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Based on the self-energy-functional approach proposed recently[M. Potthoff, Eur. Phys. J. B32, 429
(2003)], we present an extension of the cluster-perturbation theory to systems with spontaneously broken
symmetry. Our method applies to models with local interactions and accounts for both short-range correlations
and long-range order. Short-range correlations are accurately taken into account via exact diagonalization of
finite clusters. Long-range order is described by variational optimization of a ficticious symmetry-breaking
field. In comparison with related cluster methods, our approach is more flexible and, for a given cluster size,
less demanding numerically, especially at zero temperature. An application of the method to the antiferromag-
netic phase of the Hubbard model at half-filling shows good agreement with results from quantum Monte Carlo
calculations. We demonstrate that the variational extension of the cluster-perturbation theory is crucial to
reproduce salient features of the single-particle spectrum.
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I. INTRODUCTION

Several materials studied in condensed-matter physics
display unusual physical properties which are ascribed to
strong electron correlations.1–3 In particular, these may give
rise to rich phase diagrams with different competing types of
short-range correlations and with different symmetry-broken
phases. Realistic many-body models of these materials con-
tain an interaction-energy term of the same order of magni-
tude as the kinetic energy or even larger. This implies that it
is quite generally inappropriate to treat these models by con-
ventional weak-coupling perturbation theory or by static
mean-field decouplings such as the Hartree-Fock approxima-
tion.

A complementary approach consists in an exact treatment
of the interacting part while the kinetic energy is accounted
for perturbatively. For Hubbard-type models, this corre-
sponds to an expansion in powers of the hoppingt around the
atomic limit, and leads—at the lowest order—to the so-
called Hubbard-I approximation.4 An expansion int can be
organized in a systematic diagrammatic series.5–7 This ap-
proach, however, not only fails fort of the order of the Hub-
bard repulsionU, but also for low temperatures, due to the
degeneracy of the ground state.

An interesting extension of this strong-coupling expan-
sion consists in dividing the lattice into clusters of suffi-
ciently small size such that they can be treated exactly, fol-
lowed by an expansion in powers of the hopping between the
clusters.8–10The expansion in the intercluster hopping can be
formally carried out up to arbitrary order following the dia-
grammatic method of Refs. 5–7. However, going beyond the
lowest order, is quite demanding numerically and has not
been carried out so far for two-dimensional systems. For
one-dimensional(infinitely long) chains, on the other hand,
such an expansion could be accomplished in fact to infinite
order in powers of the interchain hopping.11

The lowest order of the strong-coupling expansion in the
intercluster hopping8 has been termed “cluster-perturbation

theory” (CPT).9 Actually, the CPT can be considered as a
systematic approach with respect to the cluster size, i.e., it
becomes exact in the limitNc→` whereNc is the number of
sites within a cluster. From this point of view the CPT rep-
resents an attractive method which is simple conceptually
but nevertheless includes short-range correlations on the
scale of the cluster size. Moreover, the CPT provides results
for an infinitely extended system. Consequently, the CPT
Green’s function is defined for any wave vectork in the
Brillouin zone, contrary to common “direct” cluster calcula-
tions for which only a fewk points are available, The nec-
essary numerical effort is moderate: Once the Green’s func-
tion of a cluster of a given size has been calculated via a
numerical method, e.g., the Lanczos technique, the determi-
nation of the lattice Green’s function is numerically much
less demanding as this requires the inversion of a certain
number of matrices with a dimension given byNc only.

CPT results for static quantities as well as for the single-
particle spectral function have been shown to agree well with
different exact analytical and numerical results.9,10 Recently,
a generalization of the method with different cluster shapes
has successfully been used for an analysis of the stripe phase
in high-temperature superconductors.12 On the other hand,
there is also a serious disadvantage of the CPT at this level:
Namely, the method does not contain any self-consistent pro-
cedure which implies that symmetry-broken phases cannot
be studied(the case of a degenerate ground state, as, e.g., for
the Hubbard-I approximation, represents an exception).

