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We calculate the interacting bandgap energy of a solid within the random-phase approximation(RPA) to
density functional theory(DFT). The interacting bandgap energy is defined asEg=ERPAsN+1d+ERPAsN−1d
−2ERPAsNd, whereERPAsNd is the total DFT-RPA energy of theN-electron system. We compare the interacting
bandgap energy with the Kohn-Sham bandgap energy, which is the difference between the conduction and
valence band edges in the Kohn-Sham band structure. We show that they differ by an unrenormalized “G0W0”
self-energy correction(i.e., aGW self-energy correction computed using Kohn-Sham orbitals and energies as
input). This provides a well-defined and meaningful interpretation toG0W0 quasiparticle bandgap calculations,
but questions the physics behind the renormalization factors in the expression of the bandgap energy. We also
separate the kinetic from the Coulomb contributions to the DFT-RPA bandgap energy, and discuss the related
problem of the derivative discontinuity in the DFT-RPA functional. Last we discuss the applicability of our
results to other functionals based on many-body perturbation theory.
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I. INTRODUCTION

The density functional theory1–3 (DFT) is widely used to-
day to calculate the ground-state properties of solids and
molecules. The local density approximation2 (LDA ) and the
generalized gradient approximation4 (GGA) have notably
proved very successful in predicting the structural and vibra-
tional properties of many materials. The LDA and GGA,
however, miss long-range correlations; they thus fail to re-
produce the ground-state energy surfaces of Van der Waals
bonded systems or of layered materials such as graphite.5

These shortcomings have stimulated the need for fully non-
local approximations able to account for long-range effects.

There are many ways to design nonlocal approximations
for the exchange-correlation energy, including many-body
perturbation theory,6,7 Kohn-Sham perturbation theory,8,9 and
the adiabatic-connection fluctuation-dissipation(ACFD)
theorem10,11 within time-dependent DFT.12–14 The prototype
of the ACFD functionals is based on the so-called random-
phase approximation for the density-density response func-
tion (DFT-RPA functional). It will be reviewed in Sec. II. At
variance with the LDA and GGA, the DFT-RPA is an explicit
functional of the Kohn-Sham(KS) orbitals and energies, and
thus only an implicit functional of the density. It has been
applied to the homogeneous electron gas more than three
decades ago,15–17 then to jellium slabs and surfaces;18–21 the
calculation of the ground-state energy surface of simple di-
atomic molecules22–25 sH2,N2, . . .d and solids26 (Si, Na,…),
which is much more demanding than the LDA and GGA(by
a factor 102 to 103), has been achieved only recently. The
DFT-RPA properly describes Van der Waals interactions,27–29

but misses important short-range correlations.30 This defi-
ciency can, however, be cured with LDA-like corrections21,31

or using refined time-dependent DFT kernels.23,32

The DFT-RPA exchange-correlation potentialvxc
RPAsr d

satisfies a complex integral equation known as the
linear-response Sham-Schlüter equation.6,33,34 In Refs.

35–37, we have investigated the asymptotic behavior of the
DFT-RPA potential, and we have notably shown that
vxc

RPAsr d,−1/r +Q/ r3−a / s2r4d (in finite, closed shell sys-
tems with spherical symmetry), whereQ is a screened quad-
rupole moment anda is the RPA polarizability of the system.
This is in much better agreement with the expected
behavior38 than the LDA and GGA(and to a lesser extent,
exact exchange39). As for (semi)extended systems, the linear-
response Sham-Schlüter equation has been solved by Eguiluz
et al. for a jellium surface40 and by Godbyet al. in bulk
silicon,41,42 where the potential was found to be close to the
LDA. Approximate DFT-RPA potentials have also been cal-
culated in some bulk metals and silicon by Kotani.43

One of the main limitations of DFT in solids is the well-
known “bandgap problem.” Indeed, the Kohn-Sham(KS)
bandgap energyEg

KS is usually found much lower than the
experimental bandgap. As a matter of fact, the KS bandgap
energy might differ from the interacting bandgap energy
Eg=EsN+1d+EsN−1d−2EsNd, whereEsNd is the total en-
ergy of theN-electron system, due to the existence of a de-
rivative discontinuity in the exchange-correlation
functional.33,44–46In practice, the bandgap energy and quasi-
particle band structure are thus computed with many-body
Green function techniques47 such as theGW method.48,49 In
principle, the Green functionG should be updated with
Dyson equation until self-consistency is achieved.50–53 In
most cases, however, theGW self-energy is calculated using
KS orbitals and energies as input, thus leaving out self-
consistency. This “G0W0” approach has been successfully
applied to a wide variety of materials.14,42,54–56There has
been, however, recent controversy about the effects of self-
consistency on the quasiparticle band structure and about the
rationale behindG0W0 calculations.57–62

In this paper, we calculate the DFT-RPA interacting band-
gap energyEg=EsN+1d+EsN−1d−2EsNd in solids. We
show thatEg-Eg

KS is equal to the above-mentionedG0W0
self-energy correction, up to the so-called renormalization
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factors. This definitely provides a clear rationale behind
G0W0 quasiparticle bandgap calculations, but questions the
physics behind these renormalization factors. We then further
split the DFT-RPA bandgap energy into kinetic and Coulomb
contributions, that we calculate in silicon and diamond. Last,
we discuss the related problem of the derivative discontinu-
ity in the DFT-RPA functional, as well as the applicability of
our results to other functionals based on many-body pertur-
bation theory.

This paper is organized as follows. We briefly review the
basics of the DFT-RPA functional in Sec. II, then calculate
the DFT-RPA interacting bandgap energy in Sec. III. We dis-
cuss the links with theG0W0 approach in Sec. IV, the kinetic
and Coulomb contributions to the bandgap energy in Sec. V;
last the derivative discontinuity in the DFT-RPA functional
and the applicability to other functionals in Sec. VI.

