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We calculate the interacting bandgap energy of a solid within the random-phase approxifR&#&)rto
density functional theoryDFT). The interacting bandgap energy is definedEgs ERPAN+1)+ERPAN-1)
—-2ERPAN), whereERPA(N) is the total DFT-RPA energy of th¥-electron system. We compare the interacting
bandgap energy with the Kohn-Sham bandgap energy, which is the difference between the conduction and
valence band edges in the Kohn-Sham band structure. We show that they differ by an unrenorr@gligd “
self-energy correctiofi.e., aGW self-energy correction computed using Kohn-Sham orbitals and energies as
input). This provides a well-defined and meaningful interpretatio®§d/, quasiparticle bandgap calculations,
but questions the physics behind the renormalization factors in the expression of the bandgap energy. We also
separate the kinetic from the Coulomb contributions to the DFT-RPA bandgap energy, and discuss the related
problem of the derivative discontinuity in the DFT-RPA functional. Last we discuss the applicability of our
results to other functionals based on many-body perturbation theory.
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[. INTRODUCTION 35-37, we have investigated the asymptotic behavior of the
DFT-RPA potential, and we have notably shown that

The density functional theoky® (DFT) is widely used to- v (r)~-1/r+Q/r®-a/(2r* (in finite, closed shell sys-
day to calculate the ground-state properties of solids antems with spherical symmetrywhereQ is a screened quad-
molecules. The local density approximatiahDA) and the  rupole moment and is the RPA polarizability of the system.
generalized gradient approximatfolGGA) have notably This is in much better agreement with the expected
proved very successful in predicting the structural and vibrabehavio?® than the LDA and GGAand to a lesser extent,
tional properties of many materials. The LDA and GGA, exact exchang®). As for (semjextended systems, the linear-
however, miss long-range correlations; they thus fail to reresponse Sham-Schliter equation has been solved by Eguiluz
produce the ground-state energy surfaces of Van der Waakt al. for a jellium surfac&® and by Godbyet al. in bulk
bonded systems or of layered materials such as graphitesilicon'*2where the potential was found to be close to the
These shortcomings have stimulated the need for fully nontDA. Approximate DFT-RPA potentials have also been cal-
local approximations able to account for long-range effectsculated in some bulk metals and silicon by Kotéhi.

There are many ways to design nonlocal approximations One of the main limitations of DFT in solids is the well-
for the exchange-correlation energy, including many-bodyknown “bandgap problem.” Indeed, the Kohn-Shaks)
perturbation theor§;,” Kohn-Sham perturbation theoty,and  bandgap energij‘:gS is usually found much lower than the
the adiabatic-connection fluctuation-dissipatigdhCFD)  experimental bandgap. As a matter of fact, the KS bandgap
theorem®1! within time-dependent DF2-14 The prototype energy might differ from the interacting bandgap energy
of the ACFD functionals is based on the so-called randomE =E(N+1)+E(N-1)-2E(N), whereE(N) is the total en-
phase approximation for the density-density response funargy of theN-electron system, due to the existence of a de-
tion (DFT-RPA functiona). It will be reviewed in Sec. Il. At rivative  discontinuity in the exchange-correlation
variance with the LDA and GGA, the DFT-RPA is an explicit functional®344-46In practice, the bandgap energy and quasi-
functional of the Kohn-ShartKS) orbitals and energies, and particle band structure are thus computed with many-body
thus only an implicit functional of the density. It has been Green function techniqué&ssuch as the&sW method*®49 In
applied to the homogeneous electron gas more than thrg®inciple, the Green functiorG should be updated with
decades ag®1"then to jellium slabs and surfac¥s?'the  Dyson equation until self-consistency is achie%&d? In
calculation of the ground-state energy surface of simple dimost cases, however, ti@&W self-energy is calculated using
atomic molecule®¥2°(H,,N,, ...) and solid$® (Si, Na,...),  KS orbitals and energies as input, thus leaving out self-
which is much more demanding than the LDA and G@®#%  consistency. This GyW," approach has been successfully
a factor 16 to 10°), has been achieved only recently. The applied to a wide variety of materiaté4254-56There has
DFT-RPA properly describes Van der Waals interacting®  been, however, recent controversy about the effects of self-
but misses important short-range correlati#hhis defi-  consistency on the quasiparticle band structure and about the
ciency can, however, be cured with LDA-like correcti®n®  rationale behind3,W, calculations)’-2
or using refined time-dependent DFT kerrn&ig? In this paper, we calculate the DFT-RPA interacting band-

The DFT-RPA exchange-correlation potentiaff(r)  gap energyE,=E(N+1)+E(N-1)-2E(N) in solids. We
satisfies a complex integral equation known as theshow that Eg-EgS is equal to the above-mentione&sy\W,
linear-response  Sham-Schliter equafiéh®* In Refs. self-energy correction, up to the so-called renormalization
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factors. Th_is dgfinitely provides a (_:Iear rationale .behind XE‘PA(iu) =[1 = Ayo(iu) v] 2xo(iu). (4)
GoW, quasiparticle bandgap calculations, but questions the o . ] .
physics behind these renormalization factors. We then furtheR€fined approximations fog, (iu), based on various time-
split the DFT-RPA bandgap energy into kinetic and Coulombdeépendent DFT kernels, can also be considétééiin the
contributions, that we calculate in silicon and diamond. LastRPA, Eq.(2) basically describes how KS density fluctuations
we discuss the related problem of the derivative discontinucorrelate when they are allowed to interact dynamically at
ity in the DFT-RPA functional, as well as the applicability of the time-dependent Hartree level. Backward substitution in
our results to other functionals based on many-body perturEd. (1) and integration over the coupling constanfinally
bation theory. yield the following expression for the DFT-RPA correlation
This paper is organized as follows. We briefly review the€Nnergy:
basics of the DFT-RPA functional in Sec. Il, then calculate 1 du
the DFT-RPA interacting bandgap energy in Sec. lIl. We dis- EXPAn] == f — Tr{In[1 - vxo(iu)] + vxo(iu)}.  (5)
cuss the links with th&y,W, approach in Sec. IV, the kinetic 2J 2m
and Coulomb contributions to the bandgap energy in Sec. Vine total DFT-RPA energy of the system can thus be written
last the derivative discontinuity in the DFT-RPA functional ERPAN]=E,[n]+E,n]+EX"An], whereEy[n] is the sum of
and the applicability to other functionals in Sec. VI. the noninteracting kinetic energy, Hartree energy, electron-
ion, and ion-ion interaction energies, and where

Il. THE DFT-RPA CORRELATION FUNCTIONAL Eln]=
X
The DFT-RPA is the prototype of a large class of func- N/2 N/2
tipngls pased on the adiabatic-conneqtion _and fluctu'ation— ->> dsrfdsr/(Pj*(r)@k(r)V(ryr,)(P;(r’)(Pj(r’)-
dissipation(ACFD) theoremsg?1! The adiabatic connection j=1 k=1
formula indeed yields the sum of the Hartreg,), KS ex- (6)
change(E,), and correlation(E;) energies of aN-electron
system: Note thatE[n] and EX”n] are implicit functionals of the
1 density through the KS orbitals and energies. The RPA
E, :f AN VoW, B exchange-correlation potentialvfng(r):5E§C'°A[n]/&1(r).
“Jo © hence satisfies an integral equation known as the linear-

response Sham-Schliiter equattc®3*Further details about

Vee is the Coulomb interaction operator ant,) is the  the properties of the RPA potential can be found in Refs.
many-body ground-state wave function of a system with &35-37.

scaled Coulomb repulsiaxV,, between electrons and with a
one-body potentiab,(r) such that the ground-state density Ill. THE DFT-RPA BANDGAP ENERGY

