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We present an analytical theory for the de Haas–van Alphen(dHvA) oscillations in layered organic conduc-
tors such ask-sBEDT-TTFd2CusNCSd2 which takes into account the magnetic breakdown and the chemical
potential oscillations. For this purpose we have generalized our theory for the chemical potential oscillations in
layered conductors[V.M. Gvozdikov, A.G.M. Jansen, D.I. Pesin, I.D. Vagner, and P. Wyder, Phys. Rev. B68,
155107(2003)] to the case of an arbitrary electron dispersion within the layers. Such an approach gives a better
agreement with an experimental data fork-sBEDT-TTFd2CusNCSd2 salt than that taking account of the mag-
netic breakdown(MB) only [V.M. Gvozdikov, Yu.V. Pershin, E. Steep, A.G.M. Jansen, and P. Wyder, Phys.
Rev. B 65, 165102(2002)]. The magnetization oscillation patterns and the peaks in the fast Fourier transforms
(FFT’s) are studied in different combinations of the stochastic and coherent MB regimes with and without the
chemical potential oscillations. It is shown that that the chemical potential oscillations in the coherent and
stochastic MB regimes do not affect thea andb peaks, but change the amplitudes of the higher harmonics and
satellites around theb peak. In the FFT spectrum ofk-sBEDT-TTFd2CusNCSd2 two satellites are resolved:
b−a (the so called “forbidden” peak) andb+a. In the stochastic MB regime all satellites are depressed. In the
coherent MB regime with fixed chemical potential they are higher and have equal amplitudes. Only in the
coherent MB regime with oscillating chemical potential the “forbidden” peakb−a becomes larger than the
satellite b+a and the calculated FFT spectrum conforms with the FFT spectrum of the dHvA signal of
k-sBEDT-TTFd2CusNCSd2.
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I. INTRODUCTION

The experimental observation of the quantum oscillations
of the magnetization and conductivity based on the Lifshitz-
Kosevich(LK ) theory1 proved to be one of the most power-
ful tools for Fermi-surface studies in conventional metals.2,3

This approach as well gives an experimental information
about the values of effective electron masses, scattering
times, gyromagnetic factors for different cross sections of the
Fermi surfaces of conventional metals. On the other hand, a
direct application of the LK theory to the new organic con-
ductors runs against some difficulties caused by the fact that
this theory does not take into account some important fea-
tures of the quasi-two-dimensional(Q2D) conductors.
Among these, in particular, are the chemical potential
oscillations4–10 and magnetic breakdown.11 The de Haas–van

Alphen (dHvA)12–14 and Shubnikov–de Haas(SdH)15–20

studies of the layered organic Q2D conductors based on the
molecule BEDT-TTF, also known as ET salts(see Ref. 21)
have shown numerous deviations from the standard LK
theory.1

In 3D conductors the chemical potential is fixed at the
Fermi level «F because electrons populating the parabolic
Landau bands below«F stabilize its position. This is in a
sharp contrast to the 2D case, where the Landau levels are
flat and the chemical potential at zero temperature jumps
between the two upper populated levels with the amplitude
"vc. In the 3D case, the amplitude of the chemical potential
oscillation is strongly reduced to the value"vc

Î"vc/«F,
which is much smaller than"vc since"vc!«F. In the lay-
ered organic conductors and superlattices the Landau energy
spectrum is neither flat nor parabolic because energy bands
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evolve due to the interlayer electron hopping. The chemical
potential oscillations for this case was studied in our paper10

under the assumption that within the layers electrons behave
as a free gas. This is not true for the organic layered conduc-
tors, such as the ET salts,21 which have a complex 2D Fermi
surface within the planes. The generalization of this result to
the case of an arbitrary dispersion of electrons in the layers is
one of the purposes of the present paper. We then apply the
theory of the chemical potential oscillations to the layered
organic ET saltk-sBEDT-TTFd2CusNCSd2. The 2D Fermi
surface of this conductor consists of the two open sheets with
closed orbits in between and implies a magnetic breakdown.
Another aim is to calculate the dHvA oscillations for Q2D
metals, like such ask-sBEDT-TTFd2CusNCSd2, taking into
account both the magnetic breakdown and chemical potential
oscillations.

