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The atomic and electronic structures of zirconia are calculated within density functional theory, and their
evolution is analyzed as the crystal-field symmetry changes from tetrahedral[cubic sc-ZrO2d and tetragonal
st-ZrO2d phases] to octahedral(hypothetical rutile ZrO2), to a mixing of these symmetries(monoclinic phase,
m-ZrO2). We find that the theoretical bulk modulus inc-ZrO2 is 30% larger than the experimental value,
showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints
which characterize each phase from their electronic spectra are identified. We have carried out electron energy-
loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra
calculated within the random phase approximation. We show a dependence of the valence and 4p (N2,3 edge)
plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field
effects. Last, we attribute low energy excitations observed in EELS ofm-ZrO2 to defect states 2 eV above the
top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or
5.8 eV gaps determined by vacuum ultraviolet spectroscopy.

DOI: 10.1103/PhysRevB.70.245116 PACS number(s): 71.45.Gm, 79.20.Uv, 71.15.Mb, 72.80.Ga

I. INTRODUCTION

Zirconia sZrO2d is a technologically important material
due to its high strength and stability at high temperatures and
its excellent dielectric properties, with an average static di-
electric constant«0 of around 20.1 Zirconia thus has a wide
range of industrial applications, including uses in ceramic
engineering(for example, to strengthen SiC ceramics2), as an
oxygen sensor in fuel cells,3 and is also a technologically
important catalytic support medium.4 It is now proposed, to-
gether with hafnia, as a gate dielectric material in metal-
oxide semiconductor devices.5,6

Moreover, zirconia is one of the most radiation-resistant
ceramics currently known,7,8 and therefore has a particular
importance in the nuclear industry, where it is used as a
passivating medium for hydrogen ingress in pressure tubes.
A proposed application of particular interest is the use of a
ZrO2 matrix which can be doped with radioactive nuclei
(particularly actinides), and irradiated to force a transmuta-
tion process and form nonradioactive dopants in the irradi-
ated and yet stable zirconia matrix.

The evolution of the structural and electronic properties of
zirconia as a function of factors such as temperature and
pressure in the polymorphs of pure zirconia(cubic, tetrago-
nal or monoclinic phases), as well as their mixing with vari-
ous oxides is therefore the subject of intensive experimental
studies. As for theoretical studies, the structural properties
and electronic ground state have been examined, using
Hartree-Fock9,10 or density functional theory(DFT).11–18The
lattice dynamics of the pure phases have been investigated
within density functional perturbation theory1,19 and the
phase stability has been investigated within Landau
theory20,21 or lattice dynamical models22–24 and reproduced
with atomistic or tight-binding models.25,26 The stabilization
of the phases by doping has been investigated both at the
Hartree-Fock27 and DFT28–32 levels.

Meanwhile, electron energy-loss spectroscopy(EELS) is
a useful method for providing information about the chemi-
cal and crystallographic environment of a sample, as well as
its electronic structure. However, the main drawback of this
technique remains the interpretation of the obtained spectra,
and therefore theoretical studies are of great use. In calcula-
tions of excitations from core levels, dipole matrix elements
are generally neglected and the experimental spectra are di-
rectly compared to the theoretical density of empty states,
projected onto the appropriate atomic state to satisfy the se-
lection rule. The combination of theoretical and experimental
techniques applied to core level spectroscopy has already
enabled the solution of complex problems such as the nature
of bonding in metals and alloys,33 or the local environments
at interfaces.34,35 Core level spectroscopy has also been ap-
plied to zirconia36,37 to characterize and localize the yttria in
the structure.

However, the theoretical interpretation of low-loss(va-
lence) electron energy-loss spectra requires an additional
level of complexity in the theoretical framework: using den-
sity functional theory as a starting point, one needs to calcu-
late the response function of the material at the level of the
random phase approximation(RPA) or beyond, in the quasi-
particle picture or further, including the full excitonic
effects.38,39 Application of these methods to semi-
conductors,40,41semimetals,42 nanotubes43 or metals44 has re-
cently demonstrated the usefulness of these techniques to
accurately predict valence electron energy-loss spectra.

Despite the technological interest in zirconia, there have
been remarkably few experimental studies of EELS in
pure45,46and doped zirconia.47,48In particular, experiments at
low transferred momentum have not yet been performed. An
ab initio calculation of EELS spectra would permit us to
make a direct link between the experimental EELS spectra
and the electronic structure of zirconia. To our knowledge,
this study represents the firstab initio determination of the
EELS in ZrO2.
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In order to achieve this, after presenting our theoretical
framework in Sec. II, we present new results for the atomic
(Sec. III) and electronic structure(Sec. IV) properties of the
zirconia polymorphs, placed in the context of an analysis of
the existing literature(currently very dispersed), which en-
ables us to draw new conclusions for the appropriate treat-
ment of semicore states(Sec. III C) and for the characteris-
tics of the bulk modulus in each phase(Sec. III D). In Sec.
IV, we describe the fingerprints of the electronic structure
that characterize each phase, and calculate the band structure
and fundamental gap for each phase(Secs. IV C–IV E). This
is complemented by new experimental EELS results which
are described in Sec. V, together with ourab initio calcula-
tions of the EELS spectra.

II. THEORETICAL METHODS

We use density functional techniques within the plane-
wave pseudopotential approach, using the local density ap-
proximation for the ground state calculations.49,50 We use
Bachelet, Hamann, and Schlüter type pseudopotentials51

which, for the zirconium pseudopotential, include the semi-
core 4s and 4p states. For these pseudopotentials, we achieve
full convergence of the total energy and of the Kohn-Sham
eigenvalues at a plane-wave cutoff of 170 Ry. This level of
accuracy for the Kohn-Sham eigenvalues and eigenvectors is
required to calculate the response function of Eq.(3).

Both a hydrostatic stress tensor and fully relaxed ionic
positions were achieved in the calculation of the equation of
state of the cubic, tetragonal, and rutile phases. Form-ZrO2,
we have relaxed the ionic positions and kept the ratios and
angle of the cell parameters at their equilibrium value. The
determination of the lattice parameters and bulk moduli has
been performed with a 43434 Monkhorst and Packk-point
mesh,52 whereas the band structure calculations were per-
formed with a minimum of 20k-points in each symmetry
direction. The convention adopted for high symmetry points
is that given in Ref. 53. In order to determine the character of
the wave function at theG point [Figs. 4(c), 6(c), and 77] we
have calculated the character of the representation based on
the Kohn-Sham wave functionc at G askcuOhRuajucl, where
OhRuaj is the operator associated with the rotationR and the
fractionary translation of vectora of the crystal space
group.54

We then use the Kohn-Sham band structure as a starting
point for calculations of the linear dielectric response. Work-
ing in reciprocal space, the microscopic dielectric
function55–57 «sr ,r 8 ,vd can be expressed in matrix form in
terms of reciprocal lattice vectorsG and a momentum trans-
fer wave vectorq from the first Brillouin zone as«GG8sq ,vd.
The loss function, directly related to the EELS spectrum, is
then given in terms of the dielectric function as

− Imf«GG8
−1 sq,vdg = − Imf1 + vsq + GdxGG8sq,vdg, s1d

wherev is the Coulomb potential andx the polarizability of
the system. The absorption spectrum is given by the imagi-
nary part of the macroscopic dielectric function, defined as

«Msvd = «1 + i«2 = lim
q→0

1

«G=0G8=0
−1 sq,vd

. s2d

We can write the polarizability for independent particles
sx0d in linear response theory as a sum over independent
transitions between(Kohn-Sham) states with wave function
ci,j and transition energiesvi j being the difference between
the Kohn-Sham eigenvalues for statesci andc j,

x0sr ,r 8,vd = o
i,j

sf i − f jd
cisr dc j

*sr dc jsr 8dci
*sr 8d

v − vi j + ih
, s3d

where thef i,j are the occupation numbers. The full polariz-
ability, within the time-dependent density functional theory
(TDDFT) approach, is then given by a Dyson-type
equation,58,59

x = x0 + x0sv + fxcdx. s4d

Here the exchange and correlation kernelfxc, representing
the functional derivative with respect to density of the
exchange-correlation potential, is set to zero in our calcula-
tions, thus giving us the random phase approximation.

