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We study numerically spinless fermions with strong nearest-neighbor repulsionV on frustrated lattice struc-
tures that show macroscopically many ground states in the absence of a kinetic energy term(hopping term). A
finite hopping amplitudet lifts the macroscopic degeneracy and leads to a small number of degenerate ground
states. These can be characterized by topological quantum numbers and transformation properties under sym-
metry operations such as particle-hole interchange. Results for the criss-crossed checkerboard lattice(two-
dimensional pyrochlore lattice) with up to 32 fermions support the scenario that translational invariance is
restored in the thermodynamic limit, making half-charged quasiparticles possible. A finite entropy of approxi-
mately s3/4dlns4/3d per site is released at low temperatureskBT< t3/V2, much below the bare energiest ,V.
This is familiar from the widely studied models involving spins on frustrated lattices, but in a spinless-fermion
model these low-energy excitations are necessarily related to charge degrees of freedom.
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I. INTRODUCTION

Systems with frustrated lattice structures may show fasci-
nating physical properties.1 Therefore it is of no surprise that
interest in them has been steadily increasing. A well known
three-dimensional frustrated structure is the pyrochlore lat-
tice. It consists of corner-sharing tetrahedra. For example,
the sitesA as well as theB sites of compoundsA2B2O7,
whereA is a large andB is a small ion, e.g., Y2Ru2O7, form
a pyrochlore lattice as do the so-calledB sites of spinels.
Examples of two-dimensional frustrated lattice structures are
the checkerboard lattice, the kagomé lattice, and the triangu-
lar lattice. A pyrochlore lattice can be considered as a se-
quence of alternating planes of kagomé and triangular lat-
tices. One may also think of the checkerboard lattice as a
two-dimensional projection of a pyrochlore lattice. This ex-
plains why a checkerboard lattice is often considered in the-
oretical studies instead of the more realistic pyrochlore struc-
ture.

Frustrated lattices have their name because when a spin is
attached to each of the sites, an antiferromagnetic spin inter-
action leads to frustrated spin-spin couplings. This may re-
sult in ground states without magnetic long-range order, i.e.,
in spin liquid states. This is the reason why a large amount of
literature deals with frustrated spin lattices;1–3 see, e.g., Refs.
4–8 and references therein for different aspects. In compari-
son with spin problems, charge degrees of freedom in frus-
trated lattices have obtained comparatively little attention.
An exception is the investigation of electronic charge order
in systems like magnetite Fe3O4.

9,10The very fact that charge
order has been observed in several pyrochlore lattices, not
only in Fe3O4 but also in LiV2O4 under pressure11 or Al
V2O4,

12 suggests that electron correlations are strong in some
of those systems. Most noticeable, heavy-fermion behavior
has been found in thed-metal compound LiV2O4 under am-

bient pressure.13 The origin of the heavy mass, i.e., the high
density of low-lying fermionic degrees of freedom, is hotly
debated at present.14 In these systems, it is not sufficient to
treat those correlations by an on-site Hubbard interaction pa-
rameterU only. For example, in the case of Fe3O4 that would
merely restrict the Fe configurations on the spinelB sites to
3d5 and 3d6 and would not inhibit motion of an electron
from a d6 to a d5 site. In order to suppress those motions a
strong interaction between neighboring sites is required.
From the work of Verwey,15 who tried to explain the metal-
insulator transition studied by him and Haayman,10 and in
particular from that of Anderson,16 it is known that the
nearest-neighbor Coulomb repulsions in Fe3O4 are
minimized if on each tetrahedron two sites are in a 3d5 and
two in a 3d6 configuration. This is called thetetrahedron
rule, abbreviatedt rule henceforth. It explains why the ob-
served entropy reduction at the metal-insulator transition in
Fe3O4 is much less than expected from electrons without the
strong short-range correlation. More recently the applicabil-
ity of the t rule to magnetite has been questioned because of
the involvement of lattice degrees of freedom in that
transition.17 These are of no concern for the model Hamil-
tonian considered here.

More generally, the tetrahedron rule requires that for a
pyrochlore lattice with a half-integer number of electrons per
site two of the sites on a tetrahedron are occupied with ions
of one valency and two with ions of the other valency, e.g., 0
and 1 valence electron or 1 and 2 valence electrons, etc. This
can be done in many different ways and the classical ground
state is therefore highly degenerate.

The above arguments assume that the kinetic or hopping
energy of the electrons is negligible. In reality it will lift the
high degeneracy of the ground state. How this occurs and to
which low-energy excitations it leads have remained open
questions. The problem is addressed in this paper by means
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of numerical calculations for a checkerboard lattice. In Ref.
18, it was pointed out that the near-degeneracy of the ground
state in the presence of small hopping matrix elements can
give raise to excitations with charges ±e/2. By means of
numerical methods on small systems we want to investigate
here how this suggestion can be more substantiated. Again,
we shall use a checkerboard lattice for this study. Further-
more, for simplicity we shall use spinless fermions or what is
equivalent, a fully polarized electronic system with 0.5 elec-
trons per site. Particular emphasis will be put on the ground
state and the reduction of its degeneracy by a small kinetic
energy term.

