the late 1990s it has been realized that ALDA cannot
serve as the basis approximation for the dynamicxc response
of an inhomogeneous electron gas, because of the intrinsi-
cally nonlocal nature offxc.

12 For extended systems with an
energy gap this remains valid even in the static case.13,14

The importance of the nonlocality offxc was highlighted
by the work of Reining and co-workers,15,16 who were able
to describe the contributions of unbound excitons in several
diamond or zinc-blende type semiconductors with a staticxc
kernel proportional to 1/ur −r 8u. Other examples for this are
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the exact exchange kernel17,18 and the results of de Boejiet
al.,19 where in the context of time-dependent current-density
functional theory20,21 the nonlocal effects were crucial for
accurately describing the effects of unbound excitons.22

It can be easily understood that a nonlocalfxc is crucial
for describing excitonic effects. Within TDDFT the proper
polarization operator is defined via the RPA-like equation

x̃svd = xSsvd + xSsvd · fxcsvd · x̃svd,

where in a crystalline solidx̃, the Kohn-Sham response func-
tion xS and fxc are matrices in reciprocal space. The matrix
structure ofx̃ is responsible for local-field effects. However,
these are relatively small in typical semiconductors and can
be neglected for a qualitative analysis. Keeping only diago-
nal elements with zero reciprocal lattice vectors, we can eas-
ily solve for x̃, obtaining

x̃sv,qd =
xSsv,qd

1 − fxcsv,qdxSsv,qd
.

The macroscopic dielectric function«M is given by

«Msvd = 1 − lim
q→0

VCsqdx̃sv,qd = 1 − lim
q→0

VCsqdxSsv,qd
1 − fxcsv,qdxSsv,qd

,

with the Coulomb interactionVCsqd=4pe2/q2. An additional
excitonic peak in«Msvd appears when the denominator van-
ishes. However, it is well known thatxS is proportional toq2

in the limit q→0 for systems with an energy gap.23,24Hence
fxc must behave as 1/q2 in this limit to counterbalancexS.
Otherwise thexc kernel would have no effect on«Msvd at
all. For the static long-rangedxc kernel of Reining and co-
workers we havefxcsv ,qd=4pe2b /q2 with some constantb.
The macroscopic dielectric function thus reads

«M = 1 −
4pe2aSsvd

1 − 4pe2baSsvd
,

whereaSsvd is the macroscopic polarizability of the Kohn-
Sham systemaSsvd=limq→0xSsv ,qd /q2. For a typicalaSsvd
close to the band edge this formula suggests the existence of
only oneexcitonic peak. However, one expects several peaks
from unbound excitons above the band gap and bound exci-
tons within the gap. Phenomenologically one could over-
come this problem by introducing a frequency-dependentb.
One though would need to introduce very rapid oscillations
in the region of the Rydberg series of bound excitonic states.

Probably the most promising path in the quest for a good
approximation tofxc is a direct comparison of the TDDFT
formalism with the BSE.15,25–27Simply comparing the calcu-
lated spectra, it was found that it is often sufficient to use an
approximation tofxc that is of the first-order in the screened
particle-hole interaction. Although these results are very en-
couraging, it is unclear why this approximation is so efficient
and what its range of validity is.

In this paper we derive a diagrammatic expression that
exactly relates the excitonic part offxc to the BSE. We start
with splitting fxc into two parts, separately accounting for
quasiparticle and excitonic effects. We then apply the dia-
grammatic rules we previously derived28 to these two parts

of fxc. This leads us to an expression for the excitonic part of
fxc in terms of the three-point functionL. The latter satisfies
an integral equation similar to the BSE that establishes the
exact correspondence between TDDFT and common many-
body theory. The main advantage of this approach is that the
possibility of cancellation effects, which have been conjec-
tured in Ref. 27, is directly seen in the kernel of the equation
for L.

In order to investigate the properties of our integral equa-
tion and the applicability of low-order approximations we
study a model two-band system. In this model both the BSE
and TDDFT equation can be solved analytically, which of-
fers an ideal test bed for approximations to the exactfxc. We
find that indeed there are strong cancellation effects in the
integral equation forL in the energy range close to the band
gap. For this reason both the shallow excitons and the un-
bound excitonic effects are well described with a first-order
approximation to the excitonic part offxc.

The paper is organized as follows. In Sec. II we investi-
gate diagrammatic properties of the excitonic part offxc and
derive an exact correspondence between TDDFT and BSE.
In Sec. III we introduce the model system that is used in
further calculations. Sections IV and V are devoted to ana-
lytic calculations of excitonic effects with a general short-
ranged and the Coulomb interaction, respectively. Finally, we
present our conclusions in Sec. VI.

II. DIAGRAMMATIC MEANING OF fxc

The Bethe-Salpeter equation in the particle-hole channel
is commonly formulated as an integral equation for the
particle-hole propagator or the scattering matrixT in the lad-
der approximation. This integral equation is equivalent to a
summation of all ladder diagrams. The diagrammatic repre-
sentation of theT-matrix formulation is depicted in Fig. 1(a),
where the full lines are the quasiparticle Green functions and
the dashed lines represent the screened interaction. In the
context of a connection to TDDFT we are not interested in
the four-point particle-hole propagator but rather in the re-
sponse functions. Therefore we consider a modified BSE
where two of the external lines of the scattering matrix have
been contracted to form the three-point functionG. The dia-
grammatic representation of the integral equation forG and
its relation to the proper polarization operatorx̃ are depicted
in Fig. 1(b). For our purposes this equation is equivalent to
the BSE. In the following we refer to the equation in Fig.
1(b) as the Bethe-Salpeter equation.