Crystal local-field effects are contained within the Cou-
lomb potential termv, which is the functional derivative of
the Hartree potential with respect to density. If we include
only the long range part of the Coulomb potential,vG=0sqd,
then the microscopic response of the system to the external
macroscopic field—the local-field effects—is neglected, and
we only need to calculate the head of the dielectric matrix,
«00. If however we include theGÞ0 terms then«GG8 is,
moreover, not diagonal, and so the matrix inversion has the
effect of mixing the previously independent transitions. This
can have a large effect on the EELS spectra of the system,
particularly with regard to the semicore plasmon peak
positions.40,60 In order to examine this in detail, therefore, in
this work we calculate EELS spectra both with and without
local-field effects(Sec. V A).

III. ATOMIC STRUCTURE

In this section, we first review the phase diagram and
atomic structures of the low pressure phases of zirconia
(Secs. III A and III B). In Sec. III C, we then validate the
approximations made in our calculations, such as the use of
the local density approximation, by comparing our theoreti-
cal results to those already in the literature. We will show
(Sec. III A) that it is necessary to include zirconium semicore
states in the pseudopotential in order to simultaneously de-
scribe all the low-temperature phases. Finally, we have cal-
culated the equation of state and bulk modulus of each phase
(Sec. III D).

A. Phase stability

Zirconium dioxide is the only thermodynamically
stable compound in the system Zr-O.61,62 At low pressures,
zirconia displays three phases: monoclinic, tetragonal, and
cubic. At higher pressures, there are further stable phases
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which we will not consider in this paper(see, for example,
Refs. 63–66).

The ground state phase of zirconia, a baddeleyite structure
with a monoclinic unit cell, is stable up to around 1480 K.67

The monoclinic unit cell has nine internal degrees of free-
dom, and contains four ZrO2 units [m-ZrO2, space group
P21/c, N=4, Fig. 1(c)].68

At 1480 K, monoclinic zirconiasm-ZrO2d undergoes a
first-order martensitic transition to transform into a tetrago-
nal phase69 [t-ZrO2, space groupP42/nmc, N=2, Fig. 1(b)].
This transformation exhibits a large hysteresis with thet
→m transition completing at around 1200 K.70–72 By in-
creasing the temperature to 2650 K, a displacive transition
takes place int-ZrO2 and the cubic fluorite phase[c-ZrO2,
space groupFm3m, N=1, Fig. 1(a)]73 is obtained,67 which is
then stable up to the melting temperature of 2983 K.61

Nanoparticles of the tetragonal phase are also stable at
ambient conditions with grain sizes between 2 and 70 nm.74

Alternatively, both tetragonal and cubic zirconia can stabilize
at ambient temperature by mixing with oxides such as Y2O3,
MgO or CaO.75 This introduction of divalent or trivalent cat-
ions is accompanied by a structural disorder which can be
observed in the Raman spectrum.76 In this work, we perform
calculations on pure zirconia, and the comparison with ex-
perimental data allows us to draw some conclusion on the
effect of insertion of yttria into zirconia.

B. Phase structure and symmetry

The cubic phase of ZrO2 has a fluorite structure, which
consists of a fcc lattice of zirconium atoms eightfold coordi-
nated to the neighboring oxygen atoms[Fig. 1(a)]. The zir-
conium site has the octahedralOh symmetry, while the oxy-
gen atoms are tetrahedrally coordinated to the zirconium
atoms.

The tetragonal phase can be obtained fromc-ZrO2 con-
ceptually by expanding the cubic cell in one direction and
slightly displacing the oxygen atoms along the tetragonal
axis, the coordination around a zirconium atom remaining
eightfold [Fig. 1(b)]. The symmetry of the zirconium site is
thus lowered toD2d symmetry.

The atomic arrangement in the baddeleyite can also be
obtained by a distortion of the simple fluorite structure: the
coordination of the zirconium atoms isZ=7, and is formed
by two nonequivalent oxygen sites[Fig. 1(c)]. One-half of
the oxygen atoms are tetrahedrally coordinated as in the fluo-
rite phase, the other one-half have aZ=3 coordination, as in
the rutile phase. The zirconium and oxygen sites have the
same lowC1 symmetry.

The coordination of the zirconium atom is reduced toZ
=6 in the hypothetical rutile structure[r-ZrO2, space group
P42/mnm, N=2, Fig. 1(d)]. The oxygen atoms form a tet-
ragonally distorted octahedron around the zirconium atoms.
The zirconium site has theTh-relatedD2h symmetry.

The different phases of zirconia thus allow us to explore
the change of the crystal-field symmetry from octahedral-like
in the cubic or tetragonal phase to tetrahedral-like in the
(hypothetical) rutile phase, via the partially octahedral and
partially tetrahedral crystal field in monoclinic zirconia. We
use the rutile phase as a tool to investigate effects of the
crystal field in zirconia and better understand the properties
of the complex monoclinic phase of zirconia.

C. Theoretical structure and phase stability

Rutile is the thermodynamically stable phase of TiO2. The
titanium atom has a 3d24s2 electronic configuration, analo-
gous to the 4d25s2 configuration of the Zr atom. For the
rutile phase of ZrO2, we find the internal parameter, relative
to the oxygen position, isuO=0.3055(as in TiO2) (Table I).
However, a relative energy as high as 0.3 eV/ZrO2 unit and
a volume expanded by 10% with respect to the monoclinic
phase(Table I) excludes rutile as a possible phase of zirco-
nia.

The calculated cell parameters at the theoretical equilib-
rium for the monoclinic, tetragonal, and cubic phases of zir-
conia are reported in Table I. These values agree extremely
well (to within 1%) with experimental values obtained by
neutron diffraction70,73,77performed on the three phases, and
are similar to those reported by previous theoretical calcula-
tions which include the 4s24p6 semicore electrons as valence
states.1,13,14,28

Internal degrees of freedom for the monoclinic phase are
also very close to the experimental ones measured by x-ray68

or neutron diffraction.77 The error between these two experi-
mental techniques is as large as the error between ourab
initio value and the value measured by x-ray diffraction.68

FIG. 1. The primitive unit cell of four atomic structures of zir-
conia:(a) cubic ZrO2, (b) tetragonal ZrO2, (c) monoclinic ZrO2, (d)
zirconia in the hypothetical rutile phase. Large sphere, zirconium
atom. Small sphere, oxygen atom. For the monoclinic phase, the
two different oxygen sites are shown in different shades.
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The largest error is found on they coordinate of the zirco-
nium atom and amounts to 1.6310−3, +4% (respectively,
3.2310−3, +8%) with respect to the x-ray68 (respectively,
neutron77) data. The internal degree of freedom of the tetrag-
onal phase, relative to the position of oxygen along the te-
tragonal axis, shows a dependence both on the temperature
and on the direction of the transitiont→m or m→ t.70 This
can explain the discrepancy with the theoretical values
s−13%d, an explanation that has previously been
reported.1,14,83

Several levels of approximation have been used in previ-
ous calculations for zirconia. When the Zr 4sp semicore
states are included neither explicitly nor implicitly[via a
nonlinear core correction84 (NLCC)], and the LDA is used,
Christensen and Carter83 report good agreement, both with
experiment and fully linearized augmented plane-wave
(FLAPW) calculations,14 for the structural parameters ofc, t,
and m zirconia. When both the NLCC and the generalized
gradient approximation(GGA) are used, as in the work of
Fosteret al.,29 structural parameters are also very close to
experiment and are systematically slightly larger than experi-

mental data, as expected(Table I). Including the 4p6 semi-
core states, and not the 4s2 electrons, but using a “partial
core correction” in the solid state, as in the work of Jomard
et al.,15 leads to larger errors on all structural quantities of
the cubic and tetragonal phases, the densest ones(Table I).
This can be understood from the large spatial overlap be-
tween the 4s and 4p states, leading to a large exchange in-
teraction, which is partially neglected in the pseudopotential
used in these calculations.