II. THE DFT-RPA CORRELATION FUNCTIONAL

The DFT-RPA is the prototype of a large class of func-
tionals based on the adiabatic-connection and fluctuation-
dissipation(ACFD) theorems.10,11 The adiabatic connection
formula indeed yields the sum of the HartreesEhd, KS ex-
changesExd, and correlationsEcd energies of aN-electron
system:

Ehxc=E
0

1

dlkCluVeeuCll. s1d

Vee is the Coulomb interaction operator anduCll is the
many-body ground-state wave function of a system with a
scaled Coulomb repulsionlVee between electrons and with a
one-body potentialvlsr d such that the ground-state density
nlsr d equals the physical densityn1sr d [hencev1sr d=vextsr d
is the external(ionic) potential, whilev0sr d=vKSsr d is the KS
potential]. The ground-state expectation value of the Cou-
lomb interaction operator can then be calculated with the
fluctuation-dissipation theorem

kCluVeeuCll = Eh + Ex −
1

2
E du

2p
Trhnfxlsiud − x0siudgj.

s2d

The symbol Tr stands for the trace over spatial
coordinates TrhAsiudBsiudj=ed3rd3r 8Asr ,r 8 ; iudBsr 8 ,r ; iud,
nsr ,r 8d=1/ur −r 8u is the bare Coulomb interaction, and
xlsr ,r 8 ; iud is the imaginary-frequency density-density re-
sponse function at coupling constantl. The KS density-
density response functionx0sr ,r 8 ; iud reads, as a function of
the KS orbitalswisr d and KS energies«i (we assume a spin-
compensatedN-electron ground state):

x0sr ,r 8; iud = 2o
j=1

N/2

o
k

w j
!sr dwksr dwk

!sr 8dw jsr 8d
iu + « j − «k

+ c.c. s3d

Equations(1) and(2) are formally exact butxl slÞ0d needs
to be approximated for practical purposes. The DFT-RPA
functional follows from the time-dependent Hartree(or
random-phase) approximation

xl
RPAsiud = f1 − lx0siudng−1x0siud. s4d

Refined approximations forxlsiud, based on various time-
dependent DFT kernels, can also be considered.25,32 In the
RPA, Eq.(2) basically describes how KS density fluctuations
correlate when they are allowed to interact dynamically at
the time-dependent Hartree level. Backward substitution in
Eq. (1) and integration over the coupling constantl finally
yield the following expression for the DFT-RPA correlation
energy:

Ec
RPAfng =

1

2
E du

2p
Trhlnf1 − nx0siudg + nx0siudj. s5d

The total DFT-RPA energy of the system can thus be written
ERPAfng=E0fng+Exfng+Ec

RPAfng, whereE0fng is the sum of
the noninteracting kinetic energy, Hartree energy, electron-
ion, and ion-ion interaction energies, and where

Exfng =

− o
j=1

N/2

o
k=1

N/2 E d3r E d3r 8w j
!sr dwksr dnsr ,r 8dwk

!sr 8dw jsr 8d.

s6d

Note thatExfng and Ec
RPAfng are implicit functionals of the

density through the KS orbitals and energies. The RPA
exchange-correlation potentialvxc

RPAsr d=dExc
RPAfng /dnsr d

hence satisfies an integral equation known as the linear-
response Sham-Schlüter equation.6,33,34Further details about
the properties of the RPA potential can be found in Refs.
35–37.

III. THE DFT-RPA BANDGAP ENERGY

In this section, we calculate the DFT-RPA bandgap energy
and compare with the KS bandgap energyEg

KS=«c−«v,
where«v and«c are the energies of the highest occupied and
lowest unoccupied KS orbitals in theN-electron KS poten-
tial. We focus on perfect solids, and thus drop all terms that
make aOsV−p/qd contribution sp/q.0d when the volume
V→` (the average density being kept fixed).

The interacting bandgap energy of aN-electron system is
the differenceEg= I −A between its first ionization potentialI
and its electron affinityA. These are defined as total energy
differences between theN- and sN±1d-electron systems

I = EfnN−1,N−1g − EfnN,Ng < EfnN−1,Ng − EfnN,Ng, s7ad

A = EfnN,Ng − EfnN+1,N+1g < EfnN,Ng − EfnN+1,Ng. s7bd

nN,Msr d is theN-electron(spin-)density built upon theN low-
est KS orbitals of theM-electron system. In solids with de-
localized highest occupied and lowest unoccupied orbitals,63

the rightmost(approximate) equality in both equations holds
up to aOsV−1d correction thanks to the variational principle
of DFT.2,46 The interacting bandgap energy of a solid can
thus be calculated at constant(N-electron) KS potential
vKSsr d.

We first focus on the electron affinityA. We get from Eq.
(7b)

Y. M. NIQUET AND X. GONZE PHYSICAL REVIEW B70, 245115(2004)

245115-2



A = A0 + Ax + Ac, s8d

whereA0=E0fnN,Ng−E0fnN+1,Ng (with similar definitions for
Ax andAc). A0 is easily calculated

− A0 = kwcu − 1
2¹2 + vext+ vhuwcl + Ucc

= «c + Ucc − kwcuvxc
RPAuwcl. s9d

wcsr d is the lowest unoccupied KS orbital,vhsr d is the Har-
tree potential, andUcc is the self-interaction integral for or-
bital wc. Ax moreover reads.39

− Ax = kwcuSxuwcl − Ucc, s10d

whereSxsr ,r 8d is the KS exchange-only self-energy:

Sxsr ,r 8d = − o
j=1

N/2

w jsr dnsr ,r 8dw j
!sr 8d. s11d

As for Ac—which is the part of most interest here—we
get from Eq.(5)

− Ac =
1

2
E du

2p
Trhlnf1 − nx0siud − ndx0siudg

− lnf1 − nx0siudg + ndx0siudj. s12d

dx0siud is the change inx0siud when adding one electron of
either spin to the lowest unoccupied KS orbital. It is thus the
KS response of an electron in this orbital

dx0sr ,r 8; iud = wc
!sr dG0sr ,r 8;«c + iudwcsr 8d + c.c., s13d

where the KS Green functionG0sr ,r 8 ;zd is defined by

G0sr ,r 8;zd = o
j

w jsr dw j
!sr 8d

z− « j
. s14d

Using the identity Trhln Asiud−ln Bsiudj=TrhlnfAsiud
3B−1siudgj=TrhlnfB−1siudAsiudgj, we further get

− Ac =
1

2
E du

2p
Trhlnf1 − Wsiuddx0siudg + ndx0siudj,

s15d

whereWsiud=f1−nx0siudg−1n is the RPA screened Coulomb
interaction.

