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Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet
in two dimensions
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Based on the self-energy-functional approach proposed recpvithPotthoff, Eur. Phys. J. B32, 429
(2003)], we present an extension of the cluster-perturbation theory to systems with spontaneously broken
symmetry. Our method applies to models with local interactions and accounts for both short-range correlations
and long-range order. Short-range correlations are accurately taken into account via exact diagonalization of
finite clusters. Long-range order is described by variational optimization of a ficticious symmetry-breaking
field. In comparison with related cluster methods, our approach is more flexible and, for a given cluster size,
less demanding numerically, especially at zero temperature. An application of the method to the antiferromag-
netic phase of the Hubbard model at half-filling shows good agreement with results from quantum Monte Carlo
calculations. We demonstrate that the variational extension of the cluster-perturbation theory is crucial to
reproduce salient features of the single-particle spectrum.
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I. INTRODUCTION theory” (CPT).® Actually, the CPT can be considered as a

Several materials studied in condensed-matter physicyStématic approach with respect to the cluster size, i.e., it
display unusual physical properties which are ascribed t§€COMes exact in the limN; — - whereN_ is the number of
strong electron correlatiorts? In particular, these may give SIt€S Within a cluster. From this point of view the CPT rep-
rise to rich phase diagrams with different competing types of€S€nts an attractive method which is simple conceptually
short-range correlations and with different symmetry-brokerPut nevertheless includes short-range correlations on the
phases. Realistic many-body models of these materials cogcale of the cluster size. Moreover, the CPT provides results
tain an interaction-energy term of the same order of magnifor an infinitely extended system. Consequently, the CPT
tude as the kinetic energy or even larger. This implies that iSreen’s function is defined for any wave vectorin the
is quite generally inappropriate to treat these models by corBrillouin zone, contrary to common “direct” cluster calcula-
ventional weak-coupling perturbation theory or by statictions for which only a fewk points are available, The nec-
mean-field decouplings such as the Hartree-Fock approximassary numerical effort is moderate: Once the Green'’s func-
tion. tion of a cluster of a given size has been calculated via a

A complementary approach consists in an exact treatmemtumerical method, e.g., the Lanczos technique, the determi-
of the interacting part while the kinetic energy is accountedhation of the lattice Green’s function is numerically much
for perturbatively. For Hubbard-type models, this corre-less demanding as this requires the inversion of a certain
sponds to an expansion in powers of the hoppiagund the  number of matrices with a dimension given Ny only.
atomic limit, and leads—at the lowest order—to the so- CPT results for static quantities as well as for the single-
called Hubbard-1 approximatichAn expansion int can be  particle spectral function have been shown to agree well with
organized in a systematic diagrammatic setiésThis ap-  different exact analytical and numerical resdit8 Recently,
proach, however, not only fails farof the order of the Hub- a generalization of the method with different cluster shapes
bard repulsionJ, but also for low temperatures, due to the has successfully been used for an analysis of the stripe phase
degeneracy of the ground state. in high-temperature superconducté#sOn the other hand,

An interesting extension of this strong-coupling expan-there is also a serious disadvantage of the CPT at this level:
sion consists in dividing the lattice into clusters of suffi- Namely, the method does not contain any self-consistent pro-
ciently small size such that they can be treated exactly, foleedure which implies that symmetry-broken phases cannot
lowed by an expansion in powers of the hopping between thee studiedthe case of a degenerate ground state, as, e.g., for
clusters>~*0The expansion in the intercluster hopping can bethe Hubbard-I approximation, represents an excejption
formally carried out up to arbitrary order following the dia-  This generates the motivation for the present paper. We
grammatic method of Refs. 5—7. However, going beyond thevill present an extension of the CPT which is based on the
lowest order, is quite demanding numerically and has noself-energy-functional approadt8FA) proposed recenti?
been carried out so far for two-dimensional systems. FoiThe SFA provides a general variational scheme to use dy-
one-dimensionalinfinitely long) chains, on the other hand, namical information from an exactly solvable reference sys-
such an expansion could be accomplished in fact to infinitéem (an isolated clustgrto approximate the physics of a
order in powers of the interchain hoppity. system in the thermodynamic limit. Using the SFA it is pos-

The lowest order of the strong-coupling expansion in thesible to construct a self-consistent or variational cluster-
intercluster hoppintyhas been termed “cluster-perturbation perturbation theory“V-CPT”) which allows to study phases
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with spontaneously broken symmetry. The V-CPT applies tderacting term Hy and an interaction ternil;. We require
arbitrary Hubbard-type lattice models with the restrictionthat the interacting part be local. This allows for a partition-
that the interaction be local. ing of the lattice into nonoverlapping clusters of finite size
Self-consistent cluster methods can also be constructed agich are not connected bM;. In the simplest casehl;
generalizations of the dynamical mean-field theorydescribes an on-site Hubbard repulsion. After having divided
(DMFT)*15as has been shown in recent ye®rg! Similar  the lattice into clusterglabeled byR), the Hamiltonian can
as the CPT, the cellular dynamical mean-field theorybe written in the form
(C-DMFT)® is based on a real-space formulation. The

C-DMFT performs a self-consistent mapping of the lattice _ R#R"
problem onto an effective cluster model with>1 corre- H = [HI"(R) + H,(R)]+ >, H{"™(R,R"), (1)
lated sites and reduces to the standard DMFINigr1. CPT R RR’

