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We present an analytical theory for the de Haas—van AlgtieivA) oscillations in layered organic conduc-
tors such as«-(BEDT-TTF),Cu(NCS), which takes into account the magnetic breakdown and the chemical
potential oscillations. For this purpose we have generalized our theory for the chemical potential oscillations in
layered conductorf/.M. Gvozdikov, A.G.M. Jansen, D.I. Pesin, I.D. Vagner, and P. Wyder, Phys. Ré8, B
155107(2003] to the case of an arbitrary electron dispersion within the layers. Such an approach gives a better
agreement with an experimental data f6(BEDT-TTF),Cu(NCS), salt than that taking account of the mag-
netic breakdowr{MB) only [V.M. Gvozdikov, Yu.V. Pershin, E. Steep, A.G.M. Jansen, and P. Wyder, Phys.
Rev. B 65, 165102(2002]. The magnetization oscillation patterns and the peaks in the fast Fourier transforms
(FFT's) are studied in different combinations of the stochastic and coherent MB regimes with and without the
chemical potential oscillations. It is shown that that the chemical potential oscillations in the coherent and
stochastic MB regimes do not affect theand 8 peaks, but change the amplitudes of the higher harmonics and
satellites around th@ peak. In the FFT spectrum of-(BEDT-TTF),Cu(NCS), two satellites are resolved:
B-«a (the so called “forbidden” pealkand 8+ «. In the stochastic MB regime all satellites are depressed. In the
coherent MB regime with fixed chemical potential they are higher and have equal amplitudes. Only in the
coherent MB regime with oscillating chemical potential the “forbidden” pgaky becomes larger than the
satellite B+« and the calculated FFT spectrum conforms with the FFT spectrum of the dHVA signal of
k-(BEDT-TTF),Cu(NCS),.

DOI: 10.1103/PhysRevB.70.245114 PACS nunier71.18+y, 75.20.En, 73.50.Jt, 74.70.Kn

I. INTRODUCTION Alphen (dHvA)'?7'4 and Shubnikov—de HaagSdH)52°
studies of the layered organic Q2D conductors based on the
The experimental observation of the quantum oscillationsnolecule BEDT-TTF, also known as ET saltee Ref. 21
of the magnetization and conductivity based on the Lifshitz-have shown numerous deviations from the standard LK
Kosevich(LK) theory* proved to be one of the most power- theory?
ful tools for Fermi-surface studies in conventional metals. In 3D conductors the chemical potential is fixed at the
This approach as well gives an experimental informationFermi level e because electrons populating the parabolic
about the values of effective electron masses, scatteringandau bands belowy stabilize its position. This is in a
times, gyromagnetic factors for different cross sections of theharp contrast to the 2D case, where the Landau levels are
Fermi surfaces of conventional metals. On the other hand, #iat and the chemical potential at zero temperature jumps
direct application of the LK theory to the new organic con- between the two upper populated levels with the amplitude
ductors runs against some difficulties caused by the fact thdtw.. In the 3D case, the amplitude of the chemical potential
this theory does not take into account some important feaescillation is strongly reduced to the valdeo.\fiw./ e,
tures of the quasi-two-dimensionalQ2D) conductors. which is much smaller thafiw. sincefiw.<eg. In the lay-
Among these, in particular, are the chemical potentialered organic conductors and superlattices the Landau energy
oscillationé-1%and magnetic breakdowh The de Haas—van spectrum is neither flat nor parabolic because energy bands

1098-0121/2004/1Q4)/2451148)/$22.50 245114-1 ©2004 The American Physical Society



GVOZDIKOV et al. PHYSICAL REVIEW B 70, 245114(2004

evolve due to the interlayer electron hopping. The chemications. The coherent MB as well as the electron hopping
potential oscillations for this case was studied in our er across the layers in layered conductors in an external mag-
ial illati for thi died i pHp he | in | d d i I
under the assumption that within the layers electrons behaveetic field change the Lifshitz-Onsager quantization rules
as a free gas. This is not true for the organic layered conduawvhich can be written in the following general forth??
tors, such as the ET saftsyhich have a complex 2D Fermi
surface within the planes. The generalization of this result to S(e) = 2mehB
the case of an arbitrary dispersion of electrons in the layers is C
e s e o g e paramete cetrmines e Landas-band cener posiior
] n% ET salt -(BEDTFETTF) CUNCS),. The 2D F rE/ni and ¢ is the energy of the additional degrees of freedom
organic sallx 2-U 2. 'h€ € _related to the MB bands, interlayer hopping, and some other
surface of this conductor consists of the two open sheets wit uch as spin, for exampleWe will assume in what follows
closed orb_|ts n between and implies a magnetic breakdowqhat the variableg is distributed with the density of states
Another aim is to calculate the dHVA oscillations for Q2D (DOS) g(&)
metals, like such ag-(BEDT-TTF),Cu(NCS),, taking into J
account both the magnetic breakdown and chemical potentifiqe
oscillations.