In terms of TDDFT the proper polarization operatorx̃ is
given as

FIG. 1. Diagrammatic representation of the Bethe-Salpeter
equation.
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x̃svd = xSsvd + xSsvd · fxcsvd · x̃svd, s1d

wherexS represents the density-density response function of
the noninteracting KS particles, i.e., a bare loop of two KS
Green functions. Equation(1) looks like the RPA equation,
although it relatesxS with the full x̃, which includes all self-
energy and ladder diagrams. We can therefore interpretfxc as
an effective interaction that describes self-energy and ladder
diagrams in the annihilation channel. Therebyfxc contains
both quasiparticle and excitonic effects. As in this paper we
are only interested in the excitonic effects, it is tempting to
separate these two contributions tofxc, as suggested in pre-
vious works.15,25 This separation is indeed possible without
approximations, because we have

s2d

where xQP is the density-density response function for the
noninteracting quasiparticles(QP). By definition, f xc

QP and
f xc

Ex are the kernels of the following RPA-type equations:

xQPsvd = xSsvd + xSsvd · f xc
QPsvd · xQPsvd, s3ad

x̃svd = xQPsvd + xQPsvd · f xc
Exsvd · x̃svd. s3bd

The newly introduced quantitiesf xc
QP and f xc

Ex describe qua-
siparticle and excitonic effects, respectively. This can be vi-
sualized by applying the diagrammatic rules forfxc as de-
rived in Ref. 28. The structure of the diagrammatic
representation off xc

QP and f xc
Ex is similar to the one forfxc,

except that forf xc
QP one has to use KS Green functions and

should only account for all possible self-energy insertions in
every order of the perturbation theory. This clearly describes
the quasiparticle corrections. Forf xc

Ex one should use the qua-
siparticle Green functions with all possible particle-hole in-
teractions. Obviously, this reflects excitonic contributions. It
is important to note that the general properties of the pertur-
bative expansion offxc obtained in Ref. 28 remain valid
separately forf xc

QP and f xc
Ex. In particular,f xc

QP remains finite
at KS excitation energies in every order of the perturbation
theory. The same holds forf xc

Ex at excitation energies of the
noninteracting quasiparticle system. Note that ourf xc

Ex is the
same as thef xc

FQP of Refs. 26 and 29.
Let us briefly outline the diagrammatic rules for the exci-

tonic part of fxc. According to Ref. 28 with the above-
mentioned modifications we have to draw all loops withn
particle-hole interactions to construct thenth order correc-
tion. These diagrams serve as parent graphs for the construc-
tion of thenth order f xc

Ex. To comply with the BSE we must
use the ladder approximation here as well.32 Therefore, only
one diagram withn interactions is left. To the two ends of the
diagram we have to attach wiggled lines representingxQP

−1.
Next, we work out all possibilities to separate this parent
graph into two by cutting two fermionic lines. Then we join
the external fermionic lines of these parts, connect them by a
wiggled line, and change the sign of the resulting diagram.
Obviously, the only way to separate the parent graph is to cut
between adjacent interaction lines. The cutting does not
change the ladder structure of the diagrams as seen in Fig.

2(a). The summation of all ladder diagrams can be cast in an
integral equation as displayed in Fig. 2(b). If one insertsf xc

Ex

obtained by solving the equation of Fig. 2(b) into Eq. (3b)
and calculates the response functionx̃, the result will be the
same as thex̃ obtained from the BSE. In this sense the equa-
tion of Fig. 2(b) gives the exact “translation” of the BSE into
the TDDFT language.

At this point we would like to highlight the differences
between the integral equation of Fig. 2(b) and the equation
for the excitonic part offxc derived in Ref. 27[Eqs.(4) and
(5) therein]. The iterative equation of Mariniet al.27 is for the
two-point xc kernel and is based on(finite order approxima-
tions to) thexc part of the response function and is logically
analogous to our diagrammatic expansion offxc obtained in
Ref. 28. However, the equation of Fig. 2(b) is an integral
equation for a three-point function analogous to the BSE
(Ref. 33) and can be solvedinsteadof the BSE to obtain the
same results.

Unfortunately, the exact calculation off xc
Ex from the equa-

tion of Fig. 2(b) is at least as difficult as obtaining an exact
solution of the BSE. However, one can hope that the two-
point kernel f xc

Ex is more suitable for approximations. An
indication in this direction can be seen directly from the
diagrammatic equation of Fig. 2(b). Comparing this equation
to Fig. 1(b) we see that it can be obtained from the BSE by
substitution of the particle-hole propagator as shown in Fig.
3(a). This is the same replacement that was used in Ref. 28 to
prove the cancellation of divergencies infxc at KS excitation
energies. Similarly, it facilitates the cancellation of divergen-
cies in f xc

Ex at QP excitation energies.
Alternatively we can interpret the difference between the

BSE and our equation forL as a modification of the inter-
action process in the second diagram of the right-hand side
of the equation in Fig. 1(b). This change of the interaction is
displayed in Fig. 3(b). As f xc

Ex is responsible for translating
the ladder diagrams into the annihilation channel, it is non-
trivial only if the ladder channel and the annihilation channel
are distinguishable. This is easily seen from the replacement
of Fig. 3(b). Indeed the ladder and the annihilation channel
coincide for nonrelativistic systems with a static point inter-
action. In this case the quasiparticle propagators in Fig. 3(b)

FIG. 2. (a) Thenth order off xc
Ex and(b) the integral equation for

the three-point functionL, which is an essential part off xc
Ex

FIG. 3. Diagrammatic representation of the two possible inter-
pretations of the difference between BSE and our equation forL.
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form a polarization loop which cancels the wiggled line. As a
result the two diagrams of Fig. 3(b) cancel exactly. In the
equation forL in Fig. 2(b) this means that the last two terms
cancel andL reduces to the first term. The excitonic part of
the xc kernel then reduces to the interaction itself. One can
therefore expect that in systems with a short-ranged and al-
most static effective interaction, the two terms of Fig. 3(b)
will cancel to a large extent, and a low-order approximation
to f xc

Ex will be sufficient. Conditions like this can, e.g., be
found in simple metals. On the contrary, in semiconductors
screening is less efficient and the effective interaction is
long-ranged. Further research is needed to verify to what
extent the cancellation is efficient.