.nx(r) equals the physical Qensit)/:[(r) [hencevl(r):vexl(r) In this section, we calculate the DFT-RPA bandgap energy
is the externafionic) potential, whilevy(r)=vgg(r) is the KS and compare with the KS bandgap enerﬁgs:%_%

potential. The ground-state expectation value of the_ Cou'wheresv ande. are the energies of the highest occupied and

Sowest unoccupied KS orbitals in tié-electron KS poten-
tial. We focus on perfect solids, and thus drop all terms that
1 ( du make aO(QP9) contribution (p/q>0) when the volume
(V)| VedWy) = B+ Ex— > f Py Tr{v[x(iu) = xo(iu) ]} Q — = (the average density being kept figed
7 The interacting bandgap energy oNaelectron system is
(2 the differenceEg=1-A between its first ionization potential
The symbol Tr stands for the trace over spatiala_nd its electron affinityA. These are defined as total energy
coordinates TAGiU)B(iu)}= [d3rd3r 'A(r ,r ' ;iu)B(r’,r :iu), differences between thd- and (N+1)-electron systems

fluctuation-dissipation theorem

v(r,r')=1/|r=r’| is the bare Coulomb interaction, and | = E[nyoq e = Elnnd = Elnweind - Elnund, (78
x,(r,r';iu) is the imaginary-frequency density-density re- ' ’ ' ’
sponse function at coupling constant The KS density- A=E[nyn] - ElNye1nes] = ElNnd = ElNnernd. (7H)

density response functiopy(r,r’;iu) reads, as a function of
the KS orbitalse;(r) and KS energies; (we assume a spin- Nym(r) is theN-electron(spinjdensity built upon thé\ low-
compensated-electron ground staje est KS orbitals of theM-electron system. In solids with de-
2 localized highest occupied and lowest unoccupied ortfitals,
L @ (N er) gp(r')gi(r’) the rightmost(approximatg equality in both equations holds
Xolrr'iiu) =22 > *c.c. (3 ypto aO(Q) correction thanks to the variational principle
of DFT246 The interacting bandgap energy of a solid can
Equationg1) and(2) are formally exact bug, (A #0) needs thus be calculated at constad-electron KS potential
to be approximated for practical purposes. The DFT-RPAuys(r).
functional follows from the time-dependent Hartrg¢er We first focus on the electron affini. We get from Eg.
random-phaseapproximation (7b)

=1 k |u+8j_8k
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A=Ag+ At A, ()

where Ag=Eq[ ny n]—EolNn+1n] (With similar definitions for
A, andA,). Ay is easily calculated

— 1w2
_AO—<QDC| _EV T Uextt Uh|‘Pc>+Ucc

=gt Ucc_<¢c|v>|?cPA1¢c>- (9
@.(r) is the lowest unoccupied KS orbital,(r) is the Har-

tree potential, andJ. is the self-interaction integral for or-

bital ¢.. A, moreover read?’

-A= <‘Pc|2x| ¢c) ~ Uce (10
whereX,(r,r') is the KS exchange-only self-energy:
N/2

S (') == g(nu(r,r e (r). (11
j=1

As for A—which is the part of most interest here—we

get from Eq.(5)

-A.= 1 J du Tr{In[1 - vxo(iu) = véxo(iu)]
2) 2w

= In[1 = vxo(iu)] + voxe(iu)}. (12

PHYSICAL REVIEW B 70, 245115(2004

Let us first discussAdP. Insertion of Eq.(13) into Eq.
(169 yields

_Agp: <‘Pc|2c(8c)|‘Pc>a (17

whereX(r,r’;e) is the correlation part of theGyW," self-
energy(i.e., theGW self-energ§®*° calculated with KS or-
bitals and energigs

d
Ec(r,r’;s)=—PVf Z—UGo(r,r’;s+iu)WS(r,r’;iu).
aw

(18

W(r,r’;iu)=WI(r,r’;iu)-w»(r,r’) is the screening part of
the RPA screened Coulomb interaction. The symbol “PV”
stands for Cauchy’s principal value. Contour deformations
techniques can be used to show that this imaginary-
frequency form of theGW self-energy is equal to the usual
(real-frequency expressioff*° as long ase is in the KS
bandgap(including e=¢. ande=¢,). We will further inves-
tigate the links withGoW, calculations later and now focus
onA..

We note at once tha; has the same functional form as
ERPA [Eq. (5)], but with yo(iu) replaced bysdy,(iu) and v
replaced byW(iu). A, thus formally appears as the correla-
tion energy ofone electron in the lowest unoccupied KS

dxoliu) is the change iny(iu) when adding one electron of o hita, the interactions among density fluctuations in this
either spin to the lowest unoccupied KS orbital. It is thus thegpitg] being screened by the othemlence electrons. As a

KS response of an electron in this orbital
Sxol(r,r’;iu) = @r(r)Go(r,r';ec +iu)e (r') + c.c., (13)
where the KS Green functioB(r,r’;z) is defined by

Go(r,r,;z) - 2 ‘P(r)(P*(r,) ]
Z- g

(14)

i
Using the identity T{n A(iu)—In B(iu)}=TrIn[A(iu)
XBY(iu) [}=Tr{In[B~(iu)A(iu)]}, we further get

~A.= 1 f du Tr{In[1 = W(iu) Sxo(iu)] + vdxo(iu)},
2) 27

(15

whereW(iu)=[1-vy,(iu)]"*v is the RPA screened Coulomb

interaction.

The physics behind®; can be revealed by putting the
first-order («8y,) term aside from the others. Using the
power series expansion of the trace of the logarithm
indeed split

Tr{In[1-F(iu)]}==-TrH{F(iu)}+---,
A.=AP+A! in two parts, where

we can

d
— Agp: - % f ZL:- Tr{[W(|U) - V]5XO(IU)} (163)
, 1( du . : i -
-A =+ > J o Tr{In[1 = W(iu) dxo(iu) ] + W(iu) Sxo(iu);-

(16b)

As we will next show, A® is a GW-ike self-energy
correction?®4°while A, vanishes in solids.

matter of fact,A, accounts for both the spurious response of
the extra electron to its own contribution to the time-
dependent Hartree potential, and for the response of the extra
electron to the polarization it induces in the gas of valence
electrons. A careful analysis however shows #avanishes
asQ™Y4in a KS insulator, and thus do not contribute to the
bandgap energy of the solidee Appendix A Note that this
exponent is consistent with the low-density behavior of the
DFT-RPA correlation energy per particle in the homogeneous
electron ga&¥ £XPA(n) ocn/* (which yieldssZ™"< Q=4 for a
fixed number of particles

Let us now gather the results of the former paragraphs.
The KS exchange-only self-enerffyq. (11)] can also be cast
in terms of the KS Green functioB [see, e.g., Eq.14) of
Ref. 36; adding Egs(9), (10), and(17) then yields

A= e+ (@dSxdled) —ug e +OQTH,  (19)

where
du ;s . .
S.r,r’;e)=—PV 2—e'”Go(r,r’;s+|u)W(r,r’;|u),
ar

(20)

is the full GoW, self-energy ands— 0* is a positive infini-
tesimal. As for the first ionization energy, we get along the
same lines

—1 =&, +(@,|Sx(e,) —vig Yo,) + O, (21)

whereg,(r) is the highest occupied KS orbital. Let us recall
that the relation +=¢, holds®®55 for the exact exchange-
correlation functional provide@,{(r)—0 whenr—o. As
for the DFT-RPA, one may show that (¢,[2,(e,)
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-vRPA,)=0 if vks(r) has been shifted so thaks(r)—0  way. It has long been thought that self-consistency would
whenr — o, which yieldsl =-¢,+0(Q""4: the highest oc- degrade the quality of th&W quasiparticle band structure
cupied KS energy tends to the negative of the DFT-RPA firsti-€., that the effects of self-consistency and those of vertex

ionization potential in a large system with a delocalizedcorrections nearly canéé_r 9. ;I'he first self-consisterGW
o.(r). This result only holds i, has been calculated self- calculations in real materi@%82have, however, revived this
v N v

consistently; Eqs(19) and(21) remain valid though if LDA/ qgsgte and questioned the rationale betBlV, calcula-
GGA orbitals, energies and potential are used as input for th{‘—,t L . .
calculation(which is customary These equations show that Equations(19) and(21) provide such a rationale, at least
the DFT-RPA bandgap energy of solids differs from the KSas regards the calculation of bandgap energies in solids. They

. ) show that theGyW, approach is not a mere “practical
bandgap energy by &W,-like self-energy correction. We qqine » and that it has a well-defined and meaningful inter-

further discuss the implications of this result in the next S€Cpretation within DFT. Indeed, the unrenormaliz&hW,

tion. bandgap energy, calculated in the DFT-RPA exchange-

correlation potential, is precisely the DFT-RPA interacting

IV. LINKS WITH GoWy QUASIPARTICLE BANDGAP bandgap energy. This physically motivates the use of KS
CALCULATIONS orbitals and energies as a starting point@V calculations.