The magnetic breakdown (MB) in k-sBEDT-
TTFd2CusNCSd2 lifts up the degeneracy of the Landau levels
converting them into the Landau bands. The width of the
Landau bands and their positions oscillate in the changing
magnetic field with the frequency of the closeda orbit pro-
ducing MB satellite peaks in the FFT of the dHvA oscilla-
tions. Two satellites are most pronounced in the FFT at the
frequenciesFb−Fa andFb+Fa around the central peak atFb

which is due to the MB-composed largeb orbit.11 Here we
will show that taking account of the chemical potential os-
cillations improves the agreement between theory and ex-
periment. In particular, the forbidden peak atFb−Fa be-
comes larger in amplitude than the satellite atFb+Fa only if
both, the chemical potential oscillations and the MB, are
taken into account. The term “forbidden” is used in the lit-
erature to stress that the appropriate classical trajectory is
impossible since it requires a sudden reversal of the electron
movement on parts of the trajectory in an external magnetic
field. More details and the references on the problem of the
forbidden frequencies in layered organic conductors are
given in Ref. 11.

The paper is organized as follows. In Sec. II we develop a
theory of the chemical potential oscillations in layered con-
ductors with arbitrary dispersion within the layers. We apply
this theory in Sec. III to the calculations of the magnetization
oscillations in layered conductors with coherent magnetic-
breakdown Landau bands within the planes. The numerical
analysis of the FFT peak content for different combinations
of the MB regimes with and without chemical potential
oscillations as well as the comparison with the experimental
FFT spectrum of the dHvA oscillations in ET salt
k-sETd2CusNCSd2 are given in Sec. IV. The main results and
conclusions are summarized in Sec. V.

II. CHEMICAL POTENTIAL OSCILLATIONS
IN LAYERED CONDUCTOR WITH ARBITRARY

DISPERSION WITHIN THE LAYERS

We consider first the chemical potential oscillations in
layered conductor with a closed 2D Fermi surface of arbi-
trary shape and arbitrary dispersion across the layers. Our
final goal is to calculate the dHvA oscillations in ET salts
taking into account both MB and chemical potential oscilla-

tions. The coherent MB as well as the electron hopping
across the layers in layered conductors in an external mag-
netic field change the Lifshitz-Onsager quantization rules
which can be written in the following general form:11,22

Ss«d =
2pe"B

c
sn + gd + 2pmej. s1d

The parameterg determines the Landau-band center position
and j is the energy of the additional degrees of freedom
related to the MB bands, interlayer hopping, and some other
(such as spin, for example). We will assume in what follows
that the variablej is distributed with the density of states
(DOS) gsjd.

In this section, we generalize the results obtained in our
recent paper10 for the chemical potential quantum magnetic
oscillations in layered 2D electron gas to the case of an ar-
bitrary dispersion within the layers. Then we apply them to
the dHvA calculation for Q2D metals with magnetic break-
down, such as ET salts. The total DOS for the system in
question is

rs«,Bd = sE
−`

`

djgsjdo
n=0

`

ds« − «njd, s2d

where «nj is a solution to Eq.(1), s=F /F0 is the Landau
levels degeneracy, andF0 stands for the flux quantum.

To calculate the sum in Eq.(2) we have to use the Poisson
summation rule applied to an arbitrary function of the type
fsn+gd, which yields

o
n=0

`

fsn + gd =E
0

`

fsxddx+ 2Reo
p=1

`

e−2pipgE
0

`

fsxde2pipxdx.

s3d

With the help of this summation rule, the DOS in Eq.(2)
can be presented as a sum of a smoothfr0s« ,Bdg and oscil-
lating fr̃s« ,Bdg part

rs«,Bd = r0s«,Bd + r̃s«,Bd. s4d

Explicitly, the terms in the right-hand side Eq.(4) can be
written as follows:

r0s«,Bd = s
h

"vc
E

−`

Ss«d/2pme

djgsjd, s5d

r̃s«,Bd =
sh

"vc
Reo

p=1

`

exph2pipfSs«dL−1 − ggjRDspdIp.