(N+7y) +2mmgé. (1)

In this section, we generalize the results obtained in our

cent papéf for the chemical potential quantum magnetic

. . oscillations in layered 2D electron gas to the case of an ar-
The magnetic breakdown (MB) in  x-(BEDT- bitrary dispersion within the layers. Then we apply them to

TTF),CUNCS), lifts up the degeneracy of the Landau levels ye gy a calculation for Q2D metals with magnetic break-

converting them into the Landau bands. The width of theyown such as ET salts. The total DOS for the system in
Landau bands and their positions oscillate in the changingluest'ion is

magnetic field with the frequency of the closeacbrbit pro-
ducing MB satellite peaks in the FFT of the dHVA oscilla- o

tions. Two satellites are most pronounced in the FFT at the p(e,B) = Sf dég(9) > e = ene), 2
frequencies-;—F, andFz+F, around the central peak B ‘°° n=0

which is due to the MB-composed largkorbit.* Here we where e is a solution to Eq(l), s=®/®d; is the Landau
will show that taking account of the chemical potential 0s-|evels degeneracy, anHl, stands for the flux quantum.
cillations improves the agreement between theory and ex- To calculate the sum in E¢2) we have to use the Poisson

periment. In particular, the forbidden peak Bg-F, be-  summation rule applied to an arbitrary function of the type
comes larger in amplitude than the satellité=gt-F , only if f(n+1y), which yields

both, the chemical potential oscillations and the MB, are
taken into account. The term “forbidden” is used in the lit- ) f*
n+vy)=
0

0

erature to stress that the appropriate classical trajectory isZ f(
impossible since it requires a sudden reversal of the electron n=0

movement on parts of the trajectory in an external magnetic ©)
field. More details and the references on the problem of the With the help of this summation rule, the DOS in E8)

forbidden frequencies in layered organic conductors are. 1 pe presented as a sum of a smdefe,B)] and oscil-

given in Ref. 11. .
The paper is organized as follows. In Sec. Il we develop a{atlng [p(e.B)] part

theory of the chemical potential oscillations in layered con- p(e,B) = po(e,B) + (s, B). (4)
ductors with arbitrary dispersion within the layers. We apply o . . '

this theory in Sec. Ill to the calculations of the magnetizationExplicitly, the terms in the right-hand side E(#) can be
oscillations in layered conductors with coherent magneticwritten as follows:

f(x)dx+ 2Re>, e‘z”i’”f f(x)€2™PXdx.

p=1 0

breakdown Landau bands within the planes. The numerical Se)i2mm,
analysis of the FFT peak content for different combinations pols,B) = s— dég(8), (5)
of the MB regimes with and without chemical potential fiwe)

oscillations as well as the comparison with the experimental

FFT spectrum of the dHvA oscillations in ET salt %

x-(ET),CUNCS), are given in Sec. IV. The main results and  %(¢,B) = ﬁReE exp{2mip[ S(e) A - YJ}RD(F)Np-
conclusions are summarized in Sec. V. hog o

(6)

Here, w.=eB/cm, is the cyclotron frequency of free elec-
trons. The effective mass of electron is determined by the
standard equatiom'=1/27{dS(e)/d=] and the exponential

We consider first the chemical potential oscillations inDingle factorRy(p) =exp(—panTp/B) describes the Lorentz-
layered conductor with a closed 2D Fermi surface of arbidike broadening of the Landau levels due to impurities in
trary shape and arbitrary dispersion across the layers. Ouerms of the Dingle temperatur®,. Other notations ares
final goal is to calculate the dHVA oscillations in ET salts =m"/m,, a=2m°mkg/eh=14.69TK %, A=27efiB/c, and the
taking into account both MB and chemical potential oscilla-factorl, is given by

II. CHEMICAL POTENTIAL OSCILLATIONS
IN LAYERED CONDUCTOR WITH ARBITRARY
DISPERSION WITHIN THE LAYERS
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[ 277i|0§) ~ eA Su w1
=] d == 7 = mS =
. L §g(§)exp< hoog 7 M(B) el p§:l‘, .