) ) ) ) o This does not, however, settle the debate about the need or
In this section, we discuss the practical implications ofaffects of many-body self-consistency.

Egs.(19) and(21). We show that they provide a well-defined  There is nonetheless one major difference between Egs.
and consistent interpretation @W, quasiparticle bandgap (19) and (23): the DFT-RPA obviously lacks the renormal-
calculations. We also discuss the accuracy of the DFT-RPAyation factors that appear in tm@OWO approximation_ The
bandgap energy of the basis of the known deficiencies of the FT-RPA bandgap energy will thus be significantly higher
DFT-RPA functional. (~0.2 eV in S) than ther-G,W, bandgap energy. Yet we
stress that the physics behind those renormalization factors is
A. Interpretation of the GyW, quasiparticle bandgap energy questionable. First, Eq23) is not a genuine first-order ap-
within DFT proximation to the quasiparticle energy, since the renormal-
As mentioned in the Introduction, the DFT, which is a izatio.n fa;toch involves term; of any power iE‘?' This is
so primarily because the quasiparticle enesgiE, itself ap-

ground-state theory, is not meant for the calculation of qua ; ) ) .
siparticle band structures. Even the bandgap energy, a lineBFars on the _ngh';-hand side of H@2) '05tead of its ze_roth-
order approximatiorz=¢.. The actual first-order solution of

combination of ground-state total energies, may not be cort-h i istent Dartic] tion is in fact th
rectly given by the KS band structuté?*-46The quasiparti- € sefl-consistent quasiparticle equation 1S In fact the un-

cle band structure of a solid is thus usually computed Wimrenormaliz.edsowo quasiparticle energBEq.(;g)], as shoyvn
the GW method*®*°In principle, the Dyson e):quatio% should "M Appendix B. Secondly, Eq22) [from which Eq.(23) is

be solved iteratively to find the self-consistent Green func—der'veq d_oes_not neces_sanly catch the right physics. Indeed,
tion G and the self-consisten®W self-energyS,. This the quasiparticle energids. andE, are expected to be real

would notably make the quasiparticle band structure inde(i'e" the quasiparticle_ lifetime is expe_cted to diverge at the
pendent of the initial guess for the Green function. Such dges of the gdf), while theexactsolution of Eq.(22) may

; . lex, especially in semiconductors with small KS
self-consistenGW calculation has however long been un- P€ ¢0MP 578t
r le for real materials. Th inarticle enerdi rFandgapi.’ Th_ls challenges the use of Eq22) and(23)_
tractable for real materials € guasiparticle energies a or the calculation of theGyW, bandgap energy. We wiill

thus usually computed from th&yW, self-energy using a
first-order-like approximation. The conduction band edgefurther compare the values of theGW, and DFT-RPA

E.=-A, for example, is obtained as the solution of bandgap energies with the experimental bandgap energy in
Secs. IVB and V.

Ec = ec+ (@c| 2xd Eo) = vyd @) - (22 The choice of the exchange-correlation potentigdr)
. _ used throughout the calculation is another practical but im-
2xc IS the Go\W self-energy andv,(r) is the exchange- ;a0 issm?e. Indeed, the unrenormalimﬂvo%andgap en-
correlgtlon potential _used to calculate the KS_ orbitals an rgy has a well-defined interpretation within DFT only if
energiesX,(r,r'; o) is then further expanded in powers of et Rpa orbitals and energies are used as input for the self-
Ec—ec, which yields at first order energy. The adequacy ofr"(r) as a starting point for the
= _ computation of thevhole GW, quasiparticle band structure

Bo= e+ Zelpelcled ~vud o), @3 is further emphasized in%ppoendix B. The DFT-RPA poten-
where Zo=[1~(¢|(d2c/ de)(ec)|ex)] ™ is the quasiparticle tial satisfies the linear-response Sham-Schliiter eqgtich
renormalization factor. A similar equation holds fef=-1.  in the GW approximation for the self-energy, which is unfor-
We will refer to these equations foE, and E, as the tunately very difficult to solve. The works of Godbgt
r—GoW, bandgap. The renormalization fact@sandz, are  al.***?and of Kotani®> however, suggest that the DFT-RPA
worth around 0.75-0.90 in most semiconducfr®. They  and LDA potentials are quite close in simple solids such as
will thus lower the self-energy correction by about 10-25 %.silicon. The use of LDA orbitals and energies as input for the
The GoW, approach has been successfully applied to mangelf-energy should thus have limited impact on the bandgap
materialst*#25455n most cases it shifts the KS conduction energy in most semiconductors. Still, the case of materials
bands with respect to the KS valence bands in a nearly rigiduch as Germaniurtoften quoted as a metal in the LDA
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might be worth a detailed investigation. The latter could beDFT-RPA bandgap energy in solids. Indeed, we can split
carried out with approximate DFT-RPA potentials such asERPA=EM+EK", where EM=(W,|V J¥,)-E,—-E, is the
those introduced in Ref. 43 and Refs. 35-37, which are muciCoulomb correlation energy angk"=T.-Tj is the differ-
simpler to compute while being likely of reasonnable accu-ence between the interacting kinetic enefigyand the non-
racy. _ _interacting KS kinetic energ¥s=-2'%(¢;|V? ). Ef"is ex-

To conclude, we have shown that the density functionahected negative, because the introduction of correlations
theory itself provides a justification t®oW, quasiparticle  fyrther prevents the electrons from coming too close one to
bandgap calculations in solids, but questions the use afach other, thereby decreasing the Coulomb interaction en-
renormalization factors in the calculation of the bandgap engrgy with respect to the exchange-only theory. This is of
ergy. In the next section, we will discuss the accuracy of the:gyrse made at the expense of the kinetic energy of the sys-

DFT-RPA bandgap energy on the basis of the known defitem (EK">0). Nonetheless, the introduction of correlations

ciencies of the DFT-RPA functional. always results in a net decrease of the total enéfgy0).
Accordingly, we may separate kineti@<") from Cou-
B. Some deficiencies of the DFT-RPA functional and their lomb (A7) contributions inA.. A" is easily calculated from
consequences on the bandgap energy Egs. (20 and (4. To that end, we introduce

F(iu) =1 xT7Aiu) = xoiu)]=[W(iu) - v]xo(iu) and write,

The performances of th&,W, approach can now be ana- 1 .
P 0o 8pp pon addition of one electron to the lowest unoccupied or-

lyzed in a consistent DFT framework and related to those er

the DFT-RPA functional. The RPA density-density respons ital

function x*" reasonably describes long-range screening but SF(iu) = [W(iu) — v]8xq(it) + SW(iu) xo(iu)

misses important short-range effett$®3148As a conse- . .