The validity of our approximations(the explicit inclusion
of the Zr 4sp states and the LDA) has been checked in a
previous work by the examination of the calculated equilib-
rium bond length of the Zr-O molecule.28 Moreover, we have
examined the relative energies of the monoclinic, tetragonal,
and cubic phases as in Ref. 27(Table I). Our results are close
to those of a full-potential linear muffin-tin orbital(FP-
LMTO) calculation,26 Et−Ec=0.049 eV and Em−Et
=0.056 eV, in which the Zr 4s are treated in a frozen over-
lapping core approximation. There is also extremely good
agreement between our results and values from experiment,67

obtained as the enthalpy differences between two phases at

TABLE I. Structural parameters ofc-, t-, m-, andr-ZrO2, and their relative energies(eV/ZrO2 unit). Experimental structural data forc-
and t-ZrO2 have been linearly extrapolated to 0 K. Experimental relative energies are the enthalpy differences measured at the temperature
of the phase transition. Our results are compared with previous LDA-pseudopotential calculations that include the Zr 4sp semicore shells
[GW (Ref. 13), US (Ref. 1), and PP(Ref. 28)], with LDA linear augmented plane-wave calculations including semicore states in the valence
[FLAPW (Ref. 14)], and with GGA-pseudopotential results that implicitly include the Zr 4sp semicore shells via the NLCC(Ref. 29)
(US-GGA), or including only the 4p (Ref. 15) (4p US-GGA).

This work GW US PP FLAPW Expt. Expt. US-GGA 4p US-GGA

Cubic a (a.u.) 9.518 9.514 9.5187 9.596 9.551 9.619a 9.619 9.768

Tetragonal a (a.u.) 6.736 6.734 6.7211 6.792 6.747 6.76a 6.79b 6.856 6.913

c/a 1.438 1.432 1.434 1.438 1.425 1.453a 1.445b 1.447 1.468

dzO
0.0441 0.0423 0.0418 0.0440 0.0290 0.051a 0.050b 0.049 0.061

Et−Ec −0.049 −0.045 −0.044 −0.048 −0.057e −0.07 −0.08

Monoclinic a (a.u.) 9.642 9.611 9.653 9.733 9.733c 9.723d 9.811 9.906

b (a.u.) 9.790 9.841 9.769 9.885 9.849c 9.841d 9.949 10.025

c (a.u.) 9.947 9.876 9.962 9.961 10.048c 10.036d 10.125 10.223

b (deg) 99.65 99.21 99.21 99.23 99.23c 99.23d 99.81 99.23

xZr 0.2776 0.2779 0.2769 0.2769 0.2754c 0.2758d 0.277 0.2765

yZr 0.0427 0.0418 0.0422 0.0430 0.0395c 0.0411d 0.044 0.0421

zZr 0.2092 0.2099 0.2097 0.2100 0.2083c 0.2082d 0.209 0.209

xOI
0.0704 0.0766 0.0689 0.0640 0.0700c 0.0703d 0.072 0.071

yOI
0.3372 0.3488 0.3333 0.3237 0.3317c 0.3359d 0.338 0.337

zOI
0.3407 0.3311 0.3445 0.3524 0.3447c 0.3406d 0.341 0.342

xOII
0.4482 0.4471 0.4495 0.4497 0.4496c 0.4423d 0.447 0.450

yOII
0.7576 0.7588 0.7573 0.7560 0.7569c 0.7549d 0.758 0.758

zOII
0.4807 0.4830 0.4798 0.4790 0.4792c 0.4781d 0.479 0.479

Em−Et −0.064 −0.05s7d −0.04s5d −0.06s3d −0.061e −0.10 −0.11

Rutile a (a.u.) 9.116

c/a 0.668

uO 0.3055

Er −Em +0.266

at→c transition, neutron diffraction[Aldebertet al. (Ref. 73)].
bt→m transition, neutron diffraction[Frey et al. (Ref. 70)].
cNeutron diffraction[Howardet al. (Ref. 77)].

dX-ray diffraction [Smith et al. (Ref. 68)].
eAt the transition temperature[Ackermannet al. (Ref. 67)].
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the transition temperature: the discrepancy with experiment
reaches 14% forEt−Ec, and 0.5% forEm−Et. The LDA cal-
culation excluding 4sp states(Ref. 83, not included in Table
I) shows somewhat larger but still reasonable discrepancy
with experiment(20% for bothEt−Ec andEm−Et). Neglect-
ing the semicore states has little effect on the relative prop-
erties of the distorted fluorite phases, but it is likely that this
will not be the case for widely differing structures. In con-
trast, the GGA/NLCC calculation(Fosteret al.29) systemati-
cally overestimates the absolute value of the energy differ-
ences, by 22% for the quantityEt−Ec (13 meV per ZrO2
unit), and by more than 50% forEm−Et (equivalent to a
difference in an activation temperature of 453 K), even
though the structural parameters are in close agreement with
experiment, as seen above.

This would lead us to conclude that the Zr semicore states
are important for the ground state of zirconia. The 4p semi-
core states appear to be sensitive to the environment of the
solid, as we will show in Sec. IV A. Therefore, due to the
strong spatial overlap with the valence states, the core-
valence exchange energy changes in the solid, and it be-
comes necessary to include these electrons as valence states
in the solid calculations. Moreover, the exchange interaction
between the 4s and 4p states must be taken into account. The
good agreement between our calculations and experimental
data allows us to now make a detailed comparison of the
parameters of the equation of state obtained in our calcula-
tions and in the experiments.

D. Equation of state and bulk modulus

The equilibrium volume, bulk modulus and its pressure
derivative were deduced from a fit of the total energy curve
as a function of volume with the Murnaghan equation of
state,85 and are reported in Table II for the monoclinic, te-
tragonal, cubic, and rutile phases. Our equilibrium volumes
are 2% smaller than a previous calculation performed with a
smaller plane-wave basis,28 and 3% smaller than the experi-
mental data. The calculated volume changes of −5%
(−1.7 Å3 per ZrO2 unit) sV0

m↔V0
t d and −2%(−0.62 Å3 per

ZrO2 unit) sV0
t ↔V0

cd are somewhat larger than the volume
changes observed at the transition temperature, −3.2%sV0

m

→V0
t d (Ref. 71) and −1.2%sV0

t →V0
cd.73

The theoretical bulk modulus for the monoclinic phase
agrees relatively well(difference of +5%) with the value of
189 GPa, estimated from the elastic constants

BV = 1
9sC11 + C22 + C33d + 2

9sC12 + C23 + C13d, s5d

in which the experimental elastic constants81 are used. Equa-
tion (5) is the Voigt approximation, based on the assumption
that the strain is uniform everywhere in the sample, and
gives an upper limitBV to the crystal bulk modulusB0.

86 The
smaller value of the bulk modulus measured in Ref. 82
would indicate that in the diamond anvil cell the pressure
may have been somewhat higher than the measured pressure,
as can be deduced from the small value of the equilibrium
volume reported in that particular experiment82 with respect
to other experimental techniques68,77 (Table II).

The theoretical bulk modulus for the tetragonal phase is
close to the experimental value, but larger by +9% with re-
spect to the value obtained by the extrapolation at vanishing
yttria content of the bulk moduli of yttria-stabilized tetrago-
nal phases.80 The difference between theory and experiment
ranges from +5% in purem zirconia to +9% for (YS)
t-ZrO2 which are both within the limits for the usual differ-
ence between LDA and experiment.

Turning to the cubic phase, the elastic constantsC11 and
C12 have been measured in yttria-stabilized ZrO2 as a func-
tion of yttria concentration; we have extrapolated these lin-
early to purec-ZrO2. The upper limit of the bulk modulus
BV=sC11+2C12d /3 (Voigt approximation) for the pure phase
is found to be either 194 GPa(extrapolated from the experi-
mental values given in Ref. 78, measured in samples contain-
ing from 8 to 18 mol% Y2O3) or 209 GPa(extrapolated for
the pure phase from a different experiment79 on single crys-
tals containing 1.7 to 20 mol % yttria). Moreover, we note
that in this range of concentrations, the change in elastic
constants relative to yttria concentration is weak.

Now, our theoretical bulk modulus for the cubic phase,
269 GPa, is higher by 29% to 39% from the experimental
value of 194–209 GPa,79 a difference much larger than for
the tetragonal or monoclinic phases(Table II). We find from
the comparison with experimental data that the introduction
of yttria in zirconia remarkablydecreasesthe bulk modulus
at ambient temperature with respect to the(hypothetical at
this temperature) pure tetragonal or cubic phase. We also find
that the bulk modulus should increase by 30% between the
tetragonal and the cubic pure phase, in contrast to the small
variation found experimentally79 between the yttria-

TABLE II. Theoretical equations of state ofc-, t-, m-, and
r-ZrO2 from a fit of the total energy curve with the Murnaghan
equation. Plane-wave pseudopotential(PP) results are from Stapper
et al. (Ref. 28).