and C-DMFT differ with respect to the concept of “bath”
sites. The effective cluster model which is considered in thevhere
C-DMFT contains an infinite number of additional uncorre-
lated (“bath”) sites attached to each of thg original corre- HIM@(R) = ) t, sChaCro 2)
lated sites in the cluster. The bath parameters are determined ab
from a self-consistency condition. This construction ensures
an optimal description of the locatempora) degrees of IS the noninteracting, intracluster part of the Hamiltonian,
freedom but complicates the method considerably. A numeriand Hi(R) is the intracluster interaction pagvhich we do
cally exact evaluation of cluster generalizations of thenot need to specify The remaining term
DMFT could so far only be achieved by using quantum
Monte Carlo technique®:23 HS™(R,R’) = ) Vrar':ChaCR/bs 3
Recently, it has been pointed étivithin the context of ab
the self-energy-functional approa¢®FA) that both avaria-
tional) CPT and the C-DMFT can be considered as extremdS & noninteracting part connecting different clusterser-
limits (ns=1 andng=c) of a more general cluster method cluster hopping The labelsa, b indicate positions within a
where reference is made to an effective cluster model witt¢luster as well as othespin and orbitgldegrees of freedom.
N, correlated sites ands—1 additional bath sites per corre- Cra @nnihilates an electron with quantum numberithin
lated site. Hence, the SFA formally unifies the different clus-the clusterR. For simplicity, translational invariance with
ter approaches and thereby places our proposed method inf@sPect to the “superlattice” vect8 is assumed.
more general context. SFA-cluster calculations for the one- We are interested in the single-particle Green's function
dimensional Hubbard modél strongly suggest that it is Grarb(®)=((Cra;Chi))e Exploiting translational invari-
more efficient to use a cluster as large as possible and sahce and performing a Fourier transformation to the recipro-
ns=1 (no bath sites—as compared to a smaller cluster andcal space, the Green’s function becomes diagonal with re-
ns>1. This is contrary to the opposite limit of infinite di- spect to the wave vect® from the(reduced Brillouin zone
mensions: FoD =« the exact theorynamely DMFT) is ob-  corresponding to the superlattice. In reciprocal space, the
tained forN.=1 andns=co. Green'’s function is a matriG(w) with elementsGg , p(w)
Itis, therefore, particularly interesting to apply the V-CPT labeled by the cluster variablesandb.
to the two-dimensional case and to compare with available Let us define a “reference system” with Hamiltonilin
numerically exact results. The low-temperature antiferroawhere the intercluster hoppinggmef) is switched off,
magnetic phase of thB=2 Hubbard model at half-filling
represents an optimal playground to study the strengths and H = [Hgn"a)(R) +H,(R)]. (4)
limitations of the method. The reason is that both the effects R
of short-range correlations and long-range antiferromagnetic
order manifest themselves in static thermodynamic quantitieBl’ describes a system of decoupled clusters of finite size.
as well as in the single-particle excitation spectrum. For not too large clusters, this system can be solved exactly,
The paper is organized as follows: The variational generand its Green'’s functio’(w) can be computed by conven-
alization of the CPT is introduced in the following section. In tional methods such as exact diagonalizaiig®) or quan-
Sec. lll we present our results for the antiferromagn&tic tum Monte Carlo (QMC). Generally, the corresponding
=2 Hubbard model. One- and quasi-one-dimensional sysGreen’s functionG’(w) is a matrix with indices(Ra) and
tems are dispussed briefly, in addition. _The perfqrmance ofR’b). As Hg“te”:o this matrix is diagonaland constant
the method is analyzed by comparing with numerical resultgyjth respect toR,
from different methods. Emphasis is given to the single-
article excitation spectrum. Finally, our conclusions and an N NV /
gutlook are presentgd in Sec. IV. g (CraiCrrp)) 0 = Ok prCap()- ®
Within the CPT approximation, the Green’s function
G(w) of the full problemH is expressed in terms @' (w)
Consider a system of interacting electrons on a latticeand the intercluster hoppind/g,r, by an RPA-type
with a HamiltonianH consisting of a single-particlgonin-  expressior¥;°

II. VARIATIONAL CPT
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Golw) :[G'(w)—l—vQ]—l, (6) turn, and to minimize the functiof[ G(A)] with respect to
A. However, the following serious problems arise: As the

Here, Go(w), G'(w), andVq are matrices in the cluster in- -pT Green's function is approximate and as there are differ-
dicesa andb. The Fourier-transformed intercluster hopping gt ways to obtain the grand potential, the procedure is not

is given by unique. So there are several ways the potential can depend
1 _ . on the perturbation, and the results will depend on the re-
Vo.ab= T > Vearp€@ QR (7)  spective choice. Moreover, once the grand potential is given
R,R’ in terms of A, there is no physical reason to minimize the

grand potential as this would require a corresponding varia-
The above formalism constitutes the “usual” CPT ap_t|onaI principle to be valid which is generally not the case.

proach. We like to stress that the method is based on th§¢|0\{v' however, we W”.l show that an appropriatg variational
exact solution of finite-size clusters in which spontaneou%rInCIpIe can be found in fact, and a cqrrespond!ng poten_ual,
symmetry breaking cannot occur. Furthermore, it does no q- (1D), can b_e constructed, the stationary point of which
include any self-consistent procedure. Consequentl;ﬁ"ves an optl_m|_zed&. . _
symmetry-broken phases cannot be studied within the usual Exact vanatlonal principles of the ford2[G]=0 or
CPT. 0Q[%]=0 whereX, is the self-energy are actually known for
Our proposal for a proper generalization of the CPT is the? 10ng time from standard diagrammatic thedriLhe prob-
following: First, one should note that in the CPT the pertur-lém is that the functional dependenfG] or O[] is not
bation term is quite arbitrary and can be taken as any onediven expllqltly but must b_e constructe_d via an infinite sum
particle operator. The partition of the noninteracting part ofof renormalized skeleton diagrams. This has impeded the use
the Hamiltonian Eq(1) gives us a certain amount of freedom ©f the variational principles in their original form.
that we can exploit to seek for an optimized starting point. Here, the help comes from the self-energy-functional ap-
As a matter of fact, one has the freedom to ade{8"® any ~ Pr0ach(SFA)™® proposed recently. The SFA provides a way
local single-particle term which is then subtracted—igfter). tp exactly evaluate_ the funcU_opﬂ[E_]feven_ if the func-
In other words, the Hamiltonial) is obviously invariant tional dependence IS not e>_<pI|C|t. This is .achle\./ed at the cost
under the transformation of a restriction of the domain of the functional, i.e., the func-
tional O[3 ] can be evaluated exactly on a certain subsgace

wherelL is the number of superlattice sites.