The paper is organized as follows: In the next section we
introduce the Hamiltonian and present some computational
considerations. An effective Hamiltonian is derived for the
checkerboard lattice, which includes the effects of the kinetic
energy by means of ring-hopping processes. It acts only on
configurations that satisfy the tetrahedron rule. Furthermore,
it is demonstrated that topological quantum numbers may be
introduced that simplify computations and allow for deeper
insight into the nature of the low-energy excitations. Exten-
sive numerical calculations are presented in Sec. III. The use
of the effective Hamiltonian is justified by comparison with
results from diagonalization of the full problem. For the ef-
fective Hamiltonian, rather large systems with up to, 838
sites and 32 fermions can be studied on a single 64-bit work-
station with a few gigabyte memory. This refers to the deter-
mination of the low-energy states, the density of states, the
specific heat, and the nature of the ground states. The par-
ticipation ratio is introduced as a convenient characterization
of how many configuration contribute to a given eigenstate.
In every case considered, a small number of degenerate
ground states is found. In general, the corresponding charge
densities are not translational invariant. However, Sec. III E
presents arguments that suggest that the broken translational
symmetry is a finite size effect and that a “disordered” trans-
lational invariant liquid ground state is found in the thermo-
dynamic limit. The last section, Sec. IV contains the conclu-
sions and addresses some open questions.

II. CHECKERBOARD LATTICE
WITH NEAREST-NEIGHBOR

REPULSION

We consider in the following a checkerboard lattice(see
Fig. 1) with spinless fermions. Instead of spinless fermions,

one can also think of fully spin-polarized electrons. Double
occupancies of sites are forbidden this way. Furthermore, a
repulsive interactionV between fermions on neighboring
sites is assumed. This includes interactions along the diago-
nals because in a three-dimensional pyrochlore lattice those
diagonals connect nearest-neighbor sites. The Hamiltonian
that we shall use is of the form

H = − to
ki j l

sci
†cj + H.c.d + Vo

ki j l
ninj . s1d

The ci
†scid denote creation(annihilation) operators at sitei,

and ki j l refers to a pair of nearest-neighbor sites. Further-
more, ni =ci

†ci. The fermionic character of the particles
makes the present model fundamentally different from re-
lated spin models and related models for hard-core
bosons.1,3,4,6–8,14,19–26Furthermore, the fermionic minus-sign
problem excludes the use of quantum Monte Carlo methods
that have been applied successfully to quite large spin and
boson systems.

The momentum-dependent noninteractingsV=0d disper-
sions of the criss-crossed checkerboard lattice are given by

e−skd = − 2t − 4t cos
kxa
Î2

cos
kya
Î2

, s2ad

e+skd = 2t, s2bd

wherea is the lattice constant. There are two sites per unit
cell. The occurrence of at least one flat bande+skd is a char-
acteristic feature of corner-connected complete graphs.27 In
general, a strong asymmetryt↔−t is expected on the single-
particle level when either the dispersive bandst.0d or the
dispersionless onest,0d is partially filled. The asymmetry is
not present in the exactly half-filled interacting case. This
may come as a surprise because in the single-particle picture
the filled levels are quite different, but follows from particle-
hole symmetry.

FIG. 2. (Color online) Illustration of the different subspace rel-
evant for the calculation of low-energy properties of the half-filled
(left) and slightly doped(right) checkerboard lattice with nearest-
neighbor repulsionV. There are no matrix elements of the kinetic
energy between different allowed states. These are, however, con-
nected by virtual processes involving one-quasiparticle–one quasi-
hole configurations as intermediate states.

FIG. 1. (Color online) Half-filled checkerboard lattice(a) of
spinless fermions as two-dimensional model of the half-filled pyro-
chlore lattice(b). Filled (hollow) symbols signify occupied(empty)
sites. The configurations shown obey the respective tetrahedron rule
in two or three dimensions.
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A. Tetrahedron rule and relevant subspaces

We are interested in the limit of large intersite repulsions
V, i.e., whent /V!1. In that case the tetrahedronstd rule is
a very useful concept. As pointed out above it was suggested
in order to explain the observed metal-insulator phase tran-
sition in Fe3O4. The t rule implies for half-filling that on
each tetrahedron of a pyrochlore lattice or criss-crossed
square of a checkerboard lattice two sites are occupied and
two sites remain empty. This way the Coulomb repulsion
term in Eq.(1) is minimized.

Having in mind numerical calculation in the large-V limit,
we decompose the full Hilbert space of all configurations
into subspaces of given particle number and given number of
t-rule violations(see Fig. 2).

Many different configurations satisfy the tetrahedron rule,
i.e., whent=0 the ground state of the system is highly de-
generate; for an illustration, see Fig. 11 below. We will refer
to these states as spanning theallowed subspace. As regards
counting configurations, the half-filled rectangular checker-
board lattice ofNx3Ny sites with

Nf =
1

2
NxNy s3d

identical particles can be mapped to the so-called ice prob-
lem with degeneracy28

Ndeg. s4/3ds3/4dNxNy. s4d

The action of the kinetic energy term in Eq.(1) depends, of
course, on the nature of the considered particles(fermions or
bosons). Hopping generates configurations that are outside
the allowed subspace. Thet rule is violated on two tetrahe-
dra (or criss-crossed squares) that have excesst charges of 1
and −1. Whent!V, we may consider these configurations as
vacuum fluctuations or, more generally as one-quasiparticle–
one-quasiholes1qp-1qhd excitations. The net energy cost is
V, but there is a gain in kinetic,t associated with them, i.e.,

E1qp-1qh= V − Ostd. s5d

We use the quasiparticle-hole language because it sug-
gests that the two defects can separate over large distances
and have to be considered as entities of their own. This is
described in more detail in Ref. 18, but for the purpose of the
present paper 1qp-1qh simply is a label for a certain sub-
space of states. Configurations with additionalt-rule viola-
tions have even higher energies.