Having at hand Eqs4), (5), and (6) for the DOS we can % p{z ; (M_ )}R R(D)l

calculate the thermodynamic potential as a sum of the oscil- eXp ~mP A 7] |Ro(PIR(Plp.

lating and steady parts (15)
Q(u,B,T) = Qo(u,B,T) + Q(u,B,T), ) HereA is the area of the sampleonducting layex The area

inside the closed 2D Fermi surface in view of the inequalities
hoe, u(B)<er can be approximated &u) =~ Hep).

where . .
Equations(13), (14), and (15) generalize the results ob-
w e tained in Ref. 10 for the layered electron gas to the case of
Q(u,B,T) = _TJ p(g,B)|n|:1 + exr(’u )}ds (9) layered conductors with arbitrary electronic dispersion
0 T within the layers. In the next section we will apply these

results to the organic ET salts which, similar te-
The chemical potential as a function of magnetic fiel(B), (ET),Cu(NCS),, display the magnetic breakdown behavior
satisfies the equatidN=(d€}/ du)r g, where the total number in dHvA experiments.
of the electrons in the systerN, is assumed to be fixed and
related to the Fermi energy: by the equation

11l. DHVA AND CHEMICAL POTENTIAL OSCILLATIONS

* (,B=0) IN MAGNETIC BREAKDOWN LAYERED
_ Polé,
N=| —7 . de. (10) CONDUCTOR
0 F
1+ [< ) Consider now an application of the equations obtained in

the preceding section to the case of the organic conductor
This equation is nothing but a definition of the Fermi energyx-(BEDT-TTF),CUNCS),. The dHVA oscillations in this
in the system without external magnetic field. Repeating thetayered compound have been considered in detail in Ref. 11
the calculation steps of our pap&which for the problem in under the assumption that the chemical potential does not

guestion are basically the same, we obtain oscillate as a function of applied perpendicular magnetic
field B. It was shown that the calculated oscillation pattern,

- Sho * 1 as well as the FFT spectrum, basically correspond to the

Q= ——=°ReX, Sexp 2aip(SwA™-7)] experimental observations. The principal idea of these calcu-

27y p=1P lations was that the coherent magnetic breakdown between

X Ro(P)Rr(p)l. (11)  the open sheets of the 2D Fermi surface and the closed orbits

lifts up the Landau levels degeneracy and produces the Lan-

The temperature factor is given by dau bands. The Landau bandwidth and position oscillations

in the changing magnetic field, in particular, explain the ap-
Ap pearance of the forbidden frequencies in the FFT. Blpeak

- , (12) in the FFT spectrum has two nearby satelli@sa and g8
sinh(\p) +a. We will show in what follows that, in complete corre-
. o spondence with the experiment, the intensity of the “forbid-
with parameten = 2m°Ty/hw.. The oscillating part of the  gen” peakB-a is higher than that of the satellite pegk
chemical potentiali=u~er<er then is easy to write in the 1 if we take into account oscillations of the chemical po-

Rr(p) =

following form: tential. For a fixed value of the chemical potential the inten-
sities of the satellites are approximately equal.
_ ho 1 [ Slep) +2mm' L The energy spectrum fae-(BEDT-TTF),Cu(NCS), in a
M= nD(sF)ImZ W—pex 2mip A Y quantizing magnetic field perpendicular to the layers was
p_]_ . - .
calculated in detail in our previous pagérHere, we only
XRp(P)Rr(p),. (13 briefly discuss the basic results necessary for further consid-
eration.
The factorD(eg) renormalizing the chemical potential oscil- At low magnetic fields, the electrons within the layers
lation amplitude is determined by move along the two open sheets of the Fermi surface and

around the closed orbits situated between these sheets. Only
S(ep)/2mme the closedx orbits are quantized in that limit and the FFT of
D(er) :f dég(é). (14  the magnetization oscillation pattern contains only the fun-
- damentala peak and its harmonics, if the temperature and
electron scatterin¢pr the Dingle temperaturgy) are not too

The correspogding eguation for the oscillating part of thenigh. WhenB exceeds the magnetic breakdown figglthe
magnetizatiorM =—(3 1/3B)|,, in an explicit form reads  tunneling between the open sheets and closed orbits becomes
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essential. Its probability is given by the square of the MBthe « and 8 Landau bands are given by the equations
amplitude
hw, )
B, €a(p)(Q) = ———arcsifW, g cosqL), (22
p=exp — E . (16) Na(®™

whereW,,=p?, W,=(1-|pe/DY2 and 7,5 =M, /M. The
The conjugate quantum amplitude for the continuation of the,. v P 7B (LIpert”) 7a(p)=Ma(p)! Me

. . . : ispersion relatiori22) means that Eqg17) and(18) are of
motion along the same section of the Fermi surface withou . . o