HI(R) — HIMA(R) + A(R), (8)  of trial self-energies. The idea is then to perform a search for
the stationary point on the restricted sp&cdhe subspacé
Hg”te”(R,R') N Hg“teﬂ(R,R') - SrrAR), consists of all% which are exact self-energies of a reference

) ) ) ) ) system. Clearly, the Hamiltonian of the reference syst&m
whereA(R) is an arbitrary intracluster single-particle opera- must be exactly solvable so that one is able to compute the

tor which can be expressed as self-energy in practice. Furthermore, general argumengs
AR =S Al 9 quire thatH’ must have the same interaction partthsThe
(R)= = abCRaCRD- 9 one-particle part of the reference system, however, is com-

pletely arbitrary and its parameters may be used to optimize
Formally, the rest of the procedure remains unchanged. the trial self-energy. Note that these conditions are fulfilled

If the perturbative approach was exact, the results wouldor the case considered here. Constructing the reference sys-
not depend o at all. As a matter of fact, this can easily be tem by dividing the lattice into small clusters, the SFA con-
seen in the noninteracting limit in which the CPT becomescept just yields the desired variational CPT.
exact?? Here the perturbation cancels out. To verify this, it is sufficient to realize the following:

In the interacting case, the resdtbesdepend omA. How-  Equation (6) which approximates the Green’s function
ever, this is not a shortcoming. On the contrary, this allowsGo(w) of H in terms of the Green’s functio®'(w) of the
us to “optimize” the results of the CPT calculatibrindeed,  system of decoupled clustert and the intercluster hopping
we may think of choosingd such that the single-particle Vo, can be cast into the form of a Dyson equation,
dynamics of the cluster problem is “as close as possible” to
the exact dynamics of the lattice. In this way, one can hope Go(®) = (G (w) ™ - Z(w) ™ (10
that the perturbative correction is small and that the result of © . )
the perturbative calculation is accurate enough. The questidiere Gg (@) =(w+u-t=Vg)™" is the free Green’s function
is how to perform this optimization in practice. Note that the Of the infinite lattice given in terms of the chemical potential
answer to this question also solves our original problem ag., and the intracluster and intercluster hoppingnd Vg,
one may choose the perturbatidrto represent a “ficticious”  respectively, and(w) is the cluster self-energy. One can
symmetry-breaking field ternta staggered magnetic field, therefore state that the CPT consists in approximating the
for examplg since this has the form of a one-particle opera-self-energy of the lattice probleid by the (Q independent
tor. self-energy2(w) of the reference systei’.

A straightforward idea to optimizA (or the strengtth of The optimization problem mentioned above is now solved
the symmetry-breaking fieJdvould be to express a thermo- in the following way: VaryingA corresponds to varying the
dynamical potentia(the grand potential), for example in one-particle parameters of the reference syst€mthe in-
terms of the CPT Green’s functid®, which depends oA in  teraction part being kept fixed. For ady the reference sys-
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tem can be solved to get the self-ene@yThus, the self-
energy is parametrized a%=3(A). Furthermore, the
Green’s functionG’=G’(A) and the grand potentiaf)’
=)'(A) of the reference systefd’ can be calculated. Fol-
lowing Ref. 13, the self-energy-functional for the trial self-
energyX(A) can be evaluated exactly, i.€)[2(A)] can be
calculated. This yields a functio(A)=Q[2(A)] the ex-
plicit form of which is taken from Ref. 13,

-1
G iwy) ™ -3(Aiwy)

O O O OO

@)

FIG. 1. Decomposition of théd=2 square lattice intoy/10
X v10 clusters.

QA)=Q'(A)+T2, > trin
n Q
—-LTY trin(-G'(A,iwy). (12)

Here, the frequency sums run over the discrete Matsubarg only appears in an intermediate step in the Hamiltonian of
frequenciesawy, L is the number of cluster®r, equivalently, the reference systeir’ to parametrize the trial self-energy.
the number ofQ points, and bold symbols denote matrices Thys, h is a variational parameter without a direct physical
with respect to cluster indiceas and b. Note that for the  meaning in the original lattice Hamiltoniad. However, it
evaluation of the grand potentigll) one needs the CPT goes introduce a true staggered field in the refer¢cicste
Green's function, Eq(10). Searching for the stationary point HamiltonianH’.
of the function(}(A) means to search for the stationary point  For the numerical calculations we first consider a decom-
of the exact self-energy functional on the restricted domairposition of the lattice into {10x y10” clusters as indicated
of H’-representable self-energies. This prescription tells Ut Fig. 1. Following Ref. 24, open boundary conditions are
which approximate cluster self-energy as best as possiblgsed. To evaluate the self-energy functional, the grand poten-
describes the exact one. tial Q'(h) and the Green’s functio’(h) for a cluster are
computed using the standard Lanczos algorithifibe self-
Il. RESULTS energy is obtained as(h)=G/(h)"*-G’(h)". The sum over

. _ Matsubara frequencies in E@.1) can be transformed into an
We have applied the variational CRV-CP resented . . ; :
above 1o the Eﬁ] le-band Hubbard ml?) del a;r)hglf-fillin an dmtegral over real frequencié$ After frequency integration
ero temperat reg The Hamiltonian reads 9 andQ summation, we obtaifik(h) from Eq.(11). A Lorent-
z perature. ont zian broadening — w+i 8 with finite §=0.1 is used. For this
H=>t e, +03n .. 1 choice typically 500Q points are sufficient for convergence
rzr, Lo zr" Ll (12 of the results. We have checked that the results do not sig-
’ nificantly depend or.
Here ¢, , annihilates an electron with spin projectian
=1,| at the lattice site, n, ,=c/ ¢ ,, and the hopping ,, A. Static quantities
is equal tot and nonvanishing for nearest-neighbor sites Usi : _
h sing Eg.(11), the grand potential)(h)=Q[2(h)] has
(r,r") only. Throughout the paper=1 sets the energy scale. been calculated fo=8 at half-filling andT=0. The result

In principle, the “best” result is obtained by using a com- is shown in Fig. 2. As anticipated) depends orh. Three
pletely general sing_le-particle terl. However, this would stationary point's ére found, a maximum ket 0 a'nd o
imply the computation ofX(A) for a too ""“99 numb_er of (equivalent minima for nonvanishing valuds~ +0.18. This
parameters r_na_lklng the p“’b'em numerlcally_|mprzict|cal."Fo eans that the interacting system “prefers” a symmetry-
this reason, it is more convenient to start with a "guess” ofy, e, state with a nonvanishing staggered magnetization
the appropriate physical symmetry-breaking field. For haIf—aS one would have expected physically.
filling, a good candidate is certainly a staggered field produc- The stationary point &t=0 corresponds to the usual CPT.
ing a Néel ordered state. For simplicity, we consider cIuster%orhzo the ground state of a single cluster shows antiferro-
co_ntaining an "_“eger humber of antiferromqgnetic unit CeIISmagnetic correlations but is nondegenerate. Hence, the clus-
With the notationa=(r,0), the corresponding has the o Green's function and the self-energy are spin indepen-
form dent. This implies that there is nmherentcontinuation of