s6d

Here, vc=eB/cme is the cyclotron frequency of free elec-
trons. The effective mass of electron is determined by the
standard equationm* =1/2pf]Ss«d /]«g and the exponential
Dingle factorRDspd=exps−pahTD /Bd describes the Lorentz-
like broadening of the Landau levels due to impurities in
terms of the Dingle temperatureTD. Other notations are:h
=m* /me, a=2p2mekB/e"=14.69TK−1, L=2pe"B/c, and the
factor Ip is given by
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Ip =E
−`

`

djgsjdexpS−
2pipj

"vc
D . s7d

Having at hand Eqs.(4), (5), and (6) for the DOS we can
calculate the thermodynamic potential as a sum of the oscil-
lating and steady parts

Vsm,B,Td = V0sm,B,Td + Ṽsm,B,Td, s8d

where

Vsm,B,Td = − TE
0

`

rs«,BdlnF1 + expSm − «

T
DGd«. s9d

The chemical potential as a function of magnetic field,msBd,
satisfies the equationN=s]V /]mdT,B, where the total number
of the electrons in the system,N, is assumed to be fixed and
related to the Fermi energy«F by the equation

N =E
0

` r0s«,B = 0d

1 + expS« − «F

T
Dd«. s10d

This equation is nothing but a definition of the Fermi energy
in the system without external magnetic field. Repeating then
the calculation steps of our paper10 which for the problem in
question are basically the same, we obtain

Ṽ =
s"vc

2p2h
Reo

p=1

`
1

p2expf2pipsSsmdL−1 − gdg

3 RDspdRTspdIp. s11d

The temperature factor is given by

RTspd =
lp

sinhslpd
, s12d

with parameterl;2p2Th /"vc. The oscillating part of the
chemical potentialm̃=m−«F!«F then is easy to write in the
following form:

m̃ =
"vc

hDs«Fd
Imo

p=1

`
1

pp
expF2pipSSs«Fd + 2pm*m̃

L
− gDG

3RDspdRTspdIp. s13d

The factorDs«Fd renormalizing the chemical potential oscil-
lation amplitude is determined by

Ds«Fd =E
−`

Ss«Fd/2pme

djgsjd. s14d

The corresponding equation for the oscillating part of the

magnetizationM̃ =−s] Ṽ /]Bdum,N in an explicit form reads

M̃sBd =
eA

2p2"c

Ssmd
m* Imo

p=1

`
1

p

3 expF2pipSSsmd + 2pm*m̃

L
− gDGRDspdRTspdIp.

s15d

HereA is the area of the sample(conducting layer). The area
inside the closed 2D Fermi surface in view of the inequalities
"vc,m̃sBd!«F can be approximated asSsmd<Ss«Fd.

Equations(13), (14), and (15) generalize the results ob-
tained in Ref. 10 for the layered electron gas to the case of
layered conductors with arbitrary electronic dispersion
within the layers. In the next section we will apply these
results to the organic ET salts which, similar tok-
sETd2CusNCSd2, display the magnetic breakdown behavior
in dHvA experiments.

III. DHVA AND CHEMICAL POTENTIAL OSCILLATIONS
IN MAGNETIC BREAKDOWN LAYERED

CONDUCTOR

Consider now an application of the equations obtained in
the preceding section to the case of the organic conductor
k-sBEDT-TTFd2CusNCSd2. The dHvA oscillations in this
layered compound have been considered in detail in Ref. 11
under the assumption that the chemical potential does not
oscillate as a function of applied perpendicular magnetic
field B. It was shown that the calculated oscillation pattern,
as well as the FFT spectrum, basically correspond to the
experimental observations. The principal idea of these calcu-
lations was that the coherent magnetic breakdown between
the open sheets of the 2D Fermi surface and the closed orbits
lifts up the Landau levels degeneracy and produces the Lan-
dau bands. The Landau bandwidth and position oscillations
in the changing magnetic field, in particular, explain the ap-
pearance of the forbidden frequencies in the FFT. Theb peak
in the FFT spectrum has two nearby satellitesb−a and b
+a. We will show in what follows that, in complete corre-
spondence with the experiment, the intensity of the “forbid-
den” peakb−a is higher than that of the satellite peakb
+a if we take into account oscillations of the chemical po-
tential. For a fixed value of the chemical potential the inten-
sities of the satellites are approximately equal.

