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We study numerically spinless fermions with strong nearest-neighbor repMsorfrustrated lattice struc-
tures that show macroscopically many ground states in the absence of a kinetic energhorgimg term. A
finite hopping amplitude lifts the macroscopic degeneracy and leads to a small number of degenerate ground
states. These can be characterized by topological quantum numbers and transformation properties under sym-
metry operations such as particle-hole interchange. Results for the criss-crossed checkerboa(tiviattice
dimensional pyrochlore lattigawith up to 32 fermions support the scenario that translational invariance is
restored in the thermodynamic limit, making half-charged quasiparticles possible. A finite entropy of approxi-
mately (3/4)In(4/3) per site is released at low temperatukgF ~t3/V2, much below the bare energies/.
This is familiar from the widely studied models involving spins on frustrated lattices, but in a spinless-fermion
model these low-energy excitations are necessarily related to charge degrees of freedom.
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I. INTRODUCTION bient pressuré® The origin of the heavy mass, i.e., the high

Systems with frustrated lattice structures may show fascid€nsity of low-lying fermionic degrees of freedom, is hotly

nating physical propertiésTherefore it is of no surprise that ?rgg?ttﬁgsaet Egﬁi?:ﬁgﬂ;g?sznsgzt_i?es’H'Ll')Sb grodt iil':grlggirgnt% a-
interest in them has been steadily increasing. A well knownrameterU only. For example, in the case of J& that would

three-dimensional frustrated struciure is the pyrochlore Iat'merely restrict the Fe configurations on the spiBedites to
tice. It consists of corner-sharing tetrahedra. For exampl

; : €3d5 and 31° and would not inhibit motion of an electron

the sitesA as well as theB sites of compound®,B;07,  from adf to ad® site. In order to suppress those motions a
whereA is a large and is a small ion, e.9., YRu,07, form  gyong interaction between neighboring sites is required.
a pyrochlore lattice as do the so-call@dsites of spinels. From the work of Verwey® who tried to explain the metal-
Examples of two-dimensional frustrated lattice structures arghsylator transition studied by him and Haaynt&rand in
the checkerboard lattice, the kagomé lattice, and the triangarticular from that of Andersotf, it is known that the
lar lattice. A pyrochlore lattice can be considered as a senearest-neighbor Coulomb repulsions in ;B¢ are
quence of alternating planes of kagomé and triangular latminimized if on each tetrahedron two sites are indd 8nd
tices. One may also think of the checkerboard lattice as &vo in a 3° configuration. This is called theetrahedron
two-dimensional projection of a pyrochlore lattice. This ex-rule, abbreviatedr rule henceforth. It explains why the ob-
plains why a checkerboard lattice is often considered in theserved entropy reduction at the metal-insulator transition in
oretical studies instead of the more realistic pyrochlore strucFe;O, is much less than expected from electrons without the
ture. strong short-range correlation. More recently the applicabil-

Frustrated lattices have their name because when a spinity of the 7 rule to magnetite has been questioned because of
attached to each of the sites, an antiferromagnetic spin intethe involvement of lattice degrees of freedom in that
action leads to frustrated spin-spin couplings. This may retransition!” These are of no concern for the model Hamil-
sult in ground states without magnetic long-range order, i.e tonian considered here.
in spin liquid states. This is the reason why a large amount of More generally, the tetrahedron rule requires that for a
literature deals with frustrated spin latticeSsee, e.g., Refs. pyrochlore lattice with a half-integer number of electrons per
4-8 and references therein for different aspects. In comparsite two of the sites on a tetrahedron are occupied with ions
son with spin problems, charge degrees of freedom in frusef one valency and two with ions of the other valency, e.g., 0
trated lattices have obtained comparatively little attentionand 1 valence electron or 1 and 2 valence electrons, etc. This
An exception is the investigation of electronic charge ordercan be done in many different ways and the classical ground
in systems like magnetite §®,.21°The very fact that charge state is therefore highly degenerate.
order has been observed in several pyrochlore lattices, not The above arguments assume that the kinetic or hopping
only in FgO, but also in Li\,0O, under pressuté or Al energy of the electrons is negligible. In reality it will lift the
V,0,,*? suggests that electron correlations are strong in somkigh degeneracy of the ground state. How this occurs and to
of those systems. Most noticeable, heavy-fermion behaviowhich low-energy excitations it leads have remained open
has been found in thé-metal compound LiYO, under am-  questions. The problem is addressed in this paper by means
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FIG. 1. (Color onling Half-filled checkerboard latticga) of 0+ =t
spinless fermions as two-dimensional model of the half-filled pyro- allowed states
chlore lattice(b). Filled (hollow) symbols signify occupieempty) Np= INGxN, Ne= NN, + 1

sites. The configurations shown obey the respective tetrahedron rule

in two or three dimensions. . . .
FIG. 2. (Color onling lllustration of the different subspace rel-

. . . evant for the calculation of low-energy properties of the half-filled
of numerical calculations for a checkerboard lattice. In Ref.(|eft) and slightly dopedright) checkerboard lattice with nearest-

18, it was pointed out that the near-degeneracy of the groungeighbor repulsion/. There are no matrix elements of the kinetic
state in the presence of small hopping matrix elements cagnergy between different allowed states. These are, however, con-
give raise to excitations with chargee/2. By means of nected by virtual processes involving one-quasiparticle—one quasi-
numerical methods on small systems we want to investigatgole configurations as intermediate states.

here how this suggestion can be more substantiated. Again,

we shall use a checkerboard lattice for this study. Furthergna can also think of fully spin-polarized electrons. Double

more, for simplicity we shall use spinless fermions or what is, e pancies of sites are forbidden this way. Furthermore, a
equivalent, a fully polarized electronic system with 0.5 elec-,