quence, the DFT-RPA on-top correlation hole is too deep, so + OW(iu) Sxoliu), (24)

that the correlation energies are too negative and the totglnere SFGu)  and  SW(iu)=[1 -W(iu) Sxo(iu)] *W(iu)
energies thus too low. This has been evidenced in finite SYS"\\(iu) are respectively, the changes Fifiu) and W(iu).

tems SUCh7af; g(ﬁe{ 23 and in the homogeneous electron The trace ofdF(iu) over spatial coordinates and frequency

gas(HEG)." ©*In the latter case, the total energy error ields -A™ through E (2). The first term on the right-hand
er particleAs (n)=RPAn)—HEC(n) weakly increasesin . Ao gh £q.2). gnt-ne

per p el =&c Ee 274+ HEG y RP. side of Eq.(24) gives rise to th&,W, self-energy correction

absolute valupwith the density”™ [s;=(n) and s An) of Eq. (17). The second and third terms involve the coupling

being, respectively, the exact and RPA correlation energy pefs the extra electron with the time-dependent Hartree poten-
particlg. The work functiond=1=A of a metal should thus 5| They will allow further relaxation of the system and

be overestimated by the DFT-RPA functional. We may eX-jecrease of the Coulomb energy. In a solid, the only nonva-

pect similar trends in semiconductors, provided the total ©Npishing contribution(beyond the first termarises from the

ergy error steadily increases with the number of particlegjst order variation of the screened Coulomb interaction
across the gap. The inclusion of LDA-like vertex CorreCt'onsb\Ml)(iu):W(iu)5Xo(iu)W(iu) in the second term. This con-

in the GyW, self-energy for example indeed results in an, ., .. h ISAKN=A _ ANt \hich  viel
upward shift of the quasiparticle energies in"SThe intro- tsrtlggﬁtr;ortlv:?d z%lé%rsﬁc Ac=Ac’, which yields after

duction of short-range corrections to the RPA within a local
density approximatioiRPA+ functionad?3? also shifts the - A" = (o |SKN (5 )| @e) + O(QTVH), (25)
quasiparticle energies upwartfsThese errors on and A

might mostly cancel in the bandgap energy. The accuracy ohere

the GoW, bandgap energy is, however, quite controversial. . du _

Indeed, pseudopotential calculatiéh¥5° usually yield E‘é'“(r,r’;s):PVJ —Gq(r,r’;e +iu)W(r,r';iu)
r-GoW, bandgap energies in good agreement with the experi- 2m

ment, and thus significantly too large DFT-RPA bandgap en- (26)
ergies. On the other hand, all-electron calculafiéhs2°
generally yield much lower-GogW, bandgaps. The all-
electron DFT-RPA bandgap energigeduced from Refs. 78 SN g - P P :
and 79 are thus often found in better agreement with the Wa(i) = W(iu) xo(iu)W(iu) = & (uWe(iv), - (27)
experiment than the-GyW, values, although they might still £(iu)=1-wy,(iu) being the RPA dielectric function. A simi-
be too low. These discrepancies between pseudopotential argt equation holds for the first ionization energye.) ande,
all-electron calculations are not yet fully underst§888"  peing replaced withp,) ande,. Note thatsk" has the same
Further comparison between the two approaches is thuginctional form as the correlation part of tf@W, self-
needed to be conclusive. energy[Eq. (18)], but with a(re)screenedNy(iu).

We have evaluated the kinetic and Coulomb contributions
to the bandgap energy in silicon and diamond. The calcula-
tion was performed with theaBINIT packagé? using
Troullier-Martin$® pseudopotentials and a plasmon-pole ap-

In this section, we further refine our interpretation andproximation fore™X(iu). The wave functions were expanded
separate the kinetic from the Coulomb contributions to thén a plane-wave basis set with cutoff energy 12 Ha for Si and

V. KINETIC AND COULOMB CONTRIBUTIONS TO THE
BANDGAP ENERGY
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TABLE I. The KS,r-GoW, and DFT-RPA quasiparticle and bandgap energies of silicon and diamond, all
in eV. The quasiparticle energies have been shifted so that the top of the valence band is at zero energy in the
DFT-RPA. The total correlatiofS,), kinetic (3, and Coulomb="=3 .~ K" contributions to the DFT-
RPA are also given.

KS r-GoWo RPA e skin st
Si E, 0.751 0.176 0.000 0.434 0.753 -0.318
E. (Ref. 86 1.232 1.325 1.351 -3.555 1.294 ~4.849
Ey 0.481 1.149 1.351
c E, 0.924 0.154 0.000 1.102 0.554 0.548
E. (Ref. 86 5.074 5.757 5.884 -4.753 1.904 ~6.656
Ey 4.150 5.603 5.884

30 Ha for diamond. Up to 200 bands and 266oints (full work and notably miss part of thgscreenedexchange ef-
Brillouin zone were included in the computation of the fects. Their accuracy should thus be assessed by comparison
181x 181 dielectric matrices and self-energies. The KS banavith all-electron calculations.

structure was calculated in the LDA potenfi4ht the experi-

mental lattice parame@(a:5_43 A for Si anda=3.57 A VI. THE DERIVATIVE DISCONTINUITY IN THE DFT-RPA

for C). The quasiparticle energids, E,, and the bandgap EXCHANGE-CORRELATION FUNCTIONAL

energy E; are reported in Table I. Both renormalized The difference between the KS bandgap eneh‘.ﬁ?/ and

and unrenormalizedRPA) GyW, values are given. The . . o
quasiparticle energies have been shifted so that the top of tl{ge Interacting bandgap energy can be related to the exis

valence band is at zero energy in the DFT-RPA approxima- o of a derivative discontinuity in the exchange-
fion. The total correlationS.) gllgi/netic (357 "and Coﬂ?omb correlation functiona$344-46|n this section, we discuss the

int ~ Lol c” . derivative discontinuity in the DFT-RPA functional, as well
(3M=% -3K") contributions to the DFT-RPA are also given. o

o . - as the applicability of our results to other exchange-
We expect the quasiparticle energies atfff to be con-  coelation functionals based on many-body perturbation
verged (from above and from below, respectivelwithin

. . theory.
ki t :
0.05 eV. The values dk, 2", and=™ should be margin- The domain of definition of the DFT-RPA functional must

ally affected by the use of the LDA instead of the DFT-RPA st pe extended to arbitrargnonintegey number of par-

potentia_ll. . . ticles. The ensemble approach is the most appropriate way to
As discussed in Sec. IV B, theGoW, bandgap energies yq go444587|1 is basically theT — 0 limit of Mermin's DFT

of silicon %r;d diamond are found in good agreement with thg e, gg for finite temperaturd and fixed chemical poten-
experiment” (Eg=1.17 eV for Si anc=,=5.48 eV for 0, at tial . In this approach, theN=N+f electron system
least in the pseudopotential framework. However, the DFT-

RPA figures, that are higher by 202 meV in Si and 281 me\/(ogfsl) Is described a.s a statistical mixture Of theand

in diamond, significantly overestimate the experimentaI(N+1)'e|ecm)n systems; the ground-state density and total
bandgap energy. The quasiparticle energies show the sarf@€ray thus read

trends in both materials. One would naively expect the abso- Tine(1) = Finw (1) + (1 = F)Nu(r 28

lute values ofE,, EM, andEX™ to increase with the number ner(1) = () + (3 = Hmy(6), (283

of particles, i.e.X.<0,3M"<0, and>">0. This is clearly ~

the case on the conduction band side. HoweYefis found E[Mn+e] = FE[NNg ] + (1 = HE[Ny], (28b)
?eizlttilt\)ls g[nglrzyai‘lser:ﬁgr:arr:ggz?igz ;’r‘]’hg(;r:n?&nfltﬁa;%e Cjhere ny(r) is the N-electron ground-state density. The
(N-1)-electron systems than in thé-electron system. The

removal of one electron to the insulating ground state thu _ . oo
strongly enhances the efficiency of correlations. This is eshonlinear but straightforward kinetic and Hartree energy

pecially evidenced in diamond, whe®™ itself is found corrections’-8° By construction, we may expect derivative
positive.E'é'” is a significant part of but is much lower discontinuities inE, for integer values oN. We thus define
than the variations of the noninteracting kinetic energy o N+S N-8