The physics behindAc can be revealed by putting the
first-order s~dx0d term aside from the others. Using the
power series expansion of the trace of the logarithm
Trhlnf1−Fsiudgj=−TrhFsiudj+¯, we can indeed split
Ac=Ac

qp+Ac8 in two parts, where

− Ac
qp = −

1

2
E du

2p
TrhfWsiud − ngdx0siudj s16ad

− Ac8 = +
1

2
E du

2p
Trhlnf1 − Wsiuddx0siudg + Wsiuddx0siudj.

s16bd

As we will next show, Ac
qp is a GW-like self-energy

correction,48,49 while Ac8 vanishes in solids.

Let us first discussAc
qp. Insertion of Eq.(13) into Eq.

(16a) yields

− Ac
qp = kwcuScs«cduwcl, s17d

whereScsr ,r 8 ;«d is the correlation part of the “G0W0” self-
energy(i.e., theGW self-energy48,49 calculated with KS or-
bitals and energies):

Scsr ,r 8;«d = − PVE du

2p
G0sr ,r 8;« + iudWssr ,r 8; iud.

s18d

Wssr ,r 8 ; iud=Wsr ,r 8 ; iud−nsr ,r 8d is the screening part of
the RPA screened Coulomb interaction. The symbol “PV”
stands for Cauchy’s principal value. Contour deformations
techniques can be used to show that this imaginary-
frequency form of theGW self-energy is equal to the usual
(real-frequency) expression48,49 as long as« is in the KS
bandgap(including «=«c and«=«v). We will further inves-
tigate the links withG0W0 calculations later and now focus
on Ac8.

We note at once thatAc8 has the same functional form as
Ec

RPA [Eq. (5)], but with x0siud replaced bydx0siud and n
replaced byWsiud. Ac8 thus formally appears as the correla-
tion energy ofone electron in the lowest unoccupied KS
orbital, the interactions among density fluctuations in this
orbital being screened by the other(valence) electrons. As a
matter of fact,Ac8 accounts for both the spurious response of
the extra electron to its own contribution to the time-
dependent Hartree potential, and for the response of the extra
electron to the polarization it induces in the gas of valence
electrons. A careful analysis however shows thatAc8 vanishes
asV−1/4 in a KS insulator, and thus do not contribute to the
bandgap energy of the solid(see Appendix A). Note that this
exponent is consistent with the low-density behavior of the
DFT-RPA correlation energy per particle in the homogeneous
electron gas64 «c

RPAsnd~n1/4 (which yields«c
RPA~V−1/4 for a

fixed number of particles).
Let us now gather the results of the former paragraphs.

The KS exchange-only self-energy[Eq. (11)] can also be cast
in terms of the KS Green functionG0 [see, e.g., Eq.(14) of
Ref. 36]; adding Eqs.(9), (10), and(17) then yields

− A = «c + kwcuSxcs«cd − vxc
RPAuwcl + OsV−1/4d, s19d

where

Sxcsr ,r 8;«d = − PVE du

2p
eiudG0sr ,r 8;« + iudWsr ,r 8; iud,

s20d

is the full G0W0 self-energy andd→0+ is a positive infini-
tesimal. As for the first ionization energy, we get along the
same lines

− I = «v + kwvuSxcs«vd − vxc
RPAuwvl + OsV−1/4d, s21d

wherewvsr d is the highest occupied KS orbital. Let us recall
that the relation −I =«v holds38,65 for the exact exchange-
correlation functional providedvextsr d→0 when r →`. As
for the DFT-RPA, one may show35 that kwvuSxcs«vd
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−vxc
RPAuwvl=0 if vKSsr d has been shifted so thatvKSsr d→0

when r →`, which yieldsI =−«v+OsV−1/4d: the highest oc-
cupied KS energy tends to the negative of the DFT-RPA first
ionization potential in a large system with a delocalized
wvsr d. This result only holds if«v has been calculated self-
consistently; Eqs.(19) and(21) remain valid though if LDA/
GGA orbitals, energies and potential are used as input for the
calculation(which is customary). These equations show that
the DFT-RPA bandgap energy of solids differs from the KS
bandgap energy by aG0W0-like self-energy correction. We
further discuss the implications of this result in the next sec-
tion.

IV. LINKS WITH G0W0 QUASIPARTICLE BANDGAP
CALCULATIONS

In this section, we discuss the practical implications of
Eqs.(19) and(21). We show that they provide a well-defined
and consistent interpretation toG0W0 quasiparticle bandgap
calculations. We also discuss the accuracy of the DFT-RPA
bandgap energy of the basis of the known deficiencies of the
DFT-RPA functional.

A. Interpretation of the G0W0 quasiparticle bandgap energy
within DFT

As mentioned in the Introduction, the DFT, which is a
ground-state theory, is not meant for the calculation of qua-
siparticle band structures. Even the bandgap energy, a linear
combination of ground-state total energies, may not be cor-
rectly given by the KS band structure.33,44–46The quasiparti-
cle band structure of a solid is thus usually computed with
theGW method.48,49 In principle, the Dyson equation should
be solved iteratively to find the self-consistent Green func-
tion G and the self-consistentGW self-energySxc. This
would notably make the quasiparticle band structure inde-
pendent of the initial guess for the Green function. Such a
self-consistentGW calculation has however long been un-
tractable for real materials. The quasiparticle energies are
thus usually computed from theG0W0 self-energy using a
first-order-like approximation. The conduction band edge
Ec;−A, for example, is obtained as the solution of

Ec = «c + kwcuSxcsEcd − vxcuwcl. s22d

Sxc is the G0W0 self-energy andvxcsr d is the exchange-
correlation potential used to calculate the KS orbitals and
energies.Sxcsr ,r 8 ;Ecd is then further expanded in powers of
Ec−«c, which yields at first order

Ec = «c + ZckwcuSxcs«cd − vxcuwcl, s23d

where Zc=f1−kwcus]Sc/]«ds«cduwclg−1 is the quasiparticle
renormalization factor. A similar equation holds forEv;−I.
We will refer to these equations forEc and Ev as the
r −G0W0 bandgap. The renormalization factorsZc andZv are
worth around 0.75–0.90 in most semiconductors.54,55 They
will thus lower the self-energy correction by about 10–25 %.
The G0W0 approach has been successfully applied to many
materials.14,42,54,55In most cases it shifts the KS conduction
bands with respect to the KS valence bands in a nearly rigid

way. It has long been thought that self-consistency would
degrade the quality of theGW quasiparticle band structure
(i.e., that the effects of self-consistency and those of vertex
corrections nearly cancel66–70). The first self-consistentGW
calculations in real materials61,62 have, however, revived this
debate and questioned the rationale behindG0W0 calcula-
tions.