This generates the motivation for the present paper. We
will present an extension of the CPT which is based on the
self-energy-functional approach(SFA) proposed recently.13

The SFA provides a general variational scheme to use dy-
namical information from an exactly solvable reference sys-
tem (an isolated cluster) to approximate the physics of a
system in the thermodynamic limit. Using the SFA it is pos-
sible to construct a self-consistent or variational cluster-
perturbation theory(“V-CPT” ) which allows to study phases
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with spontaneously broken symmetry. The V-CPT applies to
arbitrary Hubbard-type lattice models with the restriction
that the interaction be local.

Self-consistent cluster methods can also be constructed as
generalizations of the dynamical mean-field theory
(DMFT)14,15 as has been shown in recent years.16–21 Similar
as the CPT, the cellular dynamical mean-field theory
(C-DMFT)19 is based on a real-space formulation. The
C-DMFT performs a self-consistent mapping of the lattice
problem onto an effective cluster model withNc.1 corre-
lated sites and reduces to the standard DMFT forNc=1. CPT
and C-DMFT differ with respect to the concept of “bath”
sites. The effective cluster model which is considered in the
C-DMFT contains an infinite number of additional uncorre-
lated(“bath”) sites attached to each of theNc original corre-
lated sites in the cluster. The bath parameters are determined
from a self-consistency condition. This construction ensures
an optimal description of the local(temporal) degrees of
freedom but complicates the method considerably. A numeri-
cally exact evaluation of cluster generalizations of the
DMFT could so far only be achieved by using quantum
Monte Carlo techniques.22,23

Recently, it has been pointed out24 within the context of
the self-energy-functional approach(SFA) that both a(varia-
tional) CPT and the C-DMFT can be considered as extreme
limits (ns=1 andns=`) of a more general cluster method
where reference is made to an effective cluster model with
Nc correlated sites andns−1 additional bath sites per corre-
lated site. Hence, the SFA formally unifies the different clus-
ter approaches and thereby places our proposed method in a
more general context. SFA-cluster calculations for the one-
dimensional Hubbard model24 strongly suggest that it is
more efficient to use a cluster as large as possible and set
ns=1 (no bath sites)—as compared to a smaller cluster and
ns.1. This is contrary to the opposite limit of infinite di-
mensions: ForD=` the exact theory(namely DMFT) is ob-
tained forNc=1 andns=`.

It is, therefore, particularly interesting to apply the V-CPT
to the two-dimensional case and to compare with available
numerically exact results. The low-temperature antiferro-
magnetic phase of theD=2 Hubbard model at half-filling
represents an optimal playground to study the strengths and
limitations of the method. The reason is that both the effects
of short-range correlations and long-range antiferromagnetic
order manifest themselves in static thermodynamic quantities
as well as in the single-particle excitation spectrum.

The paper is organized as follows: The variational gener-
alization of the CPT is introduced in the following section. In
Sec. III we present our results for the antiferromagneticD
=2 Hubbard model. One- and quasi-one-dimensional sys-
tems are discussed briefly, in addition. The performance of
the method is analyzed by comparing with numerical results
from different methods. Emphasis is given to the single-
particle excitation spectrum. Finally, our conclusions and an
outlook are presented in Sec. IV.

II. VARIATIONAL CPT

Consider a system of interacting electrons on a lattice
with a HamiltonianH consisting of a single-particle(nonin-

teracting) term H0 and an interaction termH1. We require
that the interacting part be local. This allows for a partition-
ing of the lattice into nonoverlapping clusters of finite size
which are not connected byH1. In the simplest case,H1
describes an on-site Hubbard repulsion. After having divided
the lattice into clusters(labeled byR), the Hamiltonian can
be written in the form

H = o
R

fH0
sintradsRd + H1sRdg + o

R,R8

RÞR8

H0
sinterdsR,R8d, s1d

where

H0
sintradsRd = o

a,b
ta,bcRa

† cRb s2d

is the noninteracting, intracluster part of the Hamiltonian,
and H1sRd is the intracluster interaction part(which we do
not need to specify). The remaining term

H0
sinterdsR,R8d = o

a,b
VRa,R8bcRa

† cR8b, s3d

is a noninteracting part connecting different clusters(inter-
cluster hopping). The labelsa, b indicate positions within a
cluster as well as other(spin and orbital) degrees of freedom.
cRa annihilates an electron with quantum numbersa within
the clusterR. For simplicity, translational invariance with
respect to the “superlattice” vectorR is assumed.