. X e repulsive interactionvV between fermions on neighboring
trons per site. Particular emphasis will be put on the groundjjtes is assumed. This includes interactions along the diago-

state and the reduction of its degeneracy by a small kinelif5s hecause in a three-dimensional pyrochlore lattice those

energy term. _ _ diagonals connect nearest-neighbor sites. The Hamiltonian
The paper is organized as follows: In the next section Wetrat we shall use is of the form

introduce the Hamiltonian and present some computationa
considerations. An effective Hamiltonian is derived for the _ +

checkerboard lattice, which includes the effects of the kinetic H= _tz (cicj+H.c)+ Vz nn;. (1)
energy by means of ring-hopping processes. It acts only on a2 2

_co_nfigurations that satisfy the t_etrahedron rule. FurthermoreThe CiT(Ci) denote creatioriannihilation) operators at site,

!t IS demonstrateq tha_t topologlcal_quantum humbers may bSnd (ij) refers to a pair of nearest-neighbor sites. Further-

introduced that simplify computations and allow for deeper t o .
more, n;=c/c;. The fermionic character of the particles

insight into the nature of the low-energy excitations. Exten- kes th t model fund wally diff f
sive numerical calculations are presented in Sec. Ill. The us axkes the present model fundamentally ditterent from re-
ated spin models and related models for hard-core

of the effective Hamiltonian is justified by comparison with . . .
J Y P bosong-346-81419-2¢yrthermore, the fermionic minus-sign

results from diagonalization of the full problem. For the ef-
9 b problem excludes the use of quantum Monte Carlo methods

fective Hamiltonian, rather large systems with up tox 8 hat h b lied fully t ite | ; d
sites and 32 fermions can be studied on a single 64-bit wor _oasonaglisteerﬁg applied successiully to quite farge spin an

station with a few gigabyte memory. This refers to the deter- . , .
mination of the IO\?\/-gene);gy states,)/the density of states, the, The momentum-dependent nonlnteract(h_g:O) dlsper-
specific heat, and the nature of the ground states. The pari°S of the criss-crossed checkerboard lattice are given by
ticipation ratio is introduced as a convenient characterization
of how many configu_ration contribute to a given eigenstate. (k)= -2t — 4t cos@coslféa, (2a)
In every case considered, a small number of degenerate N V2
ground states is found. In general, the corresponding charge
densities are not translational invariant. However, Sec. lll E
presents arguments that suggest that the broken translational €'(k) =2t (2b)
symmetry is a finite size effect and that a “disordered” trans-
lational invariant liquid ground state is found in the thermo-Wherea is the lattice constant. There are two sites per unit
dynamic limit. The last section, Sec. IV contains the conclu-Cell. The occurrence of at least one flat ba#itk) is a char-
sions and addresses some open guestions. acteristic feature of corner-connected complete gréblhs.
general, a strong asymmetrry- —t is expected on the single-
. CHECKERBOARD LATTICE pgrticle_ level when eith_er the_dispgrsive baind-0) or the_
WITH NEAREST-NEIGHBOR dispersionless on@ < 0) is partially filled. The asymmetry is
REPULSION not present in the exactly half-filled interacting case. This
may come as a surprise because in the single-particle picture
We consider in the following a checkerboard lattisee the filled levels are quite different, but follows from particle-
Fig. 1) with spinless fermions. Instead of spinless fermionshole symmetry.
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A. Tetrahedron rule and relevant subspaces More specifically, one may expect metallic behavior in the

We are interested in the limit of large intersite repulsionsiMit V— 0. However, this limit may be singular because as
V, i.e., whent/V<1. In that case the tetrahedrén rule is noted before the half-filled case separates two very different

a very useful concept. As pointed out above it was suggestelt).x"’lnds in the noninteracting dispersic).

in order to explain the observed metal-insulator phase tran- _Our in'_[erest i_n the che_:ckerboard lattice .W.it.h nearest-
sition in FgO,. The 7 rule implies for half-filling that on ne'ghbor Interaction |s_mot|vated by the pQSS|b|I|ty of frac-

’Ponal charges in the slightly doped case with, e.g., one extra
{

each tetrahedron of a pyrochlore lattice or criss-crosse . ) . . o .

square of a checkerboard lattice two sites are occupied a rmion. Again, conflgura_tlons can be classified a_ccordmg to

two sites remain empty. This way the Coulomb repulsion € number Of””'? violations. Ong expectsisee F|g. Eb).]

term in Eq.(1) is minimized a low-energy manifold of states with exactly two violations,
y ! each having & charge of 1. Some fermions in the vicinity of

Having in mind numerical calculation in the largglimit, h “defects” h ith adii |
we decompose the full Hilbert space of all configurationst.ese. two “defects” can now hop without additionafule
iolations and lower their energyt. Thus, we note

into subspaces of given particle number and given number of

7rule violz?\tions(see F_ig. 2 _ . Epqp=2V - O(t). (6)
Many different configurations satisfy the tetrahedron rule,

i.e., whent=0 the ground state of the system is highly de-If this leads to large spatial separation of the defects, two

generate; for an illustration, see Fig. 11 below. We will referindependent quasiparticles have formed, each carrying an

to these states as spanning gllewed subspaceis regards electric charge e/2. A meaningful study of the slightly

counting configurations, the half-filled rectangular checkerdoped situation is possible only after the reference system,

board lattice ofN, X N, sites with i.e., the undoped phase has been studied thoroughly. There-
fore, in the present work we restrict ourselves to the strictly
N :EN N 3) half-filled case, postponing the doped phase to a separate
R publication.
identical particles can be mapped to the so-called ice prob-
lem with degeneradyf B. Computational considerations
Nyeg= (4/3) 3NNy, (4) Numerical results can be obtained in three different com-