The energy spectrum fork-sBEDT-TTFd2CusNCSd2 in a
quantizing magnetic field perpendicular to the layers was
calculated in detail in our previous paper.11 Here, we only
briefly discuss the basic results necessary for further consid-
eration.

At low magnetic fields, the electrons within the layers
move along the two open sheets of the Fermi surface and
around the closed orbits situated between these sheets. Only
the closeda orbits are quantized in that limit and the FFT of
the magnetization oscillation pattern contains only the fun-
damentala peak and its harmonics, if the temperature and
electron scattering(or the Dingle temperatureTD) are not too
high. WhenB exceeds the magnetic breakdown fieldB0 the
tunneling between the open sheets and closed orbits becomes
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essential. Its probability is given by the square of the MB
amplitude

r = expS−
B0

2B
D . s16d

The conjugate quantum amplitude for the continuation of the
motion along the same section of the Fermi surface without
tunneling at the MB center ist. The normalization condition
for these amplitudes isuru2+ utu2=1.

The MB center is the point where the two classical trajec-
tories from the neighboring Brillouin zones are the closest.
In the vicinity of the MB center electrons can tunnel from
one trajectory to another composing a new trajectory. In ET
salts, therefore, the magnetic breakdown makes possible
electron motion around yet another closed trajectory, theb
orbit. This orbit is composed of the two sections of the open
sheets and the two sections of thea orbits between them
connected into a closed trajectory by the MB centers. The
quantization rules for thea andb orbits relating the energy«
with the quantum numbern and quasi-wave-vectorq, de-
scribing the electron dispersion within the Landau bands, are
given by11

Sa =
2peB"

c
Fsn + 1/2d +

s− 1dn

p
arcsinsur̃effucosqLdG ,

s17d

Sb =
2peB"

c
Fsn + geffd +

s− 1dn

p
arcsinsuteffucosqLdG .

s18d

HereSas«d andSbs«d are the cross section areas enclosed by
the a andb orbits in the momentum space andr̃eff andteff
are the effective MB amplitudes. Theur̃effu=r2 is the effec-
tive amplitude for the electron hopping between the neigh-
boring a orbits. The amplitudeteff is responsible for the
resonant MB tunneling between theb orbits. It is given by
equation11 uteffu=s1−ureffu2d1/2. The effective probability of
the MB through the closeda orbit equals to

ureffu2 =
r4

r4 + 4s1 − r2dsin2 wa

. s19d

This quantity oscillates in the inverse magnetic field with the
frequency of the closed orbitwa=spFa /Bd which is propor-
tional to the cross section area of thea orbit in momentum
space at the Fermi levelSas«Fd:

Fa =
cSas«Fd
2pe"

. s20d

The parametergeff in Eq. (18) is also an oscillating function
of wa:

geff = −
1

p
FarctanS1 + t2

1 − t2tanwaD − waG . s21d

The quantization rules for the quantitiesSas«d and Sbs«d in
Eqs.(17) and (18) can be written in the form of Eq.(1). To
do this note that the dispersion relations of electrons within

the a andb Landau bands are given by the equations

«asbdsqd =
"vc

hasbdp
arcsinsWasbdcosqLd, s22d

whereWa=r2, Wb=s1−ureffu2d1/2, and hasbd=masbd
* /me. The

dispersion relation(22) means that Eqs.(17) and(18) are of
the same form as Eq.(1) since the corresponding densities of
state within the Landau bandsgasbds«d can be easily calcu-
lated. This allows an easy generalization of the results ob-
tained in the preceding section for one band to the case of
two bands with arbitrary dispersion. In this case the total
DOS is a sum of the two terms

rs«,Bd = ras«,Bd + rbs«,Bd. s23d

The corresponding thermodynamic potential is a sum of the
steady part and two oscillating terms

Vsm,B,Td = V0sm,B,Td + Ṽasm,B,Td + Ṽbsm,B,Td.