We are interested in the single-particle Green’s function
GRa,R8bsvd=kkcRa;cR8b

† llv. Exploiting translational invari-
ance and performing a Fourier transformation to the recipro-
cal space, the Green’s function becomes diagonal with re-
spect to the wave vectorQ from the(reduced) Brillouin zone
corresponding to the superlattice. In reciprocal space, the
Green’s function is a matrixGQsvd with elementsGQ,a,bsvd
labeled by the cluster variablesa andb.

Let us define a “reference system” with HamiltonianH8
where the intercluster hoppingH0

sinterd is switched off,

H8 = o
R

fH0
sintradsRd + H1sRdg. s4d

H8 describes a system of decoupled clusters of finite size.
For not too large clusters, this system can be solved exactly,
and its Green’s functionG8svd can be computed by conven-
tional methods such as exact diagonalization(ED) or quan-
tum Monte Carlo (QMC). Generally, the corresponding
Green’s functionG8svd is a matrix with indicessRad and
sR8bd. As H0

sinterd=0 this matrix is diagonal(and constant)
with respect toR,

kkcRa;cR8b
† llv8 = dR,R8Ga,b8 svd. s5d

Within the CPT approximation, the Green’s function
Gsvd of the full problemH is expressed in terms ofG8svd
and the intercluster hoppingVRa,R8b by an RPA-type
expression,8,9
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GQsvd = fG8svd−1 − VQg−1. s6d

Here,GQsvd, G8svd, andVQ are matrices in the cluster in-
dicesa andb. The Fourier-transformed intercluster hopping
is given by

VQ,a,b =
1

L
o

R,R8

VRa,R8be
iQ·sR−R8d, s7d

whereL is the number of superlattice sites.
The above formalism constitutes the “usual” CPT ap-

proach. We like to stress that the method is based on the
exact solution of finite-size clusters in which spontaneous
symmetry breaking cannot occur. Furthermore, it does not
include any self-consistent procedure. Consequently,
symmetry-broken phases cannot be studied within the usual
CPT.

Our proposal for a proper generalization of the CPT is the
following: First, one should note that in the CPT the pertur-
bation term is quite arbitrary and can be taken as any one-
particle operator. The partition of the noninteracting part of
the Hamiltonian Eq.(1) gives us a certain amount of freedom
that we can exploit to seek for an optimized starting point.
As a matter of fact, one has the freedom to add toH0

sintrad any
local single-particle term which is then subtracted inH0

sinterd.
In other words, the Hamiltonian(1) is obviously invariant
under the transformation

H0
sintradsRd → H0

sintradsRd + DsRd, s8d

H0
sinterdsR,R8d → H0

sinterdsR,R8d − dR,R8DsRd,

whereDsRd is an arbitrary intracluster single-particle opera-
tor which can be expressed as

DsRd = o
a,b

Da,bcRa
† cRb. s9d

Formally, the rest of the procedure remains unchanged.
If the perturbative approach was exact, the results would

not depend onD at all. As a matter of fact, this can easily be
seen in the noninteracting limit in which the CPT becomes
exact.40 Here the perturbation cancels out.

In the interacting case, the resultdoesdepend onD. How-
ever, this is not a shortcoming. On the contrary, this allows
us to “optimize” the results of the CPT calculation.41 Indeed,
we may think of choosingD such that the single-particle
dynamics of the cluster problem is “as close as possible” to
the exact dynamics of the lattice. In this way, one can hope
that the perturbative correction is small and that the result of
the perturbative calculation is accurate enough. The question
is how to perform this optimization in practice. Note that the
answer to this question also solves our original problem as
one may choose the perturbationD to represent a “ficticious”
symmetry-breaking field term(a staggered magnetic field,
for example) since this has the form of a one-particle opera-
tor.