. L . putational frame workg(i) Consideration of the Hamiltonian
The action of the kinetic energy term in @) depends, of (1) in the full Hilbert space. While this approach is valid for

course, on the nature of the considered partidiesnions or 't/ numerical calculations are possible only for rather

bosong. Hopping generates configurations that are outsidesma” systems. The cadé,x N,=6x 4 with 2 704 145 con-

fjhe allowed subspa(ljce. Theragle E violated on LWO tetrafhe- figurations needs already a few gigabyte storgigeRestric-
ra(or criss-crossed squajdsat have excesscharges of 1 450 of the Hamiltonian(1) to the allowed subspace and

and —-1. Whert<V, we may consider these configurations aslqp-lqh states, with, e.g., 496 296 configurations for65
vacuum fluctuations or, more generally as one-quasiparticle§ystems with 1é fern,]ions., In the limit of large system size
one-quasiholé1qp-1qh excitations. The net energy costis s is 4 severe approximation even fél/< 1 because the ,
V, but there is a gain in kinetie-t associated with them, i.e., possibility of having several independent vacuum fluctua-
Eyqp1qni= V — O(1). (5)  tions in different spatial regions is not included. This issue of
size extensivity has been discussed frequently in quantum
We use the quasiparticle-hole language because it sughemistry. Fortunately, it can be ignored for the systems
gests that the two defects can separate over large distancegidied in the present workiii) In the next section, we de-
and have to be considered as entities of their own. This igive an effective HamiltoniarH. that acts only in the al-
described in more detail in Ref. 18, but for the purpose of theowed manifold. This allows for studying much larger sys-
present paper 1gp-1gh simply is a label for a certain subtems, i.e., up to &8 with 32 fermions and 2891562
space of states. Configurations with additiomalile viola-  configurations. This approach is intrinsically size extensive,
tions have even higher energies. but justified only in the larg&# limit. The relation ofH.; and
The degeneracy of the allowed manifold will be lifted at H bears some analogy to thel model representing the half-
finite kinetic energyt by admixing fluctuations, which con- filled Hubbard model in the limit of large on-site repulsion
nect different classically degenerate allowed states. This sugind small doping® The numerical effort grows exponen-

gests the following scenario: At finite hopping, the aIIowedtiany with system size in all three frameworks, however
manifold spreads over an energy regime characterized by @uch slower in(iii) than in(ii) or even(i).

small energy that one might expect to %&/V, but which is

actually found to bext3/V? due to a subtle cancellation re- . o

sulting from the fermionic anticommutation rulésee be- C. Effective Hamiltonian

low). The much larger subspace of vacuum fluctuations starts Next we derive an effective Hamiltoniak by down-
at higher energiek ~V. States within that subspace are di- fo|ding the full Hamiltonian(1) so that it acts on the allowed

rectly connected by the hopping term in Ed). Thus, an subspace only and write it in the form
energy widthet is expectedsee Eq.(5)]. These consider-

ations suggest a phase transition whés of the order ofV. H =Hs + Heg. (7)
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Hs comprises those contributions bff that are diagonal in  sition of ar charge over twice the distance greatly helps in
the real-space basis whilé.; describes transitions between the determination of the shortest paths connecting allowed
different allowed configurations. They lift partially the large configurations. Similar loops involving six alternatingly oc-
degeneracy of the ground state whehO and we are espe- cupied and unoccupied sites constitute the effective Hamil-

cially interested in those processes. tonian for the low-energy excitations of the corresponding
First considerHs. To leading order irt/V one finds the three-dimensional pyrochlore model. We want to emphasize
sameself-energy that ignoring the irrelevant energy shifty and neglecting
) ) higher-order ring-hopping processes implies that the Hamil-
Hy = - 4t_2 n = - 2N,N v (8) tonian depends only on a single energy sdalg. We will
A v see below thaH lifts the macroscopic degeneracy of the

) ) allowed states leading to a sméilhite ground-state degen-
for every state in the allowed subspace. This reflects the fa@acy and a large density of states of low-energy excitations.

four empty sites among its six nearest neighbbkssimply =0 and that higher-order processedt/ V) ;g <t;ng can be
counts the number of possibilities to hop onto empty sitegypected to be irrelevant in the thermodynamic limit.
and then to return, which is the same for all states. Thigs, WhenH,g is applied on an initial configuratioiy and the

can be ignored for most of the following. In contrast, We matrix element with a final configuratidfy is evaluated, one
show in the Appendix that for small ratiasV any modifi-  notices thatf|H.i) can have different signs. It depends on
cation of the kinetic energy term in the Hamiltonidp leads \peher or not the lattice site encircled by the hexagon is

immediately to a state-dependeadt and to an insulating, occupied or empty. Let us denote that sitejgyand its oc-

charge-ordered ground state. The latter is due to an orde{:— cv b Then

from-disorder mechanism. We note in passing that a state: oY Yo

independent second-order self-energy is found for the corre- (FHerli) = (= Dot (12)
e - ring*

sponding three-dimensional pyrochlore model as well.

Next we turn to the determination dieq. Different al- An important question is how strongly the high degeneracy
lowed configurations are connected through vacuum fluctua(-)f the allowed subspace of configurations is lifted by the

tions via ring-hopping Processes. The_ S”?a"ESt ring Fhat aIfing—hopping processes includedhhy. In order to answer it
lows for such processes con5|sts'of siX g(lw:agor) With e have to resort to numerical calculations diagonalizing
alternating occupied and empty sites. This leads to H.q on small systems consisting of up to<®=64 sites.