Equations(19) and (21) provide such a rationale, at least
as regards the calculation of bandgap energies in solids. They
show that theG0W0 approach is not a mere “practical
recipe,” and that it has a well-defined and meaningful inter-
pretation within DFT. Indeed, the unrenormalizedG0W0
bandgap energy, calculated in the DFT-RPA exchange-
correlation potential, is precisely the DFT-RPA interacting
bandgap energy. This physically motivates the use of KS
orbitals and energies as a starting point forGW calculations.
This does not, however, settle the debate about the need or
effects of many-body self-consistency.

There is nonetheless one major difference between Eqs.
(19) and (23): the DFT-RPA obviously lacks the renormal-
ization factors that appear in ther-G0W0 approximation. The
DFT-RPA bandgap energy will thus be significantly higher
(,0.2 eV in Si) than ther-G0W0 bandgap energy. Yet we
stress that the physics behind those renormalization factors is
questionable. First, Eq.(23) is not a genuine first-order ap-
proximation to the quasiparticle energy, since the renormal-
ization factorZc involves terms of any power inSc. This is
so primarily because the quasiparticle energy«=Ec itself ap-
pears on the right-hand side of Eq.(22) instead of its zeroth-
order approximation«=«c. The actual first-order solution of
the self-consistent quasiparticle equation is in fact the un-
renormalizedG0W0 quasiparticle energy[Eq. (19)], as shown
in Appendix B. Secondly, Eq.(22) [from which Eq.(23) is
derived] does not necessarily catch the right physics. Indeed,
the quasiparticle energiesEc andEv are expected to be real
(i.e., the quasiparticle lifetime is expected to diverge at the
edges of the gap71), while theexactsolution of Eq.(22) may
be complex, especially in semiconductors with small KS
bandgaps.72,73 This challenges the use of Eqs.(22) and (23)
for the calculation of theG0W0 bandgap energy. We will
further compare the values of ther-G0W0 and DFT-RPA
bandgap energies with the experimental bandgap energy in
Secs. IV B and V.

The choice of the exchange-correlation potentialvxcsr d
used throughout the calculation is another practical but im-
portant issue. Indeed, the unrenormalizedG0W0 bandgap en-
ergy has a well-defined interpretation within DFT only if
DFT-RPA orbitals and energies are used as input for the self-
energy. The adequacy ofvxc

RPAsr d as a starting point for the
computation of thewhole G0W0 quasiparticle band structure
is further emphasized in Appendix B. The DFT-RPA poten-
tial satisfies the linear-response Sham-Schlüter equation6,33,34

in theGWapproximation for the self-energy, which is unfor-
tunately very difficult to solve. The works of Godbyet
al.41,42 and of Kotani,43 however, suggest that the DFT-RPA
and LDA potentials are quite close in simple solids such as
silicon. The use of LDA orbitals and energies as input for the
self-energy should thus have limited impact on the bandgap
energy in most semiconductors. Still, the case of materials
such as Germanium(often quoted as a metal in the LDA)
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might be worth a detailed investigation. The latter could be
carried out with approximate DFT-RPA potentials such as
those introduced in Ref. 43 and Refs. 35–37, which are much
simpler to compute while being likely of reasonnable accu-
racy.

To conclude, we have shown that the density functional
theory itself provides a justification toG0W0 quasiparticle
bandgap calculations in solids, but questions the use of
renormalization factors in the calculation of the bandgap en-
ergy. In the next section, we will discuss the accuracy of the
DFT-RPA bandgap energy on the basis of the known defi-
ciencies of the DFT-RPA functional.

B. Some deficiencies of the DFT-RPA functional and their
consequences on the bandgap energy

The performances of theG0W0 approach can now be ana-
lyzed in a consistent DFT framework and related to those of
the DFT-RPA functional. The RPA density-density response
function xRPA reasonably describes long-range screening but
misses important short-range effects.21,30,31,48As a conse-
quence, the DFT-RPA on-top correlation hole is too deep, so
that the correlation energies are too negative and the total
energies thus too low. This has been evidenced in finite sys-
tems such as H2 (Ref. 25) and in the homogeneous electron
gas (HEG).7,17,32,74In the latter case, the total energy error
per particleD«csnd=«c

RPAsnd−«c
HEGsnd weakly increases(in

absolute value) with the density17,74 [«c
HEGsnd and «c

RPAsnd
being, respectively, the exact and RPA correlation energy per
particle]. The work functionF= I =A of a metal should thus
be overestimated by the DFT-RPA functional. We may ex-
pect similar trends in semiconductors, provided the total en-
ergy error steadily increases with the number of particles
across the gap. The inclusion of LDA-like vertex corrections
in the G0W0 self-energy for example indeed results in an
upward shift of the quasiparticle energies in Si.75 The intro-
duction of short-range corrections to the RPA within a local
density approximation(RPA+ functional21,31) also shifts the
quasiparticle energies upwards.76 These errors onI and A
might mostly cancel in the bandgap energy. The accuracy of
the G0W0 bandgap energy is, however, quite controversial.
Indeed, pseudopotential calculations42,54,55 usually yield
r-G0W0 bandgap energies in good agreement with the experi-
ment, and thus significantly too large DFT-RPA bandgap en-
ergies. On the other hand, all-electron calculations62,77–80

generally yield much lowerr-G0W0 bandgaps. The all-
electron DFT-RPA bandgap energies(deduced from Refs. 78
and 79) are thus often found in better agreement with the
experiment than ther-G0W0 values, although they might still
be too low. These discrepancies between pseudopotential and
all-electron calculations are not yet fully understood.62,80,81

Further comparison between the two approaches is thus
needed to be conclusive.

V. KINETIC AND COULOMB CONTRIBUTIONS TO THE
BANDGAP ENERGY

In this section, we further refine our interpretation and
separate the kinetic from the Coulomb contributions to the

DFT-RPA bandgap energy in solids. Indeed, we can split
Ec

RPA=Ec
int+Ec

kin, where Ec
int=kC1uVeeuC1l−Eh−Ex is the

Coulomb correlation energy andEc
kin=Tc−Ts is the differ-

ence between the interacting kinetic energyTc and the non-
interacting KS kinetic energyTs=−o j=1

N/2kw ju¹2uw jl. Ec
int is ex-

pected negative, because the introduction of correlations
further prevents the electrons from coming too close one to
each other, thereby decreasing the Coulomb interaction en-
ergy with respect to the exchange-only theory. This is of
course made at the expense of the kinetic energy of the sys-
tem sEc

kin.0d. Nonetheless, the introduction of correlations
always results in a net decrease of the total energysEc,0d.