. . o o he same form as E@l) since the corresponding densities of
tunneling at the MB center is. The normalization condition o .
state within the Landau bandg,s(e) can be easily calcu-

for these amplitudes ip[?+|7?=1. lated. This all lizati  th Its ob
The MB center is the point where the two classical trajec-2t€d- This allows an easy generalization of the results ob-

tories from the neighboring Brillouin zones are the closest.talned in the _preceo!lng section f(_)r one ba_nd o the case of
In the vicinity of the MB center electrons can tunnel from two b_ands with arbitrary dispersion. In this case the total
one trajectory to another composing a new trajectory. In ETPOS IS @ sum of the two terms

salts, therefore, the magnetic breakdown makes possible -

' J e,B)=p,(g,B) + pye,B). 23
electron motion around yet another closed trajectory,8he p(e.B) = po(e,B) + pgle.B) @3
orbit. This orbit is composed of the two sections of the openThe corresponding thermodynamic potential is a sum of the

p p
sheets and the two sections of theorbits between them steady part and two oscillating terms
connected into a closed trajectory by the MB centers. The

quantization rules for the and 8 orbits relating the energy Q(u,B, T) =Qy(u,B,T) + ﬁa(,u, B,T) + ﬁﬁ(,u,, B,T).
with the quantum numben and quasi-wave-vectaq, de- (24)
scribing the electron dispersion within the Landau bands, are
given byt The explicit equations for the oscillating contributions to the
omebi [ (-1 o 7 thermodynamic potential are given by
S, = (n+1/2) + arcsir([peg/cosql) |, w
© L - D5 = RES, Sexp 27 (—CS“(B)(M ) )}
= = - -
(17) BT P\ 27eng ~ 7@
2melh | =" i | % &Ra(ﬁ)(p)Ra(B)(p)Ra(ﬁ)(p)Ia(ﬁ) (25)
Sp= - (n+ yeﬁ)+Tarcsn(|reﬁ|cosqL) : 270 ° T S P

(18) Here, y,=1/2 for thea orbit andyz= y for the 8 orbit. In
what follows all the quantities of the previous section acquire
Y%and indices. For exampl&(e) — S,(e), m*—>ma(5). Cor-

respondingly, the temperature and Dingle factors become

HereS,(e) andSy(e) are the cross section areas enclosed b
the @ and B orbits in the momentum space apgk and 7.5
are the effective MB amplitudes. THp.|=p? is the effec-

tive amplitude for the electron hopping between the neigh- Nop)P paz TaB)
boring « orbits. The amplituder,; is responsible for the R;Y(ﬁ):_&, Rg(ﬁ>:exp<— &)_
resonant MB tunneling between theorbits. It is given by sinh(\ (5P B

equatiod! |74 =(1-|pe/?) Y% The effective probability of (26)

the MB through the closed orbit equals to ) )
4 We introduced also the spin factor for the sake of complete-

P ness
. 19
p*+4(1 - p?)sirt ¢, 19

- o

This quantity oscillates in the inverse magnetic field with the R3¥ = CO{EPga(ﬁ) ﬂa(ﬁ)] : (27)
frequency of the closed orbit,=(7F,/B) which is propor-

tional to the cross section area of theorbit in momentum  The notationg,s represents theg factor for thea and g

|Peff|2 =

space at the Fermi levé,(eg): orbit. The Landau band factorsg(ﬁ)(wa(ﬁ)), appear due to
cS,(ep) the dispersion relations within the Landau bands in &8).
Fo=—F (20) These factors are a generalisation of E).to the o and B

2meht Landau bands, which yields

The parametety in Eq. (18) is also an oscillating function o (2
of ¢y 19BN, ) = — f dy cod 2parcsin(W,, 5 cos
p ( a(ﬁ)) 7)o y { p r( a(pB) Y)]

1 1+7
Yo = = | @rctan T 5tan e, | = @q |- (21) (28)

The quantization rules for the quantiti€g(e) and Sy(e) in Taking a derivative of the thermodynamic potential with re-
Egs.(17) and(18) can be written in the form of Eq1). To spect to the magnetic field, we have for the magnetization

do this note that the dispersion relations of electrons withinVI(B):
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M(B) = M,(B) + M4(B), (29)

where

y o ()P Fo, T
M, (B) = M2 ————sin| 2mp| = + 7,7 —
p=1 p B o

X 15(p*)RF(PRS(PIRS(P), (30)
~ o1 F m
Mg(B) =MD —S|n|:27T (—é + o - )}
8 ,3p:1 D p B nﬁhwc Veff
X 15| rest ) RE()RE(P)RE (). (31)
The prefactors in these equations are defined as