V0 sÅ3/ZrO2d B0 (GPa) B08

Cubic This work 31.94 269 4.0

PP 32.73 268 3.6

Expt. 32.97a 194b–209c

Tetragonal This work 32.56 207 5.0

PP 33.39 197 5.0

Expt. 33.28a, 33.47d 190e

Monoclinic This work 34.26 199 2.6

PP 35.04 185 1.8

Expt. 35.06f, 35.22g 189h

Expt.i 34.0 95i 4–5i

Rutile This work 37.51 216 4.4

at→c transition(Ref. 73), volume extrapolated to 0 K.
bPure ZrO2 extrapolated from YS ZrO2 (Ref. 78).
cExtrapolated from single crystals YS ZrO2 (Ref. 79).
dt→m transition(Ref. 70), volume extrapolated to 0 K.
eYttria stabilized zirconia(Ref. 80).
fSingle crystal x-ray diffraction(Ref. 68).
gPowder neutron diffraction(Ref. 77).
hVoigt limit, with Cij from Ref. 81.
iDAC experiment(Ref. 82).
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stabilized tetragonal and YS cubic phases. This effect cannot
be explained solely from the small increase of the lattice
parameter in YSc-ZrO2, e.g., 1% at 12 mol % of Y2O3.

87

Finally, the presence of dopants(particularly yttria) has
two effects: it maintains the microstructure of the ceramics
by preventing the sequence of phase transitionsm→ t→c,
and it is known to increase the strength, toughness, and
thermal-shock resistance of zirconia.27 Therefore our finding
of a larger bulk modulus in the pure cubic phase than in the
YS cubic zirconia would seem paradoxical. However, the
two pictures can be reconciled under the hypothesis that at a
higher temperature, the elastic properties of pure cubic zir-
conia evolve more dramatically than the elastic properties of
YS zirconia. A comparison of the experimental equation of
state of pure cubic and YS cubic zirconia at the same tem-
perature would therefore be useful. This would require the
stabilization of the cubic phase at moderate temperature, as
high-pressure experiments in diamond anvil cells cannot be
performed at 2650 K. This stabilization could be achieved by
decreasing the size of nanoparticles of zirconia: nanopar-
ticles stabilize the tetragonal phase at ambient conditions.
The reduction of the size of the nanoparticles could lead to
the stabilization of the cubic phase, at moderate temperature,
which has not been achieved so far.

IV. ELECTRONIC STRUCTURE

In this section, we investigate the evolution of the elec-
tronic structure in the polymorphs in relation with the evo-
lution of the symmetry of the crystal field. We examine the
excitation spectra of the Zr 4s and 4p states(Sec. IV A), and
the line shape of the O 2s peak (Sec. IV B). Results from
x-ray photoemission experiments are reported in the litera-
ture for the pure monoclinic phase and for yttria-stabilized
cubic and yttria-stabilized tetragonal phases,88 which allow
us a comparison with the Zr 4p semicore states and with the
O 2s band. We furthermore give a comparison of the theo-
retical band structure of the valence(Sec. IV C) and conduc-
tion bands(Sec. IV D) in the various phases. Last, we report
our results for the theoretical gap, and the gap values deter-
mined experimentally from our EELS experiments(Sec.
IV E).

A. Electronic structure of zirconium 4s and 4p semicore levels

Figure 2 shows the total density of states(DOS) for the
cubic, tetragonal, monoclinic, and rutile phases. From now
on, we fix our reference energy at the top of the valence band
of each phase, as reported in Sec. IV C(Fig. 4 and in Table
III ). Throughout this section, the calculated DOS is a sum of
Gaussian functions with a 0.01 Ry width. The peak intensi-
ties in the DOS have been scaled to one ZrO2 unit, thus in
order to obtain the DOS per unit cell they should be doubled
in the tetragonal and rutile phases, and multiplied by four in
m-ZrO2.

We have found little hybridization for the deep 4s and 4p
states. However, we find that the peaks are not aligned in the
four polymorphs: the Zr 4s and 4p peak positions for the
cubic phase are found to be at −0.7 eV(lower) with respect

to the tetragonal one(rutile, −0.2 eV, monoclinic, −0.1 eV).
These shifts are not observed in the XPS experiment88 on the
Zr 4p states because of the arbitrary choice of the reference
energy. Indeed, the top of the valence band is not known
experimentally: the experimental spectra have been refer-
enced on the top edge of the valence XPS spectra which does
not vary between the different phases.88 As we will show in
Sec. IV C, we find in our calculations that the valence DOS
are quite similar around the top of the valence band inc, t,
andm zirconia [Fig. 5(a)]. However, the calculated valence
edge in the tetragonal phase is much sharper than in the
cubic or monoclinic phases, as can be deduced from the pres-
ence of a higher density of states at the reference energy in
t-ZrO2. This is caused by the contribution of several points in
the tetragonal Brillouin zone, generating a higher density of
states at the top of the valence band, an observation which is
missed when the XPS edges are aligned in this particular
experiment.88

In our calculations at deep energies, −49 to −46 eV, the
effect of the crystal field is small and thus the Zr 4s states are
atomiclike and the line shape is identical in the four phases,
as can be seen from Fig. 2(a). In the −27 to −25 eV energy
range[Fig. 2(b)], the Zr 4p lines are only 0.3 eV broader
than the Zr 4s lines, but the calculated line shape is modified

FIG. 2. Density of the Zr 4s (a) and 4p (b) states in the cubic,
tetragonal, monoclinic, and rutile phases. The reference of the en-
ergy is the top of the valence band of each phase.
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by the crystal field: it is symmetrical in the rutile phase; in
contrast it consists of a double peak separated by 0.5 eV in
the three fluorite-derived structures. The peak maximum is
found to be 10% less intense in the monoclinic phase with
respect to the cubic and tetragonal phases.

To our knowledge, no experimental spectra are available
for the Zr 4s line. The experimental XPS 4p line shapes88 in
the three fluorite-derived structures agree well with our cal-
culations. In particular, it is found both theoretically and ex-
perimentally that the shape of the 4p doublet is not affected
by the change in the coordination shell of zirconium, from
Z=8 (c and t zirconia) to Z=7 (monoclinic phase). Finally,
we compare our theoretical line shapes for the pure phases
with those observed in yttria-stabilizedc- and t-ZrO2,

88 and
conclude that the introduction of yttria has no influence on
the Zr 4p lines, at variance with the findings of Kraliket al.13

In the monoclinic phase, the experimental Zr 4p peaks are
at −28.3 eV(main peak) and −29.9 eV(shoulder), a devia-
tion of −3.0 and −4.2 eV, respectively, from our calculated
values. By directly comparing our occupied DOS with the
XPS spectra, we have neglected the quasiparticle shifts.38

These have been estimated by Kraliket al.13 and lead to a
partial correction of about −1.4 eV in the cubic phase. An-
other estimate can be provided by an atomic calculation in-
cluding the self-interaction correction(SIC):89–91 we found
the shift of the SIC to be −6.4 eV for the 4p states(−7.1 eV
for the 4s states) in the zirconium atom, twice the experi-
mental value.

B. Electronic structure of the oxygen 2s levels

The O 2s DOS curve93 is reported in Fig. 3 forc-, t-,
m-, andr-ZrO2. As was the case for the Zr 4s and 4p lines,
the O 2s peak position is lower by −0.5 eV in the cubic
phase than in the tetragonal phase(Fig. 3). However, in con-
trast to the Zr 4s and 4p lines, the oxygen 2s band is very
sensitive to the oxygen local coordination.

We find that in the cubic phase, the oxygen atoms are
surrounded by four Zr atoms at 2.18 Å. The O 2s band

shows a left shoulder at −0.5 eV with respect to the main
peak.

Second, we see that the oxygen line shape is identical for
the cubic and tetragonal structures, in which the O-Zr bond
lengths are on average 2.18 Å(2.07 and 2.33 Å int-ZrO2).

In the rutile structure, the oxygen atoms are surrounded
by three Zr atoms at quasiequal distances, 2.087 and
2.084 Å. The O 2s band shows two peaks of equal intensity
separated by 0.7 eV.

Finally, we can see that for the monoclinic phase, four
oxygen atoms have a threefold coordination with the zirco-
nium atoms, at an average distance of 2.04 Å, which is typi-
cal of the rutile structure. They contribute to the highest en-
ergy O 2s peak. Four oxygen atoms have a fourfold
coordination with the zirconium neighbors which are at an
average distance of 2.18 Å, as in the cubic phase. These
atoms contribute to the low energy peak. The mixed coordi-
nation shell inm-ZrO2 is then reflected in the DOS(Fig. 3),
which shows two peaks separated by 0.7 eV, and a higher
intensity at higher energy.