A straightforward idea to optimizeD (or the strengthh of
the symmetry-breaking field) would be to express a thermo-
dynamical potential(the grand potentialV, for example) in
terms of the CPT Green’s functionG, which depends onD in

turn, and to minimize the functionVfGsDdg with respect to
D. However, the following serious problems arise: As the
CPT Green’s function is approximate and as there are differ-
ent ways to obtain the grand potential, the procedure is not
unique. So there are several ways the potential can depend
on the perturbation, and the results will depend on the re-
spective choice. Moreover, once the grand potential is given
in terms ofD, there is no physical reason to minimize the
grand potential as this would require a corresponding varia-
tional principle to be valid which is generally not the case.
Below, however, we will show that an appropriate variational
principle can be found in fact, and a corresponding potential,
Eq. (11), can be constructed, the stationary point of which
gives an optimizedD.

Exact variational principles of the formdVfGg=0 or
dVfSg=0 whereS is the self-energy are actually known for
a long time from standard diagrammatic theory.25 The prob-
lem is that the functional dependenceVfGg or VfSg is not
given explicitly but must be constructed via an infinite sum
of renormalized skeleton diagrams. This has impeded the use
of the variational principles in their original form.

Here, the help comes from the self-energy-functional ap-
proach(SFA)13 proposed recently. The SFA provides a way
to exactly evaluate the functionalVfSg—even if the func-
tional dependence is not explicit. This is achieved at the cost
of a restriction of the domain of the functional, i.e., the func-
tional VfSg can be evaluated exactly on a certain subspaceS
of trial self-energies. The idea is then to perform a search for
the stationary point on the restricted spaceS. The subspaceS
consists of allS which are exact self-energies of a reference
system. Clearly, the Hamiltonian of the reference systemH8
must be exactly solvable so that one is able to compute the
self-energy in practice. Furthermore, general arguments13 re-
quire thatH8 must have the same interaction part asH. The
one-particle part of the reference system, however, is com-
pletely arbitrary and its parameters may be used to optimize
the trial self-energy. Note that these conditions are fulfilled
for the case considered here. Constructing the reference sys-
tem by dividing the lattice into small clusters, the SFA con-
cept just yields the desired variational CPT.

To verify this, it is sufficient to realize the following:
Equation (6) which approximates the Green’s function
GQsvd of H in terms of the Green’s functionG8svd of the
system of decoupled clustersH8 and the intercluster hopping
VQ, can be cast into the form of a Dyson equation,

GQsvd = sGQ
s0dsvd−1 − Ssvdd−1. s10d

HereGQ
s0dsvd=sv+m− t −VQd−1 is the free Green’s function

of the infinite lattice given in terms of the chemical potential
m, and the intracluster and intercluster hoppingt and VQ,
respectively, andSsvd is the cluster self-energy. One can
therefore state that the CPT consists in approximating the
self-energy of the lattice problemH by the (Q independent)
self-energySsvd of the reference systemH8.

The optimization problem mentioned above is now solved
in the following way: VaryingD corresponds to varying the
one-particle parameters of the reference systemH8, the in-
teraction part being kept fixed. For anyD, the reference sys-
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tem can be solved to get the self-energyS. Thus, the self-
energy is parametrized asS=SsDd. Furthermore, the
Green’s functionG8=G8sDd and the grand potentialV8
=V8sDd of the reference systemH8 can be calculated. Fol-
lowing Ref. 13, the self-energy-functional for the trial self-
energySsDd can be evaluated exactly, i.e.,VfSsDdg can be
calculated. This yields a functionVsDd;VfSsDdg the ex-
plicit form of which is taken from Ref. 13,

VsDd = V8sDd + To
n

o
Q

tr ln
− 1

GQ
s0dsivnd−1 − SsD,ivnd

− LTo
n

tr lns− G8sD,ivndd. s11d

Here, the frequency sums run over the discrete Matsubara
frequenciesivn, L is the number of clusters(or, equivalently,
the number ofQ points), and bold symbols denote matrices
with respect to cluster indicesa and b. Note that for the
evaluation of the grand potential(11) one needs the CPT
Green’s function, Eq.(10). Searching for the stationary point
of the functionVsDd means to search for the stationary point
of the exact self-energy functional on the restricted domain
of H8-representable self-energies. This prescription tells us
which approximate cluster self-energy as best as possible
describes the exact one.