Ay =hb07, 7, (13) the antiferromagnetic correlations across the cluster bound-

’ ’ aries within the usual CPT. Consequently, the order param-

where 7, = +1(=-1) on sites of sublatticé (B), z,=+1 for  eterm=0. The binding energy per site that is gained by a
spin projectiono="1, |, andh is the strength of the ficticious coherent matching of antiferromagnetic clusters for fihite
staggered field. The optimal value bfwill be obtained by can be read off from Fig. 2 to b&(Q ~0.043. This is small
minimizatiorf? of Q(h)=0Q[=(h)] as given by Eq(11). Ob-  as compared tdJ|=4t2/U=0.5 as there are contributions
viously, h=0 corresponds to the usual CPT approximation.from bonds connecting different clusters only.
We stress again that via the transformati8)) the staggered From the value of the grand potential at the optimal field
field is strictly equal to zero in the original Hamiltonigh).  h the ground-state energy is obtained BsQ+ u(N). We
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FIG. 2. Dependence of the grand potenfinl(per sitg on the
ficticious staggered field as obtained by evaluating the self-energy
functional Q=0Q[2(h)]. The lattice is decomposed intoy10
X 10" clusters(see Fig. 1. Parameters, on-site repulsidf=38, 0 2 4 6 8

0 041 02 03
h

-
o

temperaturel =0, half-filling. The optimal staggered field is found U
to beh=+0.18. The energy unit is given by the nearest-neighbor

hopping.

have performed calculations for differedt Figure 3 shows
E, as a function ofU for the respective optimal ficticious

FIG. 4. Double occupancyd=(n.n, ) calculated asd
=dQ(u,U)/dU, potential energy per sitEy,=Ud, and kinetic en-
ergy per siteE i, =Ey—Epq as functions ol obtained for the same
system as in Fig. 3 via V-CPT.

field h (V-CPT) and forh=0 (CPT). The results are com-

pared with those of an exact-diagonalization calculation for

the isolated cluster witiN.=10 sites(direct ED. Further-
more, the results of a variational Monte CarftyMC)
calculatiort® using a Gutzwiller-projected symmetry-broken
trial wave function and the results of an auxiliary-field quan-
tum Monte Carlo(QMC) study?® are displayed for compari-
son. VMC and QMC data for different cluster sizNs are
extrapolateéf3°to N,= (and toT=0, in the latter cage

As compared to the ground-state energy that is obtained
by diagonalization of an isolated clustédirect ED”), the
(usua) CPT result represents a considerable improvement, as
can be seen in the figure. Note that C@nhd V-CPT) recover
the exact result in the noninteracting limit. The gain in bind-
ing energy is due to th@approximatginclusion of the inter-
cluster hopping. A comparison of CPT with Monte Carlo
results(VMC, QMC), however, still shows a sizable discrep-
ancy. On the other hand, our variational CPT method per-
fectly agrees within the error bars with both Monte Carlo
results forEg in the entireU range. This shows that a proper
description of long-range order is essential to get the ground-

FIG. 3. U dependence of the ground-state energy perEjtat
half-filling and zero temperature as obtained by different methods;
direct exact diagonalizatiofsquarey usual(nonvariationalh=0)

4 6 8 state energy accurately. Note, however, that for the ground

state itself and for dynamical quantities, the inclusion of
short-range correlations is at least equally importaet be-
low).

Let us discuss a few other static quantities. Figure 4
Shows the double occupandy=(n,,n; ) as a function oU.

CPT (diamonds, and variational(h optimized CPT (V-CPT, 'I_'he double occupancy is obtained by numgrlcal dlffer_enna-
circles for V10x 10 clusters. Additionally, results from a varia- 110N Of the grand potential=d(}(x,U)/dU (at its respective
tional Monte Carlo Ca|cu|atior(crosse$ (Ref 28 and a QMC minimum ValuQ. It monotonously decreases from the nonin-
simulation(error barg (Ref. 29 are shown for comparison. VMC  teracting valued=(n;}n;|)=0.25 and correctly tends to ap-
and QMC results are extrapolated ha=c. VMC error bars are  proach the strong-coupling limd=0. Already forU of the

smaller than the symbol size.

order of the free band width, a strong suppressiord a$
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h h
FIG. 5. Dependence of the grand potentibl(per sitg on the FIG. 6. Q(h) as in Fig. 5 but for an infinite one-dimensional

ficticious staggered field as obtained by evaluating the self-energy Hubbard ladder. The reference system consists of figite2 and

functional Q=0Q[%(h)]. Result for theD=1 Hubbard model al. 6 2) ladders. Arrows indicate the optimal value of the ficticious
=8, T=0 and half-filling. Reference system, decoupled set of Hub-staggered field.

bard chains with 10 sites each. The inset displ@yk) on a finer

scale. The results are not so straightforward if one considers a

one-dimensional two-leg Hubbard ladder. The reference sys-
found (d~0.052 forU=8). This indicates a quick crossover tem consists of decoupled finite ladders withy,rungs, i.e.,
from a Slater-typeitinerant momentsto a Heisenberg-type N =Ny gX 2. Results folN;ng=2, Nyyng=4, andNy,,,=6 are
antiferromagnetlocal momentswith increasingU. The po-  shown in Fig. 6. Despite the fact that the system is one di-
tential energyE,,;=Ud and the kinetic energi,—E,,; with  mensional, the calculations predict a finite value for the stag-
Eo=Q+u(N) andu=U/2 are shown in addition. Despite the gered field and for the staggered magnetization. Clearly, this
fact that local-moment formation is almost completed foris an artifact of the remaining mean-field character on a
U=8, there is still a considerable kinetic enerds,,, longer length scale. However, we can see from Fig. 6 that the
~-0.915. This has to be attributed to the residual kineticoptimal value ofh rapidly decreases when improving the
exchange. approximation, i.e., with increasing size of the clusters in the
reference system. This is consistent with the fact that no
finite magnetization is expected in thg,;— o limit.