Cancellation effects as we are expecting them from our
diagrammatic equation have been seen in Ref. 27. The suc-
cess of the lowest-orderfxc found in Ref. 27 implies thatde
facto the cancellation can be efficient in materials with a
band gap as well.

III. MODEL SYSTEM

In this section we consider a model system that reveals
both bound and unbound excitonic effects and where both
the BSE and the equation forL can be solved analytically.
With the exactf xc

Ex at hand we can verify under what circum-
stances the first-order approximation tof xc

Ex may be suffi-
cient. The approximate kernel must describe bound as well
as unbound excitons. A simple system with a bound exciton
is given by the two-band Dirac model with a static density-
density interaction. Moreover, we consider the two-
dimensional(2D) case in order to avoid technical difficulties
with diverging integrals. The model Hamiltonian is given by

H =E d2rc†sr dĤcsr d +
1

2
E d2r E d2r8n̂sr dVsr − r 8dn̂sr 8d,

s4d

wheren̂sr d=c†sr dcsr d is the density operator,csr d is a two-
component field operator, andVsr −r 8d describes the interac-
tion between the particles. The Hamiltonian for the noninter-
acting particles reads

Ĥ = k̂xsx + k̂ysy + Dsz = SD k̂−

k̂+ − D
D , s5d

wheresx,y,z are the Pauli matrices,k̂±= k̂x± ik̂y, the 2D mo-

mentum operatork̂ =sk̂x, k̂yd, and the band gap equals 2D.
The energy dispersion for the noninteracting particles has
two branches that we labelc and v for the (unoccupied)
conduction band and the(occupied) valence band:

Ec/vskd = ± Ek = ± ÎD2 + k2. s6d

The eigenvectors ofĤ are

Cck = 1 uk

k+

k
vk2, Cvk = 1−

k−

k
vk

uk
2 s7d

with

uk =Î1

2
S1 +

D

Ek
D, vk =Î1

2
S1 −

D

Ek
D . s8d

Note that this model can be understood as a two-
component(“relativistic”) system. The interactions in the
ladder channel and in the annihilation channel in such a sys-
tem are always distinct regardless whether the interaction is
long- or short-ranged. Therefore in this modelf xc

Ex is non-
trivial even in the case of a point interaction.

We are going to solve this model in the ladder approxi-
mation, i.e., ignoring self-energy terms and higher-order cor-
rections to the irreducible scattering matrix. Comparing to

the BSE this implies thatĤ refers to the independent quasi-
particles andV is the screened interaction between them.

Therefore the one-particle Green functions ofĤ are the qua-
siparticle Green functions:

GQPsv,kd =
CckCck

†

v − Ek + id
+

CvkCvk
†

v + Ek − id
. s9d

Note thatCvk andCck are two-component vectors andGQP
is a 232 matrix. To lowest order in the wave vectorq the
quasiparticle response functionxQPsv ,qd is given by

xQPsṽ,qd = − i E de

2p
E d2k

s2pd2trGQPse + ṽ,k + qdGQPse,kd

= −
q2

16pD
S ṽ2 + 1

2ṽ3 ln
1 + ṽ

1 − ṽ
−

1

ṽ2D , s10d

where ṽ=v / s2Dd. The real and the imaginary part of this
function are displayed in Fig. 4. A nonvanishing imaginary
part occurs only at frequencies above the quasiparticle gap
ṽ.1, when the argument of the logarithm becomes nega-
tive. Note that one sees here explicitly theq2 dependence of
the response functions mentioned in the Introduction.

In principle, we are now in the position to solve the BSE
in this model analytically. However, to proceed further we
need to introduce some technical issues. Due to the matrix
structure ofGQP one has to compute traces when calculating
xQP. Similarly, the three-point functionsG and L are 232
matrices and traces have to be calculated over internal indi-
ces in the diagrams of Figs. 1(a) and 2(b). Since all these
matrices have nonvanishing off-diagonal elements, evalua-
tion of these traces becomes quite tedious. Therefore it is

convenient to choose the eigenstates ofĤ as the basis. The
Green functionGQP becomes then a diagonal matrix with the
elements

FIG. 4. The real and the imaginary part of the exactxQP.
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Gc/vsv,kd =
1

v 7 Ek ± id
. s11d

We thus can abandon the matrix notation altogether and use
the two scalar Green functionsGc andGv instead of the now
diagonal 232 matrix GQP. Now, every full line is either a
conduction- or a valence-state propagator(11). This, of
course, increases the number of diagrams we need to draw,
because we have to consider all possible combinations of
conduction- and valence-band states. However, in all dia-
grams the “upper” and “lower” Green functions that consti-
tute a particle-hole propagator must always be of a different
type (c or v). The diagrams withc-c or v-v two-particle
propagators vanish due to the integration over frequency
since both “upper” and “lower” Green function have their
pole in the same half of the complex plane. This means that
these diagrams do not contribute to the polarization. The
same holds for the three-point functionsG andL. Instead of
one equation for the 232 matrix G as depicted in Fig. 1(b)
we obtain two coupled equations for the scalar functionsGcv
andGvc. ForGcv the upper line is a conduction-band state and
the lower line a valence-band state, whereas forGvc it is vice
versa.