eA Sa(ﬁ)(sF) (32
2m°he My,

0 -
Mag) =

PHYSICAL REVIEW B 70, 245114(2004

|g<5>(1)=o_ For the first three indicgs=0, 1, 2,.., we have

oB=q B = o) = 1 _
7 =1, 117 =1-Wp, 157=1- W+ BWo(p.
(39

Note that because/z=(1-|per>)*? is a strongly oscillating
function of the inverse magnetic field, due to the term
sirf(wF,/B) in Eq. (19), the factor Ig(Wﬁ) oscillates in
rather nontrivial fashion too. For example, the oscillations
of |\~/I(B)B are determined by the factdr€(|reﬁ|) which

for the first harmonic vyields|?(|7eq]) =1 ~|7ei]?=|perl?
«exp(—By/B). Therefore, we see that because of the MB the
contribution of theB orbit to the total magnetization oscilla-
tion pattern grows with magnetic field and oscillates with the
frequency of the closed orbit. These orbits play the role of
the effective resonant MB centers between gherbits due

to the interference of the quantum amplitudes corresponding
to the multiple closed pathways around théime so called

The oscillation frequencies are proportional to the area engigrk interferometer In real samples these amplitudes are

closed by thew and g orbits in the momentum spadeg,
:Csa(ﬁ)(SF)/Z’ﬂeﬁ.
The equation for the chemical potential is given by

- - hoe . .~
—gptpandu= «t g, 33
peprpandp=p oy Batie (39
where
I [ (Fa i )}
= e —— 2 = LA
Mo pgl D sin 2mp B+77aﬁwc
X 15(p*)Ri(p)RE(P)RB(P), (34
L w1 F m
= — 2 Ly = )
Mmp glﬂ_psm{ WP(B nﬁﬁwc 7’effi|
X 15(| e RE(P)RE(D)RE(P) - (35)

damped which means that a nonzero imaginary part has to be
added to the phases in EAL9): ¢,— ¢,—il'(B)/2. Physi-
cally this is because of the small-angle scattering caused by
phonons, dislocations and other types of the smooth random
potential which does not affect oscillations through the
Dingle factor, but cause the decoherence destroying the MB
interference? In particular, the effective amplitude,q|with
respect of the above decoherence paraniéteecomes

1/2
o

The limit I'(B) > 1 corresponds to the incoherdstochastig
magnetic breakdown regime when the oscillations due to the
phasee,=27F /B are suppressed.Nonetheless, it follows
from Eg. (40) that for small values op, when 7 is of the
order unity, the quantityr.;| oscillates with the amplitude of
the order of 7 if I'<<1l. On the other hand, incoherence

(1+e")2-4eTcod o,
(1+72e)?- 472" cog ¢,

‘ 7'eff| = 7'(

The factor Dgg(ep), decreasing the amplitude of the Strongly suppresses the oscillations|iag| as one can see

chemical potential oscillations in EB33), is a generalization

from Eq. (21) after the substitutionp,— ¢,—iI'(B)/2. For

of the corresponding factor obtained in Ref. 10 to the case dgxample, a substitutiofan(¢,) | — [tan(¢,~il'/2)| supresses
the ET salts with the more complex two-band Fermi surfacethe singularities of the function tap,) and decreases the

It is given by the sum
Deri(er) = 1D olep) + 15D gleR), (36)

where

Sa(ﬂ)(s,:)/Z'n'me
Da(ﬁ)(SF) :f dfga(ﬁ)(g)- (37)

amplitude with the increase of the incoherence fadtoA
numerical analysis shows that, for any set of parameters rel-
evant to the experiment in question, variations in the ampli-
tude of|y.y| are approximately two orders of magnitude less
than that ofi7.¢|. In particular, forr=0.9 the oscillation am-
plitudes of| 74| decrease gradually from 0.9 to 0.2 whéiis
varied from 0.01 to 1, while the amplitudes o« decrease
gradually from 0.0003 to 0.0001. At=0 a pure coherent

The Landau band factdr‘;(ﬂ)(wa(ﬁ)) standing in the equa- case recovers.
tions for the magnetization and chemical potential can be As was shown in Ref. 11 the organic sa#t(BEDT-

written in an explicit form as

|a(,3)(W )—1+§ﬂ
p a(p) = (k!)2
This factor, as a function of theOW,; <1, is a polyno-
mial with fixed values at the boundarieg“g)(O):l and

k-1
a%,g)ll}) (P*-13. (39

TTF),Cu(NCS), is most likely in a weakly incoherent re-
gimeI'~1. In general, the problem of the decoherence due
to the small-angular scattering in the periodic magnetic
breakdown systems is very complex. We use in the next sec-
tion the simple phenomenology of the pajddo incorporate
this effect in terms ofl” into numerical calculations for the
organic salts-(BEDT-TTF),Cu(NCS),.
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IV. THE RESULTS OF THE NUMERICAL ANALYSIS i ' ' ' ' ' '
AND COMPARISON WITH EXPERIMENT