Accordingly, we may separate kineticsAc
kind from Cou-

lomb sAc
intd contributions inAc. Ac

int is easily calculated from
Eqs. (2) and (4). To that end, we introduce
Fsiud=nfx1

RPAsiud−x0siudg=fWsiud−ngx0siud and write,
upon addition of one electron to the lowest unoccupied or-
bital

dFsiud = fWsiud − ngdx0siud + dWsiudx0siud

+ dWsiuddx0siud, s24d

where dFsiud and dWsiud=f1−Wsiuddx0siudg−1Wsiud
−Wsiud are, respectively, the changes inFsiud and Wsiud.
The trace ofdFsiud over spatial coordinates and frequency
yields −Ac

int through Eq.(2). The first term on the right-hand
side of Eq.(24) gives rise to theG0W0 self-energy correction
of Eq. (17). The second and third terms involve the coupling
of the extra electron with the time-dependent Hartree poten-
tial. They will allow further relaxation of the system and
decrease of the Coulomb energy. In a solid, the only nonva-
nishing contribution(beyond the first term) arises from the
first-order variation of the screened Coulomb interaction
dWs1dsiud=Wsiuddx0siudWsiud in the second term. This con-
tribution thus equalsAc

kin=Ac−Ac
int, which yields after

straightforward algebra

− Ac
kin = kwcuSc

kins«cduwcl + OsV−1/4d, s25d

where

Sc
kinsr ,r 8;«d = PVE du

2p
G0sr ,r 8;« + iudW̃ssr ,r 8; iud

s26d

and

W̃ssiud = Wsiudx0siudWsiud = «−1siudWssiud, s27d

«siud=1−nx0siud being the RPA dielectric function. A simi-
lar equation holds for the first ionization energyI, uwcl and«c
being replaced withuwvl and«v. Note thatSc

kin has the same
functional form as the correlation part of theG0W0 self-
energy[Eq. (18)], but with a(re)screenedWssiud.

We have evaluated the kinetic and Coulomb contributions
to the bandgap energy in silicon and diamond. The calcula-
tion was performed with theABINIT package,82 using
Troullier-Martins83 pseudopotentials and a plasmon-pole ap-
proximation for«−1siud. The wave functions were expanded
in a plane-wave basis set with cutoff energy 12 Ha for Si and
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30 Ha for diamond. Up to 200 bands and 256k points (full
Brillouin zone) were included in the computation of the
1813181 dielectric matrices and self-energies. The KS band
structure was calculated in the LDA potential,84 at the experi-
mental lattice parameter85 (a=5.43 Å for Si anda=3.57 Å
for C). The quasiparticle energiesEc, Ev, and the bandgap
energy Eg are reported in Table I. Both renormalized
and unrenormalized(RPA) G0W0 values are given. The
quasiparticle energies have been shifted so that the top of the
valence band is at zero energy in the DFT-RPA approxima-
tion. The total correlationsScd, kinetic sSc

kind, and Coulomb
sSc

int=Sc−Sc
kind contributions to the DFT-RPA are also given.

We expect the quasiparticle energies andSc
kin to be con-

verged (from above and from below, respectively) within
0.05 eV. The values ofSc, Sc

kin, andSc
int should be margin-

ally affected by the use of the LDA instead of the DFT-RPA
potential.

As discussed in Sec. IV B, ther-G0W0 bandgap energies
of silicon and diamond are found in good agreement with the
experiment85 (Eg=1.17 eV for Si andEg=5.48 eV for C), at
least in the pseudopotential framework. However, the DFT-
RPA figures, that are higher by 202 meV in Si and 281 meV
in diamond, significantly overestimate the experimental
bandgap energy. The quasiparticle energies show the same
trends in both materials. One would naively expect the abso-
lute values ofEc, Ec

int, andEc
kin to increase with the number

of particles, i.e.,Sc,0, Sc
int,0, andSc

kin.0. This is clearly
the case on the conduction band side. However,Sc is found
positive at the valence band edge, which means that the cor-
relation energy is more negative in both thesN+1d- and
sN−1d-electron systems than in theN-electron system. The
removal of one electron to the insulating ground state thus
strongly enhances the efficiency of correlations. This is es-
pecially evidenced in diamond, whereSc

int itself is found
positive. Sc

kin is a significant part ofSc but is much lower
than the variations of the noninteracting kinetic energy
DTs=kwv/cu−1

2¹2uwv/c
l (typically a few tens of eV). Again,

Sc
kin is higher on the conduction than on the valence band

side, because the enhancement of the correlations on the lat-
ter side comes with an increase ofEc

kin that nearly compen-
sates for the loss of one particle. We would last like to recall
that these results are obtained in a pseudopotential frame-

work and notably miss part of the(screened-)exchange ef-
fects. Their accuracy should thus be assessed by comparison
with all-electron calculations.

VI. THE DERIVATIVE DISCONTINUITY IN THE DFT-RPA
EXCHANGE-CORRELATION FUNCTIONAL

The difference between the KS bandgap energyEg
KS and

the interacting bandgap energyEg can be related to the exis-
tence of a derivative discontinuity in the exchange-
correlation functional.33,44–46In this section, we discuss the
derivative discontinuity in the DFT-RPA functional, as well
as the applicability of our results to other exchange-
correlation functionals based on many-body perturbation
theory.

The domain of definition of the DFT-RPA functional must
first be extended to arbitrary(noninteger) number of par-
ticles. The ensemble approach is the most appropriate way to
do so.44,45,87It is basically theT→0 limit of Mermin’s DFT
(Ref. 88) for finite temperatureT and fixed chemical poten-

tial m. In this approach, theÑ=N+ f electron system
s0ø f ø1d is described as a statistical mixture of theN and
sN+1d-electron systems; the ground-state density and total
energy thus read

ñN+fsr d = fnN+1sr d + s1 − fdnNsr d, s28ad

ẼfñN+fg = fEfnN+1g + s1 − fdEfnNg, s28bd

where nNsr d is the N-electron ground-state density. The

exchange-correlation energyẼxcfñN+fg does not reduce to the
weighted average ofExcfnNg andExcfnN+1g, but also includes
nonlinear but straightforward kinetic and Hartree energy
corrections.87,89 By construction, we may expect derivative

discontinuities inẼxc for integer values ofN. We thus define

Dxcsr d = lim
d→0+

fvxc
N+dsr d − vxc

N−dsr dg

= lim
d→0+

FSdẼxcfñg
dñsr d

D
N+d

− SdẼxcfñg
dñsr d

D
N−d

G , s29d

wherevxc
N+dsr d and vxc

N−dsr d are the exchange-correlation po-

TABLE I. The KS, r-G0W0 and DFT-RPA quasiparticle and bandgap energies of silicon and diamond, all
in eV. The quasiparticle energies have been shifted so that the top of the valence band is at zero energy in the
DFT-RPA. The total correlationsScd, kinetic sSc

kind, and CoulombsSc
int=Sc−Sc

kind contributions to the DFT-
RPA are also given.