AT ={ye|-2V? 0y (typically a few tens of ey, Again, Ayel(r) = ;':g[vxc (1) =y °(n)]

S¥ is higher on the conduction than on the valence band 5 5
side, because the enhancement of the correlations on the lat- i SE, 1] SE, 1]

ter side comes with an increase Ef" that nearly compen- = “”ﬂ[(%) - (%) ] (29
sates for the loss of one particle. We would last like to recall 0 N+o N-o

that these results are obtained in a pseudopotential framevherev, °(r) andvk: °(r) are the exchange-correlation po-

exchange-correlation ener@c['ﬁw] does not reduce to the
gveighted average d&,Jny] andE,Jny.4], but also includes
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Spective'y_ AXC(r) happens to be a constant; a few formal also be derived within many'body perturbatlon theory, actu-

considerations indeed yiefd ally follows from theGW approximation for the self-energy.
The calculation of the electron affinith and of the first
Av=(-g)-(A-g,)=Ey- Egs. (30) ionization potentiall for any functional of this class yields

results similar to Eqs(19) and (21), with the appropriate

In the ensemble approach, the derivative discontinuity in th%elf-energy operator and exchange-correlation potefytiak

exchange-correlation functional is thus the difference bey,oy some higher-order contributions vanish in solids as in

tween the interacting and KS bandgap energies, whether tf}ﬁe RPA—see details in Appendix)CThis provides a well-

system is finite or not. The size Of the derl_vatlve_ dISCOntInu'fjefined interpretation to quasiparticle bandgap calculations
ity in the exact exchange-correlation functional is somewhaWith KS-based self-energy operators in solids

con}royersial. The_ LDA and GG.A for exa_mple have no such Last, we would like to mention that other ACFD function-
derlvart:vre id|sc?_rrllt|nl£tslesx|n ts_ol)l(di, but 3;'(9“2 t:cf[i '?IWI ban”d' als 2532 can be built upon the model of the RPA using a
gap energies. 1ne exact-exchangxX) functional o time-dependent exchange-correlation kernel in @g(such

g‘ﬁftgeéizgggtmﬁ:gs trr?autCth(l)so Jﬁéﬁgg'gasﬁgd; bl(jtnsvhnmt/gstheas the adiabatic LDA kernéf). The extension of the results
g X y pu 91 ndgap of Sec. Il to these functionals is, however, intricate, notably
experiment in many materia?$:>* There is, however, no

. . ; because the integration over the coupling conskamt Eq.
glﬁsrgz?g?::o?izzmd this agreeméfis for the DFT-RPA, (1) cannot be performed analytically any more. Work in this-

direction is still under way.
Ao = (@80 ~ U5g Ve — (@lZnclen) —vie 10,
(3D

VII. CONCLUSION

Lo ) In this paper, we have calculated the interacting bandgap
whereX,(r,r’; ) is theGoW self-energy. The DFT-RPAS  onargy of a solid in the random-phase approximation for the
one of the first known functionals that yields reaso””ableexchange-correlation energPFT-RPA functiona). We have
interacting bandgap energies while having a sizeable derivag,own that the latter differs from the Kohn-Sham bandgap
tive discontinuity is solids—on the order of a few tenths Ofenergy by an unrenormalize@,W\, self-energy correction,
eV in most semiconductors, as suggested by Refs. 42 and 43, mputed using Kohn-Sham orbitals and energies as input.
Whether this derivative discontinuity will decrease if further 1pig provides a clear rationale behif@h\W, quasiparticle
correlations are included is, however, an open question.  pandgap calculations, that can be consistently interpreted and

In principle, noninteger number of particles can also beynalyzed within density functional theory. This, however,
handled within the fractional occupation number formalism.qestions the use of renormalization factors in the expression
In this approach, each KS spin orbitglr) may be occupied  f the bandgap energy. We have also separated the kinetic
with a fractional number of electronf (0<f;<1). This  from the Coulomb contributions to the DFT-RPA bandgap
allows a Stl’aightfor\Nard extension of aB)(pIICIt functional energy, and discussed the prob|em of the derivative discon-
of the density such as the LDA and GGA to arbitrary densi-inuity in the DFT-RPA functional. Last, we have discussed
ties n(r)=2f|¢;(r)|°. The derivative discontinuity in the the applicability of our results to other functionals based on
fractional occupation number formalism is not in generalNoziére's expression for the total energy in many-body per-
equal to the difference between the interacting and KS bandurbation theory.
gap energies, except presumably in solids. The introduction
of fractional occupation numbers implicit functionals of ACKNOWLEDGMENTS
the density is much more involvéd Casida has developped We thank M. E. Casida for a helpful discussion on Ref

such a fractional occupation number formalism for a class 054 as well as C. Delerue and L. Reining for their careful

RPA-like functional®* We point out, however, that some i . . ,

: . . ' reading of the manuscript. This study has also benefited from
energy _denomlnators in the expression Of. the eXChangediscusgions held in thepcontext of%he French “Groupe de
correl_atlon energy may .redL.Jce 10 zero n this fractional OC_Recherche sur la Théorie de la Fonctionnelle de la Densité”
cupation number formalism if thg’s are different from O or

. g GDR-DFT). X. G. acknowledges financial support from
1 [as can be seerin another approximation for the ( . o o
oxchange-corlaion nemy £ (23 of el 9 Herce TS [SS0. a1 Tov e o, Speci o
Ref. 94 allows aformal extension of the RPA to fractional SE— Reséarch and Trainin ppNetworkyunder Cont?act
occupation numberg@hat yields the same results as ours in P 9

solids), but is not meant for practical applications. We are notNO' HPRN-CT-2002-00317, by the Communauté Francaise

aware of any other extension of the RPA to fractional occu-t,hmngh the Action de Recherche Conc?rtee: Interaction
pation numbers. électron-vibration dans les nanostructures,” and by the Bel-

The results of Secs. IlI-VI may be applicable to the func-gian Federal Government through the PAIIUAP P5 "Quan-

tionals discussed in Ref. 94 and first introduced in Ref. 6Fum Phase Effects in Nanostructured Materials.

These functionals are based on Noziéres’ exprg%%fonthe APPENDIX A: PROOF THAT A!=0(QY4) WHEN Q—

total energy in many-body perturbation thedNozieres’ for-

mula is a variant of the Luttinger Ward formdfa Each In this Appendix, we show that,=0(Q %) when Q
different approximation for the self-energy yields a particular— «. We also recover the low-density behavior of the DFT-
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RPA correlation energy per particle in the homogeneous

electron gagRPA(n) ~ -0.574"4, a result found numerically
by Wang and Perdeff. We consider a piece of crystalline
solid with finite (but very large volume () and periodic
boundary conditiong We thus now index the KS orbitals
o) =€XTu (r)/VQ and the KS energies, by their
wave vectork in the first Brillouin zone(FBZ) and by their
band indexn. uy(r) has the periodicity of the underlying

PHYSICAL REVIEW B 70, 245115(2004)
=l [ [

<" 2 ) 27 ) (2m3
+W(q;iu) 8xo(q;iu)},

wheredyo(q;iu) andW(q;iu) are the matrices with elements
dxoca(Q;iu) andWgg/(q;iu) respectively. The trace of the
logarithm can also be written

Tr{in[1 —W(q;iu)dxo(q;iu)]

(A6)

crystal lattice. We assum®, occupied valence bands, a di-
rect bandgap &t=0, and a nhondegenerate conduction band
minimum (though this is not restrictiyeWe letc=n,+1 and
take e.=¢.y as the reference of energies. We also assume