The degeneracy of the allowed manifold will be lifted at
finite kinetic energyt by admixing fluctuations, which con-
nect different classically degenerate allowed states. This sug-
gests the following scenario: At finite hopping, the allowed
manifold spreads over an energy regime characterized by a
small energy that one might expect to be~t2/V, but which is
actually found to be~t3/V2 due to a subtle cancellation re-
sulting from the fermionic anticommutation rules(see be-
low). The much larger subspace of vacuum fluctuations starts
at higher energiesE<V. States within that subspace are di-
rectly connected by the hopping term in Eq.(1). Thus, an
energy width~t is expected[see Eq.(5)]. These consider-
ations suggest a phase transition whent is of the order ofV.

More specifically, one may expect metallic behavior in the
limit V→0. However, this limit may be singular because as
noted before the half-filled case separates two very different
bands in the noninteracting dispersion(2).

Our interest in the checkerboard lattice with nearest-
neighbor interaction is motivated by the possibility of frac-
tional charges in the slightly doped case with, e.g., one extra
fermion. Again, configurations can be classified according to
the number oft-rule violations. One expects18 [see Fig. 2(b)]
a low-energy manifold of states with exactly two violations,
each having at charge of 1. Some fermions in the vicinity of
these two “defects” can now hop without additionalt-rule
violations and lower their energy~t. Thus, we note

E2 qp= 2V − Ostd. s6d

If this leads to large spatial separation of the defects, two
independent quasiparticles have formed, each carrying an
electric charge −e/2. A meaningful study of the slightly
doped situation is possible only after the reference system,
i.e., the undoped phase has been studied thoroughly. There-
fore, in the present work we restrict ourselves to the strictly
half-filled case, postponing the doped phase to a separate
publication.

B. Computational considerations

Numerical results can be obtained in three different com-
putational frame works:(i) Consideration of the Hamiltonian
(1) in the full Hilbert space. While this approach is valid for
all t /V, numerical calculations are possible only for rather
small systems. The caseNx3Ny=634 with 2 704 145 con-
figurations needs already a few gigabyte storage.(ii ) Restric-
tion of the Hamiltonian(1) to the allowed subspace and
1qp-1qh states, with, e.g., 496 296 configurations for 636
systems with 18 fermions. In the limit of large system size,
this is a severe approximation even fort /V!1 because the
possibility of having several independent vacuum fluctua-
tions in different spatial regions is not included. This issue of
size extensivity has been discussed frequently in quantum
chemistry. Fortunately, it can be ignored for the systems
studied in the present work.(iii ) In the next section, we de-
rive an effective HamiltonianHeff that acts only in the al-
lowed manifold. This allows for studying much larger sys-
tems, i.e., up to 838 with 32 fermions and 2891562
configurations. This approach is intrinsically size extensive,
but justified only in the large-V limit. The relation ofHeff and
H bears some analogy to thet-J model representing the half-
filled Hubbard model in the limit of large on-site repulsion
and small doping.29 The numerical effort grows exponen-
tially with system size in all three frameworks, however
much slower in(iii ) than in (ii ) or even(i).

C. Effective Hamiltonian

Next we derive an effective HamiltonianH by down-
folding the full Hamiltonian(1) so that it acts on the allowed
subspace only and write it in the form

H = HS + Heff. s7d
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HS comprises those contributions ofH that are diagonal in
the real-space basis whileHeff describes transitions between
different allowed configurations. They lift partially the large
degeneracy of the ground state whentÞ0 and we are espe-
cially interested in those processes.

First considerHS. To leading order int /V one finds the
sameself-energy

HS = − 4
t2

Vo
i

ni = − 2NxNy
t2

V
s8d

for every state in the allowed subspace. This reflects the fact
that in all allowed configurations each fermion has exactly
four empty sites among its six nearest neighbors.HS simply
counts the number of possibilities to hop onto empty sites
and then to return, which is the same for all states. Thus,HS

can be ignored for most of the following. In contrast, we
show in the Appendix that for small ratiost /V any modifi-
cation of the kinetic energy term in the Hamiltonian(1) leads
immediately to a state-dependentHS and to an insulating,
charge-ordered ground state. The latter is due to an order-
from-disorder mechanism. We note in passing that a state-
independent second-order self-energy is found for the corre-
sponding three-dimensional pyrochlore model as well.

Next we turn to the determination ofHeff. Different al-
lowed configurations are connected through vacuum fluctua-
tions via ring-hopping processes. The smallest ring that al-
lows for such processes consists of six sites(hexagon) with
alternating occupied and empty sites. This leads to

s9d

where full and empty circles denote initially occupied and
unoccupied sites, respectively. The prefactor accounts for the
six possible hopping orders of a given ring and given orien-
tation. We note in passing that the corresponding amplitudes
for ring-hopping processes involving four sites cancel each
other for fermions, but not for bosons.26 Ring hopping has
previously been studied in magnetite,30,31 bosonic frustrated
lattice systems,32,33 and some other strongly correlated sys-
tems such as solid helium34,35 and the fractional quantum
Hall effect.36,37

We can write the effective Hamiltonian(9) in the form

Heff = tringő cj6
† cj4

† cj2
† cj5

cj3
cj1

. s10d

The sum is over all hexagons with sitesj1, .. . ,j6 and we
introduced the abbreviation

tring =
12t3

V2 . s11d

Heff transforms an allowed hexagon configuration into an-
other one when it consists of alternating occupied and empty
sites.