It is found and indeed is quite obvious thHdi; does not

61 couple all allowed configurations with each other, but instead
Her = -2 <§+§+%+%>+<O"C> (9)  does so only for subensembles. For example, stripes are not
coupled byH¢ to any other configurations. In that case ring

where full and empty circles denote initially occupied andhopping cannot occur, and therefore those configurations are
unoccupied sites, respectively. The prefactor accounts for th@ot important for the low-temperature properties of the sys-
six possible hopping orders of a given ring and given orieni€m. One can easily convince oneself that ring hoppig
tation. We note in passing that the corresponding amplitudednd(10) does not change the number of particles in each row
for ring-hopping processes involving four sites cancel eactp’ column. Furthermore, the number of particles on the di-
other for fermions, but not for bosoR&Ring hopping has agonals of the lattice is changed in multiples of two only and
previously been studied in magnet#&3! bosonic frustrated the total occupations of the two sets of criss-crossing diago-
lattice systemd233and some other strongly correlated sys-nals(southwest to northeast and southeast to northveest
tems such as solid helii#h® and the fractional quantum left unchanged.

Hall effect36:37 The fact thatH¢ is block diagonal is enormously benefi-
We can write the effective Hamiltonia@®) in the form cial for numerical calculations as it allows to diagonalize
each block separately. It leads to states with good transfor-
Hefr = tring CJTGCJTACszcjscjscjl' (100  mation properties under the various discrete symmetries of
o the system. In order to obtain a deeper understanding of the

different subensembles of allowed configurations we intro-
duce the concept of scalar potential and topological quantum
numbers.

The sum is over all hexagons with sitgs...,js and we
introduced the abbreviation

123

tring = 7 . (11)

D. Height representation and classification of subspaces

Hei transforms an allowed hexagon configuration into an- In the following we want to show that the tetrahedron rule

other one when it consists of alternating occupied and emptgpplied to a bipartite lattice like the checkerboard one can be

sites. expressed in terms of a suitable vector fiéldith the dis-
Hopping processes on rings larger than hexagons result ieretized lattice version of cu=0. Therefore this vector

prefactors of higher order itf V. Therefore we neglect them field is representable in terms of tijkattice) gradient of a

here. The observation that each fermion hop moves the pecalar potential field, i.e.,
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FIG. 3. Action ofHg in the height representatiginteger num-
bers on uncrossed squayekilled (hollow) symbols signify occu-
pied (empty) sites. Arrows and orientations are described in the text.
Note thatm=nz1, depending on the occupation of the central site
and the orientation of the involved criss-crossed squares.

f=Vh. (13 Vit

In order to demonstrate this we attach to each criss-crossed F'C- - (Color onling Elgenstat(_es of the full Hamllt_onlan ot
square an alternating orientation, i.e., a clockwise or coun2?®" the full range from free fermion®/=0) to the limit of strong
terclockwise ondsee Fig. 3. Furthermore, a unit vector s Ccorrelations(t—0). Lines: Lowest 50 highly degenerate eigenval-
attached to each site. This vector points in the direction of'c® for system sizex44. Energies in the gray shaded area are not

th ientati hen the site i ied. while it points i shown. Symbols: Ground-state energy for system sizet6Inset:
€ onentation when the site IS occupied, Wnil€ 1t poIntS INppq 3/\/2 contribution described bl becomes visible after sub-

the opposite direction when the site is empty. Thus, when the cion of the state-independent self-eneBgy=Hy and multipli-
tetrahedron rule is satisfied the discretized line integral,iqon byV2/t3. Arrows mark the lowest eigenvaiues .

around a criss-crossed square vanishes. Every integral over a
closed loop in the lattice can the decomposed into integralequivalent subensembles withx,, + «,) and identical ener-
around criss-crossed squares. This enables us to define fgies. An additional degeneracy,, «,) < (xy, k) is found in
each allowed configuration up to a constant a scalar potentiguadratic systems, i.e., whéh=N,. Therefore, a nondegen-
h which satisfies Eq(13) . For a finite lattice with periodic erate ground state will necessarily haug= «,=0.
boundary conditions, the potential at the upper and at the The topological quantum numbefg,,«,) describe the
lower boundary can differ only by an integeNy<«,<N,,  average slope of the scalar potentialxirand y directions.
which is the same for all columns. The same holds true folFor a more detailed characterization, one may study the
the potential difference between the left and right side, whichroughness of the potential surface, defined as the amplitude
we call Ny<«k,=<N,. This defines topological quantum of fluctuations around the average slope. We found for the
numbers(winding numbers They remain unchanged by all roughness of the numerically obtained ground stateld af
local processes that transform one allowed configuration int@onsistently values close to 0.5.
another. Ring hopping defined by, belongs into that cat- The topological quantum numbers are intimately linked to
egory. As seen in Fig. 3, it lowers or raises merely the locathe issue of charge ordering, discussed in more detail below
potential of two plain squares by +2. From this it follows thatin Sec. Ill E. This can be seen by inspection of the six local
the subensembles of allowed configurations which blockfermion arrangements depicted in Fig. 4 and their counter-
diagonalizeH are characterized by their topological quan- parts involving oppositely oriented criss-crossed squares. For
tum numbers. This does not exclude degeneracies, i.e., sethe argument, assume a positive average slopk iof the
eral subensembles may have the same topological quantutiermodynamic limit, i.e., a finite positive value af/N,.
numbers. For large system size, this is necessarily the case @his implies that on the counter-clockwise oriented squares
the number of subensembles grows faster with increasinthe first configuration in the upper row occurs more often
system size than the number of realizabtg, «,) pairs. than the first one in the lower row, and vice versa on the
We note for later reference that due to mirror symmetryclockwise-oriented squares. This, in turn, implies an in-
there exist for each subensemble wity, x,) # (0,0) three  creased charge on every second row, i.e., horizontal stripe
order. Analogously, a finite ratioc, /N, implies vertical
n+1 stripes. Furthermore, one can easily show thg{, is the