The transfer to the diagonal representation ofGQP is
equivalent to a corresponding transformation of the field op-
erators in Eq.(4). This transformation generates the “bare”
vertex, describing interaction with an external field in the
polarization diagrams, as well as the “interaction vertices.”
In the original representation(5) all these vertices are simply
unit matrices. They become, however, nontrivial matrices in
the diagonal representation. In fact, only three matrix ele-
ments of these vertices are essential. These are depicted in
Fig. 5. To the lowest order in the transfered wave vectorq
the bare vertex computes to

gsq,kd = Cck+q
† Cvk =

1

2Ek
Fuk

2q− − Svk
k−

k
D2

q+G . s12d

Note thatgsq ,kd is linear inq because of the opposite parity
of c andv eigenfunctions atk =0. Thus the linearq depen-
dence stems from the off-diagonal momentum operator in the
Hamiltonian(5). This is actually the cause of theq2 depen-
dence of the response function we referred to above in con-
juction with Eq.(10) and in the Introduction. The “charges,”
i.e., the vertices associated with the interaction, are given by

g1sk,k8d = Cck
† Cck8 = ukuk8 +

k−

k
vkvk8

k+8

k8
, s13ad

g2sk,k8d = Cck
† Cvk8 =

k−

k
vkuk8 − ukvk8

k−8

k8
. s13bd

All other possible combinations of valence- and conduction-

band states differ from Eqs.(12) and (13) only by sign
changes or complex conjugation.

From now on we use a diagram technique with two dif-
ferent types of full lines representing conduction- and
valence-band states. With these lines we associate the scalar
Green functions of Eq.(11). Vertices are associated with the
scalar functions of Eqs.(12) and (13).

There is an alternative interpretation of this basis transfor-
mation. Consider one of the traces that has to be calculated
for xQP,

trsCck+qCck+q
† dsCvkCvk

† d, s14d

where parentheses show the grouping of the matrix multipli-
cation. One thus has to calculate the outer products of two
vectors, multiply the resulting matrices, and in the end take
the trace. However, this grouping can be changed as follows:

trCck+qsCck+q
† CvkdCvk

† = sCck+q
† CvkdsCvk

† Cck+qd.

s15d

Now one computes inner products of two vectors and multi-
plies the resultingscalar functions. Taking the trace is ac-
counted for automatically in Eq.(15). The change of the
diagram technique outlined above is in effect a way to incor-
porate this regrouping into the formalism.

As noted above, working in the basis of the conduction-
and valence-band states we have to split the BSE of Fig. 1(b)
into two scalar equations forGcvsv ,q ,kd and Gvcsv ,q ,kd.
Note that whileGcv and Gvc depend on two momenta, they
depend only on one frequency for a frequency-independent
interaction. These two three-point functions are in fact not
independent but related by the replacementq→−q ,v→−v
and complex conjugation. We can therefore derive one equa-
tion for Gcv:

Gcvsv,q,kd = G1sv,q,kd

+ o
k8

Vk,k8
g1sk,k8dGcvsv,q,k8dg1

*sk8,kd
2Ek8 − v

+ o
k8

Vk,k8
g2sk,k8dGcv

* s− v,− q,k8dg2sk8,kd
2Ek8 + v

,

s16ad

G1sv,q,kd = o
k8

Vk,k8
g1sk,k8dgsq,k8dg1

*sk8,kd
2Ek8 − v

+ o
k8

Vk,k8
g2sk,k8dg*s− q,k8dg2sk8,kd

2Ek8 + v
.

s16bd

Note that we omit theq dependence in the “charges”g1 and
g2 as well as in the energy denominators, as we are only
interested in the lowest-order expansion inq, which stems
from the dipole matrix elements in the external vertices.
HereVk,k8 are the matrix elements of the interaction between
the particles. Now we investigate this equation for two dif-

FIG. 5. The diagrammatic representation of the “bare” vertex
and the “charges” of Eqs.(12) and (13).
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ferent types of interaction: a general short-range interaction
and the long-ranged Coulomb interaction.

IV. A SHORT-RANGE INTERACTION

A. The solution of the BSE

In this section we solve Eq.(16) for a short-ranged inter-
action, i.e., an interaction with a characteristic length scale
shorter thanD−1. The final results are expressed in terms of
the physical(renormalized) scattering length, which includes
the high-energy contribution to the integrals in Eq.(16).
Having in mind this renormalization we can formally use a
momentum independent bare interactionVk,k8=V in Eq. (16).
Note that this does not makef xc

Ex trivially equal to the inter-
action itself as discussed in the last paragraph of Sec. II,
because for our two-band model the annihilation channel and
the ladder channel remain different even for a contact inter-
action. From Eq.(16) we see, that thek dependence ofGcv is
given by the “charges” from Eq.(13) and has the same gen-
eral form as for the bare vertex(12). The same is true for the
q dependence. Therefore we can write the following ansatz
for Gcv:

Gcvsv,q,kd = uk
2q−Gcv

ssdsvd + Svk
k−

k
D2

q+Gcv
sddsvd. s17d

Inserting this ansatz into Eq.(16) we obtain two coupled
equations:

Gcv
ssdsvd = Vo

k

1

2Ek
S uk

4

s2Ek − vd
−

vk
4

s2Ek + vd
D

+ Vo
k

uk
4

2Ek − v
Gcv

ssdsvd + Vo
k

vk
4

2Ek + v
Gcv

sdd*s− vd,

s18ad

Gcv
sddsvd = Vo

k

1

2Ek
S uk

4

s2Ek + vd
−

vk
4

s2Ek − vd
D

+ Vo
k

vk
4

2Ek − v
Gcv

sddsvd + Vo
k

uk
4

2Ek + v
Gcv

ssd*s− vd.

s18bd

From these equations it immediately follows thatGcv
ssdsvd

=Gcv
sdd*s−vd and the equation to solve reduces to

Gcv
ssdsvd = Vo

k

1

2Ek
S uk

4

s2Ek − vd
−

vk
4

s2Ek + vd
D

+ Vo
k
S uk

4

2Ek − v
+

vk
4

2Ek + v
DGcv

ssdsvd

¬ Vg1svd + VK0svdGcv
ssdsvd. s19d

At this point it is convenient to perform the above-
mentioned renormalization of the interaction by splittingK0
into a low- and a high-energy part, the latter being equal to
ok1/s4Ekd. The high-energy part logarithmically diverges at

large k. This divergence can be removed by the standard
renormalization of the interaction