—_ —
=] W

T
1 1

The equations for the magnetization and the chemical po-
tential oscillations obtained in the preceding section are com-
plex and can be analyzed only numerically. The numerical
analysis of the dHVA experimental data in the organic ET
salt k-(BEDT-TTFH,Cu(NCS), was done in our previous
publication under the assumption that the chemical potential
does not vary as a function of magnetic field. Here, we will
show that taking account of the chemical potential oscilla- I , , , , , , ]
tions makes the fit with the experiment better. The fit is the 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05
best if we use the following parameters. The effective (a) 1/B (T
masses, frequencies, the MB fieR}, and g factors are
known from the literaturé m,=3.58m, mz=7m,, F, 3 —ca T
=639.5T, F;=4166 T, 9,=1.6, g=1.52. The magnetic
breakdown field ink -(BEDT-TTF),Cu(NCS),is B;=30T.

The Dingle temperatures and the decoherence factor are the
fitting parameters which we take as follow$;=0.36 K,
TE=0.29 K,T'(B)=TyB, wherel',=0.085 T. The tempera-
ture of the experiment i$=0.395 K and the field interval is l

(20-27 T. Bor

Tp is determined from the low-field part of the Dingle 1 \ /
plot'14 In that field region(B<By) contributions from the 0 . A .“ c ,
magnetic-breakdowiB orbit and satellites3+a are negli- 0 2000 4000 6000 8000 10000
gible. (The valueT¢=0.6K in Ref. 11 is a misprint. The (0) Frequency (T)
correct value isTp =0.36 K) The direct determination ng FIG. 1. The calculated magnetization oscillation patter(8M

within the LK approach is not feasible since it is |mp055|ble(u|0per picture and its FFT(lower picturd in the coherent MB

to extract from the experimental data that part of the fleld'regime with taking account of the chemical potential oscillations.

depelndenB amplitude which is due _to the scattering eﬁe(,:t The peaks in the FFT spectrum correspond to the claserbit (a
by disorder. In our approach amplitudes of the magneticyng 2,) and those, which are due to the magnetic breakdgém
breakdown peaks$g orbit and satellites3+a) in the FFT  4nq satellitess+ «). The satellite3—a corresponds to the so-called

spectrum are controlled by the two paramet&fsandI'y.  “forbidden trajectory” at the Fermi surfageee text for details
Their choice is more or less unique when a fit to the experi-

mental FFT peaks of these orbits is made. After the MB fieldjes. \We see that the satellites in Fig. 3 have nonzero and
is fixed, T§ controls theB peak amplitude and the heights of equal amplitudes. The corresponding figure for the FFT spec-
the satellites depends dry. The results of the numerical trum in our previous work has more satellites around tfse
analysis are summarized in Figs. 1-4 and Table I. The fit teak because we did not take into account the suppression of
the experimental magnetization oscillations AA(BEDT~  the oscillations iny.y due to the decoherence. One can see
TTF),Cu(NCS); is better than in Ref. 11. The difference be- from Figs. 1-3 and Table | that the amplitudes of thand
tween the theoretical and experimental magnetization curveg peaks remain approximately constant for all three regimes,
can be hardly resolved by naked eye. In view of that it isbut the amplitudes of the@peak and satellites at the fre-
more informative to analyse the fast Fourier transformquenciesFBi F, do change. To see these changes in more
graphs. The theoretical FFT spectrum fa-(BEDT-  detail we present their amplitudes in Table | and plot these
TT),CuNCS), at T=0.395 K and for the above choice of peaks in an enlarged scale in Fig. 4. The peak at the fre-
parameters is shown in Fig. 1. The typical feature of thisquency F, is seen to be the highest for a fixed value of the
picture is the presence of the peaks at frequerngjg<F,,, chemical potentialFigs. 2 and 3 both in the stochastic and
F and two distinct satellites around the latter peak. The lefcoherent MB regimes. In the stochastic regime the satellites
satellite, B—«, is “forbidden” and higher than the right sat- B+« are suppressedrig. 2), but in the coherent MB regime
ellite, B+a. The experimental FFT graptsee Ref. 1ihas  (Fig. 3) the peaks at the frequenciég+F, become much
exactly the same peculiarities. To clear up which of the faclarger. The peak at the frequencl 2decreases when chemi-
tors is responsible for these peculiarities we plot the FFTcal potential oscillations are taken into accogfig. 1). The
graphs shown in Figs. 2 and 3. In Fig. 2 we tgkeconst satellitesB+ a are enhanced and the amplitude of the forbid-
and suppress the oscillations inand p, by I'>1, which  den satelliteB—a becomes larger than the peak at the fre-
implies the stochastic MB regime. We see that the satelliteguencyF;+F,, as is clearly seen in Fig. 4. The numerical
around theB peak are suppressed too in that case. The resultalues for all these amplitudes given in Table | are in a good
for the coherent MB regime with fixed value of the chemicalagreement with the experiment.