n n
R Y N e Y difference of the number of occupied sites and empty site on
Y eachrow (column taken with a sign alternating from one
n+t (b) "2 () " row (column) to the next® As a consequence, all values
n+1 n+2 n+1 are even for the boundary conditions used in this work. A
: : pair (ky, k,)=(0,0) implies that all rows and columns of the
n+2 n n+1 n+1 n n . . . .
N ‘ lattice contain the same number of fermions. This does not
1 € n ® exclude diagonal stripe formation or plaquette order.
Without proof, we remark that a 1qp-1gh fluctuation is
FIG. 4. The six allowed configurations of a criss-crossed squar€haracterized by two singulariti€sortex and antivortexof

contribute differently to the average slope lof Symbols as in thef field. In that case the definition of a potential requires
Fig. 3. the introduction of multiple branches or of the discretized
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version of a branch cut connecting the two squares with posi- 1000 *

tive and negativer charge. Obviously, the two defects can ke 4 x 4 (full calculation)
annihilate each other again, which leads to an allowed, g I
branch-cut-free configuration. In analogy, insertion of an ad- § 100 L
ditional fermion induces two equally charged vortices, which 2 g
of course can not annihilate each other. =
T g0l T oy
0 16 2‘0 30

lll. LOW-ENERGY EXCITATIONS Vit

A. Comparison of H and H g FIG. 6. Participation ratigPR) for the full solution of a 4x 4

. . system. Increasing patrticle interactiovistrongly reduce the num-
Before we discuss numerical results fégy, we substan-  po of contributing configurations. Linear combinations with par-

tiate the above arguments by explicit comparisorHodnd ticylarly low PR'’s were constructed within the degenerate ground-
Heg for small systems up to 84=24 sites, where a full gtate manifold.

diagonalization of the Hamiltonial) is possible. Figure 5
lists the lowest eigenenergies as a function of the b A 1
similar energy gain per site due to the kinetic energy is seen PRW] = )
for system sizes &4 and 4x4. For weak interaction¥/ > la )
<t, energies and energy differences are of the otd€&hey v

and their degeneracies are given by the disper&pevalu-
ated for the quantizeld values compatible with system size
and periodic boundary conditons. With increasing interactio
V, the energies regroup into the manifolds described in Se

(15

Figure 6 demonstrates the reduction with increasing ratio
V/t of the PR, i.e., the number of configurations contributing
Mo the ground state. Clearly, increasing particle interactions

I'A, which are separated by differences of the ordenof %trongly reduce particle-number fluctuations in real space

) . ) . nd thus the number of real-space configurations contribut-
For V/t>1, the energies shown in Fig. 5 are determlnedf’al P g

predominantely byHs, which is the same for all states ir_1 this IngthrT:n?g?el:ggesst;ts\"e note that the PR'efbld degen-
energy range. In order to see the physics of the |&fdjenit, te around statdslf“)> (=1 K are not well defined
it is useful to subtract the value éfy from the energies and crate g 0 97 o .
to multiply the difference by;}]g, as displayed in the inset of becau;e the F{R}QS] are not invariant under unltgry trans-
Fig. 5. We notice almost constant values abawk= 15, formations. However, for not too large degengrames, one can
which furthermore coincide with the results from diagonal-easily determine numerically the ground st@ie with the
ization of Hey. We conclude that in this regime the low- smallest PR. This is done by first calculating the tensor
energy physics is describable bl e

A%)(J&e):ical comparision sugr%f;s the one shown in Fig. 5 111121314:2 alall? old ol (16)
allows us to estimate the parameter range where the pertur- v
bation expansion can be used. However, we note explicitlyj =1,... K) and then maximizing the inverse of the PR
that it cannot “prove” for the infinite system the validity of (15),
the expansion underlying the derivation laf; because for

finite systems perturbation theory is always valid: For suffi- ~ “ . .
ciently small expansion parameter, eigenvalues and low- (PRW])™= E U U T g (17
energy subspaces will be reproduced correctly by the pertur- lvl2zla
batively derived effective Hamiltonian. in the subspace of normalized linear combination
W) =23 u W), (18)
B. Participation ratio ¢

The participation ratigPR) of a wave functionp(r) inthe  The latter is parameterized, e.g., via
real-space representation is defined as

R
[ tetoya

This quantity is widely used as a measure of how localize
e.g., the eigenstates of a disordered system are. Extended
states withg~ 1/, where( is the system size, have a
participation ratio~{). Analogously, the PR of a many- The low-temperature thermodynamics is determined by
particle wave function given in configuration space as superthe low-energy excitations of the system. Therefore it is im-
position |¥)=X a,|v) of configurations|v) can be intro- portant to gain insight into their nature. As pointed out
duced as above, low-energy excitations result from lifting the high

U;=COS#;, U,=sin 6; cosb,e?2,

PRe]= (14)

U3 =Sin 6; sin 6, cos €%, ..., (19

where the angle®,, 6,, ... ,0¢x and ¢,, ... ¢k refer to rota-
dtions in configuration space.