Tr{In[1 -W(q;iu) 8xo(q;iu) I}

=Indefl -WI(q;iu) dxo(q;iu)]. (A7)

(for simplicity) that sck~k2/(2m’;) aroundk=0. We shall
first discuss the long-wavelength behavior &f,(iu) and
W(iu). The wave vector decomposition 6k(iu) reads

d3
Sxolr,r’;iu) = a9

- (2m)3 2 ei(Q+G)r5Xo,GG'(q?iU)e_i(quGI)r,,
ar

GG’
(A1)

whereq runs over the whole FBZ an@,G’ are reciprocal
lattice vectors.dxpcg:(0;iu) is easily calculated from Eqg.
(13):

2 €
o3 —__ = * ’ nq
Moge (@iU) == ¢ 2 Pon(G)Pig(G v
nq
(A2)
where
d)cnq(G):Q—O . ABruty(r)ung(r)e e (A3)
0

and ) is the volume of the unit cell of the crystal lattice.
The smallg behavior of®.(G) [hence ofxo e (d;iu)]
follows from the orthogonality between KS orbitals

Dey(G=0)xq(n+#c), (Ada)
Dq(G=0)—1, (Adb)
Dg(G # 0) — const. (A4c)

As for W(iu), one typically get¥ in a KS insulator, when
q—0:

. 1
Woo(q;iu) = e (A53a)
. . 1
Wos(q;iu), Wge(q;iu) o a(G # 0), (A5b)
Wgg/(q;iu) — const(G # 0,G’ # 0). (A5c)

We now prove that\,=0(Q "4 when ) — . We start
from the wave vector decomposition Af [see Eq(16b)]:

Now, Egs.(A4) and(A5) can be used to show that the inte-
grand in Eq.(A6) is finite except around =0, u=0. More-
over, dxo(d;iu) scales as 1. Hence, for any,>0 and any
Up>0, there exist<), large enough such that the power se-
ries expansion of Tm[1-W(q;iu)Sxo(q;iu)]} is convergent
for Q> Qy, >0 and|u|>uy. This yields

Tr{In[1 -W(q;iu) 8xo(q;iu) I}

. _ 1

= —Tr{W(q;lu)5X0(q;|u)}+O<§). (A8)
The contribution toA, coming from the domair> g, |ul
> ug will thus vanish as 10) when{) — . We must last deal
with the contributionsA/(do,Ug) coming from the domain
q=<do, |u[<Up.

The divergence of the integrand in this region comes from
the lowest conduction band contribution &g ge/(d;iu).
We can discard the contribution from all the other bands for
the purpose of our demonstratiofy,(q;iu) then reads

1 ¢fim

Qw2+ qt(2my)? (A9)

Oxo(q;iu) == |(Dcoq><q)ccq|i

Where|(I>COq> is the vector with componeni®.,(G). This
yields

. 1 1 2/ :
TH{W(g;iu) 8xo(q;iu)} = = 5#&@2

X{(Dog W 1U) [ D)
(A10a)

def1 -WI(q;iu)dxo(q;iu)] =1 - TAW(Q;iu) Sxo(q;iu)}.
(A10b)

The smallq behavior of(®¢|W(q;iu)|P.y) is driven by
Woo(g;iu); we thus get when both—0 andu—0

. 47
<q)coq|W(q;|U)|q)ccq> ~ 8_(]2’

r

(A11)

whereeg, is the static dielectric constant.
If we now plug Egs(Al10) and(Al1l) into Eg. (A6) and
make the following change of variables:

u’ = (e;mQ)Y2, (A12a)
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q, ~ <8r‘0’>1/4q
mg

)1/4f+u6 du,f d3q’
-u 2m By, (2m)?®
47 ) _ 4ar
u/2+q/4/4 u/2+ql4/4’
(A13)

(A12b)

we get

1 *
R T (L
r

Ey

><In<1+

where u}=(g,m.Q)"2u, and By, is the domaing=qg with

a5=(&,Q/m,)Yq,. The above integral has a finite limit when
u,— o andq)— o, which finally yields the expected result

K m* 1/4
vl e
where, after a few transformations on E413):
— 2 +OO 4 1 ? —
K= ﬁjo X {1 - \/E] dx=0.5744).
(A15)

PHYSICAL REVIEW B 70, 245115(2004

Green functionG, at coupling constand. vy .(r) is a local
potential such thaw,,(r)=0 and such that the density
n,(r)=ny(r) is held constant along the way from the KS
Hamiltonian(a=0) to the self-consistent quasiparticle equa-
tion (a=1).

We now make a power series expansiorgf,(r) of the
form vxc‘a(r):Ek(l—ak)vf('g(r) and calculata;f(kc)(r) so that

the kth order variation of the densityyn®(r) is zero.
onY(r) read§ (the limitsr’ —r and §— 0" are understood

do .
ah<1>(r)=o=f =G0 w),  (B2)
2im

where G (w) =Gy(w){2d Gol(w) -1 V}Gy(w) is the first-
order variation of the Green function. Equati¢B®2) is no
more than the linear-response Sham-Schluter equétion,

meaning thab'"(r) is the DFT-RPA potentiabSA(r).

C

Let Wy(r)=¢(r) be a zero-order KS orbital with KS en-
ergy Eo=¢. We then easily get

d
( E”) _O=<<P|Exc[Go](s)—v(xlc)|sD>, (B3)

da

where we have taken into account the fact that(r) is

Equation(A14) is consistent with the low-density behavior zero. We thus end up at first-order with
of the RPA correlation energy per particle in the homoge-

neous electron gasy (n). Let us indeed add an electron to

an otherwise empty box of large volunfie The RPA(self-)
correlation energy of this electron will be given by If
we now think of this system as a realizatt®hof a spin-
polarized homogeneous electron gas witbw) density
n=1/Q, we get from Eq.(A14) eX"A(n)~-0.574" [the
low-density behavior o£X”A(n) is independefif of the spin

E=e+ (¢l dGol(e) v o). (B4)
This result is valid in finite systems as well as solids, and for
any KS orbitale(r). In particular, the first-order approxima-

tions to the conduction and valence band edges in the first-
order potentialy'Y(r)=vRPAr) are given by Eqs(19) and

(21), respectively. The DFT-RPA potentialt *(r) moreover

polarizatiorj. This is precisely the result obtained numeri- appears as the adequate starting point for the computation of

cally by Wang and Perdef¥.

APPENDIX B: FIRST-ORDER APPROXIMATION TO THE
SELF-CONSISTENT QUASIPARTICLE ENERGIES

In this Appendix, we show that Eq$19) and (21) are

first-order approximations to the quasiparticle energies in al
appropriate treatment of the self-consistent quasiparticle

equation. First of all, the quasiparticle energies can be cong|
sidered as functionals of the ground-state density, up to
additive constanfsincen(r) yieldsve,{r) up to an additive
constang which then yields the interacting Green functién

the wholeGyW, quasiparticle band structure. We acknowl-
edge, though, that a higher-order expansiok pis not prac-
tical and may even break down due to nonanalyticities in the
self-energy.