Hopping processes on rings larger than hexagons result in
prefactors of higher order int /V. Therefore we neglect them
here. The observation that each fermion hop moves the po-

sition of at charge over twice the distance greatly helps in
the determination of the shortest paths connecting allowed
configurations. Similar loops involving six alternatingly oc-
cupied and unoccupied sites constitute the effective Hamil-
tonian for the low-energy excitations of the corresponding
three-dimensional pyrochlore model. We want to emphasize
that ignoring the irrelevant energy shiftHS and neglecting
higher-order ring-hopping processes implies that the Hamil-
tonian depends only on a single energy scaletring. We will
see below thatHeff lifts the macroscopic degeneracy of the
allowed states leading to a smallfinite ground-state degen-
eracy and a large density of states of low-energy excitations.
In particular, this implies a vanishing residual entropy atT
=0 and that higher-order processes,st /Vdktring! tring can be
expected to be irrelevant in the thermodynamic limit.

WhenHeff is applied on an initial configurationuil and the
matrix element with a final configurationufl is evaluated, one
notices thatkf uHeffuil can have different signs. It depends on
whether or not the lattice site encircled by the hexagon is
occupied or empty. Let us denote that site byj0 and its oc-
cupancy byn0. Then

kf uHeffuil = s− 1dn0tring. s12d

An important question is how strongly the high degeneracy
of the allowed subspace of configurations is lifted by the
ring-hopping processes included inHeff. In order to answer it
we have to resort to numerical calculations diagonalizing
Heff on small systems consisting of up to 838=64 sites.

It is found and indeed is quite obvious thatHeff does not
couple all allowed configurations with each other, but instead
does so only for subensembles. For example, stripes are not
coupled byHeff to any other configurations. In that case ring
hopping cannot occur, and therefore those configurations are
not important for the low-temperature properties of the sys-
tem. One can easily convince oneself that ring hopping(9)
and(10) does not change the number of particles in each row
or column. Furthermore, the number of particles on the di-
agonals of the lattice is changed in multiples of two only and
the total occupations of the two sets of criss-crossing diago-
nals (southwest to northeast and southeast to northwest) are
left unchanged.

The fact thatHeff is block diagonal is enormously benefi-
cial for numerical calculations as it allows to diagonalize
each block separately. It leads to states with good transfor-
mation properties under the various discrete symmetries of
the system. In order to obtain a deeper understanding of the
different subensembles of allowed configurations we intro-
duce the concept of scalar potential and topological quantum
numbers.

D. Height representation and classification of subspaces

In the following we want to show that the tetrahedron rule
applied to a bipartite lattice like the checkerboard one can be
expressed in terms of a suitable vector fieldf with the dis-
cretized lattice version of curlf =0. Therefore this vector
field is representable in terms of the(lattice) gradient of a
scalar potential fieldh, i.e.,
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f = = h. s13d

In order to demonstrate this we attach to each criss-crossed
square an alternating orientation, i.e., a clockwise or coun-
terclockwise one(see Fig. 3). Furthermore, a unit vector is
attached to each site. This vector points in the direction of
the orientation when the site is occupied, while it points in
the opposite direction when the site is empty. Thus, when the
tetrahedron rule is satisfied the discretized line integral
around a criss-crossed square vanishes. Every integral over a
closed loop in the lattice can the decomposed into integrals
around criss-crossed squares. This enables us to define for
each allowed configuration up to a constant a scalar potential
h which satisfies Eq.(13) . For a finite lattice with periodic
boundary conditions, the potential at the upper and at the
lower boundary can differ only by an integer −NyøkyøNy,
which is the same for all columns. The same holds true for
the potential difference between the left and right side, which
we call −NxøkxøNx. This defines topological quantum
numbers(winding numbers). They remain unchanged by all
local processes that transform one allowed configuration into
another. Ring hopping defined byHeff belongs into that cat-
egory. As seen in Fig. 3, it lowers or raises merely the local
potential of two plain squares by ±2. From this it follows that
the subensembles of allowed configurations which block-
diagonalizeHeff are characterized by their topological quan-
tum numbers. This does not exclude degeneracies, i.e., sev-
eral subensembles may have the same topological quantum
numbers. For large system size, this is necessarily the case as
the number of subensembles grows faster with increasing
system size than the number of realizableskx ,kyd pairs.

We note for later reference that due to mirror symmetry
there exist for each subensemble withskx ,kydÞ s0,0d three

equivalent subensembles withs±kx , ±kyd and identical ener-
gies. An additional degeneracyskx ,kyd↔ sky ,kxd is found in
quadratic systems, i.e., whenNx=Ny. Therefore, a nondegen-
erate ground state will necessarily havekx=ky=0.

The topological quantum numbersskx ,kyd describe the
average slope of the scalar potential inx and y directions.
For a more detailed characterization, one may study the
roughness of the potential surface, defined as the amplitude
of fluctuations around the average slope. We found for the
roughness of the numerically obtained ground states ofHeff
consistently values close to 0.5.

The topological quantum numbers are intimately linked to
the issue of charge ordering, discussed in more detail below
in Sec. III E. This can be seen by inspection of the six local
fermion arrangements depicted in Fig. 4 and their counter-
parts involving oppositely oriented criss-crossed squares. For
the argument, assume a positive average slope ofh in the
thermodynamic limit, i.e., a finite positive value ofkx/Nx.
This implies that on the counter-clockwise oriented squares
the first configuration in the upper row occurs more often
than the first one in the lower row, and vice versa on the
clockwise-oriented squares. This, in turn, implies an in-
creased charge on every second row, i.e., horizontal stripe
order. Analogously, a finite ratioky /Ny implies vertical
stripes. Furthermore, one can easily show thatkxsyd is the
difference of the number of occupied sites and empty site on
each row (column) taken with a sign alternating from one
row (column) to the next.38 As a consequence, allk values
are even for the boundary conditions used in this work. A
pair skx ,kyd=s0,0d implies that all rows and columns of the
lattice contain the same number of fermions. This does not
exclude diagonal stripe formation or plaquette order.