s24d

The explicit equations for the oscillating contributions to the
thermodynamic potential are given by

Ṽasbd = Reo
p=1

`
1

p2expF2pipScSasbdsmd

2pe"B
− gasbdDG

3
s"vc

2p2hasbd
RD

asbdspdRT
asbdspdRS

asbdspdIp
asbd. s25d

Here,ga=1/2 for thea orbit andgb=geff for the b orbit. In
what follows all the quantities of the previous section acquire
band indices. For example,Ss«d→Sasbds«d, m* →masbd

* . Cor-
respondingly, the temperature and Dingle factors become

RT
asbd =

lasbdp

sinhslasbdpd
, RD

asbd = expS−
pahasbdTD

asbd

B
D .

s26d

We introduced also the spin factor for the sake of complete-
ness

RS
asbd = cosFp

2
pgasbdhasbdG . s27d

The notationgasbd represents theg factor for thea and b

orbit. The Landau band factors,Ip
asbdsWasbdd, appear due to

the dispersion relations within the Landau bands in Eq.(22).
These factors are a generalisation of Eq.(7) to thea andb
Landau bands, which yields

Ip
asbdsWasbdd =

2

p
E

0

p/2

dy cosf2parcsinsWasbdcosydg .

s28d

Taking a derivative of the thermodynamic potential with re-
spect to the magnetic field, we have for the magnetization

M̃sBd:
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M̃sBd = M̃asBd + M̃bsBd, s29d

where

M̃asBd = Ma
0o

p=1

`
s− 1dsp+1d

p
sinF2ppSFa

B
+ ha

m̃

"vc
DG

3 Ip
asr2dRT

aspdRS
aspdRD

aspd, s30d

M̃bsBd = Mb
0o

p=1

`
1

p
sinF2ppSFb

B
+ hb

m̃

"vc
− geffDG

3 Ip
bsuteffudRT

bspdRS
bspdRD

bspd. s31d

The prefactors in these equations are defined as

Masbd
0 =

eA

2p2"c

Sasbds«Fd

masbd
* . s32d

The oscillation frequencies are proportional to the area en-
closed by thea and b orbits in the momentum spaceFasbd
=cSasbds«Fd /2pe".

The equation for the chemical potential is given by

m = «F + m̃ andm̃ =
"vc

Deffs«Fd
sm̃a + m̃bd, s33d

where

m̃a = o
p=1

`
s− 1dsp+1d

pp
sinF2ppSFa

B
+ ha

m̃

"vc
DG

3 Ip
asr2dRT

aspdRS
aspdRD

aspd, s34d

m̃b = o
p=1

`
1

pp
sinF2ppSFb

B
+ hb

m̃

"vc
− geffDG

3 Ip
bsuteffudRT

bspdRS
bspdRD

bspd. s35d

The factor Deffs«Fd, decreasing the amplitude of the
chemical potential oscillations in Eq.(33), is a generalization
of the corresponding factor obtained in Ref. 10 to the case of
the ET salts with the more complex two-band Fermi surface.
It is given by the sum

Deffs«Fd = haDas«Fd + hbDbs«Fd, s36d

where

Dasbds«Fd =E
−`

Sasbds«Fd/2pme

djgasbdsjd. s37d

The Landau band factorIp
asbdsWasbdd standing in the equa-

tions for the magnetization and chemical potential can be
written in an explicit form as

Ip
asbdsWasbdd = 1 +o

k=1

p
s− 1dk

sk!d2 Wasbd
2k p

l=0

k−1

sp2 − l2d. s38d

This factor, as a function of the 0øWasbdø1, is a polyno-
mial with fixed values at the boundariesIp

asbds0d=1 and

Ip
asbds1d=0. For the first three indicesp=0, 1, 2,…, we have

I0
asbd = 1, I1

asbd = 1 −Wasbd
2 , I2

asbd = 1 − 4Wasbd
2 + 3Wasbd

4 .