It is interesting to see what happens if one uses the
One may ask whether or not the variational procedureN,,,,x 2 ladders in order to build up a true two-dimensional
always yields an antiferromagnetic state, i.e., also in thossystem. The results are plotted in Fig. 7. In this case, the

cases in which this is not expected physically. For examplepptimal value ofh is much larger than in Fig. 6, and the
an antiferromagnetic state is prohibited in one dimension aerder parametesee belowremains finite and depends only
quantum fluctuations break up any long-range spin otder.
Mean-field methods, such as Hartree-Fock, however, often -4.48
yield a Néel state also in one dimension. In a strict mean-
field theory, spatial correlations are neglected altogether. Due€2 -
to the inclusion of short-range correlations, the variational
CPT is clearly superior as compared to mean-field theory. -4.49}
For any finiteN., however, longer-range spatial correlations
are neglected. Hence, the V-CPT may be considered as ¢ -
mean-field approach on a length scale exceeding the cluste
dimensions. We therefore expect “mild” reminiscences of  -4.50
typical mean-field artifacts.
To test this, we have performed calculations for the one- i f4x2 ]
dimensional Hubbard model. The reference system consists 6x2
of a decoupled set of finite Hubbard chains wit sites -4.5'|0 A '0'2' N '0 4
each. Figure 5 shows the grand potenfliahs a function of : h :
the ficticious staggered field for U=8. As one can see, the

minimum of () is given byh=0, i.e., the V-CPT predicts the FIG. 7. Q(h) as in Fig. 6 but now coupling the finite ladders

system to be a paramagnet, as expected_ physically. We COMrx 2 and 6 2) to a two-dimensional square lattice. Results using
clude that for this case quantum fluctuations are taken intghe decomposition of the square lattice intex 2, V8% \8, and

account in a sufficient way to prevent the system from be-10x 10 clusters are shown for comparison. Arrows indicate the
coming antiferromagnetic. optimal ficticious field.

B. One-dimensional case

]
V10xV10 D=2
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weakly on the cluster size. This signals that for the two-
dimensional system the antiferromagnetic state is genuine, in u

cont_rast tob=1. . . FIG. 9. Comparison of the staggered magnetizaias a func-
I_:lgure_ ! al§o ShOVY‘S the r(fsults for the two—d@ensmna[ion of U at half-filling obtained by different methods: variational
laﬂce Ju_smg dlﬁ_ereql square_ C|USthS}Q, \e‘8_>< \58,_and CPT (V-CPT), variational Monte CarlgVMC) (Ref. 28 and quan-
V10X y10 (the V8 X v8 cluster is obtained by discarding the {ym Monte Carlo(QMC) (Ref. 30, see text. The arrow indicates
rightmost sites in the first and the third line of thd0  the resultm=0.62+0.04 of a Green’s-function Monte Carlo study
X V10 cluster shown in Fig.)l The comparison shows that (Ref. 32 for the two-dimensional Heisenberg model.
convergence with respect to the functiél(h) is not yet ) ) ) .
achieved for the largest cluster size considered here. In tnearily breaks the translational symmetries of the lattice: The

limit of very large clusters the SFA becomes formally exact@PProximate self-energy is obtained from a translationally
as the trial self-energ® is defined to be the exact self- noninvariant reference system which results from the decom-

energy ofH’. In this limit, we expect the location of the position of the original lattice into decoupled clusters of fi-
minima (xhy) of the func'Eion Q(h) to go to zero, or the nite size. This implies that the local Green'’s function, which

function Q(h) to become flat in a region arourit=0. The is computed from the self-«_anergy using the Dyson equation,
reason is that in the infinite system a finite value for theand thus the _Iogal occupations cannot be_expected o be ho-
mogeneouswithin a sublattice It is interesting to see, how-

staggered magnetization will already be produced by an in- . .
fini?egsimally sr?]all field. Note that fo)rl the pseries oﬁ<2>,/ 4 vern that this is not a severe drawback: Fig. 8 shows that the

X2, 6X 2, etc., clusters, the reference systeih doesnot variations of the spin-dependent local occupation and the
approach the original two-dimensional Hubbard madel local ordered moment are very moderate within a sublattice.
A much more inhomogeneous state with strongly varying
local occupations is obtained when coupling the ficticious
C. Order parameter field h to two sites within the cluster only. This variant has
While the staggered magnetizatiom for the one- been con§|dered using thg.px Vl(.) and theyBx v8 CIUS.'
ters. In this case, too, a finite optimal value foand anti-

dimensional ladder system rapidly decreases with clust .
size,m remains finite and depends only weakly on the Clusteerfrerromagnetm long-range order are foufribt shown. The

size in case of the two-dimensional system. Differences in grand potential} at the optimal field, however, is consider-

e found o be ess han 2%-2% for he iferent cbsielt 0% o0 1 e (o0 ase v couped 0
geometries considered in Fig. 7. A relative difference ' P

Am/m=0.005 is found when comparing the result for the breaking of translational symmetry, a homogeneous state is

. . .. “restored as far as possible.
10-site and the 8-site cluster. The staggered magnetization IS The U dependence of the staggered magnetization is plot-

defined asn=00/dhey in the limit hg,;,— O wherehg,, is the ted in Fig. 9 in comparison with the VMC resifs

strength of an externgbhysical staggered fieldnot to be . . ; )
confugsed with the ficiiﬂéigus fieldh)ggAdding adrespective (Gutzwiller-projected symmetry-broken trial wave function
' and the results of auxiliary-field quantum Monte Carlo

field term to the Hamiltoniat and performing the deriva- (QMC).20 within the QMC, the order parameter is obtained
tive with respect td,, of the grand potentiglat the optimal ; . . . ) . .
N . i - | from simulations of the static spin-spin correlation function
ficticious field strengthh), yields m=(1/No)Z,(-1)"'((n, ;) . .
B h it ithi luster at low temperatures. It is assumed that the system effectively
, (n.,)) where r runs over sites within-aclusteiiNe - pepaves as if aT=0 when the thermal correlation length
s the o number of cluster sites, and(n.,)  exceeds the cluster dimensiGisYMC and QMC data are
=(-1/mJ . do Im G ,(0+i0%). This is the usual expres- extrapolated toN,=ce.28:3
sion for the staggered magnetization, but averaged over the As one can see from Fig. 9, the variational CPT yields a
cluster. For the two-dimensional Hubbard modeUat8 we  staggered magnetization which strongly disagrees with QMC
find m~0.80. data. In the Heisenberg limit —, the V-CPT seems to
Figure 8 shows the local average occupation,) for the  predict the staggered magnetization to approach unity. How-
sitesr within the y10X y10 cluster fortU=8. As any cluster ever, whether it really becom@s=1 in this limit is not clear
approximation(constructed in real spagehe V-CPT neces- from our calculations yet. On the other hand, physically, one
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would expect a reduction of the staggered magnetization due L L
to transverse spin fluctuations. In the two-dimensional B i
Heisenberg model, several methods starting from the sim-
plest spin-wave theory up to Monte Carlo methods, predict a
reduction of the magnetization to about 60% of its saturated
value®3 On the other hand, the V-CPT agrees well with the
results of the variational Monte Carlo study, where trans-
verse spin fluctuations are not fully taken into account as
well. Furthermore, there is a very good qualitative agreement -
with respect to the size ah and the trend ofn(U), when B L
comparing with the results of a dynamical mean-field 7 el
calculatio* (as the DMFT calculation has been performed -10 -5 0 5 10
for the D= hypercubic lattice, one must rescale the ener- ®
gies by a factor of 4 to obtain the same variance of the
noninteracting density of states which may serve as the en- FIG. 10. Spin-dependent local density of statBS) p,(w)
ergy unij. (staggered average over the sites in a clystbtained for the same
This appears to be somewhat surprising since spatial cosystem as in Fig. 3 via V-CPT fdd=8.
relations are neglected altogether in the DMFT and also in