In comparison with the experimental results, we note that
experimentally88 the O 2s band is found to be centered at
−19 eV in the monoclinic phase. In contrast, we find our O
2s doublet located at −16.1 and −15.4 eV. The quasiparticle
effects estimated in the cubic phase only partially correct the
DFT result, by −2 eV(Ref. 13) and not the −3 eV required
to reconcile theory and experiment. Moreover, our LDA
bandwidth amounts only to 2 eV. Thus the observed band-
width of 8 eV (Ref. 88) is explained neither in the LDA nor
in the standard application of the quasiparticle framework.13

Last, we note that despite the error in absolute value on both
the Zr 4p and O 2s peak positions, the theoretical and ex-
perimental energy separation between the Zr 4p line and the
O 2s band are similar, within the precision of the experimen-
tal data, which is limited by the definition of the band center
of the O 2s band.88 This amounts to 9.3 eV experimentally,
9.7 eV in our LDA calculation, and to 9 eV in the GW
calculation.13 This is surprising, as one would expect an
LDA error larger on the atomic Zr 4p states than on the O 2s
ones, as the self-interaction potential is expected to be small
for extended valence states but not for atomiclike states.89–91

C. Electronic structure of the valence band

The dispersion of the energy of the valence bands for the
monoclinic, tetragonal, cubic, and rutile phases at the theo-
retical equilibrium lattice parameters are reported in Fig. 4.
The top of the valence band is located atX in the cubic
phase, and atG in m- and r-ZrO2. In the tetragonal phase,
within the numerical accuracy of our calculation, the top of
the valence band is formed by four points located atA, at
0.60 uG-Mu along theG-M direction, at 0.63uG-Xu along the
G-X direction, and atZ. As already mentioned in Sec. IV A,
in the DOS reported for the tetragonal phase in Fig. 5(a)
shows a much higher density of states at the top of the va-
lence band(zero energy) with respect to the other phases
(regardless of whether experimental or theoretical lattice pa-
rameters are used in the calculation)—this is explained by
the flat top of the valence band alongG-Z, G-X, and G-M,

FIG. 3. Density of the O 2s states in the cubic, tetragonal,
monoclinic, and rutile phases. The reference of the energy is the top
of the valence band of each phase.
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which adds to the contributions of theA point [Fig. 4(a)].
The valence bandwidth decreases by 1 eV between the

tetrahedral and the octahedral crystal fields, from 4.8 eV in
the cubic phase(respectively, 4.6 eV in the tetragonal phase)
to 3.8 eV in the rutile phase. The valence bandwidth of the
monoclinic phases4.5 eVd is closer to the width of the cubic
or tetragonal valence band than to the rutile one.

The agreement between our DOS and the experimental
spectrum is excellent[Fig. 5(b)]. The measurement of the
photoemission spectrum(from Sorianoet al.92) has been per-
formed at ambient conditions, and therefore probably on the
monoclinic phase, as can clearly be seen by comparison with
our theoretical DOS. The theoretical spectrum shows a main
peak and a shoulder downshifted by −1.5 eV, as in the rutile
phase, whereas in the cubic(respectively, tetragonal) phase
we see a double peak separated by 2.3 eV(respectively,
2.2 eV). In the experiment, a weak signal not present in the
theoretical spectrum is observed at 2 eV above the intrinsic
top valence band, and has been attributed to oxygen vacan-
cies on the surface.92

D. Electronic structure of the conduction band

The dispersion curves of the conduction bands at the the-
oretical equilibrium lattice parameters are reported in Fig. 6.

The bottom conduction band is found to be at theG point in
c- andt-ZrO2, at theB point in the monoclinic phase, and at
the R point in the rutile phase.

The first conduction bands are found to have anEg char-
acter atG in the cubic phase[Fig. 6(c)]. At higher energy,
conduction bands haveA1g or T2g character at theG point.
We will show that the separation between theEg and A1g
+T2g bands is a fingerprint of the conduction band in cubic
zirconia. The gap in the conduction band has a minimum of
1.4 eV at theX point [Fig. 6(c)].

Turning to the empty DOS ofc-ZrO2 [Fig. 7(a)], we find
that theEg bands give rise to an intense peak at 4.2 eV, while
the T2g band leads to a double structure at 6.7 and 7.9 eV.
Although lower in energy atG, the free-electron-likeA1g
state shows a large dispersion and therefore contributes to
the DOS only at high energy, between 10 and 13 eV.

On going from a tetrahedral crystal field, as in the fluorite
phase, to a(tetragonally distorted) octahedral one in the hy-
pothetical rutile phase, the change is drastic and the relative
positions of theEg andT2g bands are exchanged, as expected
from crystal-field theory. In the rutile phase, theT2g derived
states now form the lowest conduction bands. A pseudogap
opens at 7 eV, where the low DOS consists of the tetrago-
nally distortedA1g band. TheEg derived band now appears at
8 eV.

FIG. 4. Theoretical valence band structure at the equilibrium cell parameters for monoclinic(a), tetragonal(b), cubic (c), and rutile(d)
zirconia.
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In contrast, fort-ZrO2 the tetragonal deformation barely
modifies the empty cubic DOS apart from a blueshift: theEg

(respectively,T2g and A1g) band is raised by 0.9(respec-
tively, 0.6 and 0.4) eV [Fig. 7(a)]. The Eg-A1g separation
comes from theA→M gap, and these points are both related
to theX point of the cubic phase.

In our calculation for the monoclinic phase, the gap in the
conduction band separating the bands derived fromEg and
T2g cubic bands is lost, a consequence of the partly octahe-
dral and partly tetrahedral crystal field[Fig. 7(a)]. The ab-
sence of the gap is confirmed in the experimental Brems-
strahlung isochromat spectrum of Sorianoet al.92 [Fig. 7(b)].
The BIS agrees well with our calculated spectrum for
m-ZrO2, convoluted with a Voigt profile, at energies up to
10 eV. At higher energies, a direct comparison is hindered by
a significant additional contribution in the experimental spec-
trum. This is caused by secondary electrons,94 excited at high
energy, whose de-excitation leads to an additional signal at
an energy equal to two times the energy gap.92

E. Band gap

The fundamental gap of a single crystal of pure zirconia
has been measured in the monoclinic phase, on heavily
twinned single crystals.88 More precisely, vacuum ultraviolet
spectroscopy has been performed in reflectivity in the
3–40 eV range, and the absorption spectrum has been de-
duced from a Kramers-Kronig analysis.88 The band gaps ob-
tained from a fit of the low(respectively, high) absorption is
found to be 5.8(respectively, 7.1) eV.88 An optical absorption
experiment has also been performed on films of monoclinic
zirconia between 4.9 and 6.5 eV, and two allowed direct
interband transitions were identified at 5.2 and 5.8 eV.97

However, EELS experiments at large momentum
transfer45,46,95give a gap value of about 4 eV in the mono-
clinic phase. How can we explain this discrepancy? In fact in
optical experiments, an absorption tail develops around 4 eV
in yttria stabilized cubic zirconia, which has been attributed
to extrinsic absorption98 or to oxygen vacancy centers in the
gap.99 Moreover, UV-visible diffuse reflectance spectra100

show a large absorbance below 5.4 eV down to 3.5 eV in
pure tetragonal and monoclinic zirconia, an energy range that
has not been investigated in Ref. 97. We therefore explore
the question of the origin of the electronic excitations seen at
low energy in EELS experiment.

To this end, EELS experiments have been performed on
the pure monoclinic and tetragonal phases(this will be dis-
cussed in detail in Sec. V). For the monoclinic phase, we
have been able to fit the low energy part(between 4 and
5 eV) of the spectrum with aa+bs«−Egapd3/2 law, valid for
an indirect gap.101 Our fitted value forEgap is 3.8 eV in
m-ZrO2 (Table III). For the tetragonal phase, the nanocrys-
tallinity of the sample introduces a high density of grain
boundaries, and we find an extrinsic edge around 1.8 eV. For
both phases, furthermore, we have been able to fit the energy
range between 5 and 7 eV of the spectrum with aa+bs«
−Egapd1/2 law, valid for a direct gap.101 Our fitted values for
Egapare 5.3 form-ZrO2 and 5.0 eV fort-ZrO2, as reported in
Table III.