Ṽ =
V

1 − Vo
k

1/s4Ekd
¬

4p

D
a s20d

where we introduce the dimensionless scattering lengtha.
With this renormalized interaction,Gcv

ssdsvd fulfills the follow-
ing equation:

Gcv
ssdsvd = Ṽg1svd + ṼK̃0svdGcv

ssdsvd s21d

with

K̃0svd = K0svd − o
k

1

4Ek
= o

k

s2D + vd2

4Eks4Ek
2 − v2d

. s22d

Equation(21) has the obvious solution

Gcv
ssdsvd =

Ṽg1svd

1 − ṼK̃0svd
. s23d

Calculating the 2D integrals in Eq.(22) and g1svd in Eq.
(19), we obtain

K̃0sṽd =
D

4p

s1 + ṽd2

4ṽ
ln

1 + ṽ

1 − ṽ
¬

D

4p
Fsṽd s24d

and

g1sṽd =
1

16p
S s1 + ṽd2

2ṽ2 ln
1 + ṽ

1 − ṽ
−

1

ṽ
D =

1

16p

2

ṽ
SFsṽd −

1

2
D .

s25d

Inserting these integrals into the solution(21) we can
compute the response function’sxc part pxc= x̃−xQP and its
first-order approximationpxc

s1d. In diagrammatic formpxc is
displayed in Fig. 6. The results are

pxc
sṽ,qd = −

q2

16pD

a

ṽ2SfFsṽd − 1
2g2

1 − aFsṽd
+

fF*s− ṽd − 1
2g2

1 − aF*s− ṽd
D

s26d

and

pxc

s1d
sṽ,qd = −

q2

16pD

a

ṽ2HFFsṽd −
1

2
G2

+ FF*s− ṽd −
1

2
G2J ,

s27d

where the functionFsvd is defined in Eq.(24).
The equation forL given in Fig. 2(b) can be solved in a

similar fashion, which allows us then to calculate the exci-
tonic part of the exactxc kernel. However, it is easier to
obtain f xc

Ex directly from Eq.(2) and the exact response func-
tion x̃=xQP+pxc with pxc from Eq. (26):

FIG. 6. The diagrammatic expression forpxc.
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f xc
Exsṽ,qd =

xQP
−1sṽ,qdpxcsṽ,qdxQP

−1sṽ,qd
1 + xQP

−1sṽ,qdpxcsṽ,qd
. s28d

From here the first-order approximation tof xc
Ex immediately

follows:

f xc
Exs1d

sṽ,qd = xQP
−1sṽ,qdpxc

s1dsṽ,qdxQP
−1sṽ,qd. s29d

Inserting thisf xc
Exs1d

in Eq. (3b) we arrive at an approximate
solution for the response function’sxc part

pxc
fs1d

sṽ,qd =
pxc

s1dsṽ,qd
1 − pxc

s1dsṽ,qdxQP
−1sṽ,qd

. s30d

Note that althoughf xc
Exs1d

is based onpxc
s1d, this formula does

not coincide with pxc
s1d. In accordance with Eq.(3b) it ac-

counts for an infinite series of diagrams instead. This way,
the excitonic pole inpxc, Eq. (26), which has been lost in
pxc

s1d, Eq. (27), reappears in Eq.(30).

B. Results

Having calculated the exact and the approximate expres-
sions for the excitonic part of thexc kernel and for the re-
sponse function we are now in the position to compare these
results. Let us start with the excitonic peak in the absorption
spectrum. In both the exact and the approximate response
functions the excitonic peak originates from the divergence
of the xc part. The exactPxc in Eq. (26) has a pole at

1 − aFsṽd = 0 s31d

for positivea and 0øṽø1. When the dimensionless exciton
binding energy«̃=1−ṽ is small, Eq.(31) has an approxi-
mate solution

«̃ = 2 expS−
1

a
D . s32d

The approximate response function of Eq.(30) which is
based onf

xc
Exs1d has a pole

1 − xQP
−1sṽ,qdPxc

s1dsṽ,qd = 0. s33d

Similarly to the solution(32) of the exact equation(31), for
a small binding energy«̃ this equation can be approximately
solved by

«̃ = 2 expS−
1

a
+

1 − a − Î1 − 2a − a2

2a
D , s34d

which differs from the exact result(32). However, e.g., at
a=0.2 this is only about 14% larger than the exact solution
(32), which gives«̃<0.013. For a smaller scattering length
and therefore a smaller binding energy the agreement be-
tween the exact result and the one based onf

xc
Exs1d is even

better.
In Fig. 7 the real and the imaginary part of the exactx̃ and

the x̃ based onf
xc
Exs1d are shown for the scattering lengtha

=0.25. For comparison,xQP is also displayed. One clearly
observes a very good agreement between the exact and the
approximate response functions. Both main features, the en-
hancement of the imaginary part(the Sommerfeld factor)
and the excitonic peak are correctly reproduced. The latter is
indicated by the arrows on the plots of the imaginary part.
The apparent difference between the exact and the approxi-
mated response function is the exact position of the excitonic
peak as described above. The oscillator strengths should also
be different, which is not, however, reflected in the figure.

From the above discussion one could conjecture that the
approximation for the response function based onf

xc
Exs1d is

always sufficient. This is, of course, not true, as we can see
from Fig. 8, where the approximate and the exact response
function are compared for the larger value of the scattering
lengtha=0.6. With this large interaction34 the position of the
excitonic peak in the approximate response function is
clearly wrong. In addition, the imaginary part has the wrong
magnitude above the band gap.

To uncover the background of the good agreement be-
tween the exact and the approximate response functions for a

“weak” interaction, let us comparef xc
Exs1d

with the exactf xc
Ex

for different interaction strengths. We note first thatf xc
Exs1d

is
proportional to the scattering lengtha. Therefore, more ad-

equate is to comparef xc
Exs1d

/a with f xc
Ex/a, as done in Fig. 9.