Without proof, we remark that a 1qp-1qh fluctuation is
characterized by two singularities(vortex and antivortex) of
the f field. In that case the definition of a potential requires
the introduction of multiple branches or of the discretized

FIG. 4. The six allowed configurations of a criss-crossed square
contribute differently to the average slope ofh. Symbols as in
Fig. 3.

FIG. 5. (Color online) Eigenstates of the full Hamiltonian vsV/ t
over the full range from free fermionssV=0d to the limit of strong
correlationsst→0d. Lines: Lowest 50 highly degenerate eigenval-
ues for system size 434. Energies in the gray shaded area are not
shown. Symbols: Ground-state energy for system size 634. Inset:
The t3/V2 contribution described byHeff becomes visible after sub-
traction of the state-independent self-energyES;HS and multipli-
cation byV2/ t3. Arrows mark the lowest eigenvalues ofHeff.

FIG. 3. Action ofHeff in the height representation(integer num-
bers on uncrossed squares). Filled (hollow) symbols signify occu-
pied(empty) sites. Arrows and orientations are described in the text.
Note thatm=n±1, depending on the occupation of the central site
and the orientation of the involved criss-crossed squares.
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version of a branch cut connecting the two squares with posi-
tive and negativet charge. Obviously, the two defects can
annihilate each other again, which leads to an allowed,
branch-cut-free configuration. In analogy, insertion of an ad-
ditional fermion induces two equally charged vortices, which
of course can not annihilate each other.

III. LOW-ENERGY EXCITATIONS

A. Comparison of H and Heff

Before we discuss numerical results forHeff, we substan-
tiate the above arguments by explicit comparison ofH and
Heff for small systems up to 634=24 sites, where a full
diagonalization of the Hamiltonian(1) is possible. Figure 5
lists the lowest eigenenergies as a function of the ratiot /V. A
similar energy gain per site due to the kinetic energy is seen
for system sizes 634 and 434. For weak interactionsV
! t, energies and energy differences are of the ordert. They
and their degeneracies are given by the dispersion(2) evalu-
ated for the quantizedk values compatible with system size
and periodic boundary conditons. With increasing interaction
V, the energies regroup into the manifolds described in Sec.
II A, which are separated by differences of the order ofV.
For V/ t@1, the energies shown in Fig. 5 are determined
predominantely byHS, which is the same for all states in this
energy range. In order to see the physics of the large-V limit,
it is useful to subtract the value ofHS from the energies and
to multiply the difference bytring

–1 , as displayed in the inset of
Fig. 5. We notice almost constant values aboveV/ t*15,
which furthermore coincide with the results from diagonal-
ization of Heff. We conclude that in this regime the low-
energy physics is describable byHeff.

A numerical comparision such as the one shown in Fig. 5
allows us to estimate the parameter range where the pertur-
bation expansion can be used. However, we note explicitly
that it cannot “prove” for the infinite system the validity of
the expansion underlying the derivation ofHeff because for
finite systems perturbation theory is always valid: For suffi-
ciently small expansion parameter, eigenvalues and low-
energy subspaces will be reproduced correctly by the pertur-
batively derived effective Hamiltonian.

B. Participation ratio

The participation ratio(PR) of a wave functionwsr d in the
real-space representation is defined as

PRfwg =
1

E uwsr du4dr

. s14d

This quantity is widely used as a measure of how localized,
e.g., the eigenstates of a disordered system are. Extended
states withw,1/ÎV, whereV is the system size, have a
participation ratio,V. Analogously, the PR of a many-
particle wave function given in configuration space as super-
position uCl=onanunl of configurationsunl can be intro-
duced as

PRfCg =
1

o
n

uanu4
. s15d

Figure 6 demonstrates the reduction with increasing ratio
V/ t of the PR, i.e., the number of configurations contributing
to the ground state. Clearly, increasing particle interactions
strongly reduce particle-number fluctuations in real space
and thus the number of real-space configurations contribut-
ing to the ground state.

For completeness, we note that the PR’s ofK-fold degen-
erate ground statesuCgs

s,dl, ,=1, . . . ,K are not well defined
because the PRfCgs

s,dg are not invariant under unitary trans-
formations. However, for not too large degeneracies, one can

easily determine numerically the ground stateuC̃l with the
smallest PR. This is done by first calculating the tensor

I j1j2j3j4
= o

n

an
s j1dan

s j2d*an
s j3dan

s j4d* s16d

s jm=1, . . . ,Kd and then maximizing the inverse of the PR
(15),

sPRfC̃gd−1 = o
j1,j2,j3,j4

K

uj1
uj2

* uj3
uj4

* I j1,j2,j3,j4
, s17d

in the subspace of normalized linear combination

uC̃l = o
,

u,uCgs
s,dl. s18d

The latter is parameterized, e.g., via

u1 = cosu1, u2 = sin u1 cosu2e
if2,

u3 = sin u1 sin u2 cosu3e
if3, . . . , s19d

where the anglesu1,u2, . . . ,uK andf2, . . . ,fK refer to rota-
tions in configuration space.