the VMC calculation where local Gutzwiller projectors are icjous staggered field and the intracluster hopping, becomes
used, while the V-CPT does include the coupling to shortyaiher flat in a wide region around the stationary point. This

range correlations on the scale of the cluster size. One mugbqyires an improved accuracy in the evaluation of the self-
bear in mind, however, that the size of the order parameter ignergy functional which is difficult to achieve with a finite

strongly affected by the coupling to long-range spin excitaajye for the(Lorentziar broadening parametet Work in
tions. Recall that in two dimensions and for any finite tem-ihis direction is in progres%.

perature the Mermin-Wagner theor&r shows that antifer-

romagnetic long-range order is destroyed due to spin waves

with wave vectorq—0. Hence, the overestimation of the D. Dynamical quantities

staggered magnetization could be ascribed to the residual while the V-CPT must be considered as mean-field-like
mean-field character of the V-CPT on a length scale exceedn a length scale exceeding the cluster size, it does account
ing the size of the clusté?. This view is also substantiated for short-range spatial correlations as the cluster problem is
by our results for the one-dimensional Hubbard ladder whichsolved exactly. For the two-dimensional Hubbard model at
have been discussed above: To achieve a clear suppressiont@ft-filling, short-range spin correlations are known to mani-
long-range order within the V-CPT, reference systéfimte  fest themselves in dynamical quantities such as the local den-
ladderg as large as & 2 have been require@ig. 6). Thisis  sity of states.

spin-T i spin-{

local DOS (arb.un.)

an indication that in two dimensions ;’éll_OX v10 cluster  Figure 10 shows the spin-dependent local density of states
mlg_ht be too small to include non-negligible effects of spin(DOS) p,(w) for U=8 which is calculated as a staggered
excitations on the order parameter. ~average over the sites in a cluster,

There is another important point which must be taken into
account in this context: For a cluster of a given size, an _AS
optimal V-CPT calculation should not only consider the fic- polw) = ch (= D"pr @), (14)

ticious staggered fieldh but any one-particle term in the

Hamiltonian of the reference system as a variational paramwhere p; (o) =(=1/m)Im G, ; ,(w+i0%). Roughly, the spec-
eter. It is in fact reasonable to assume that there is room fdrum consists of two broad peaks aroumd+5 and two
improvement: Consider, for example, the hopping betweesstrong and narrow peaks at abaat +3. For both the high-
nearest neighbors within the cluster as an additional variaand the low-energy excitations a strong spin polarization cor-
tional parameter. Actually, this has already been consideretgsponding tan~0.80 is clearly visible. There is also some
in Ref. 24 for theD=1 Hubbard model. There it was found finite but low spectral weight within the insulating gap
that the optimal intracluster hopping is increased as comwhich, however, is an artifact of the finite Lorentzian broad-
pared to the nearest-neighbor hopping in the original lattic&ning (6=0.1).

although the effect turned out to be rather weak. Here, the The high-energy excitations in Fig. 10 are interpreted as
situation is different due to the antiferromagnetic long-rangecharge excitationgHubbard “bands). While these are due to
order: In the limitU —«, an increased intracluster hopping local correlations, the low-energy featured w= +3) result
implies an increased effective exchange interactiinAs-  from (short-rangg nonlocal correlations. The latter will be
suming the optimal ficticious fielth to be unchanged, this identified as being due to the coherent propagation of a qua-
tends to decrease the order paramaetewe have performed siparticle, namely a “spin bag.” Physically, this spin bag
corresponding calculations which show that a variational aderiginates from the frustration induced by the motion of the
justment of the intracluster hopping at a considerably in-additional bare holgelectron in the antiferromagnetic spin
creased value is very likely in fact. However, a conclusivebackground. The different spectral features can easily be
result has not yet been obtained. The reason is that the graidentified: The high-energy features are due to the bare par-
potential as a function of two variational parameters, the ficticle “rattling around” within the spin bag. This gives rise to
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an incoherent motion and broad energy “bands,” i.e., the in- T X M T
coherent lower and upper Hubbard “bands” with a width set
by the energy scale of the bare bandwittt=8. The low- ®

8
6
energy features, on the other hand, correspond to the above 4 - 9
2
0

mentioned coherent motion of the spin bag resulting in a e ~

strongly renormalized quasiparticle band with a width essen-

tially given by 2J|=8t>/U=1. >

Note that these peaks are absent in a mean-field approacl -

where off-site correlations are neglected altogether: A recent —4- ]

DMFT study?* of antiferromagnetic order shows a rather fea- -6 ¥

tureless DOS consisting of the twolarized Hubbard -8 8

bands only. Contrary, the effect of antiferromagnetic short-

range correlations can be included in a cluster extension of 6

the DMFT. Additional structures appear in the DOS within B | ’ 4
2
0

CPT

the dynamical cluster approximatigipCA), for example. — a
Some indications of the mentioned low-energy features canv_CPT
be found by using the noncrossing approximatibiCA) to L 12
evaluate the DCA® For a conclusive interpretation, how- | g — - .

ever, the effects are too weak—probably due to the limited r H

cluster sizga 2X 2 cluster in reciprocal spagand the finite
temperatures considered.