FIG. 7. The real and the imaginary parts of the exactx̃ (full ) and

the x̃ based onf xc
Exs1d

(dashes) for the scattering lengtha=0.25. The
real and the imaginary part ofxQP are shown by the dotted line.

FIG. 8. The real and the imaginary parts of the exactx̃ (full ) and

the x̃ based onf xc
Exs1d

(dashes) for the scattering lengtha=0.6.

FIG. 9. The real and the imaginary part of the exactf xc
Ex/a for

a=0.05 (dots), a=0.1 (dashes), a=0.25 (long dashes), and a=0.6

(dot-dashes) compared withf xc
Exs1d

/a (full ).
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It is clearly visible thatf xc
Exs1d

is a very good approximation to
the exactf xc

Ex in a frequency range close to the band gap.
Actually, for ṽ=1 we obtain from our exact expressions

f xc
Exs1d

sṽ = 1d = −
16pD

q2 a s35d

and

f xc
Exsṽ = 1d = −

16pD

q2

a

1 − a2/4
. s36d

Thus even for a very strong interaction ofa=0.6 wheref xc
Exs1d

leads to the rather poor response function of Fig. 8, there is

only a 10% error inf xc
Exs1d

at ṽ=1. In the static case the errors
are larger, as we get forṽ=0:

f xc
Exs1d

sṽ = 0d = −
16pD

q2

9

8
a s37d

and

f xc
Exsṽ = 0d = −

16pD

q2

9

8

a

1 + a
. s38d

Here a 10% error is already reached fora=0.1, as the ratio of

f xc
Ex and f xc

Exs1d
is of ordera, whereas it is of ordera2 at ṽ

=1.
It is also interesting to look at the differencedf xc

Ex be-

tween the exactf xc
Ex and f xc

Exs1d
for different interaction

strengths. Since the leading order term indf xc
Ex is of the order

a2, we normalize these differences bya2, when plotting them
in Fig. 10. The general behavior of the different curves is
quite similar, which indicates that it is mostly the second-

order approximationf xc
Exs2d

that contributes todf xc
Ex. One may

be surprised that the curves for stronger interaction are closer

to 0 for ṽ,1, which might indicate thatf xc
Exs1d

is a better
approximation forstrongerinteractions. However, this is not

the case. This only tells us thatf xc
Exs3d

is positive forṽ,1.

C. The validity of the first-order approximation

From the preceding section we can conclude thatf xc
Exs1d

is
a good approximation tof xc

Ex close to the band gapṽ=1
practically for any interaction strength. Even for a strong

interaction, where the response function stemming from
f xc

Exs1d
is quite wrong, the first-order kernelf xc

Exs1d
is still very

good close toṽ=1. This is the reason for the success of

f xc
Exs1d

in describing the bound excitonic states as shown in
the preceding section. Since aroundṽ=1 the first-order ker-

nel f xc
Exs1d

is a good approximation, if the(exact) bound ex-

citonic state lies within this region,f xc
Exs1d

will describe it
correctly. If, however, the binding energy is outside this re-

gion, f xc
Exs1d

will fail. Note that as seen from Fig. 9 this region
gets smaller as the interaction increases and at the same time
the binding energy of the exciton increases. Hence the error
in the exciton binding energy increases with the increase of
the interaction strength.

Can we understand the good agreement betweenf xc
Exs1d

and f xc
Ex for ṽ<1 in terms of the integral equation forL? For

this we explicitly calculate the diagrams involved in the re-
placement shown in Fig. 3(b). Working with separate Green
functions for the valence- and conduction-band states we
have four possible combinations of the external lines and can
therefore split this replacement into four parts according to
these combinations. At energies close to the band gap the
two-particle propagator with a conduction-band state in the
upper line should dominate. Hence, the most important part
of this replacement is the diagram with a conduction-band
state in the upper line on both sides of the graphs. This
diagram together with its translation into quantities intro-
duced in the preceding section is displayed in Fig. 11. Note
that we use the bare interactionV here, as the interaction
renormalization in these diagrams means simply a replace-

mentV→ Ṽ.
Insertingg1,G1,xQP, and g in the expression in Fig. 11

and taking the limitṽ→1 we obtain:

Vg1
2sk,k8d − G1sṽ = 1,q,kdxQP

−1sṽ = 1,qdg*sq,k8d

= VFuk
2uk8

2 S1 −
D

Ek8
D + Sk−

k
vkD2Sk+8

k8
vk8D2

+ 2
k−

k
vkukuk8vk8

k+8

k8
+ uk

2Sk+8

k8
vk8D2Sq−

q
D2 D

Ek8
G . s39d

Not surprisingly the whole expression(39) is proportional to
the interactionV (or Ṽ after renormalization). In the propor-
tionality factor in square brackets all summands contains1

−D /Ek8d (or powers thereof). For the first summand this is

directly visible, in the others it is “hidden” invk8. Let us look
at this factor more closely. When the diagram of Fig. 11 is

FIG. 10. The real and the imaginary parts ofdf xc
Ex/a2=sf xc

Ex

− f xc
Exs1d

d /a2 for a=0.05 (dots), a=0.1 (dashes), a=0.25 (long
dashes), anda=0.6 (dot-dashes).
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inserted into the equation forL of Fig. 2(b) the integration
over k8 has to be performed. The main contribution to this
integral comes from small momenta, due to the small energy
denominators in the particle-hole propagator. However, for
these small momenta the expression(39) is small asD
<Ek8.

We can therefore conclude that close to the band gap the
kernel in the equation forL is indeed small for those states
that mainly contribute to the integral. Thus we explicitly ob-
serve the cancellation we qualitatively discussed in Sec. II.
This cancellation explains the excellent agreement between

f xc
Ex and f xc

Exs1d
for ṽ<1.