We have also calculated the minimum and direct LDA
band gap energy at the theoretical lattice parameters(Table
III ). Within the accuracy of our calculations, the values of the
direct and indirect gaps are within 0.1 eV of each other in all
phases except the cubic one, where the minimum gap is
0.5 eV smaller than the first direct gap. Our results agree
well with a previous calculation(Kralik et al.13) performed at
the experimental lattice parameters, with the exception of the
monoclinic phase. We have also calculated the gaps at the
experimental lattice parameters and report these values in
Table IV. We find that for the monoclinic phase, the LDA
band gap is 0.5 eV larger than that found in Ref. 13.

If the experimental gap observed in EELS at 3.8 eV in
m-ZrO2 turns out to be the fundamental gap, several conse-
quences follow, which we now examine in detail. First, our
theoretical and experimental gap values would be in fortu-
itous agreement with each other in the monoclinic phase, and
smaller by 25% with respect to previous EELS experiments
performed at a larger momentum transfer.45,46The LDA error
would therefore be much smaller in ZrO2 than the usual error
found in covalent semiconductors. This rarely occurs, but is

FIG. 5. (a) Theoretical density of the valence states in the cubic,
tetragonal, monoclinic, and rutile phases, and(b) its convolution
with a Voigt profile consisting, respectively, of a Gaussian function
(half-width at half-maximum of 0.8 eV) and of a Lorentzian func-
tion (HWHM in eV, 0.2+0.093E), to be compared to the experi-
mental valence photoemission spectrum(Ref. 92) (arbitrary units).

ELECTRONIC STRUCTURE AND ELECTRON ENERGY-… PHYSICAL REVIEW B 70, 245116(2004)

245116-9



nonetheless plausible, as a comparably small LDA error is
found, for example, ina-Al2O3.

102,103

Second, evaluation of the gap value beyond the LDA has
been performed: within the standard GW approximation, one
expects an approximated quasiparticle shift of around 2.2 eV
(Ref. 13) (GW results in Table III). Our LDA gap plus the
GW shift leads to a quasiparticle gap of 5.8 eV inm-ZrO2.
Excitonic effects would have to be very larges−2 eVd to
compensate for the discrepancy with our EELS experiment.38

To our knowledge, the excitonic effects that have been
reported98 in zirconia are not as large, and the small elec-
tronic dielectric constants«`,5d (Ref. 1) makes this im-
probable.

Third, our LDA calculations also predict a 0.1 eV differ-
ence between the onsets of the direct and indirect gap, which
is difficult to reconcile with experiment: experimentally, we
observe a difference of 1.5 eV between the low energy(in-
direct) and the high energy(direct) gaps in monoclinic ZrO2
(Table III). We have checked that the discrepancy cannot be
explained theoretically by forbidden transitions at low en-
ergy. Indeed, in the cubic phase, first electronic transitions
are expected from the top of the valence band(T1u at theG
point) to the first empty states(Eg at theG point), as can be
seen from Figs. 4(c) and 6(c). At an energy 2 eV higher, the
final states of the transitions are theA1g+T2g states(at theG

point). We have inspected the optical selection rules in the
cubic phase:54 optical transitions from theT1u to the Eg
bands are not forbidden, either atG or at theX point (as can
also be observed in our absorption spectrum of Fig. 8, center
panel).

We would therefore be inclined to conclude that, in our
particular case, the fitting of the low energy edge of the
EELS spectrum101 does not allow us to determine the funda-
mental band gap, at variance with results reported for other
materials like GaN.104 VUV and EELS experiments on
m-ZrO2 can be reconciled if the low energy part of the EELS
spectrum is attributed to electronic excitations from defect
states, at 2 eV above the top of the intrinsic valence band.
They are observed in XPS[Fig. 5(b) and Sec. IV D]. More-
over, positions in the gap of defects in monoclinic zirconia
have been calculated:29 an apparent gap from intersitial oxy-
gen statess3.6 eVd or oxygen vacancy statess3.7 eVd would
correspond well to our EELS gap of 3.8 eV. We point out
that however these defects should be present in bulk zirco-
nia, and are not caused by irradiation, as we found no evi-
dence of a degradation of our samples in the electron beam.

Last, our value of the fundamental gap inm-ZrO2 de-
duced from the fitting of the high energy part of the EELS
spectrum is 5.3 eV, in agreement with experiments on thin
films97 and smaller by 0.5 eV with respect to the VUV result

FIG. 6. Theoretical conduction band structure at the equilibrium cell parameters for monoclinic(a), tetragonal(b), cubic (c), and rutile
(d) zirconia.
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deduced from the low absorption edge88 (Table III). Such an
error is reasonable, given the arbitrary nature of the choice of
the energy range on which the fit can be performed in both
experiments.

We believe that our findings call for new optical and VUV
experiments both inm-ZrO2, in order to, for example, rule
out the possibility of a 7.1 eV gap, and also to better identify
the interband transition seen at 5.2 eV in thin films, and in
pure tetragonal ZrO2: to our knowledge, no data are available
for this phase.

F. Conclusion

In conclusion to this study of the electronic structure of
c-, t-, m-, and hypotheticalr-zirconia we can therefore make
the following points. First, there is a fingerprint in the elec-
tronic structure, being the presence of a gap in the conduc-
tion band between theEg and T2g states in the cubic and
tetragonal phases, which vanishes in the monoclinic phase

because of the partially octahedral crystal field. This can help
in discriminating the monoclinic phase from the other
phases.

Second, we find that the electronic structure of the cubic
and tetragonal phases are similar. The main difference comes
from a sharper valence band edge in tetragonal zirconia and
a redshift of the Zr 4s, 4p and O 2s lines in the cubic spec-
trum with respect to the tetragonal phase.

Third, the 8 eV width of the O 2s band in the XPS
experiment88 is left unexplained by LDA or quasiparticle cal-
culations. This particular point could be elucidated with the
aid of new experiments.

Finally, we note that in the EELS experiment, we confirm
a low energy gap of zirconia around 4 eV that we attribute to
defect states, and find a high energy gap at 5.3 eV in
m-ZrO2, close to the 5.2 or 5.8 eV observed in VUV experi-
ments. This would lead us to conclude that for this particular
material, the fitting of the low energy edge of the EELS
spectrum is not appropriate to determine the fundamental
gap. A new optical determination of the fundamental gap in

FIG. 7. (a) Density of the early conduction states in the cubic,
tetragonal, monoclinic, and rutile phases, and(b) its convolution
with a Voigt profile consisting, respectively, of a Gaussian function
(half-width at half-maximum of 0.5 eV) and of a Lorentzian func-
tion (HWHM of 0.2 eV), compared with experimental Bremsstrah-
lung isochromat spectrum(Ref. 92) (arbitrary units). Upper(respec-
tively, lower) case labels are the symmetry characters of the DOS of
the cubic phase(respectively rutile phase).

TABLE III. Minimum and direct band gap energy(eV) for the
cubic, monoclinic, rutile, and tetragonal phases of ZrO2, and their
location in the Brillouin zone.

Phase Minimum gaps Direct gaps

c This workb X→G 3.3 X 3.8

G 3.9

LDAa X→G h3.3

5.6

3.7

GWa 5.8

m This workb G→B 3.6 B 3.7

G 4.0

LDAa PG-X→G h3.1

5.4

G h3.2

5.5GWa

Expt. Egap
c 3.8 5.3

EELSd 4.2

Expt.e 4.5

VUVf 4.5

VUVg 5.8–7.1

VUVh 5.2 and 5.8

r This workb G→R 3.6 G 3.6

t This workb A→G 4.0 G 4.1

PG-M→G 4.0

PG-X→G 4.0

Z→G 4.0

LDAa PG-M→G h4.1

6.4

G h4.3

6.6GWa

Expt. Egap
c 5.0

aTheory at the experimental lattice parameters(Ref. 13).
bAt the theoretical equilibrium lattice parameters.
cThis work, fit of EELS experiment, see text.
dReference 45.
eEELS (Ref. 46), and REELS(Ref. 95).
fReference 96.
gReference 88.
hOn thin films, Ref. 97.
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both pure monoclinic and tetragonal zirconia would be
worthwhile.