C. Density of states
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FIG. 7. Selected eigenenergi@sottom panel and topological FIG. 9. (Color onling Specific heat foHe for various system

guantum numbergop pane) for subensembles of states, which are sizes derived from the partition function including all allowed
connected by, arranged according to subensemble dizeRe-  states. Inset: The corresponding entropies approach at high
sults are presented for system size 8 with N;=32 fermions. Ten  temperatures a weakly system-size-dependent value close to
energies are shown for each subensemble as diamonds. Gray linds3/4)In(4/3)~0.43152 per fermiorimarked by an arroyy

mark regions with eigenvalues not shown explicitly. + andde-

note the larger and smaller of the valueg and|«,|, respectively.

Case where these coincide are indiczﬁteﬁmy o prot(E) = EP AE-Ey), (20

degeneracy of the allowed configurationsHby;, i.e., by ring  where{ denotes the different eigenstated-bivith eigenval-
hopping. uesE,. It is distinct from the often used single-particle DOS,
One expects that the effect b, will be largest for the  which for interacting many-particle systems is defined, e.g.,
largest subensembles. This is confirmed by our numericalia Hartree-Fock eigenstates, Kohn-Sham orbitals, or in
results presented in Fig. 7, which show the lowest 1Qerms of quasiparticles. In particular, an approximately con-
eigenenergies for each subensemble of theB8&ystem. The stant single-particle DOg, for low-energy excitations im-
lowest energies always belong to states in some of the largepties an approximately exponential many-particle DOS start-
subensembles, but not necessarily to a statthénlargest ing at the ground-state energ¥y, i.e., p(E)=6E
ones. It is interesting to look at the correspondingalues — —Egg)pe'EFodro,
(top panel of Fig. J. One notices that the large subensembles The block diagonal structure ¢ allows to determine
tend to have small topological quantum numbers. In view ofall 94 386 eigenstates of thex& system. The largest sub-
the interpretation ok, as difference of the number of oc- ensemble contains 8232 configurations. Figure 8 shows the
cupied and empty sites in each rggolumn), one can expect resulting DOSp,,; and the corresponding number of states
that smallx values allow the largest number of realizations
and that these allow for many ring-hopping processes. Future E
numerical studies can start by generating only those suben- Ns(E) :f pro(EAE'. (21)
sembles that have small topological quantum numbers. This -
greatly reduces the effort of setting up tfeparse matrices

and look-up tables needed during the diagonalization. L .
A measure of the low-energy excitations is tieany- Rather striking is the behavior Et=0. The sharp peak of the

; ; : DOS and the corresponding large stdp result from con-
body) total density of state€DOS). It is defined b
Y y 0O y figurations that remain uncoupled b, including various

stripe formations. We note the very expli&t-—-E symme-
try, which is related to the symmetty— -t of the half-filled

0011 Lot 8x6 case.
_ N;=24 We always find a finite degeneracy of ground states and
Tg 200 L some charge order. Degeneracies range from twaid4,
= N ° 62X 6, 8% 6) over fourfold(10x 4) and sixfold(4 X 4) to the

eightfold degenerate case in aX@ lattice. In most cases
horizontal or vertical stripes are seen, but plaquettes are
. . ‘ found for the 6x6 lattice. Some of these degeneracies are
E,(tﬁ‘:ng) ' ' protected by quantum numbers, whereas others would be
lifted if instead of the lowest-order ring hoppirtty; the full

FIG. 8. Total density oH.¢ on the 8< 6 systems witi\;=24  HamiltonianH were used. However, we expect the corre-
fermions. E=0 corresponds to the energy of the system withoutsponding transition amplitudes between allowed states to be-
hopping processes. Inset: Corresponding number of stdtes come exponentially small in the thermodynamic limit, in
clearly showing the large number of states at zero energy. analogy to small ferromagnetic clusters.

245113-7



ERICH RUNGE AND PETER FULDE PHYSICAL REVIEW FO, 245113(2004

* *
192830

O.‘*O:‘ o"*." FIG. 10. (Colon) (a,by Density
distribution(l/f(gi)|ni|1//é€s)> and(c,d)
density-density correlationciio,

(@)

N | N ¥ AN Eqg. (29), for the two degenerate
ground stateg=1,2 of the 88
7, system with periodic boundary
conditions. The siteig is arbi-
— — trarily chosen[position of largest
symbol in panelgc-8]. (e) The
W4 N Wi N same correlation averaged over all
/ 1] allowed states(f) Difference of
data from panelgd) and(e). Posi-
7 K= 7 g tive and negative values are repre-
sented by the area of dark and
‘ light colored disks, respectively.
Characteristic differences between
(C) A A AT A (d) A A A N panels(d) and(e) occur along the
black hexagon, which corresponds
N N to an allowed ring-hopping
process.
7 N
K
7 K
- / Y
/] N K
N
(e) KA KA KA (f) N
D. Specific heat dom, the usual source of heavy-fermion behavior. The en-
The low-energy excitations determine the specific heaf@PY (3/4In(4/3)~0.2158 per site, cf. Eq4), is released
C(T) according to in the temperature randgT = 2t;,;. We expect such a large
entropy release on a low-energy scale and thus a large—
possibly linear—specific heat to be found in many frustrated
f dE Epiof E)exp(- BE) lattice structures with charge degrees of freedom. Whether or
CM=— , (22 not it will lead to a strong mass enhancement of Landau-
al de Pl E)exp(— BE) Fermi-liquid quasiparticles must at present be left open. As
pointed out Ref. 18, charged quasiparticles in frustrated lat-

whereB=(kgT) 1. Numerical results for various system sizes !IC® Structures may not even form a Fermi liquid.

are shown in Fig. 9. The largest systems cause a nearly linear
steep increase dE(T) at smallT. This suggests that a large
effective mass enhancement can possibly be found in frus- We return to the issue that degenerate ground smé@i;
trated lattice systems like the checkerboard lattice and posare found for all studied systems: It is suggestive to interpret
sibly also the pyrochlore lattice. Note that this enhancementhis fact in terms of charge order. Charge order would imply
results from charge degrees instead of spin degrees of freeroken translational invariance due to some order-from-

E. Translational invariance
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each|a,[?=1.18x 1074, Six of them are shown as Fig. 11 for
better illustration. They clearly look like one visualizes “ge-
neric” allowed states and not like charge-ordered configura-
tions.