A\PPENDIX C: APPLICATION TO OTHER FUNCTIONALS

In this Appendix, we discuss the applicability of our re-
ts to other functionals based on many-body perturbation

a{heory‘.‘7 Indeed, the total energy of a system can be calcu-

lated from the interacting Green functi@ using the well-
known Galitskii-Midgat®! formula or variational functionals

up to a a shift along the frequency akighis motivates a g ,ch a5 Luttinger-Ward’é or Noziéres® formula. The latter

tentative expansion of the quasiparticle energies in terms

Qlvo formula notably make use of the expansion of the self-

the KS orbitals and energies. We thus consider the followingEnergy in a series of “skeleton diagrams” only involving the

quasiparticle equation:

= ST 0+ 0oV + 0 D)+ 03, 1,0)

+afd3r’2xo[Ga](r,r’;Ea)‘lfa(r’)=Ea‘1’a(r)- (B1)

Vex(r) is the externalionic) potential and®,{G_](r,r’;E)

interacting Green functio® and the bare Coulomb interac-
tion ».4” As variational functionals, they are much more ro-
bust with respect to errors in the Green function than is the
Galitskii-Midgal formula. We can thus expect reasonable to-
tal energies if we use the KS Green functi@g instead of
the interacting Green functionG as input for the
calculation®” Evaluating Noziéres' functional at the KS
Green functiorG, yields® (we still work with spinless Green

is the GW self-energy calculated with the self-consistentfunctions for the sake of simplicity
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dw the exchange-correlation energy. The variation of
E.Jn]=d[Gy] = 22 f —dTr{E [ Gyl(w)Go(w)}, Gy(r,r’; w) upon addition of one electron to the lowest un-

n=1 2N occupied orbital i§see Eq(C2)]
(Cy 1 1
Gy(r,r'";w) = <pc(r)< P . )(Pé(r’)
wheres— 0" andS\"[G,](r,r'; w) is the sum of all skeleton =gl W=ty
diagrams of orden (that involve n interaction liney the — 2im(r)ge(r') 8w —eo). (C4
interacting Green function lines being replaced vilines. 70
The KS Green functiois, reads on the real frequency axis Following the lines of Sec. lll, we splifA,; in two parts

A =D[Gy] - DP[Gy+ 5G] =AlP+ A/, whereAR is the contri-

ei(N e (r) bution from the diagrams that contain only of@, line, and
Golr,r';w) = E aj etin (€2 A_is the remainderA® is the first-order variation of thé
! ! functional
where 7 is a positive infinitesimal and the signa (+) holds o= [ g [ oo ws. OP[Go] @[Go] Gt ")
for occupied(empty) KS states. The exchange-correlation SGo(r,r'"; w) ot T, @)
potentialv,.(r) that derives from Eq(C1) can be shown to (C5)
satisfy the linear-response Sham-Schliiter equétidhis
follows from a particular proper®y-% of the ® functional  Equations(C3) and(C4) thus yield
defined in Eq(C1) _Agg:<¢c|2xc(8c)|§oc>- (Co)
SD[Gy] 1 We last get from Eqs8) and(9):
— =3, dGol(r,r; ). (C3) ~ , .
OGo(r,r'"; w) 2' —-A=g.+ <<Pc|zxc(8c) - ch| @)~ At oQ™), (C)

As an example, the DFT-RPA functional of Sec. Il canwith a similar result for the first ionization potential We
also be derived within many-body perturbation theory and isexpectA, to vanish in solids as in the RRfut not neces-
actually equivalent to EqC1) in the GW approximation for  sarily as{ %), though we did not prove it whatever the
the self-energy*25102| et us now consider any well-defined self-energy. If so, Eq(C7) provides a clear and consistent
self-energy approximation in solids and calculate the elecinterpretation for quasiparticle bandgap calculations with
tron affinity A with Eq. (7b) using approximation(C1) for KS-based self-energy operators in solids.

*Electronic address: yniquet@cea.fr 16y, von Barth and L. Hedin, J. Phys. 6 1629(1972.

IW. Kohn and L. J. Sham, Phys. Re¥40, A1133(1965. 17S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phy§8, 1200

2P. Hohenberg and W. Kohn, Phys. Re\36, B864 (1964). (1980.

SR. G. Parr and W. Yand)ensity Functional Theory of Atoms and 18J. M. Pitarke and A. G. Eguiluz, Phys. Rev. &, 6329(1998.
Molecules(Oxford Universiy Press, New-York, 1989 193, M. Pitarke and A. G. Eguiluz, Phys. Rev.@3, 045116(2007).

4J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L&®t.  2°J. F. Dobson and J. Wang, Phys. Rev. L&®2, 2123(1999.
3865(1996); 78, 1396E(1997). 21s. Kurth and J. P. Perdew, Phys. Rev5B, 10 461(1999.

5H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S?2F. Furche, Phys. Rev. B4, 195120(2001).
I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 2M. Fuchs and X. Gonze, Phys. Rev. @, 235109(2002.

91, 126402(2003. 24F. Aryasetiawan, T. Miyake, and K. Terakura, Phys. Rev. Lett.
6M. E. Casida, Phys. Rev. &1, 2005(1995. 88, 166401(2002.
7C. 0. Aimbladh, U. von Barth, and R. van Leeuwen, Int. J. Mod.?°M. Fuchs, K. Burke, Y. M. Niquet, and X. Gonze, Phys. Rev.
Phys. B 13, 535(1999. Lett. 90, 189701(2003.
8A. Gorling and M. Levy, Phys. Rev. B7, 13 105(1993. 26T, Miyake, F. Aryasetiawan, T. Kotani, M. van Schilfgaarde, M.
9A. Gorling and M. Levy, Phys. Rev. /0, 196 (1994. Usuda, and K. Terakura, Phys. Rev.@, 245103(2002.
10p. C. Langreth and J. P. Perdew, Solid State Comniif. 1425  27J. F. Dobson and B. P. Dinte, Phys. Rev. Lét6, 1780(1996).
(1975. 28\\/. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Le&0, 4153
1D, C. Langreth and J. P. Perdew, Phys. RevlB 2884 (1977). (1998.

2E. Runge and E. K. U. Gross, Phys. Rev. L&, 997 (1984, 29M. Lein, J. F. Dobson, and E. K. U. Gross, J. Comput. Ch&f).
13M. E. Casida, inrRecent Developments and Applications of Mod- 12 (1999.
ern Density Functional Theoyyedited by J. M. Seminario 3°K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjélander, Phys.

(Elsevier, Amsterdam, 1996p. 391. Rev. 176, 589(1968.

14G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phy&4, 601  31Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev.6B 16 430
(2002. (2000.

15p, Noziéres and D. Pines, Phys. Ré1, 442 (1958. 32M. Lein, E. K. U. Gross, and J. P. Perdew, Phys. Rev6B

245115-10



BAND-GAP ENERGY IN THE RANDOM-PHASE..

13 431(2000.

831, J. Sham and M. Schliiter, Phys. Rev. Léitl, 1888(1983.

341, J. Sham, Phys. Rev. B2, 3876(1985.

35y, M. Niquet, M. Fuchs, and X. Gonze, J. Chem. Ph$%8 9504
(2003.

36Y. M. Niquet, M. Fuchs, and X. Gonze, Phys. Rev.68, 032507
(2003.

37Y. M. Niquet, M. Fuchs, and X. Gonze, in Proceedings of the

DFT2003 ConferencéBrussels, September 2003pecial issue
of Int. J. Quantum Chenftto be publishegd
38C.-0. Aimbladh and U. von Barth, Phys. Rev.®, 3231(1985.
39]. B. Krieger, Y. Li, and G. J. lafrate, Phys. Rev. #5, 101
(1992.

4OA. G. Eguiluz, M. Heinrichsmeier, A. Fleszar, and W. Hanke,

Phys. Rev. Lett.68, 1359(1992.

4IR. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev. LB€.
2415(1986.

42R. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev3R
10 159(1988.

43T. Kotani, J. Phys.: Condens. Mattd0, 9241 (1999.

443, P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys.

Rev. Lett. 49, 1691 (1982,

45J. P. Perdew and M. Levy, Phys. Rev. Léitl, 1884(1983.

461, J. Sham and M. Schliiter, Phys. Rev.3, 3883(1985.

47A. L. Fetter and J. D. WaleckaQuantum Theory of Many-
Particle SystemgMcGraw-Hill, New York, 1964.

481, Hedin, Phys. Rev.139, A796 (1965).

49L. Hedin and S. Lundqvist, Solid State Phy&3, 1 (1969.

50G. Baym and L. P. Kadanoff, Phys. Rel24, 287 (1961).