s39d

Note that becauseWb=s1−ureffu2d1/2 is a strongly oscillating
function of the inverse magnetic field, due to the term
sin2spFa /Bd in Eq. (19), the factor Ip

bsWbd oscillates in
rather nontrivial fashion too. For example, the oscillations

of M̃sBdb are determined by the factorIp
bsuteffud which

for the first harmonic yields I1
bsuteffud=1−uteffu2= ureffu2

~exps−B0/Bd. Therefore, we see that because of the MB the
contribution of theb orbit to the total magnetization oscilla-
tion pattern grows with magnetic field and oscillates with the
frequency of the closeda orbit. These orbits play the role of
the effective resonant MB centers between theb orbits due
to the interference of the quantum amplitudes corresponding
to the multiple closed pathways around them(the so called
Stark interferometer). In real samples these amplitudes are
damped which means that a nonzero imaginary part has to be
added to the phases in Eq.(19): wa→wa− iGsBd /2. Physi-
cally this is because of the small-angle scattering caused by
phonons, dislocations and other types of the smooth random
potential which does not affect oscillations through the
Dingle factor, but cause the decoherence destroying the MB
interference.23 In particular, the effective amplitudeuteffuwith
respect of the above decoherence parameterG becomes

uteffu = tS s1 + e−Gd2 − 4e−G cos2 wa

s1 + t2e−Gd2 − 4t2e−G cos2 wa
D1/2

. s40d

The limit GsBd@1 corresponds to the incoherent(stochastic)
magnetic breakdown regime when the oscillations due to the
phasewa=2pFa /B are suppressed.23 Nonetheless, it follows
from Eq. (40) that for small values ofr, when t is of the
order unity, the quantityuteffu oscillates with the amplitude of
the order of t if G,1. On the other hand, incoherence
strongly suppresses the oscillations inugeffu as one can see
from Eq. (21) after the substitutionwa→wa− iGsBd /2. For
example, a substitutionutanswad u → utanswa− iG /2du supresses
the singularities of the function tanswad and decreases the
amplitude with the increase of the incoherence factorG. A
numerical analysis shows that, for any set of parameters rel-
evant to the experiment in question, variations in the ampli-
tude of ugeffu are approximately two orders of magnitude less
than that ofuteffu. In particular, fort=0.9 the oscillation am-
plitudes ofuteffu decrease gradually from 0.9 to 0.2 whenG is
varied from 0.01 to 1, while the amplitudes ofugeffu decrease
gradually from 0.0003 to 0.0001. AtG=0 a pure coherent
case recovers.

As was shown in Ref. 11 the organic saltk-sBEDT−
TTFd2CusNCSd2 is most likely in a weakly incoherent re-
gime G,1. In general, the problem of the decoherence due
to the small-angular scattering in the periodic magnetic
breakdown systems is very complex. We use in the next sec-
tion the simple phenomenology of the paper23 to incorporate
this effect in terms ofG into numerical calculations for the
organic saltk-sBEDT−TTFd2CusNCSd2.
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IV. THE RESULTS OF THE NUMERICAL ANALYSIS
AND COMPARISON WITH EXPERIMENT

The equations for the magnetization and the chemical po-
tential oscillations obtained in the preceding section are com-
plex and can be analyzed only numerically. The numerical
analysis of the dHvA experimental data in the organic ET
salt k-sBEDT−TTFd2CusNCSd2 was done in our previous
publication under the assumption that the chemical potential
does not vary as a function of magnetic field. Here, we will
show that taking account of the chemical potential oscilla-
tions makes the fit with the experiment better. The fit is the
best if we use the following parameters. The effective
masses, frequencies, the MB fieldB0, and g factors are
known from the literature11 ma=3.55me, mb=7me, Fa

=639.5 T, Fb=4166 T, ga=1.6, gb=1.52. The magnetic
breakdown field ink -sBEDT−TTFd2CusNCSd2is B0=30 T.
The Dingle temperatures and the decoherence factor are the
fitting parameters which we take as follows:TD

a =0.36 K,
TD

b =0.29 K,GsBd=G0B, whereG0=0.085 T−1. The tempera-
ture of the experiment isT=0.395 K and the field interval is
s20−27d T.