C. Density of states

The low-temperature thermodynamics is determined by
the low-energy excitations of the system. Therefore it is im-
portant to gain insight into their nature. As pointed out
above, low-energy excitations result from lifting the high

FIG. 6. Participation ratio(PR) for the full solution of a 434
system. Increasing particle interactionsV strongly reduce the num-
ber of contributing configurations. Linear combinations with par-
ticularly low PR’s were constructed within the degenerate ground-
state manifold.
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degeneracy of the allowed configurations byHeff, i.e., by ring
hopping.

One expects that the effect ofHeff will be largest for the
largest subensembles. This is confirmed by our numerical
results presented in Fig. 7, which show the lowest 10
eigenenergies for each subensemble of the 838 system. The
lowest energies always belong to states in some of the largest
subensembles, but not necessarily to a state inthe largest
ones. It is interesting to look at the correspondingk values
(top panel of Fig. 7): One notices that the large subensembles
tend to have small topological quantum numbers. In view of
the interpretation ofkxsyd as difference of the number of oc-
cupied and empty sites in each row(column), one can expect
that smallk values allow the largest number of realizations
and that these allow for many ring-hopping processes. Future
numerical studies can start by generating only those suben-
sembles that have small topological quantum numbers. This
greatly reduces the effort of setting up the(sparse) matrices
and look-up tables needed during the diagonalization.

A measure of the low-energy excitations is the(many-
body) total density of states(DOS). It is defined by

rtotsEd = o
,

dsE − E,d, s20d

where, denotes the different eigenstates ofH with eigenval-
uesE,. It is distinct from the often used single-particle DOS,
which for interacting many-particle systems is defined, e.g.,
via Hartree-Fock eigenstates, Kohn-Sham orbitals, or in
terms of quasiparticles. In particular, an approximately con-
stant single-particle DOSr0 for low-energy excitations im-
plies an approximately exponential many-particle DOS start-
ing at the ground-state energyEgs, i.e., rtotsEd=usE
−Egsdr0e

sE−Egsdr0.
The block diagonal structure ofHeff allows to determine

all 94 386 eigenstates of the 836 system. The largest sub-
ensemble contains 8232 configurations. Figure 8 shows the
resulting DOSrtot and the corresponding number of states

NSsEd =E
−`

E

rtotsE8ddE8. s21d

Rather striking is the behavior atE=0. The sharp peak of the
DOS and the corresponding large stepNS result from con-
figurations that remain uncoupled byHeff, including various
stripe formations. We note the very explicitE↔−E symme-
try, which is related to the symmetryt↔−t of the half-filled
case.

We always find a finite degeneracy of ground states and
some charge order. Degeneracies range from twofold(634,
636, 836) over fourfolds1034d and sixfolds434d to the
eightfold degenerate case in a 1034 lattice. In most cases
horizontal or vertical stripes are seen, but plaquettes are
found for the 636 lattice. Some of these degeneracies are
protected by quantum numbers, whereas others would be
lifted if instead of the lowest-order ring hoppingHeff the full
Hamiltonian H were used. However, we expect the corre-
sponding transition amplitudes between allowed states to be-
come exponentially small in the thermodynamic limit, in
analogy to small ferromagnetic clusters.

FIG. 8. Total density ofHeff on the 836 systems withNf =24
fermions. E=0 corresponds to the energy of the system without
hopping processes. Inset: Corresponding number of statesNS,
clearly showing the large number of states at zero energy.

FIG. 9. (Color online) Specific heat forHeff for various system
sizes derived from the partition function including all allowed
states. Inset: The corresponding entropies approach at high
temperatures a weakly system-size-dependent value close to
2s3/4dlns4/3d<0.43152 per fermion(marked by an arrow).

FIG. 7. Selected eigenenergies(bottom panel) and topological
quantum numbers(top panel) for subensembles of states, which are
connected byHeff, arranged according to subensemble sizeNG. Re-
sults are presented for system size 838 with Nf =32 fermions. Ten
energies are shown for each subensemble as diamonds. Gray lines
mark regions with eigenvalues not shown explicitly. + and3 de-
note the larger and smaller of the valuesukxu and ukyu, respectively.
Case where these coincide are indicated byP.
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D. Specific heat

The low-energy excitations determine the specific heat
CsTd according to

CsTd =
]

] T

E dE ErtotsEdexps− bEd

E dE rtotsEdexps− bEd
, s22d

whereb=skBTd−1. Numerical results for various system sizes
are shown in Fig. 9. The largest systems cause a nearly linear
steep increase ofCsTd at smallT. This suggests that a large
effective mass enhancement can possibly be found in frus-
trated lattice systems like the checkerboard lattice and pos-
sibly also the pyrochlore lattice. Note that this enhancement
results from charge degrees instead of spin degrees of free-

dom, the usual source of heavy-fermion behavior. The en-
tropy s3/4dlns4/3d<0.2158 per site, cf. Eq.(4), is released
in the temperature rangekBT&2tring. We expect such a large
entropy release on a low-energy scale and thus a large—
possibly linear—specific heat to be found in many frustrated
lattice structures with charge degrees of freedom. Whether or
not it will lead to a strong mass enhancement of Landau-
Fermi-liquid quasiparticles must at present be left open. As
pointed out Ref. 18, charged quasiparticles in frustrated lat-
tice structures may not even form a Fermi liquid.