51G. Baym, Phys. Rev127, 1391(1962.

527, Schindimayr, Phys. Rev. B56, 3528(1997).

PHYSICAL REVIEW B 70, 245115(2004

Rev. B 57, 11 962(1998.

713, M. Luttinger, Phys. Rev121, 942 (1961).

72As a matter of fact, the exact solution of Eg2) is real only if it
falls within the interva[aU—EgS,sc+ Egs] [see e.g., B. Farid, in
Electron Correlations in the Solid Statedited by N. H. March
(Imperial College Press, London, 1999, p. #12n metals no-
tably, the Fermi energy according to E@2) will always be
complex in theGy\W, approximation.

Note that the values d&, and E, computed from Eqgs(19) and
(21) are always real, as expected from their interpretation as the
electron affinity and first ionization potential, respectivésge
previous notg Although ther —GyW, values ofE; andE, are
also real(becauseZ; and Z, are), the higher-order solutions of
Eq. (22) may be complex.

743, P. Perdew and A. Zunger, Phys. Rev2B, 5048 (1981).

5R. Del Sole, L. Reining, and R. W. Godby, Phys. Rev48 8024
(1994).

7The RPA+ functional is defined &"*n]=EY" [n]+Egennl,

where Ef2n]=E;>A[n]-E;PARPA[n] is a short-range(SR)

correction,EcPA[n] andEL°ARPA[n] being the local density ap-
proximations based on the “exact” and RPA correlation energies
of the homogeneous electron g&efs. 21 and 3jL The electron
affinity and first ionization potential in the RPA+ approximation
are still given by Eqs(19) and(21), the KS orbitals and energies
being now calculated in the RPA+ exchange-correlation poten-
tial vie (1) =vie (1) +vs aa(r). This LDA-like short-range cor-
rection shifts the quasiparticles upwards by about 500 meV in
silicon and diamond, but leaves the gap unaffected.

"’N. Hamada, M. Hwang, and A. J. Freeman, Phys. Re¥B

3620(1990.

78B. Arnaud and M. Alouani, Phys. Rev. B2, 4464(2000.

53A. Schindimayr, P. Garcia-Gonzéalez, and R. W. Godby, Phys’°T. Kotani and M. van Schilfgaarde, Solid State Commu21,

Rev. B 64, 235106(2001).

54M. S. Hybertsen and S. G. Louie, Phys. Rev. Leib, 1418
(1985.

55M. S. Hybertsen and S. G. Louie, Phys. Rev3B, 5390(1986.

56W. G. Aulbur, L. Jénsson, and J. W. Wilkins, Solid State Phys.

54, 1 (1999.

B 52, 11 000(1995.

58E. L. Shirley, Phys. Rev. B54, 7758(1996.

59U. von Barth and B. Holm, Phys. Rev. B4, 8411(1996.

60B. Holm and U. von Barth, Phys. Rev. B7, 2108(1999.

61W. D. Schéne and A. G. Eguiluz, Phys. Rev. Le@l1, 1662
(1998; D. Tamme, R. Schepe, and K. Henneberdeid. 83,
241(1999; A. G. Eguiluz,ibid. 83, 242(1999.

62, Ku and A. G. Eguiluz, Phys. Rev. Let89, 126401(2002.

461 (2002,

80S. Lebégue, B. Arnaud, M. Alouani, and P. E. Bloechl, Phys. Rev.

B 67, 155208(2003.

8IM. L. Tiago, S. Ismail-Beigi, and S. G. Louie, Phys. Rev.6B,

125212(2004.

82The aBINIT code is a common project of the Université
57H. J. de Groot, P. A. Bobbert, and W. van Haeringen, Phys. Rev.

Catholique de Louvain, Corning Incorporated, and other con-
tributors (URL http:///www.abinit.org. In particular, theGW
module of ABINIT is based on a program developed by R. W.
Godby, V. Olevano, G. Onida, and L. Reining, and was incor-
porated inaBINIT by V. Olevano, G. M. Rignanese, and M. Tor-
rent. See X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M.
Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F.
Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J. Y. Raty,
and D. C. Allan, Comput. Mater. Sck5, 478(2002.

63Hence the results of Sec. Il do not apply, e.g., to an isolated®®N. Troullier and J. L. Martins, Phys. Rev. B3, 1993(1991).
impurity level. In the latter case, adding or removing one elec-8S. Goedecker, M. Teter, and J. Hutter, Phys. Rev58 1703
tron to the system indeed changes the self-consistent KS orbit- (1996.

als.
64y, Wang and J. P. Perdew, Phys. Rev4B, 13 298(1991).
65\, Levy, J. P. Perdew, and V. Sahni, Phys. Rev.38, 2745
(1984.
66D. F. Dubois, Ann. Phyg(N.Y.) 7, 174(1959.
87D. F. Dubois, Ann. Phys(N.Y.) 8, 24 (1959.
68G. D. Mahan, Comments Condens. Matter Phi8. 333(1994.

85 andolt-BérnsteinNumerical Data and Functional Relationships

in Science and TechnologMew series Vol. lll, edited by K. H.
Hellwege, O. Madelung, M. Schulz, and H. WeigSpringer-
Verlag, New-York, 198Y.

86The values of the self-energy corrections at the conduction band

minimum alongl’X are interpolated from neighborirgpoints.

87J. P. Perdew and M. Levy, Phys. Rev.3, 16 021(1997.

69H. J. de Groot, R. T. M. Ummels, P. A. Bobbert, and W. van 8N. D. Mermin, Phys. Rev137, A1441 (1965.

Haeringen, Phys. Rev. B4, 2374(1996.

89M. K. Harbola, Phys. Rev. B30, 4545(1999.

OR. T. M. Ummels, P. A. Bobbert, and W. van Haeringen, Phys.®°M. Stadele, J. A. Majewski, P. Vogl, and A. Gérling, Phys. Rev.

245115-11



Y. M. NIQUET AND X. GONZE PHYSICAL REVIEW B70, 245115(2004)

Lett. 79, 2089(1997). 9673, M. Luttinger and J. C. Ward, Phys. Rell8 1417(1960.

91M. Stadele, M. Moukara, J. A. Majewski, P. Vogl, and A. Gorling, 97A. Zangwill and P. Soven, Phys. Rev. 21, 1561(1980.

0 Phys. Rev. B59, 10 031(1999. 9%8\We could as well consider a piece of solid with properly saturated
R. J. Magyar, A. Fleszar, and E. K. U. Gross, Phys. Re\6® surfaces so that there are no defect states left in the gap.
045111(2004). 99R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev.18910

9B As a matter of fact, the KS orbitals cannot be reconstructed from
a trial densityn(r)=3;f|i(r)|? if the f;'s are not known. The
introduction of fractional occupation numbers into orbital-
dependent approximations for the exchange-correlation energy )
such as KS-EXX or DFT-RPA thus yields functionals of both the ~ Nnetheless hold in the RPA because the elecjoonly re-
density and(independently the f;’s. That is notably why KS- spor?d to th? time-dependent Hartree poteriiich is a non
EXX or the RPA do not satisfy the usual form of Janak’s theo- _ Self-interaction free average
rem[ J. F. Janak, Phys. Rev. B8, 7165(1978] dE/df=e;, 101y, M. Galitskii and A. B. Migdal, Zh. Eksp. Teor. Fiz34, 139

(1970.
1000f course, a “one electron in a box” system is not physically
equivalent to a low-density electron gas; this equivalence should

except for the highest occupied KS orbital. (1958 [Sov. Phys. JETF7, 96 (1958)].
94M. E. Casida, Phys. Rev. B9, 4694(1999. 102Equation(5) can be recovered from E¢C1) in the GW approxi-
%P, Noziéres,Theory of Interacting Fermi Systeni®enjamin, mation for the self-energy by analytic continuation from the real
New-York, 1964. frequency axis to the imaginary frequency axis.

245115-12