potential is shown in Fig. 3. Here, we take into account os- The above numerical analysis permits us to conclude that
cillations of 7 and p replacing them by the effective quanti- only if we take into account oscillations of the chemical
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FIG. 4. The small FFT-peaks from Figs. 1-3 on a large s¢le:
(solid line) the coherent MB regime with the chemical potential
oscillations(Fig. 1). Note that the higher harmonicsx3and MB
satellitesB+ 2« are resolved in this graplii) (dotted ling the case
of the fixed chemical potential in the stochastic MB regiii. 2).
(iii) (dashed ling the case of the fixed chemical potential in the
coherent MB regiméFig. 3).

potential and the MB-driven oscillations of the Landau-band
spectrum, we obtain a correct FFT shown in Fig. 1. In this
picture, in full agreement with the experiment, the amplitude
of the forbidden satellite8—« is larger than that of3+«.

The magnetization-oscillation patterns in Figs. 1-3 look very
much the same for the naked eye but the corresponding FFT

and its FFT(lower picture in the case of a fixed chemical potential graphs display a clear-cut distinction between them. In that
in the stochastic MB regime. Notations for the peaks in the FFT arssense the FFT spectrum is more informative than the mag-

the same as in Fig. 1.
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FIG. 3. The magnetization oscillation pattefapper picturg
and its FFT(lower picturg in the case of a fixed chemical potential Fig. 2
in the coherent MB regime. Notations for the peaks in the FFT argjg, 3

the same as in Fig. 1.

Frequency (T)

netization oscillations. In particular, even a third harmonic at
3a and higher MB satellites @8+ 2« are resolved in the FFT
of Fig. 4 (solid line), i.e., in the coherent MB regime with
chemical potential oscillation.

V. CONCLUSION

This paper is a continuation of our previous wdrkn the
dHVA effect in Q2D organic metals with MB, such as ET salt
k-(BEDT-TTH,Cu(NCS),. In Ref. 11 we have shown that
the so-called forbidden frequencies in the FFT spectrum of
the gquantum magnetic oscillations is a consequence of the
Landau quantization under the condition of coherent mag-
netic breakdown. Both the Landau bandwidth and their po-
sitions oscillate in the magnetic field with the frequency of
the a orbit F,. These oscillations explain the appearance of
the forbidden frequencies such Bg-F, in the FFT of the
magnetization which in the coupled-network model of the

TABLE I. Comparison between the experimental and calculated
values of the magnetic breakdown amplitudes and the second har-
monics F,. All values are given in units of the highest Flefpeak
amplitude.

2Fa FB_FO( FB FB+F0‘
Experiment 0.051 0.093 0.263 0.051
Fig. 1 0.046 0.078 0.249 0.046

0.079 ~0 0.259 ~0

0.079 0.032 0.259 0.032
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MB should be prescribed to the reversed sense of electrothat in the coherent MB regime with the chemical potential
rotation at some sections of the 2D Fermi surface. oscillations the agreement with the experiment is the best.
In this paper, we take into account jointly the coherentThe “forbidden” peakB3—-« in that case becomes higher than

MB effects and the chemical potential oscillations and gain ahe right satelliteg+a. This is nontrivial, since the term
better agreement with the experimental FFT spectrum of th&forbidden” means that the peak with the frequerigy-F,
dHVA oscillations ofxk-(BEDT-TTF),Cu(NCS), than in our  should not exist in the FFT spectrum at all according to the
previous work!! In Ref. 11 the chemical potential was as- quasiclassical theories.