E. Translational invariance

We return to the issue that degenerate ground statesucgs
s,dl

are found for all studied systems: It is suggestive to interpret
this fact in terms of charge order. Charge order would imply
broken translational invariance due to some order-from-

FIG. 10. (Color) (a,b) Density
distribution kcgs

s,duniucgs
s,dl and (c,d)

density-density correlationCii 0
,

Eq. (23), for the two degenerate
ground states,=1,2 of the 838
system with periodic boundary
conditions. The sitei0 is arbi-
trarily chosen[position of largest
symbol in panels(c–e)]. (e) The
same correlation averaged over all
allowed states.(f) Difference of
data from panels(d) and(e). Posi-
tive and negative values are repre-
sented by the area of dark and
light colored disks, respectively.
Characteristic differences between
panels(d) and (e) occur along the
black hexagon, which corresponds
to an allowed ring-hopping
process.
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disorder mechanism analogous to the one discussed in the
Appendix. Indeed, Figs. 10(a) and 10(b) show diagonal
stripes in the density expectation valueskcgs

s,duniucgs
s,dl of the

two degenerate states,=1,2 of lowest energy in the 838
system. They have 20 fermions on one set of diagonals and
12 on the other(see Fig. 11 below) and are related by
particle-hole symmetry as well as by otherZ2 symmetries
(left-right/up-down, two sites in the unit cell).

Of course, a linear combination with homogeneous den-
sity can be constructed from these two states and furthermore
topological defects will destroy possible long-range order at
any finiteT. But this is besides the point we want to make.

Despite the inhomogeneous density profiles of the states
uCgs

s,dl, ,=1,2, there is strong evidence that simple charge
order isnot present in the thermodynamic limit for the fol-
lowing arguments

(i) (a) Different charge-modulation patterns(horizontal
and vertical stripes, diagonal stripes, plaquette order) are
found for different system sizes, whereas one should expect
to find thesamepattern for all large enough systems if the
thermodynamic limit led to a charge-ordered state.

(i) (b) The amplitude of the charge modulation decreases
with system size(not shown). We reiterate that a finite
(small) topological quantum numberkxsyd necessarily implies
a (weak) charge modulation,kxsyd /Nxsyd. Note that in finite
systems charge modulation is observed even for free fermi-
ons if the Hamiltonian is diagonalized in a standing-wave
basis. Unfortunately in contrast to that simple case, for the
Hamiltonian of interest here a reliable extrapolation to an
infinite system is not possible because the charge-modulation
pattern varies too much from one system size to another.

(ii ) Consider the case of complete order corresponding,
e.g., to Fig. 10(a). All lower-left and upper-right sites in the
criss-crossed squares are occupied while the remaining sites
are empty. This state doesnot gain energy within the
effective-Hamiltonian approximation because no ring-
hopping processes are possible. The same holds true for the
other completely charge-ordered stripe configurations.

(iii ) (a) The participation ratio of the ground states, i.e.,
the approximate number of configurations contributing sig-
nificantly to it, is very large: PRfCgs

s,dg=46919.3.
(iii ) (b) There is no single reference configuration that

has the largest weight, but instead 32 configurationsn have

eachuanu2=1.18310−4. Six of them are shown as Fig. 11 for
better illustration. They clearly look like one visualizes “ge-
neric” allowed states and not like charge-ordered configura-
tions.

(iv) More evidence for a liquidlike behavior, i.e., the
absence of broken translational symmetry in the infinite
systems, is provided by the density-density correlation
function

Cii 0
= kcgs

s,dunini0
ucgs

s,dl − kcgs
s,duniucgs

s,dlkcgs
s,duni0

ucgs
s,dl s23d

shown in Figs. 10scd and 10sdd. Qualitatively the same be-
havior is found for all system sizes and all degenerate ground
statessnot shownd. Note that panelsscd and sdd show the
correlations of inequivalent sites, with the centeri0 in one
case having on average an occupation larger than 0.5 and in
one case less than 0.5.

The correlations in the quantum ground states are best
understood as reflecting the algebraic correlations present in
the classically degenerate allowed manifold. They are the
sum of the correlations ofall allowed configurations with
equal weight and are shown in Fig. 10(e). Specific quantum-
mechanical features resulting from the ring hops become vis-
ible by determining the difference of the actual correlations
of panel(d) and the classical correlations(e). This is shown
as panel(f). A negative value at the central sitei0 indicates
the expected general reduction of fluctuations compared to
the generic value. A closer look reveals further differences
along, e.g., the six-site loop marked in the figure. In contrast
to the “classical correlations” in panel(e), the ground-state
correlations(d) have alternating signs. This is not surprising,
but merely reflects the fact that alternations of occupied and
empty sites is necessary for ring hopping and thus lowering
of the energy.

In view of (i)–(iv), we expect the charge order to be a
finite size effect and to vanish in the thermodynamic limit
leading to a twofold degenerate, translational invariant
ground state. However, any conclusion drawn from exact
diagonalization of finite clusters has to be considered with
caution as unexpected features may arise in the thermody-
namic limit. In general, exact diagonalization studies have to
be combined with interpretations obtained by other methods
and finally have to be compared to experiment.

IV. CONCLUSION AND OPEN QUESTIONS

The aim of this paper is to achieve a better understanding
of charge degrees of freedom in frustrated lattice structures.
As a first step in this direction we have studied here the
ground state of a spinless fermion model on a checkerboard
lattice at half filling. The Hamiltonian(1) presents in our
view the simplest model by means of which one can inves-
tigate the interplay between a macroscopically degenerate
fermionic ground-state manifold due to particle-particle in-
teractions and a kinetic energy term. In a previous
investigation18 this model and a generalization of it including
spin were predicted to have highly unusual properties—most
noticeably quasiparticles with a fractional charge of ±e/2
and a spin smeared over parts of the sample. These observa-
tions have been made for an average of 0.5 fermions per site.