(iv) More evidence for a liquidlike behavior, i.e., the
absence of broken translational symmetry in the infinite
systems, is provided by the density-density correlation
function

-
- t 13 € t 3 13
o %0 0. o 0 0 Cii, = (Wigalmin 1)) = (eIl g ige i |ty (23)
1o el Y sesl ° ° °

shown in Figs. 1&) and 1@d). Qualitatively the same be-
FIG. 11. Six allowed &8 configurations chosen randomly havior is found for all system sizes and all degenerate ground
from the 32 states with the largest weidht|2~10"in one of the  States(not shown. Note that panelgc) and (d) show the
two degenerate ground states. correlations of inequivalent sites, with the centgiin one
case having on average an occupation larger than 0.5 and in
disorder mechanism analogous to the one discussed in e case less t.han 05
The correlations in the quantum ground states are best

Appendix. Indeed, Figs. and 1@b) show diagonal . . ) .

stFr)iF[))es in the density gxpelc?)ation valcf(e)%e)m-w“)) ofqthe understood as reflecting the algebraic correlations present in

two degenerate statds=1,2 of lowest enesrg)I/ i%sthe 88 the classically degenerate allowed manifold. They are the

system. They have 20 fe;mions on one set of diagonals ang™" of the correlations ol _aIIo_vved config_u_rations with

12 on the other(see Fig. 11 beloywand are related by equal weight and are shown in Fig.(&0) Specific quantum-

particle-hole symmetry as well as by oth# symmetries mechanical features resulting from the ring hops become vis-
ible by determining the difference of the actual correlations

(left-right/up-down, two sites in the unit cgll . : L
Of course, a linear combination with homogeneous den9f panel(d) and the classical correlatioris). This is shown

sity can be constructed from these two states and furthermo?ﬁs panelf). A negative value at the central siigindicates

topological defects will destroy possible long-range order afhe expec_ted general reduction of fluctuations compared to
any finite T. But this is besides the point we want to make. the generic valug. A closer look rev_eals fu_rther differences
Despite the inhomogeneous density profiles of the statetglot?]g' elg the IS'X'S'tG; I?op f,”f'”"ed n thtehflgure. Ig C(t)nttrast
|‘P(?>, {=1,2, there is strong evidence that simple charge0 € classical correiations: n .paneda), the ground-state
order isnot present in the thermodynamic limit for the fol- correlationg(d) have alternating signs. Th's IS not surprising,
but merely reflects the fact that alternations of occupied and

lowing arguments o2 : . .
(i) (a Different charge-modulation patterngorizontal empty sites is necessary for ring hopping and thus lowering
of the energy.

and vertical stripes, diagonal stripes, plaquette Qrdee ) L
. ' : ' In view of (i)—(iv), we expect the charge order to be a
found for different system sizes, whereas one should expecft Lo ; Lo .
: ' ; inite size effect and to vanish in the thermodynamic limit
to find thesamepat.tern for all large enough systems if the leading to a twofold degenerate translatior){al invariant
thermodynamic limit led to a charge-ordered state. '

(i) (b) The amplitude of the charge modulation decreaseg.round §tat§. Howg\{er, any conclusion drawn 'from exgct
with system size(not showp. We reiterate that a finite diagonalization of finite clusters has to be considered with

(smal)) topological quantum numbes,,, necessarily implies caution as unexpecied feature_s may arise in the_ thermody-
. Y . namic limit. In general, exact diagonalization studies have to
a (weak charge modulation- k) /Ny). Note that in finite

o be combined with interpretations obtained by other methods
systems charge modulation is observed even for free fermiynq finally have to be compared to experiment.

ons if the Hamiltonian is diagonalized in a standing-wave
basis. Unfortunately in contrast to that simple case, for the
Hamiltonian of interest here a reliable extrapolation to an
infinite system is not possible because the charge-modulation The aim of this paper is to achieve a better understanding
pattern varies too much from one system size to another. of charge degrees of freedom in frustrated lattice structures.

(i) Consider the case of complete order correspondingis a first step in this direction we have studied here the
e.g., to Fig. 10a). All lower-left and upper-right sites in the ground state of a spinless fermion model on a checkerboard
criss-crossed squares are occupied while the remaining sitgsttice at half filling. The Hamiltoniar(1) presents in our
are empty. This state doesot gain energy within the view the simplest model by means of which one can inves-
effective-Hamiltonian approximation because no ring-tigate the interplay between a macroscopically degenerate
hopping processes are possible. The same holds true for tiiermionic ground-state manifold due to particle-particle in-
other completely charge-ordered stripe configurations. teractions and a kinetic energy term. In a previous

(iii) (@) The participation ratio of the ground states, i.e.,investigatiof® this model and a generalization of it including
the approximate number of configurations contributing sig-spin were predicted to have highly unusual properties—most
nificantly to it, is very large: PE&I&?]:46919.3. noticeably quasiparticles with a fractional charge @&/ %

(i) (b) There is no single reference configuration thatand a spin smeared over parts of the sample. These observa-
has the largest weight, but instead 32 configuratiofe@ve tions have been made for an average of 0.5 fermions per site.