sumed to be fixed. Here, we took account of the chemical We believe that the results obtained in the present work
potential oscillatons. We first developed in Sec. Il a theory ofwill be useful for further researches of the quantum magnetic
the chemical potential oscillations in layered conductors withoscillations in layered conductors with magnetic breakdown.
the arbitrary electron dispersion within the layers. ThisThe calculations of the SdH conductivity for layered conduc-
theory is a generalization of our result for the chemical po-tors with magnetic breakdown will be published elsewere.
tential oscillations in layered electron gas and superlattices
in quantizing magnetic field to the case of arbitrary 2D
dispersion. The numerical analysis and application of the
results to the quasi 2D organic conductar(BEDT- The authors acknowledge useful discussions with A.M.
TTF),Cu(NCS), is summarized in Figs. 1-4 and Table I. It Dyugaev, P.D. Grigoriev, T. Maniv, and J. Wosnitza for read-
shows that the chemical potential oscillations in the coherenihg the manuscript. The work was supported in part by IN-
and stochastic MB regimes do not affect thend 8 peaks, TAS program, Project No. INTAS-01-0791 and the NATO
but change the amplitudes of the higher harmonics and th€ollaborative Linkage Grant No. 977292. V.M.G. is grateful
MB-driven satellites around th@ peak. In the stochastic MB to P. Fulde and S. Flach for the hospitality at MPIPKS in
regime all satellites are depressed. In the coherent MB rédresden. D.A.P. was supported by NSF Grant No. DMR-
gime they grow higher and have equal amplitudes. We find®984002 and by the David & Lucille Packard Foundation.

ACKNOWLEDGMENTS

*On leave from the Kharkov National University, 61077, Kharkov, *?F. A. Meyer, E. Steep, W. Biberacher, P. Christ, A. Lerf, A. G. M.

Ukraine. Jansen, W. Joss, and P. Wyder, Europhys. L#2.681(1995.
1. M. Lifshitz and A. M. Kosevich, Zh. Eksp. Teor. Fi29, 730  13S. Uji, M. Chaparala, S. Hill, P. S. Sandhu, J. Qualls, L. Seger,

(1956 [Sov. Phys. JETR2, 636 (1956)]. and J. S. Brooks, Synth. Me85, 1573(1997).
2D. ShoenbergMagnetic Oscillations in Metal§Cambridge Uni-  1#E. Steep, L. H. Nguyen, W. Biberacher, H. Muller, A. G. M.

versity Press, Cambridge, 1984 Jansen, and P. Wyder, PhysicaZ289-261 1079(1999.

SA. A. Abrikosov, Fundamentals of Theory of Metal®orth- 15C. P. Heidmann, H. Mueller, W. Biberacher, K. Neumaier, C.

Holland, Amsterdam, 1988 Probst, K. Andres, A. G. M. Jansen, and W. Joss, Synth. Met.
41. D. Vagner, T. Maniv, and E. Ehrenfreund, Phys. Rev. L&tt, 41-43 2029(1991).

1700(1983; K. Jauregui, V. I. Marchenko, and I. D. Vagner, ®T. Sasaki, H. Sato, and N. Toyota, Solid State Comnii8).507

Phys. Rev. B41, 12 922(1990; M. A. ltskovsky, T. Maniv, and (1990.

I. D. Vagner, Z. Phys. B: Condens. Matté01, 13 (1996. 173, Caulfield, J. Singleton, F. L. Pratt, M. Doporto, W. Lubczynski,
5M. Nakano, J. Phys. Soc. Jp66, 19 (1997). W. Hayes, M. Kurmoo, P. Day, P. T. J. Hendriks, and J. A.
6A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. Lef6, Perenboom, Synth. Me61, 63 (1993.

1308(1986. 18M. V. Kartsovnik, G. Yu. Logvenov, T. Ishiguro, W. Biberacher,
"P. D. Grigoriev and |. D. Vagner, Pis'ma Zh. Eksp. Teor. F68, H. Anzai, and N. D. Kushch, Phys. Rev. Left7, 2530(1996.

139(1999 [JETP Lett. 29, 156 (1999)]. 19N. Harrison, J. Caulfield, J. Singleton, P. H. P. Reinders, F.
8P, Grigoriev, Zh. Eksp. Teor. Fiz119, 1257 (2001 [JETP 92, Herlach, W. Hayes, M. Kurmoo, and P. Day, J. Phys.: Condens.

1090(200D)]. Matter 8, 5415(1996.
9T. Champel, Phys. Rev. B4, 054407(2001); T. Champel and V.  2°E. Steep, L. H. Nguyen, W. Biberacher, H. Muller, A. G. M.

P. Mineev, Philos. Mag. B31, 55 (2001). Jansen, and P. Wyder, Physica289-261 1079(1999.
10y M. Gvozdikov, A. G. M. Jansen, D. |. Pesin, I. D. Vagner, and 21J. Singleton, Rep. Prog. Phy63, 1111(2000.

P. Wyder, Phys. Rev. B8, 155107(2003. 22\, M. Gvozdikov, Fiz. Nizk. Temp.12, 705(1986 [Sov. J. Low
11y, M. Gvozdikov, Yu. V. Pershin, E. Steep, A. G. M. Jansen, and  Temp. Phys.12, 399(1986)].

P. Wyder, Phys. Rev. B55, 165102(2002. 23M. 1. Kaganov and A. A. Slutskin, Phys. Rep8, 189(1983.

245114-8