A complimentary interpretation can be obtained from
looking at the diagrammatic expansion of the response func-
tions. In Fig. 12 the third-order term in the expansion of the

exactx̃ and thex̃ based onf xc
Exs1d

is displayed. The difference
between the two expressions is similar to the replacements
discussed in Sec. II. This remains true in all orders of the
perturbation theory. From the previous calculation of the ef-
fect of this replacement follows, that the exactx̃ and thex̃

based onf xc
Exs1d

are almost identical in the vicinity of the band
gap, independently of the position of the excitonic peak.

V. THE COULOMB INTERACTION

In this section, we consider the 2D Dirac model of Eq.(4)
with the Coulomb interaction between the particles, i.e.,

Vsr − r 8d =
e2

ur − r 8u
, s40d

wheree is the particle’s charge. Note that Eq.(40) is the 3D
interaction although our model system is 2D. We will not
attempt to solve exactly the BSE with this interaction, but
rather focus on the properties of shallow excitons. The weak
binding limit «̃=1−ṽ!1 is, in fact, a “nonrelativistic” limit
where the BSE reduces to the two-particle Schrödinger
equation.30 The quasiparticle energy eigenvalues are approxi-
mately

Ek < D +
k2

2D
, s41d

and for the eigenvectors holds

uk < 1 and vk < 0. s42d

Solving the BSE thus reduces to solving the positronium
problem in 2D for particles with a massD, i.e., for a reduced
massD /2. The response function can be written in the spec-
tral representation as31

x̃sv,qd = ugsq,0du2o
n

ucnsr = 0du2

v − s2D − «nd

< ugsq,0du2
uc0sr = 0du2

v − s2D − «0d
, s43d

where thecn are the eigenfunctions with eigenvalues«n
(positive for bound states) of the above-mentioned
Schrödinger equation. The approximation in Eq.(43) is valid
close to the excitonic peak of the 1s ground state, in which
we are interested in here. The 1s wave function needed in
this approximation is given by

c0srd =Î2D«0

p
exph− ÎD«0rj s44d

and the exciton binding energy is

«0 = e4D. s45d

Introducing dimensionless variables«̃ and «̃0=«0/ s2Dd, we
arrive at

x̃s«̃,qd <
q2

2pD

«̃0

«̃0 − «̃
s46d

for «̃ close to the excitonic peak of the 1s ground state.
We now want to compare the position and the oscillator

strength of the excitonic peak of the 1s ground state with the

results obtained fromf xc
Exs1d

. For this we first expandxQP of
Eq. (10) for small «̃,

xQPs«̃,qd <
q2

16pD
FlnS2

«̃
D − 1G . s47d

In order to obtainf xc
Exs1d

we also need an expression forPxc
s1d

in the limit of small«̃. In diagrammatic formPxc
s1d is given by

a single graph as displayed in Fig. 13. There are four possi-
bilities to distribute the conduction- and valence-band states
in the two particle-hole propagators. The particle-hole propa-
gators with a conduction-band state in the upper line and a
valence-band state in the lower line diverge atṽ=1. The
particle-hole propagators with a valence-band state in the
upper line and a conduction-band state in the lower line di-
verge atṽ=−1. Therefore, in the limit where the energy goes
to the band gap(or equivalently«̃ is small), the main contri-
bution to pxc

s1d comes from the diagram with both particle-
hole propagators of the upper line belonging to the
conduction-band state and the lower line to the valence-band
state. Neglecting the other contributions is our first approxi-

FIG. 11. Explicit calculation of one replacement. Herev andq
are the transferred energy and momentum.

FIG. 12. Third-order term in the expansion of(a) the exactx̃

and (b) the x̃ based onf xc
Exs1d

in terms of the interaction.

FIG. 13. Approximation forPxc
s1d in the limit of small «̃.
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mation in calculatingpxc
s1d. The other approximation is using

Eqs.(41) and (42). With these approximations we obtain

pxc

s1d
s«̃,qd <

ugsq,0du2

s2Dd2 o
k,k8

Vsk − k8d

f 1
2sk/Dd2 + «̃gf 1

2sk8/Dd2 + «̃g ,

s48d

whereVsk −k8d=2pe2/ uk −k8u is the Fourier representation
of Vsr −r 8d from Eq. (40). The easiest way to solve this
double integral is to look at it in the real space, instead of the
Fourier space, where it becomes a single integral. The 2D
Fourier transformation of the particle-hole propagator
f 1

2sk/Dd2+ «̃g−1 gives the modified Bessel function of the
second kindK0, so that we can write

pxc

s1d
s«̃,qd <

e2q2

8pDÎ2«̃
E

0

`

drK0
2srd. s49d

The integral overK0
2 computes tosp /2d2, and we arrive at

pxc

s1d
s«̃,qd <

q2

16pD

p2

2
Î «̃0

«̃
. s50d

Now we have all ingredients to buildf xc
Exs1d

=xQP
−1pxc

s1dxQP
−1 and

insert it in Eq.(3b). This gives the following approximation

for the response function based onf xc
Exs1d

:

x̃ fs1d
s«̃,qd =

xQPs«̃,qd

1 − pxc

s1d
s«̃,qdxQP

−1s«̃,qd

=
q2

16pD

flns2/«̃d − 1g

1 − flns2/«̃d − 1g−1sp2/2dÎ«̃0/«̃
.

s51d

Note that this equation is valid only for small«̃, since we
derivedxQP andpxc

s1d only for small values of«̃.
From Eq.(51) we clearly see thatx̃ fs1d

contains an addi-
tional pole where the denominator vanishes. This is the ex-
citonic peak in this approximation and its energy«̃08 is de-
fined by