TD
a is determined from the low-field part of the Dingle

plot11,14. In that field regionsB!B0d contributions from the
magnetic-breakdownb orbit and satellitesb±a are negli-
gible. (The valueTD

a =0.6K in Ref. 11 is a misprint. The
correct value isTD

a =0.36 K.) The direct determination ofTD
b

within the LK approach is not feasible since it is impossible
to extract from the experimental data that part of the field-
dependentb amplitude which is due to the scattering effect
by disorder. In our approach amplitudes of the magnetic-
breakdown peaks(b orbit and satellitesb±a) in the FFT
spectrum are controlled by the two parametersTD

b and G0.
Their choice is more or less unique when a fit to the experi-
mental FFT peaks of these orbits is made. After the MB field
is fixed,TD

b controls theb peak amplitude and the heights of
the satellites depends onG0. The results of the numerical
analysis are summarized in Figs. 1–4 and Table I. The fit to
the experimental magnetization oscillations ink-sBEDT−
TTFd2CusNCSd2 is better than in Ref. 11. The difference be-
tween the theoretical and experimental magnetization curves
can be hardly resolved by naked eye. In view of that it is
more informative to analyse the fast Fourier transform
graphs. The theoretical FFT spectrum fork-sBEDT−
TTd2CusNCSd2 at T=0.395 K and for the above choice of
parameters is shown in Fig. 1. The typical feature of this
picture is the presence of the peaks at frequenciesFa, 2Fa,
Fb, and two distinct satellites around the latter peak. The left
satellite,b−a, is “forbidden” and higher than the right sat-
ellite, b+a. The experimental FFT graph(see Ref. 11) has
exactly the same peculiarities. To clear up which of the fac-
tors is responsible for these peculiarities we plot the FFT
graphs shown in Figs. 2 and 3. In Fig. 2 we takem=const
and suppress the oscillations int and r, by G@1, which
implies the stochastic MB regime. We see that the satellites
around theb peak are suppressed too in that case. The result
for the coherent MB regime with fixed value of the chemical
potential is shown in Fig. 3. Here, we take into account os-
cillations of t andr replacing them by the effective quanti-

ties. We see that the satellites in Fig. 3 have nonzero and
equal amplitudes. The corresponding figure for the FFT spec-
trum in our previous work11 has more satellites around theb
peak because we did not take into account the suppression of
the oscillations ingeff due to the decoherence. One can see
from Figs. 1–3 and Table I that the amplitudes of thea and
b peaks remain approximately constant for all three regimes,
but the amplitudes of the 2a peak and satellites at the fre-
quenciesFb±Fa do change. To see these changes in more
detail we present their amplitudes in Table I and plot these
peaks in an enlarged scale in Fig. 4. The peak at the fre-
quency 2Fa is seen to be the highest for a fixed value of the
chemical potential(Figs. 2 and 3) both in the stochastic and
coherent MB regimes. In the stochastic regime the satellites
b±a are suppressed(Fig. 2), but in the coherent MB regime
(Fig. 3) the peaks at the frequenciesFb±Fa become much
larger. The peak at the frequency 2Fa decreases when chemi-
cal potential oscillations are taken into account(Fig. 1). The
satellitesb±a are enhanced and the amplitude of the forbid-
den satelliteb−a becomes larger than the peak at the fre-
quencyFb+Fa, as is clearly seen in Fig. 4. The numerical
values for all these amplitudes given in Table I are in a good
agreement with the experiment.

The above numerical analysis permits us to conclude that
only if we take into account oscillations of the chemical

FIG. 1. The calculated magnetization oscillation pattern M(B)
(upper picture) and its FFT(lower picture) in the coherent MB
regime with taking account of the chemical potential oscillations.
The peaks in the FFT spectrum correspond to the closeda-orbit (a
and 2a) and those, which are due to the magnetic breakdown(b
and satellitesb±a). The satelliteb−a corresponds to the so-called
“forbidden trajectory” at the Fermi surface(see text for details).
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potential and the MB-driven oscillations of the Landau-band
spectrum, we obtain a correct FFT shown in Fig. 1. In this
picture, in full agreement with the experiment, the amplitude
of the forbidden satelliteb−a is larger than that ofb+a.
The magnetization-oscillation patterns in Figs. 1–3 look very
much the same for the naked eye but the corresponding FFT
graphs display a clear-cut distinction between them. In that
sense the FFT spectrum is more informative than the mag-
netization oscillations. In particular, even a third harmonic at
3a and higher MB satellites atb±2a are resolved in the FFT
of Fig. 4 (solid line), i.e., in the coherent MB regime with
chemical potential oscillation.