KS r-G0W0 RPA Sc Sc
kin Sc

int

Si Ev 0.751 0.176 0.000 0.434 0.753 −0.318

Ec (Ref. 86) 1.232 1.325 1.351 −3.555 1.294 −4.849

Eg 0.481 1.149 1.351

C Ev 0.924 0.154 0.000 1.102 0.554 0.548

Ec (Ref. 86) 5.074 5.757 5.884 −4.753 1.904 −6.656

Eg 4.150 5.603 5.884

Y. M. NIQUET AND X. GONZE PHYSICAL REVIEW B70, 245115(2004)

245115-6



tentials for theÑ=N+d and Ñ=N−d electron systems, re-
spectively.Dxcsr d happens to be a constant; a few formal
considerations indeed yield45

Dxc = sI − «cd − sA − «vd = Eg − Eg
KS. s30d

In the ensemble approach, the derivative discontinuity in the
exchange-correlation functional is thus the difference be-
tween the interacting and KS bandgap energies, whether the
system is finite or not. The size of the derivative discontinu-
ity in the exact exchange-correlation functional is somewhat
controversial. The LDA and GGA for example have no such
derivative discontinuities in solids, but yield too low band-
gap energies. The KS exact-exchange(EXX) functional on
the other hand yields much too largeEg’s in solids but shows
a huge discontinuity that pulls the KS bandgap down to the
experiment in many materials.90,91 There is, however, no
clear physics behind this agreement.92 As for the DFT-RPA,
one gets in solids

Dxc = kwcuSxcs«cd − vxc
RPAuwcl − kwvuSxcs«vd − vxc

RPAuwvl,

s31d

whereSxcsr ,r 8 ;«d is theG0W0 self-energy. The DFT-RPA is
one of the first known functionals that yields reasonnable
interacting bandgap energies while having a sizeable deriva-
tive discontinuity is solids—on the order of a few tenths of
eV in most semiconductors, as suggested by Refs. 42 and 43.
Whether this derivative discontinuity will decrease if further
correlations are included is, however, an open question.

In principle, noninteger number of particles can also be
handled within the fractional occupation number formalism.
In this approach, each KS spin orbitalwisr d may be occupied
with a fractional number of electronsf i s0ø f i ø1d. This
allows a straightforward extension of anyexplicit functional
of the density such as the LDA and GGA to arbitrary densi-
ties nsr d=oi f iuwisr du2. The derivative discontinuity in the
fractional occupation number formalism is not in general
equal to the difference between the interacting and KS band-
gap energies, except presumably in solids. The introduction
of fractional occupation numbers inimplicit functionals of
the density is much more involved.93 Casida has developped
such a fractional occupation number formalism for a class of
RPA-like functionals.94 We point out, however, that some
energy denominators in the expression of the exchange-
correlation energy may reduce to zero in this fractional oc-
cupation number formalism if thef i’s are different from 0 or
1 [as can be seen(in another approximation for the
exchange-correlation energy) in Eq. (2.8) of Ref. 94]. Hence
Ref. 94 allows aformal extension of the RPA to fractional
occupation numbers(that yields the same results as ours in
solids), but is not meant for practical applications. We are not
aware of any other extension of the RPA to fractional occu-
pation numbers.

The results of Secs. III–VI may be applicable to the func-
tionals discussed in Ref. 94 and first introduced in Ref. 6.
These functionals are based on Nozières’ expression95 for the
total energy in many-body perturbation theory(Nozières’ for-
mula is a variant of the Luttinger Ward formula96). Each
different approximation for the self-energy yields a particular

functional of this class. The DFT-RPA functional, that can
also be derived within many-body perturbation theory, actu-
ally follows from theGW approximation for the self-energy.
The calculation of the electron affinityA and of the first
ionization potentialI for any functional of this class yields
results similar to Eqs.(19) and (21), with the appropriate
self-energy operator and exchange-correlation potential(pro-
vided some higher-order contributions vanish in solids as in
the RPA—see details in Appendix C). This provides a well-
defined interpretation to quasiparticle bandgap calculations
with KS-based self-energy operators in solids.

Last, we would like to mention that other ACFD function-
als 25,32 can be built upon the model of the RPA using a
time-dependent exchange-correlation kernel in Eq.(4) (such
as the adiabatic LDA kernel97). The extension of the results
of Sec. III to these functionals is, however, intricate, notably
because the integration over the coupling constantl in Eq.
(1) cannot be performed analytically any more. Work in this-
direction is still under way.

VII. CONCLUSION

In this paper, we have calculated the interacting bandgap
energy of a solid in the random-phase approximation for the
exchange-correlation energy(DFT-RPA functional). We have
shown that the latter differs from the Kohn-Sham bandgap
energy by an unrenormalizedG0W0 self-energy correction,
computed using Kohn-Sham orbitals and energies as input.
This provides a clear rationale behindG0W0 quasiparticle
bandgap calculations, that can be consistently interpreted and
analyzed within density functional theory. This, however,
questions the use of renormalization factors in the expression
of the bandgap energy. We have also separated the kinetic
from the Coulomb contributions to the DFT-RPA bandgap
energy, and discussed the problem of the derivative discon-
tinuity in the DFT-RPA functional. Last, we have discussed
the applicability of our results to other functionals based on
Nozière’s expression for the total energy in many-body per-
turbation theory.
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APPENDIX A: PROOF THAT Ac8=O„V−1/4
… WHEN V\`

In this Appendix, we show thatAc8=OsV−1/4d when V
→`. We also recover the low-density behavior of the DFT-
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RPA correlation energy per particle in the homogeneous
electron gas«c