IV. CONCLUSION AND OPEN QUESTIONS
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N

N,xN, = 6x4

V=15t V=10t V=6t
v v !

horizontal stripes diagonal stripes generic

density of states (arb. units)

FIG. 13. (Color onling lllustration of the second-order contri-
butions to the self-energydy for some allowed configurations.

FIG. 12. (Color) Density of stategy, restricted to the Hilbert ~Filled (hollow) symbols signify occupiedempty) sites. Short solid
space spanned by allowed states and the 1qp-1qgh states. In ordedifegs indicate directions of possible hops. States with horizontal and
keep the broad band of predominantely 1gp-1gh character at fixedertical (diagona) stripe order have lesgnore) diagonal nearest-
position, py is plotted versu€-V. This moves the position of the neighbor pairs than any generic configuration.
allowed states dressed by 1qgp-1gh fluctuation$BeV)/t=-V/t
(marked by arrows

those which lead tédy andHgg. For large ratios//t, width

and shape of this peak should be close¢g(E) in Fig. 8.

An equally fascinating prediction, namely spin-charge sepa: ) . .
qua’y gp y SP d P fhese details are smeared out in Fig. 12 due to numerical

ration, has been made for frustrated lattices with almost al : ) o
sites occupied by one electr8f239 broadening. _The broad band_ néerV is made primarily of
The numerical results presented here suggest a transiglates that violate therule twice. As discussed above, these
tional invariant “disordered” ground state for the checker-defects are mobile and probably deconfined. Indeed, a width
board lattice with possibly a finite, geometry-dependent deproportional tat is observed. Note that the approximati@n
generacy. In fact, we expect in the thermodynamic limit alooses its validity wherV/t is small enough so that many
twofold degenerate state. Future numerical studies with morép-gh pairs are created, i.e, near the expected insulator to
powerful computers than the one available to us on largemetal transition. Nevertheless, one can take the rande
systems and different geometries should allow for confirm-~4-10 where the two features begin to overlap as estima-
ing or disproving this proposition. They also should help totion for the position of the quantum phase transition. This
clarify the relation to the concept of topological ortléPas  estimation coming from the largé-side can be supple-
introduced by Wen and Nfd and to the fractional quantum mented by mean-field estimations coming from the siall-
Hall effect3637 side, which yield similar value¥ A detailed description of
We showed that the entropy associated with the originathe transition itself is at present beyond our numerical pos-
macroscopic degeneracy is released on an energy sggle sibilities.
=12t3/V2, which fort<V is much smaller than the underly- In the language of the height representation, the expected
ing energyt. Note that the ring hopping described bl  Metal-insulator transition corresponds to a proliferation of
does not lead to charge transport since the center of mass wértex-antivortex pairs. The system would change from one
the involved fermions remains unchanged. translational invariant state to another, probably with a tran-
Better insight into the lifting of the degeneracy was ob-sition of Kosterlitz-Thouless type. Such transitions are noto-
tained with the help of the height representation, which led tgiously difficult to study numerically.
the introduction of topological quantum numbers. Based on Having gained some insight into the ground state with the
our calculations, we expect the ground state to have a fldielp of topological numbers, the present work needs exten-
height function and topological quantum numbéks,«,)  Sion in several directions. First there is the problem of dop-
~(0,0) because they allow for the largest number of allowedng, which should yield fractionally charged excitations. Ob-
configurations. viously, a detailed understanding of the undoped reference
This brings us back to the issue of the metal-insulatostate as initiated by the present work is a prerequiste for the
transition expected at a finite valWét=0(1). It can be stud- ~ Study of(weakly) doped systems. Then there is the introduc-
ied only by taking into account the full Hilbert space, i.e., 0N of t_he spin, Whlch_ needs further elucidation. A very un-
within level (i) of Sec. Il B. On this level, we were able to usu@l kind of physics is expected here, because the breaking
study only rather small systems that furthemore exhibit som&P Of & chargeinto 2 e/2 has drastic consequences for the
artefacts since even small loops can span across the enti#gin-**°Last but not least it is challenging to study how the
system. Neither the energies in Fig. 5 nor the correspondinQEﬂd theory for the present system with the extensions just
participation ratios in Fig. 6 give any indication of a nonana-@escribed fits into a more general framework of existing field
lytic behavior signaling a phase transition at firtét. theories, in particular lattice gauge theorféSo a consider-
Indications of the position of the metal-insulator transition@ble amount of work remains to be done.
can be obtained on levéii) of Sect. Il B, i.e., in a calcula-
tion comprising thg allowed states and the 1gp-1gh states. ACKNOWLEDGMENTS
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by K. Becker, J. Betouras, R. Moessner, P. Thalmeier, Vconfiguation withPy;,, diagonal nearest-neighbor pairs is
Yushankhai, and Y. Zhang. > 2 5 2
te+t’ te—t’

Yy = 2Pgiag v (A1)

APPENDIX: ORDER FROM DISORDER
IN MODIFIED MODELS This favors, depending on relative order of the magnitudes of
t andt’, either horizontal/vertical or diagonal stripe order,
For a better understanding of the subtle particularities ofvhich minimizes or maximizes the number of diagonal pairs
the checkerboard model, we introduce in this Appendix dif-and thereby their contribution to the energy gain by quantum
ferent hopping amplitudes andt for diagonal and other fluctuations. This simple order-from-disorder mechanism is
hopping, respectively. The second-order self-en¢8yyor a illustrated in Fig. 13.
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