FIG. 11. Six allowed 838 configurations chosen randomly
from the 32 states with the largest weightuanu2<10−4 in one of the
two degenerate ground states.
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An equally fascinating prediction, namely spin-charge sepa-
ration, has been made for frustrated lattices with almost all
sites occupied by one electron.8,32,39

The numerical results presented here suggest a transla-
tional invariant “disordered” ground state for the checker-
board lattice with possibly a finite, geometry-dependent de-
generacy. In fact, we expect in the thermodynamic limit a
twofold degenerate state. Future numerical studies with more
powerful computers than the one available to us on larger
systems and different geometries should allow for confirm-
ing or disproving this proposition. They also should help to
clarify the relation to the concept of topological order41,42 as
introduced by Wen and Niu43 and to the fractional quantum
Hall effect.36,37

We showed that the entropy associated with the original
macroscopic degeneracy is released on an energy scaletring
=12t3/V2, which for t!V is much smaller than the underly-
ing energyt. Note that the ring hopping described byHeff
does not lead to charge transport since the center of mass of
the involved fermions remains unchanged.

Better insight into the lifting of the degeneracy was ob-
tained with the help of the height representation, which led to
the introduction of topological quantum numbers. Based on
our calculations, we expect the ground state to have a flat
height function and topological quantum numbersskx,kyd
<s0,0d because they allow for the largest number of allowed
configurations.

This brings us back to the issue of the metal-insulator
transition expected at a finite valueV/ t=Os1d. It can be stud-
ied only by taking into account the full Hilbert space, i.e.,
within level (i) of Sec. II B. On this level, we were able to
study only rather small systems that furthemore exhibit some
artefacts since even small loops can span across the entire
system. Neither the energies in Fig. 5 nor the corresponding
participation ratios in Fig. 6 give any indication of a nonana-
lytic behavior signaling a phase transition at finiteV/ t.

Indications of the position of the metal-insulator transition
can be obtained on level(ii ) of Sect. II B, i.e., in a calcula-
tion comprising the allowed states and the 1qp-1qh states.
For strong interactions, the density of states curves shown in
Fig. 12 consist each of a narrow peak and a broad band
separated by aboutV−4t. The former results from the al-
lowed states dressed by 1qp-1qh fluctuations, including

those which lead toHS andHeff. For large ratiosV/ t, width
and shape of this peak should be close tortotsEd in Fig. 8.
These details are smeared out in Fig. 12 due to numerical
broadening. The broad band nearE=V is made primarily of
states that violate thet rule twice. As discussed above, these
defects are mobile and probably deconfined. Indeed, a width
proportional tot is observed. Note that the approximation(ii )
looses its validity whenV/ t is small enough so that many
qp-qh pairs are created, i.e, near the expected insulator to
metal transition. Nevertheless, one can take the rangeV/ t
<4–10 where the two features begin to overlap as estima-
tion for the position of the quantum phase transition. This
estimation coming from the large-V side can be supple-
mented by mean-field estimations coming from the small-V
side, which yield similar values.44 A detailed description of
the transition itself is at present beyond our numerical pos-
sibilities.

In the language of the height representation, the expected
metal-insulator transition corresponds to a proliferation of
vortex-antivortex pairs. The system would change from one
translational invariant state to another, probably with a tran-
sition of Kosterlitz-Thouless type. Such transitions are noto-
riously difficult to study numerically.

Having gained some insight into the ground state with the
help of topological numbers, the present work needs exten-
sion in several directions. First there is the problem of dop-
ing, which should yield fractionally charged excitations. Ob-
viously, a detailed understanding of the undoped reference
state as initiated by the present work is a prerequiste for the
study of(weakly) doped systems. Then there is the introduc-
tion of the spin, which needs further elucidation. A very un-
usual kind of physics is expected here, because the breaking
up of a chargee into 23e/2 has drastic consequences for the
spin.18,40Last but not least it is challenging to study how the
field theory for the present system with the extensions just
described fits into a more general framework of existing field
theories, in particular lattice gauge theories.45 So a consider-
able amount of work remains to be done.
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FIG. 12. (Color) Density of statesrtot restricted to the Hilbert
space spanned by allowed states and the 1qp-1qh states. In order to
keep the broad band of predominantely 1qp-1qh character at fixed
position,rtot is plotted versusE−V. This moves the position of the
allowed states dressed by 1qp-1qh fluctuations tosE−Vd / t=−V/ t
(marked by arrows).

FIG. 13. (Color online) Illustration of the second-order contri-
butions to the self-energyHS for some allowed configurations.
Filled (hollow) symbols signify occupied(empty) sites. Short solid
lines indicate directions of possible hops. States with horizontal and
vertical (diagonal) stripe order have less(more) diagonal nearest-
neighbor pairs than any generic configuration.
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Yushankhai, and Y. Zhang.

APPENDIX: ORDER FROM DISORDER
IN MODIFIED MODELS

For a better understanding of the subtle particularities of
the checkerboard model, we introduce in this Appendix dif-
ferent hopping amplitudest8 and t for diagonal and other
hopping, respectively. The second-order self-energy(8) for a

configuation withPdiag diagonal nearest-neighbor pairs is

HS = − NxNy
t2 + t82

V
− 2Pdiag

t2 − t82

V
. sA1d

This favors, depending on relative order of the magnitudes of
t and t8, either horizontal/vertical or diagonal stripe order,
which minimizes or maximizes the number of diagonal pairs
and thereby their contribution to the energy gain by quantum
fluctuations. This simple order-from-disorder mechanism is
illustrated in Fig. 13.
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