More elucidating is a comparison of tlkeresolved spec-
tral density with available results from QMC simulations for
isolated but larger clusters. In order to illustrate this point,
we have plotted in Fig. 11 the spectral functiép(w) for
U=8 along high-symmetry directions in the Brillouin zone
of the chemical lattice. The result is compared with the result -
from the usual CPTh=0) and with numerically exact QMC e I v F

5 37 whi i -
data from Grobeet al>’ which are available for aiN.=8 -6 F.-—o- z ] { { I 1 { I -
1 1 1
X M r

%I}{i E--:-s{}%

e - -

()]

QMmC

r * z 3 {* q

X 8 isolated cluster and finite but low temperat(ie=0.1).
The spectral functiorA,(w) obtained from the maximum- -8 T
entropy methodsee Ref. 3Yis shown in Fig. 11(bottom). k
Since the spin-spin correlation lengthTat 0.1 considerably
exceeds the cluster dimensions, the QMC result can be con- FIG. 11. Density plot of the spectral function for the=2 Hub-
sidered as a good approximation to the0 limit. At half- bard model atU=8, half-filing andT=0 as obtained by the CPT
filling the spectrum almost exactly respects the constrainwith h=0 (top) and by the variational CPT with optimal ficticious
Ax(@) =Ay1q(-w) with q=(7r, ) which is predetermined by staggered fieldh# 0 (middle). The lattice is covered by10x y10
particle-hole symmetry. This must be considered as a strongjusters. Bottom, QMGmaximum entropyresult, taken from Ref.
check of the numerics. As for the finite system there is no37. for the same parameters but for a finite low temperafure
spontaneous symmetry breaking, the spectrum is spin inde0.1 and an isoIatedBS_ cluster. Dark(light) areas correspond to
pendent and shows perfect translational symmetry with relarge(smal spectral weight.
spect to the chemical latticgoeriodic boundary conditions Eq\rier transformations with respect to bofR#r and R’
have been used o _ _ +r’. Taking the diagonal element, ensures a positive definite
This must be kept in mind when comparing with the resyit, A (w) =0, and implies a spatial average over the clus-
V-CPT. In the V-CPT the real-space spectral functionter sites(see Ref. 1§ Due to this spatial average, the spec-
AR,r,R’r’,a-(w):_(1/77)|m<<CR,r,(r;C;;r’rrg»get) is spin depen- tral function is spin independent—even in the symmetry-
dent, and translational symmetry holds with respect to thdroken state(an integer number of antiferromagnetic unit
superlattice vector® only. For a proper comparison with the cells are included in a single cluster
QMC data we therefore compute The CPT spectral function is calculated accordingly but
1 for h=0 (Fig 11, top. This means that any signatures of
- ik(R+r-R’-r") long-range order are switched off in the spectrum, and only
Adw) = LN 2 e Arrrirol@) (19) short-range correlation@up to the cluster boundaripsre
retained. Both, the CPT and the V-CPT result, respect the
see Fig. 1Xmiddle). If there was no antiferromagnetic order condition Au(@)=Asq(-w) with q=(7,7) due to particle-
and no artificial breaking of translational symmetry due tohole symmetry. Note that in both cases the spectral function
the cluster approximation, i.e., Az ; g1/ ,(w) depended on s defined for any point in the Brillouin zone, contrary to
the differenceR+r—R’—r’ only, this would correspond to the “direct” cluster methodQMC).
the usual Fourier transformation. Hefg,(w) is actually the As already noted in the discussion of the local DOS, the
diagonal elemen®, ,(w) obtained from two independent V-CPT spectrum clearly consists of four spectral features,

CRR rr’
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two high-energy “bands” which show strong damping effects IV. CONCLUSIONS AND OUTLOOK
(incoherent Hubbard bandsand two narrow low-energy

bands WhiCh represent the coherent dispersion of a quas_ip%—any cases characterized by strong local and nonlocal but
ticle (spin bag. This four-band structure is also evident in g, short-ranged correlations on the one hand and by long

the QMC result. Comparing the energetic positions, d'Sperfange, e.g., magnetic, order on the other. Here, we have pre-

i;)r?ss,’t;\tlgl?r?;’tr?gdawrlggr]r?e%ft t&ﬁgotﬁrestﬁﬂcg as! fgggﬁjrﬁqsisoggented a variational extension of the cluster-perturbation
9 P heory which combines the exact diagonalization of isolated

most perfect. . ; : o
Roughly, the CPT and the V-CPT spectra appear to bémall clusters with a mean-field concept to build up an infi-

similar but looking at finer structures it is obvious that the Nte lattice. Conceptually, th_e method is based on.the recently
CPT predicts a spectral function which is quite different:ProPosed self-energy-functional approa@FA) which sets
First, and most important, there is no coherent low-energy/P & Very general variational scheme to use dynamical infor-
band in the CPT spectrum. This shows up when comparing@tion from an exactly solvable reference systeim(the
with the V-CPT around’ for »<0 (or aroundM for >0),  I1solated clustgrto approximate the physics of a systetn
for example: In agreement with the QMC result, the V-CPT(the D=2 Hubbard modglin the thermodynamic limit.
predicts a dispersive low-energy band which extends con- We have applied the variational CRV-CPT) to the Hub-
tinuously with spectral weight fronl’ to X and which is bard model at half-filling to study the antiferromagnetic
clearly separated from the more incoherent feature at highgrhase at zero temperature. The diagonalization of Hubbard
energies. On the other hand, in the CPT spectrum this islusters of finite siz&typically N.=10) is performed using
missing. In thel'-M direction the low-energy features turn the standard Lanczos algorithm. In comparison with results
out to be too broad and are discontinuously split into severarom variational Monte Carlo and quantum Monte Carlo
branches in the CPT spectrum. The dispersion arotisdat  studies, the V-CPT predicts the ground-state energy and re-
variance with the QMC data. Finally, at higher excitation |ated static quantities with high accuracy. While long-range
energies, several weak and almost dispersionless bands cahtiferromagnetic order is obtained for tBe=2 model, the
be found in the CPT spectrum while in the V-CPT there is &.cpT yields a paramagnetic state ©r=1. This indicates
comparatively smooth incoherent background. We concludg,a; quantum spin fluctuations which inhibit an ordered
that the variational procedure is crucial to achieve a qua,l'tabhase in theD=1 case are included properly. For one-
tively correct reproduction of the one-particle excitation yinensional Hubbard ladders the method in principle incor-
Spﬁ_‘ﬁ;ug]higﬂ e?lf :ggszonh?sregst ?gﬁj\:\?ﬁrt"ﬁfﬁ?ﬁ:g\li@Eg%cl\ljl?ealy predicts antiferromagnetic order; however, the stag-
studie$’ it is well known that the quasiparticle band is the gered magnetization is small and tends to vanish when
increasing the number of rungs in the clustep to 2x6).