1 −FlnS 2

«̃08
D − 1G−1p2

2
Î «̃0

«̃08
= 0. s52d

To evaluate the approximation used let us reformulate Eq.
(52) as

e4

2
= «̃0 = 2

«̃0

«̃08
expF− Sp2

2
Î «̃0

«̃08
+ 1DG . s53d

We see that the approximate binding energy«̃08 and the exact
binding energy«̃0 are identical for

e4

2
= «̃0 = 2 expF− Sp2

2
+ 1DG <

1

189
. s54d

In other words, for the interaction strength that corresponds
to this quite realistic exciton binding energy, the approxima-

tion usingf xc
Exs1d

gives the exact binding energy. For stronger
and weaker interaction strength there is some error. To be

more precise, the error is below 10% for«̃0 between 1/165
and 1/222. It is below 20% for«̃0 between 1/148 and 1/271.
Note that in the range of energies where the approximation
gives good results,«̃ is indeed small, so that our approxima-
tion is consistent. It is interesting to note that for the Cou-
lomb interaction—in contrast to a short-range interaction—
one does not get the correct exciton binding energy from

f xc
Exs1d

in the limit of the interaction strength going to zero.
Note also that while the exact solution of the 2D hydrogen
problem gives rise to an infinite series of excitonic peaks in
the exact response function, we obtain onlyone excitonic
peak in the approximate approach. This problem was already

touched upon in the Introduction. Althoughf xc
Exs1d

is fre-
quency dependent, it does not contain the rapid oscillations
needed to describe the whole series of excitonic states.

To compare the approximate response function of Eq.(51)
to the exact one from Eq.(46) and determine the residual it is
best to expandx̃ fs1d

around«̃08. This can be done by calculat-
ing the first-order Taylor expansion of the denominator in
Eq. (51):

x̃ fs1d
s«̃,qd <

q2

16pD

sp2/2dÎ«̃0/«̃08
1
2 − s2/p2dÎ«̃08/«̃0

«̃08

«̃ − «̃08
. s55d

In the case where the exciton energy is exactly reproduced,
i.e., for «̃08= «̃0, the second fraction in Eq.(55) is about 16.6.
The oscillator strength is thus too large by a factor of 2
inspite of the fact that the binding energy is exact. The value
of this second fraction is almost constant for a large range of
ratios «̃08 / «̃0, so that mainly the«̃08 in the numerator of the
third fraction in Eq.(55) produces additional errors in the
oscillator strength. The larger oscillator strength is not too
surprising, as the excitonic oscillator strength is distributed
over more peaks in the exact response function.

Similar to the results for the short-range interaction of the
preceding section, we observe that the cancellation effects
are also effective for the long-ranged Coulomb interaction.
However, the general structure of this cancellation is differ-
ent and cannot be universally characterized. Hence the accu-

racy of f xc
Exs1d

has to be checked for every particular system.
The integral equation forL together with the replacement
procedure of Fig. 3 provides an appropriate tool for this task.

VI. SUMMARY AND CONCLUSIONS

We have investigated the excitonic effects within the lin-
ear response TDDFT. In general, two different types of cor-
relation effects are important for the response function.
These are the excitonic and the quasiparticle effects, which
are both absent in the adiabatic local density approximation.
Within TDDFT both types of correlations are contained in
the exchange-correlation kernelfxc. As we have shown in
Sec. II, thexc kernel can be unambiguously split into a qua-
siparticle partf xc

QP and an excitonic partf xc
Ex, which sepa-

rately describe these two effects. We focus on the excitonic
part in this paper and did not consider the quasiparticle part.
The latter is usually accounted for by using theGWapproxi-
mation.
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In the absorption spectrum of semiconductors and insula-
tors the two-particle excitonic correlations produce two types
of effects: sharp peaks in the band gap stemming from bound
excitons and broad peaks above the band gap due to the
Coulomb correlation between the electron and the hole(un-
bound excitons). These effects are commonly described by
the BSE within standard many-body theory. Solving the BSE
is very demanding in the general case, though. TDDFT could
provide a significant simplification, if a good approximation
for fxc is available. To link TDDFT with the BSE we have
expressed the excitonic partf xc

Ex in terms of an effective ver-
tex function L, for which we diagrammatically derived an
integral equation. This equation is structurally similar to the
BSE and establishes the connection between the common
many-body theory and TDDFT. However, solving this inte-
gral equation is at least as difficult as solving the BSE. Nev-
ertheless this approach has a certain advantage. Namely, the
kernel of the integral equation forL shows the possibility of
cancellation effects. If the cancellation were complete,f xc

Ex

would be simply equal to the first-order approximationf xc
Exs1d

.

This suggests that in some situationsf xc
Exs1d

can provide a
good substitute forf xc

Ex. Generally, the possibility to use

f xc
Exs1d

instead off xc
Ex is a tremendous simplification, as there

would beno need to solve an integral equationto obtainf xc
Ex

in this case. It is therefore crucial for the application of TD-
DFT to excitonic effects to understand the nature and to de-
velop a criterion for the cancellation effects.

We approached this question using analytic calculations
for a model two-band semiconductor with different interac-
tions. For a short-ranged interaction we computed the exact
response function as well as the response function derived

from f xc
Exs1d

. Comparing these two functions we find a very
good agreement for a weak interaction, where both the bind-
ing energy of the shallow exciton and the Sommerfeld factor
stemming from unbound excitons are correctly described by
the first-order kernel. We were able to trace this to the strong
cancellation in the kernel of the equation forL for energies
close to the band gap. Calculations with the Coulomb inter-

action give similar results, though the deficiencies off xc
Exs1d

are somewhat worse in this case. The cancellation effects
occur in both cases, and we were able to explicitly calculate
them. For a given model we gave a criterion of the cancel-
lation, yet it is not possible to make a generalization for an
arbitrary system.

These calculations represent an example that the integral
equation forL can serve as a tool for evaluation of the va-
lidity of low-order approximations tof xc

Ex. Testing the predic-
tive power of this approach for other systems will be the
subject of future work.
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