RPAsnd,−0.574n1/4, a result found numerically
by Wang and Perdew.64 We consider a piece of crystalline
solid with finite (but very large) volume V and periodic
boundary conditions.98 We thus now index the KS orbitals
wnksr d=eik·runksr d /ÎV and the KS energies«nk by their
wave vectork in the first Brillouin zone(FBZ) and by their
band indexn. unksr d has the periodicity of the underlying
crystal lattice. We assumenv occupied valence bands, a di-
rect bandgap atk =0, and a nondegenerate conduction band
minimum (though this is not restrictive). We letc=nv+1 and
take «c;«c0 as the reference of energies. We also assume
(for simplicity) that «ck ,k2/ s2mc

*d aroundk =0. We shall
first discuss the long-wavelength behavior ofdx0siud and
Wsiud. The wave vector decomposition ofdx0siud reads

dx0sr ,r 8; iud =E d3q

s2pd3 o
G,G8

eisq+Gdrdx0,GG8sq; iude−isq+G8dr8,

sA1d

whereq runs over the whole FBZ andG ,G8 are reciprocal
lattice vectors.dx0,GG8sq ; iud is easily calculated from Eq.
(13):

dx0,GG8sq; iud = −
2

V
o

«nqÞ0
FcnqsGdFcnq

! sG8d
«nq

u2 + «nq
2 ,

sA2d

where

FcnqsGd =
1

V0
E

V0

d3ruc0
! sr dunqsr de−iG·r sA3d

and V0 is the volume of the unit cell of the crystal lattice.
The smallq behavior ofFcnqsGd [hence ofdx0,GG8sq ; iud]
follows from the orthogonality between KS orbitals

FcnqsG = 0d ~ q sn Þ cd, sA4ad

FccqsG = 0d → 1, sA4bd

FcnqsG Þ 0d → const. sA4cd

As for Wsiud, one typically gets99 in a KS insulator, when
q→0:

W00sq; iud ~
1

q2 , sA5ad

W0Gsq; iud, WG0sq; iud ~
1

q
sG Þ 0d, sA5bd

WGG8sq; iud → constsG Þ 0,G8 Þ 0d. sA5cd

We now prove thatAc8=OsV−1/4d when V→`. We start
from the wave vector decomposition ofAc8 [see Eq.(16b)]:

− Ac8 =
V

2
E du

2p
E d3q

s2pd3Trhlnf1 − Wsq; iuddx0sq; iudg

+ Wsq; iuddx0sq; iudj, sA6d

wheredx0sq ; iud andWsq ; iud are the matrices with elements
dx0,GG8sq ; iud andWGG8sq ; iud respectively. The trace of the
logarithm can also be written

Trhlnf1 − Wsq; iuddx0sq; iudgj

= ln detf1 − Wsq; iuddx0sq; iudg. sA7d

Now, Eqs.(A4) and (A5) can be used to show that the inte-
grand in Eq.(A6) is finite except aroundq=0, u=0. More-
over,dx0sq ; iud scales as 1/V. Hence, for anyq0.0 and any
u0.0, there existsV0 large enough such that the power se-
ries expansion of Trhlnf1−Wsq ; iuddx0sq ; iudgj is convergent
for V.V0, q.q0 and uuu.u0. This yields

Trhlnf1 − Wsq; iuddx0sq; iudgj

= − TrhWsq; iuddx0sq; iudj + OS 1

V2D . sA8d

The contribution toAc8 coming from the domainq.q0, uuu
.u0 will thus vanish as 1/V whenV→`. We must last deal
with the contributiondAc8sq0,u0d coming from the domain
qøq0, uuuøu0.

The divergence of the integrand in this region comes from
the lowest conduction band contribution todx0,GG8sq ; iud.
We can discard the contribution from all the other bands for
the purpose of our demonstration.dx0sq ; iud then reads

dx0sq; iud . −
1

V

q2/mc
*

u2 + q4/s2mc
*d2uFccqlkFccqu, sA9d

where uFccql is the vector with componentsFccqsGd. This
yields

TrhWsq; iuddx0sq; iudj = −
1

V

q2/mc
*

u2 + q4/s2mc
*d2

3kFccquWsq; iuduFccql
sA10ad

detf1 − Wsq; iuddx0sq; iudg = 1 − TrhWsq; iuddx0sq; iudj.

sA10bd

The smallq behavior ofkFccquWsq ; iuduFccql is driven by
W00sq ; iud; we thus get when bothq→0 andu→0

kFccquWsq; iuduFccql ,
4p

«rq
2 , sA11d

where«r is the static dielectric constant.
If we now plug Eqs.(A10) and (A11) into Eq. (A6) and

make the following change of variables:

u8 = s«rmc
*Vd1/2u, sA12ad
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q8 = S«rV

mc
* D1/4

q, sA12bd

we get

− dAc8sq0,u0d ,
1

2«r
S mc

*

«rV
D1/4E

−u08

+u08 du8

2p
E

Bq08

d3q8

s2pd3

3lnS1 +
4p

u82 + q84/4
D −

4p

u82 + q84/4
,

sA13d

where u08=s«rmc
*Vd1/2u0 and Bq08

is the domainqøq08 with
q08=s«rV /mc

*d1/4q0. The above integral has a finite limit when
u08→` andq08→`, which finally yields the expected result

Ac8 ,
K

«r
S mc

*

«rV
D1/4

, sA14d

where, after a few transformations on Eq.(A13):

K =
2

p3/4E
0

+`

x4F1 −Î1 +
1

x4G2

dx= 0.574s4d.

sA15d

Equation(A14) is consistent with the low-density behavior
of the RPA correlation energy per particle in the homoge-
neous electron gas«c

RPAsnd. Let us indeed add an electron to
an otherwise empty box of large volumeV. The RPA(self-)
correlation energy of this electron will be given by −Ac8. If
we now think of this system as a realization100 of a spin-
polarized homogeneous electron gas with(low) density
n=1/V, we get from Eq.(A14) «c

RPAsnd,−0.574n1/4 [the
low-density behavior of«c

RPAsnd is independent64 of the spin
polarization]. This is precisely the result obtained numeri-
cally by Wang and Perdew.64