V. ELECTRON ENERGY-LOSS SPECTROSCOPY

In this section, we first apply the theoretical framework
defined in Sec. II and report our theoretical EELS spectra
(Sec. V A). Valence EELS experiments have previously been
performed in transmission at large momentum transferq
(Refs. 45 and 46) and in reflection.48 In this work, we have
performed very lowq experiments(Sec. V B) and compare
them to the theoretical results(Sec. V C). In previous
work,40,43,105,106we have shown that local-field effects can be
the main source of anisotropy in the response function: in the
RPA without local fields, the response function shows only
weak anisotropy, reflecting the quasi-isotropy of the coupling
of the radiation to the band structure, whereas including
local-field effects causes anisotropies visible in the EELS
spectrum(for example, excitation of 3p plasmons in rutile40),
or cause the static birefringence of superlattices.105,106Here,
we will show that the theoretical 4p plasmons in the EELS
evolve in the different crystalline phases of zirconia through
local-field effects.

A. Theoretical EELS spectrum

In Fig. 8, we report the dielectric function« for c-ZrO2
calculated in the RPA without local fields: the real part«1 is
shown in the top panel, the imaginary part«2 (corresponding
to the absorption spectrum) in the center panel, and in the
bottom panel we show the loss function, defined as
−Ims«−1d, which in this approximation is equal to«2/ s«1

2

+«2
2d. Three regions can be distinguished. First, we observe

that the valence excitation region extends up to 18.5 eV. The
real part of « behaves mainly as a double(classical)
oscillator.107 It vanishes(from positive to negative value)
around 8.8 and 16.5 eV, and, correspondingly,«2 shows

maxima of absorption at these frequencies. The real part«1
vanishes(from negative to positive) at 13.7 and at 16.5 eV
(not seen in the figure because of the small broadening). The
loss function consequently shows two peaks at these ener-
gies. In the absorption spectrum«2, the strong absorption
below 9.5 eV stems from transitions from the valence band
to the Eg states. The absorption band extending beyond 9.5
up to 16 eV is associated with transitions from the valence
band toT2g states in the conduction band. The small absorp-
tion peak at 16 eV comes from valence band toA1g excita-
tions.

Second, we see that at above 28 eV, corresponding to the
zirconium 4p excitations,«1 also behaves as a triple classical
oscillator: it vanishes(from positive to negative) at 30.4,
32.8, and 34.0 eV. Consequently«2 shows strong absorption
at 30.5 eV and between 32.9 and 34.1 eV. Peaks are ob-
served in the loss function when«1 vanishes(from negative
to positive) at 31.5, 33.4, and 37.7 eV.

Third, we remark that the region between the valence
plasmons and the 4p plasmons, i.e., around 16 to 28 eV,
cannot be interpreted in terms of classical oscillators. Be-
tween 22 and 28 eV,«1 and«2 are dominated by linear fea-
tures, increasing for«1 and decreasing for«2. The corre-
sponding loss function exhibits a broadened peak at 24.9 eV
which we assignnot to plasmons but to other forms of col-
lective excitations. The plasmon is defined by a vanishing
real part of the dielectric function and a minimum of the
imaginary part, which is not the case for this peak. Such
linear behavior for«1 and «2 has already been observed in
the theoretical EELS of rutile TiO2.

40 However, we note that
here the oscillators associated with the O 2s electrons are
present («1 vanishes from positive to negative around
20.0 eV, and vanishes from negative to positive around
24.7 eV) but are overwhelmed by the linear behavior of«1
and«2, which is the cause of the main peak at 24.9 eV.

FIG. 8. Theoretical dielectric function forc-ZrO2. Top panel,
real part. Center panel, imaginary part. Bottom panel, the loss func-
tion. Solid lines, RPA with local fields. Dashed lines, without local
fields. The real and imaginary parts of the dielectric function(re-
spectively, the loss function) are broadened with a Lorentzian of
HWHM of 0.1 eV (respectively, 0.5 eV).

TABLE IV. Minimum and direct calculated band gap energy
(eV) for the cubic, monoclinic, and tetragonal phases of ZrO2 at
theoretical and experimental lattice parameters(LP). PG-M is found
at 0.6 (respectively, 0.55) uG-Mu for the theoretical(respectively,
experimental) (LP). PG-X is found at 0.63(respectively, 0.65)
uG-Xu for the theoretical(respectively, experimental) LP.

Phases Gaps Theor. LP Expt. LP

c X→G 3.34 3.25

X 3.76 3.65

G 3.90 3.80

m G→B 3.58 3.59(4)

B 3.66 3.59(2)

G 3.98 3.93

t A→G 3.99 4.23

PG-M→G 4.00 4.03

PG-X→G 4.01 4.08

Z→G 4.02 4.15

G 4.11 4.20
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The local-field effects reflect the inhomogeneity of the
material in the response function, and have the effect of mix-
ing the formerly independent transitions, as shown in the
solid lines of Fig. 8. The effects on«1 and«2 are weak below
25 eV. At higher energies, however, they drastically modify
the triple 4p plasmons, both in line shape and peak position.
The peak formerly at 31.5 eV is shifted towards higher en-
ergy by 1.4 eV, while the main peak is shifted by 6.4 eV.
Large effects on excitations from a quasiatomic level due to
local fields have already been found for the 3p excitations in
rutile TiO2.

40

Having examined the loss function of the cubic phase in
detail, we now look at the other phases. The loss function for
c-, t-, andm-ZrO2 is reported, without local-field effects, in
Fig. 9(a). We find a small anisotropy for the tetragonal and
monoclinic phases. The spectra reported in Figs. 9(a) and
9(b) are averaged over momentum transfer along the three
Cartesian axes. When averaged, the 4p peak at 31.5 eV is
smeared out in the spectrum of the monoclinic phase, but is

nonetheless visible in the tetragonal phase. The main 4p peak
around 37 eV is very similar in the three phases, showing a
very weak dependence of this excitation on the crystalline
phase in the RPA without local fields.

When local-field effects are included in the calculations
[Fig. 9(b)], the modification of the main 4p plasmons
strongly depends on the crystalline phase: the main peak is
shifted by 6.4 eV inc-ZrO2, by 4.2 eV in t-ZrO2, and be-
comes a triplet shifted by 3.8, 5.0, and 6.3 eV in the mono-
clinic phase. Additionally, we note that the shape of peak
formerly at 31.5 eV varies. The dependence of the 4p plas-
mon on the crystalline phase is therefore brought into the
spectrum through local-field effects.

B. Experimental details

Monoclinic ZrO2 reference spectra were recorded from
thin foils prepared from bulk samples. The bulk samples
were obtained by sintering of undoped powders commercial-
ized by the Tosoh Japanese company under the name TZ-0
(purity, 99.9% ZrO2; particle size, 40 to 60 nm). Tetragonal
and cubic ZrO2 reference spectra were recorded from home-
made powders dispersed on a copper grid covered with a
perforated carbon thin film. Both were synthesized by the
spray-pyrolysis technique.108 One advantage of this proce-
dure is to obtain nanocrystallized powders and to keep the
tetragonal structure stable at room temperature without the
use of dopants. The cubic structure was stabilized by addi-
tion of 8.5 mol%Y2O3.

The EELS analyses were performed using a TECNAI F20
Supertwin microscope fitted with a Gatan Image Filter. With
this setup, the probe is very small and our energy resolution
is better than 0.7 eV. The spectra were recorded in scanning
transmission electron microscopy mode with an energy dis-
persion of 0.1 eV/channel, using low collection angles(1.8
to 0.5 mrad) to increase the resolution and reduce as much as
possible the momentum transfers, while keeping an optimum
signal to noise ratio. The spectra were then processed using
the Electronic Structure Tools software(EST)109 to calculate
the single scattering spectra. The removal of the zero-loss
peak and plural scattering signal are based on a Fourier-log
deconvolution after fitting of the experimental zero-loss peak
with a Pearson VII function.

C. Comparison with experimental EELS spectrum

In our calculations, we have used a vanishing momentum
transfersq=0d. In our experiments, we estimate the trans-
ferred momentum to be 0.12 Å−1 in t zirconia, and to amount
to 0.45 Å−1 in m- and YSc-ZrO2. Calculations performed in
the cubic phase at vanishingq or atq=0.2 Å−1 did not show
any difference in peak positions in the loss function, and
only a tiny difference(at most 7%) in peak intensities: this
enables us to compare directly our experimental and theoret-
ical spectra for the tetragonal phase, and gives us confidence
in the comparison of the theoretical and experimental spectra
in the monoclinic and cubic phases.