dispersion of a spin bag, i.e., an additional h¢déectron >
which is dressed by the local distortions of the spin order tha-tr.he finite but ana"“ fqr_the ladder system should pe con-
sidered as a mild reminiscence of a typical mean-field arti-

are produced by the motion of the hole in the antiferromag: ) : .
netic background. Since the linear extension of the spin baffict Which shows up because longer-range spin correlations

is about 3—4 sites only, this picture is already captured by agxceeding the cluster dimensions are neglected. A similar
exact diagonalization of an isolated small cluster. Howevereffect is seen for th® =2 system: Here the approximation is
the emergence of a coherent band requires more, namely&¥en stronger because the linear dimension of the cluster
coherent motion of the spin bag on a larger length scale. Thigwst be reduced even more to keep the number of cluster
is captured in the QMC results for a large cluster of 8  sites N, constant. For theD=2 system, antiferromagnetic
sites. Of course, the perturbative treatment of the interclustesrder is expected physically and is also found by the calcu-
hopping within the CPT framework carries out a part of thelations. However, longer-ranged spin correlations give rise to
job. This results in a string dispersion in the V-CPT spectruma considerable reduction of the order parameter which is not
with a bandwidth of about|2/=8t>/U=1 as can be read off seen in the V-CPT for the maximum cluster size that has
from Fig. 11. Also for the plain CPT the perturbative cou- been considered.

pling of the clusters works into the right direction: Although ~ An important advantage of our method is that local and
the spectrum more or less consists of a two-band structureff-site short-range correlations within the ordered phase can
there is a tendency towards the formation of a gap withinbe treated exactly. This shows up when looking at dynamical
each of the two bands, i.e., a coherent band tends to split offjuantities, such as the spin-dependent local density of states
Within the plain CPT, however, the motion of the dressedor the spectral functiod\ (w). The spectral function as cal-
hole cannot be completely coherent as there is no definiteulated from our self-consistent cluster approach agrees ex-
alignment of spins across the cluster boundary. Upon reachremely well with the QMQmaximum-entropyresult for an

ing the cluster edge, the spin bag encounters a misaligne8lx 8 Hubbard lattice at finite but low temperatures. In par-
spin with 50% probability and is partly reflected back insideticular, it is possible to reproduce the dispersions, widths,
the cluster. This partial loss of coherence explains the severaihnd weights of the different spectral features. This is due to
bands at higher energies in the CPT spectrum which are althe fact that the typical four-band structure arises not only
sent in the V-CPT. The variational generalization of the CPTfrom local correlations which are captured in dynamical
cures this problem by ordering spins antiferromagneticallymean-field theory, for example, but also from a strong cou-
with help of the ficticious staggered field not only within but pling to off-site spin correlations. The formation of a spin-
also across the cluster boundaries thereby allowing the cdsag quasiparticle as a hole which is dressed by the distor-
herent spin-bag propagation. tions of the antiferromagnetic spin structure that are

Correlated electron systems in two dimensions are in
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introduced due to its motion, is contained in the exact treatis the fact that there is no coupling to bath degrees of free-
ment of the cluster. In addition, the mean-field coupling ofdom which is inherent to the cluster extensions of the DMFT.
the individual clusters mediates the information on the spirRecent resul® for the D=1 Hubbard model have shown
order across the cluster boundaries and thereby gives a qualhat it is in fact more efficient to consider larger clusters
tatively correct description of the coherent propagation of thenstead of a coupling to bath sites. For the two-dimensional
quasiparticle. This is essential to reproduce the low-energ¥ase, however, there is no answer to this question at present,
quasiparticle b_and in 'ghe spectrum. ) and it is unclear whether or not bath degrees of freedom
There are different interesting routes to be explored in theficiently speed up the convergence to the exact solution
future: A straightforward but techn|cally_amb|t|(_)u§ idea is toith increasing cluster size. Note that a hopping to uncorre-
employ a quantum Monte Carlo technique within the Se”’la’[ed bath sites is nothing but a modified one-particle part of

_energy-functlonal ffam_e‘.'vork- This WO.UId _oﬁer the possibil- the Hamiltonian of the reference system and thus completely
ity to use a decomposition of the lattice into larger clusters

which is expected to be important for a reliable estimate ofn line with the general concept of the self-energy-functional

P P ; pproach. In particular, it can be very interesting to consider
the order parameter, for example. Another straightforwar n extension of the V-CPT with a coupling tdeawbath sites
extension of the method concerns the number of variation%

arameters. For our present purposes the consideration of 3 has been done in previous studie¥! There are at least
P : present purp . R0 reasons for that. First, this bridges the gap to the cellular
single parameter, the ficticious staggered fibJdhas been

' . . . dynamical mean-field theogC-DMFT)° which is obtained
sufficient. It is obvious, however, that the results should |m—in the limit of infinite number of bath degrees of freedom.

prove when treating any one-particle parameter within th econd, bath sites are expected to become important for the

cluster as a variational parameter. This might also affect th )
magnetic properties because of the direct link between ho g_tgdy of doped systems as they can serve as a particle reser

ping parameters and the effective exchange interactions.

Here an improved numerical evaluation of the theory is re- For doped systems, the variational optimization of one-

uired which is free from the use of broadenin arametersoartide parameters should include the on-site energy of the
gee Refs. 13 and 27 gp ¢luster sites as well as the additional consideration of a few

An important concentual problem of the method Consistsbath sites. This is necessary to realize fillings which are not
in the faf:)t that a suitaﬁle re?erence system can be found icommensurate with the cluster size and to achieve smooth
y Hoping dependencies in the entire doping range.

tcrﬁzerg;tlr?cct?otr?r}:c,SItthealtnftsrra;g?jgltseErr:lslu?jri]r!y. Tehe re;sn%r;rfg;t_ In the present paper we have focused on a ficticious stag-
. . . ding, €.g., a neare gered magnetic field as a variational parameter to describe
neighbor Coulomb interaction, the partitioning of the infinite

lattice into decoupled clusters is impossible without Cuttingantlferromagnet|c ang—range order. Mo.re.oyer, one can en-
the intercluster interaction. General argumédtsowever visage to introduce in the same way a ficticious pairing field

) . o Lo ' ._in order to study off-diagonal long-range order and supercon-
require that the interaction part of the Hamiltonian of theductivity While this introduces the numerical difficulty of
reference system be unchanged. Consequently, there is X

need for an extension of the theory to models with nonloca fagonalizing clusters without fixing the particle number,
interaction terms. This will be the subject of a forthcoming such an approach offers the exciting perspective of analyzing

paper® the effects of short-range correlations in the superconducting

The V-CPT compares with the recent cluster extensions O[Phase.
the DMFT:16—21Char.acter|st|c to both approaches is the com- ACKNOWLEDGMENTS
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