APPENDIX B: FIRST-ORDER APPROXIMATION TO THE
SELF-CONSISTENT QUASIPARTICLE ENERGIES

In this Appendix, we show that Eqs.(19) and (21) are
first-order approximations to the quasiparticle energies in an
appropriate treatment of the self-consistent quasiparticle
equation. First of all, the quasiparticle energies can be con-
sidered as functionals of the ground-state density, up to an
additive constant[sincensr d yields vextsr d up to an additive
constant,2 which then yields the interacting Green functionG
up to a a shift along the frequency axis]. This motivates a
tentative expansion of the quasiparticle energies in terms of
the KS orbitals and energies. We thus consider the following
quasiparticle equation:

−
1

2
¹2Casr d + vextsr dCasr d + vh,asr dCasr d + vxc,asr dCasr d

+ aE d3r 8SxcfGagsr ,r 8;EadCasr 8d = EaCasr d. sB1d

vextsr d is the external(ionic) potential andSxcfGagsr ,r 8 ;Ed
is the GW self-energy calculated with the self-consistent

Green functionGa at coupling constanta. vxc,asr d is a local
potential such thatvxc,1sr d=0 and such that the density
nasr d=n1sr d is held constant along the way from the KS
Hamiltoniansa=0d to the self-consistent quasiparticle equa-
tion sa=1d.

We now make a power series expansion ofvxc,asr d of the
form vxc,asr d=oks1−akdvxc

skdsr d and calculatevxc
skdsr d so that

the kth order variation of the densitydnskdsr d is zero.
dns1dsr d reads6 (the limits r 8→ r andd→0+ are understood)

dns1dsr d = 0 =E dv

2ip
eivddGs1dsr ,r 8;vd, sB2d

where dGs1dsvd=G0svdhSxcfG0gsvd−vxc
s1djG0svd is the first-

order variation of the Green function. Equation(B2) is no
more than the linear-response Sham-Schlüter equation,6

meaning thatvxc
s1dsr d is the DFT-RPA potentialvxc

RPAsr d.
Let C0sr d=wsr d be a zero-order KS orbital with KS en-

ergy E0=«. We then easily get

SdEa

da
D

a=0
= kwuSxcfG0gs«d − vxc

s1duwl, sB3d

where we have taken into account the fact thatdns1dsr d is
zero. We thus end up at first-order with

E = « + kwuSxcfG0gs«d − vxc
RPAuwl. sB4d

This result is valid in finite systems as well as solids, and for
any KS orbitalwsr d. In particular, the first-order approxima-
tions to the conduction and valence band edges in the first-
order potentialvxc

s1dsr d=vxc
RPAsr d are given by Eqs.(19) and

(21), respectively. The DFT-RPA potentialvxc
RPAsr d moreover

appears as the adequate starting point for the computation of
the wholeG0W0 quasiparticle band structure. We acknowl-
edge, though, that a higher-order expansion ofEa is not prac-
tical and may even break down due to nonanalyticities in the
self-energy.

APPENDIX C: APPLICATION TO OTHER FUNCTIONALS

In this Appendix, we discuss the applicability of our re-
sults to other functionals based on many-body perturbation
theory.47 Indeed, the total energy of a system can be calcu-
lated from the interacting Green functionG using the well-
known Galitskii-Midgal101 formula or variational functionals
such as Luttinger-Ward’s96 or Nozières’95 formula. The latter
two formula notably make use of the expansion of the self-
energy in a series of “skeleton diagrams” only involving the
interacting Green functionG and the bare Coulomb interac-
tion n.47 As variational functionals, they are much more ro-
bust with respect to errors in the Green function than is the
Galitskii-Midgal formula. We can thus expect reasonable to-
tal energies if we use the KS Green functionG0 instead of
the interacting Green functionG as input for the
calculation.6,7 Evaluating Nozières’ functional at the KS
Green functionG0 yields6 (we still work with spinless Green
functions for the sake of simplicity)
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Excfng = FfG0g = 2o
n=1

`
1

2n
E dv

2ip
eivd TrhSxc

sndfG0gsvdG0svdj,

sC1d

whered→0+ andSxc
sndfG0gsr ,r 8 ;vd is the sum of all skeleton

diagrams of ordern (that involve n interaction lines), the
interacting Green function lines being replaced withG0 lines.
The KS Green functionG0 reads on the real frequency axis

G0sr ,r 8;vd = o
j

w jsr dw j
!sr 8d

v − « j ± ih
, sC2d

whereh is a positive infinitesimal and the sign2 (1) holds
for occupied(empty) KS states. The exchange-correlation
potentialvxcsr d that derives from Eq.(C1) can be shown to
satisfy the linear-response Sham-Schlüter equation.6 This
follows from a particular property51,96 of the F functional
defined in Eq.(C1):

dFfG0g
dG0sr ,r 8;vd

=
1

2ip
SxcfG0gsr ,r 8;vd. sC3d

As an example, the DFT-RPA functional of Sec. II can
also be derived within many-body perturbation theory and is
actually equivalent to Eq.(C1) in theGW approximation for
the self-energy.24,25,102Let us now consider any well-defined
self-energy approximation in solids and calculate the elec-
tron affinity A with Eq. (7b) using approximation(C1) for

the exchange-correlation energy. The variation of
G0sr ,r 8 ;vd upon addition of one electron to the lowest un-
occupied orbital is[see Eq.(C2)]

dG0sr ,r 8;vd = wcsr dS 1

v − «c − ih
−

1

v − «c + ih
Dwc

!sr 8d

→
h→0

2ipwcsr dwc
!sr 8ddsv − «cd. sC4d

Following the lines of Sec. III, we splitAxc in two parts
Axc=FfG0g−FfG0+dG0g=Axc

qp+Axc8 , whereAxc
qp is the contri-

bution from the diagrams that contain only onedG0 line, and
Axc8 is the remainder.Axc

qp is the first-order variation of theF
functional

− Axc
qp =E d3r E d3r 8E dv

2ip
eivd dFfG0g

dG0sr ,r 8;vd
dG0sr ,r 8;vd.

sC5d

Equations(C3) and (C4) thus yield

− Axc
qp = kwcuSxcs«cduwcl. sC6d

We last get from Eqs.(8) and (9):

− A = «c + kwcuSxcs«cd − vxcuwcl − Axc8 + OsV−1d, sC7d

with a similar result for the first ionization potentialI. We
expectAxc8 to vanish in solids as in the RPA(but not neces-
sarily asV−1/4), though we did not prove it whatever the
self-energy. If so, Eq.(C7) provides a clear and consistent
interpretation for quasiparticle bandgap calculations with
KS-based self-energy operators in solids.
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