In the experiment, the observed intensity depends on an
integration of the signal over the collection angleb,110 which
for a cubic phase is expressed by the formula

FIG. 9. Theoretical loss function(a) within the RPA without
local fields, and(b) with local-field effects. Dotted line,c-ZrO2.
Dashed line,t-ZrO2. Solid line,m-ZrO2. The loss function is broad-
ened with a Lorentzian of HWHM of 0.5 eV.
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IsEd ~ − p ImF«−1 lnS1 +
b2

uE
2 DG , s6d

whereuE=Elossm/"2k0
2 is the characteristic angle depending

on the energy lossEloss, and on the relativistic massm and
wave vectork0 of the incident electron beam.

For the tetragonal phase, we have averaged the integration
over the geometries in which the momentum transfer is par-
allel or perpendicular to the tetragonalc axis,

IsEd =
IqicsEd + 2Iq'csEd

3
. s7d

We find that the intensity whenq is along the tetragonal axis
is given by

IqicsEd ~ − p ImF«'
−1 lnS1 +

b2«'

uE
2«i

DG . s8d

When q is parallel to the tetragonal axis, we must further-
more integrate taking into account the in-plane component of
the q vector defined by the in-plane anglef,

Iq'csEd ~ − p ImFE
0

2p 1

usfd
lnS1 +

b2usfd
uE

2«i
DdfG , s9d

usfd = «',f100g cos2 f + «',f010g sin2 f. s10d

For the monoclinic phase, we have averaged the inte-
grated intensity forq along the three crystal directions cal-
culated with Eq.(9). For q along the[001] direction perpen-
dicular to the basal plane, the integrated intensity is again
given by Eqs.(9) and (10). Whenq is along[100] (respec-
tively [010]), Eq. (10) is an approximation to the integration,
and so we have

usfd < «',f010g cos2 f + «',f001g sin2 f. s11d

To compare our theoretical spectra to the experimental
ones, we have applied integrations of Eqs.(6)–(11) of our
theoretical dielectric functions withb=1.8 mrad for the cu-
bic and monoclinic phases, andb=0.5 mrad for the tetrago-
nal phase.

The experimental and peak positions of the integrated loss
function are reported in Table V. Compared to peak positions
of the loss functions reported in Fig. 9, the integration overb
affects the position of the collective excitation by at most
0.3 eV, the valence plasmon position by 1.0std, 0.6smd, and
0.5scd eV, and the 4p plasmon main peak by −0.6scd,
0.3std, and −0.2smd eV.

We have seen that, in contrast to the plasmon peaks, the
collective excitation does not depend precisely on the fre-
quency at which the real part of the dielectric function van-
ishes. We find its theoretical position in very good agreement
with experiment for all the crystalline phases, as also already
seen in a previous work40 (Table V). We have therefore used
this as our reference: we have fitted the broadening of our
theoretical integrated loss functions in the monoclinic phase
to the experiment, and applied the resulting Voigt profile to
the spectra of the tetragonal and cubic phases.

The theoretical and experimental integrated loss function
of pure monoclinic and tetragonal zirconia are reported in
Figs. 10(a) and 10(b), respectively. The main 4p plasmon
agrees well, both in position and shape, for the two phases,
provided that local-field effects are included(see insets of
Fig. 10 for the result without local-field effects). A RPA with
local-field effects scheme therefore seems reasonable for this
type of excitation. This might come from a partial cancella-
tion of further many-body effects, treating the electron-
electron and the electron-hole interaction.38 In contrast, the
theoretical position of the valence plasmon is too high in
energy by 1.5 eV inm-ZrO2, and by 0.5 eV int-ZrO2. In
both phases the theoretical intensity of the valence plasmon
is too small, and the shape of the low-loss part is not well
reproduced. In that case, inclusion of many-body effects, in
particular excitonic effects, in the theoretical spectra would
be helpful. However, one must be cautious in the interpreta-
tion of the intensity of the low energy plasmon, as a precise
determination of the experimental intensity in the low energy
part of the loss spectrum can be very sensitive to the subtrac-
tion of the zero-loss peak.

Finally, in Fig. 10(c), we compare pure zirconia(theory)
with yttria-stabilized zirconia(experiment). We find that the
introduction of yttria affects the whole electron energy loss
spectrum: the valence plasmon position now(fortuitously)
agrees, although the theoretical intensity is underestimated.
The impact of the yttria concentration on the valence plas-
mon has been previously reported.48 We note also that the
width of the collective excitation is larger in the experiment,
and that the main 4p plasmon peak is redshifted by more
than 1 eV in the experimental result with respect to the cal-
culation for the pure phase.

D. Conclusion

In conclusion to this section, we have found that the the-
oretical valence plasmon(s) as well as the 4p plasmons differ
both in peak position and shape in the three low pressure
phases of zirconia. These differences have two origins: for
the valence plasmon, the difference in the line shape arises
directly from differences in the band structure between the
phases, like the gap in the conduction states detailed in Sec.

TABLE V. Experimental position(eV) of the plasmons and of
the collective excitation inc-, t-, andm-ZrO2. In the experiment,
c-ZrO2 is yttria stabilized. The theoretical values(RPA with local
fields) are given in parentheses. In the calculations, the valence
plasmon has two peaks inc- and t-ZrO2.

Valence Collective 4p

Phase plasmons excitation plasmons

c 14.4 (14.5) 24.8 (25.4) (33.2)

(16.8) 41.5 (43.2)

t 14.4 (14.9) 25.4 (25.2) (32.9)

(17.0) 42.3 (41.9)

m 14.4 (15.9) 25.8 (25.4) (33.9)

41.2 (41.8)
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IV. For the 4p peak(N2,3 edge), the difference is brought in
via the local-field effects. These differences are not observed
in the experiment, partly because of the accuracy of the mea-
surements, partly because of the difficulty to synthetize ap-
propriate samples. In this respect, core spectroscopy, such as
electron energy-loss near-edge spectroscopy36,37 seems of
greater potential for the characterization and localization of
yttria in the structure of zirconia.

VI. CONCLUSION

In conclusion, we have performed anab initio study of
the atomic and electronic structures of the three low-pressure
(monoclinic, tetragonal, and cubic) phases of zirconia.
Within the DFT-LDA framework, we have found it necessary
to include the 4sp semicore states in the calculations. From
comparison of the theoretical bulk modulus with experiments
performed in the cubic phase, we have found that introduc-
tion of yttria in zirconia lowers the bulk modulus by as much
as 30%.

We have then followed the effect on the electronic struc-
ture as the crystal field evolves from tetrahedral, as in the

cubic and tetragonal structures, to octahedral as in the hypo-
thetical rutile phase, via the intermediate monoclinic phase.
We have described a fingerprint in the electronic structure of
cubic and tetragonal zirconia: the presence of a gap in the
conduction band separating theEg and A1g+T2g states,
which we have shown does not occur inm-ZrO2. The cubic
and tetragonal electronic structures are otherwise very simi-
lar, except for the presence of a high density of states at the
top of the valence band oft-ZrO2, which shifts the Zr 4s, Zr
4p lines and the O 2s band to higher energies. We found
otherwise that the LDA error on the peak positions of the
Zr 4p lines and O 2s band are similar despite the stronger
atomic character of theZr 4p.

We have performed EELS experiments at small momen-
tum transfer on pure monoclinic and tetragonal zirconia, and
on the yttria stabilized cubic phase. Inm-ZrO2, we find ex-
citations at around 4 eV which we attribute to defect states.
By fitting the high energy part of the spectrum, we find a gap
at 5.3 eV inm-ZrO2, close to the 5.2 or 5.8 eV observed in
VUV experiment. This would lead us to conclude that for
this particular material, the fitting of the low energy edge of

FIG. 10. Integrated loss function(see text) for
pure zirconia:(a) monoclinic,(b) tetragonal, and
(c) cubic phases. Solid line, experiment. Dashed
line, theory with local fields. Inset, theory without
local fields. The theoretical curves have been
convoluted with a Voigt profile, Gaussian of
HWHM of 1 eV, and Lorentzian function of
HWHM of 1 eV. In the experiment, cubic zirco-
nia is yttria stabilized.
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the EELS spectrum is not appropriate to determine the fun-
damental band gap.

Finally, we have performed calculations of the electron
energy-loss spectra of zirconia in the random phase approxi-
mation and included local-field effects. Differences between
the phases in the electronic structures are reflected in the line
shape of the valence plasmons. The differences in the 4p
plasmons between the phases are caused by the local-field
effects.
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