V. CONCLUSION

This paper is a continuation of our previous work11 on the
dHvA effect in Q2D organic metals with MB, such as ET salt
k-sBEDT−TTFd2CusNCSd2. In Ref. 11 we have shown that
the so-called forbidden frequencies in the FFT spectrum of
the quantum magnetic oscillations is a consequence of the
Landau quantization under the condition of coherent mag-
netic breakdown. Both the Landau bandwidth and their po-
sitions oscillate in the magnetic field with the frequency of
the a orbit Fa. These oscillations explain the appearance of
the forbidden frequencies such asFb−Fa in the FFT of the
magnetization which in the coupled-network model of the

FIG. 2. The magnetization oscillation pattern(upper picture)
and its FFT(lower picture) in the case of a fixed chemical potential
in the stochastic MB regime. Notations for the peaks in the FFT are
the same as in Fig. 1.

FIG. 3. The magnetization oscillation pattern(upper picture)
and its FFT(lower picture) in the case of a fixed chemical potential
in the coherent MB regime. Notations for the peaks in the FFT are
the same as in Fig. 1.

FIG. 4. The small FFT-peaks from Figs. 1–3 on a large scale:(i)
(solid line) the coherent MB regime with the chemical potential
oscillations(Fig. 1). Note that the higher harmonics 3a and MB
satellitesb±2a are resolved in this graph.(ii ) (dotted line) the case
of the fixed chemical potential in the stochastic MB regime(Fig. 2).
(iii ) (dashed line) the case of the fixed chemical potential in the
coherent MB regime(Fig. 3).

TABLE I. Comparison between the experimental and calculated
values of the magnetic breakdown amplitudes and the second har-
monics 2Fa. All values are given in units of the highest FFTa-peak
amplitude.

2Fa Fb−Fa Fb Fb+Fa

Experiment 0.051 0.093 0.263 0.051

Fig. 1 0.046 0.078 0.249 0.046

Fig. 2 0.079 ,0 0.259 ,0

Fig. 3 0.079 0.032 0.259 0.032
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MB should be prescribed to the reversed sense of electron
rotation at some sections of the 2D Fermi surface.

In this paper, we take into account jointly the coherent
MB effects and the chemical potential oscillations and gain a
better agreement with the experimental FFT spectrum of the
dHvA oscillations ofk-sBEDT−TTFd2CusNCSd2 than in our
previous work.11 In Ref. 11 the chemical potential was as-
sumed to be fixed. Here, we took account of the chemical
potential oscillatons. We first developed in Sec. II a theory of
the chemical potential oscillations in layered conductors with
the arbitrary electron dispersion within the layers. This
theory is a generalization of our result for the chemical po-
tential oscillations in layered electron gas and superlattices
in quantizing magnetic field10 to the case of arbitrary 2D
dispersion. The numerical analysis and application of the
results to the quasi 2D organic conductork-sBEDT−
TTFd2CusNCSd2 is summarized in Figs. 1–4 and Table I. It
shows that the chemical potential oscillations in the coherent
and stochastic MB regimes do not affect thea andb peaks,
but change the amplitudes of the higher harmonics and the
MB-driven satellites around theb peak. In the stochastic MB
regime all satellites are depressed. In the coherent MB re-
gime they grow higher and have equal amplitudes. We find

that in the coherent MB regime with the chemical potential
oscillations the agreement with the experiment is the best.
The “forbidden” peakb−a in that case becomes higher than
the right satelliteb+a. This is nontrivial, since the term
“forbidden” means that the peak with the frequencyFb−Fa

should not exist in the FFT spectrum at all according to the
quasiclassical theories.

We believe that the results obtained in the present work
will be useful for further researches of the quantum magnetic
oscillations in layered conductors with magnetic breakdown.
The calculations of the SdH conductivity for layered conduc-
tors with magnetic breakdown will be published elsewere.
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