III. RESULTS

We have applied the variational CPT(V-CPT) presented
above to the single-band Hubbard model at half-filling and
zero temperature. The Hamiltonian reads

H = o
r ,r8

tr ,r8cr ,s
† cr8,s + Uo

r
nr ,↑nr ,↓. s12d

Here cr ,s annihilates an electron with spin projections
= ↑ ,↓ at the lattice siter , nr ,s=cr ,s

† cr ,s, and the hoppingtr ,r8
is equal to t and nonvanishing for nearest-neighbor sites
kr ,r 8l only. Throughout the paper,t=1 sets the energy scale.

In principle, the “best” result is obtained by using a com-
pletely general single-particle termD. However, this would
imply the computation ofVsDd for a too large number of
parameters making the problem numerically impractical. For
this reason, it is more convenient to start with a “guess” of
the appropriate physical symmetry-breaking field. For half-
filling, a good candidate is certainly a staggered field produc-
ing a Néel ordered state. For simplicity, we consider clusters
containing an integer number of antiferromagnetic unit cells.
With the notationa=sr ,sd, the correspondingD has the
form

Da,b = hda,bzshr , s13d

wherehr = +1s=−1d on sites of sublatticeA sBd, zs= ±1 for
spin projections= ↑ ,↓, andh is the strength of the ficticious
staggered field. The optimal value ofh will be obtained by
minimization42 of Vshd=VfSshdg as given by Eq.(11). Ob-
viously, h=0 corresponds to the usual CPT approximation.
We stress again that via the transformation(8), the staggered
field is strictly equal to zero in the original Hamiltonian(1).

It only appears in an intermediate step in the Hamiltonian of
the reference systemH8 to parametrize the trial self-energy.
Thus,h is a variational parameter without a direct physical
meaning in the original lattice HamiltonianH. However, it
does introduce a true staggered field in the reference(cluster)
HamiltonianH8.

For the numerical calculations we first consider a decom-
position of the lattice into “Î103Î10” clusters as indicated
in Fig. 1. Following Ref. 24, open boundary conditions are
used. To evaluate the self-energy functional, the grand poten-
tial V8shd and the Green’s functionG8shd for a cluster are
computed using the standard Lanczos algorithm.26 The self-
energy is obtained asSshd=G08shd−1−G8shd−1. The sum over
Matsubara frequencies in Eq.(11) can be transformed into an
integral over real frequencies.27 After frequency integration
andQ summation, we obtainVshd from Eq. (11). A Lorent-
zian broadeningv→v+ id with finite d=0.1 is used. For this
choice typically 500Q points are sufficient for convergence
of the results. We have checked that the results do not sig-
nificantly depend ond.

A. Static quantities

Using Eq. (11), the grand potentialVshd=VfSshdg has
been calculated forU=8 at half-filling andT=0. The result
is shown in Fig. 2. As anticipated,V depends onh. Three
stationary points are found, a maximum ath=0 and two
(equivalent) minima for nonvanishing valuesh< ±0.18. This
means that the interacting system “prefers” a symmetry-
broken state with a nonvanishing staggered magnetizationm,
as one would have expected physically.

The stationary point ath=0 corresponds to the usual CPT.
For h=0 the ground state of a single cluster shows antiferro-
magnetic correlations but is nondegenerate. Hence, the clus-
ter Green’s function and the self-energy are spin indepen-
dent. This implies that there is nocoherentcontinuation of
the antiferromagnetic correlations across the cluster bound-
aries within the usual CPT. Consequently, the order param-
eter m=0. The binding energy per site that is gained by a
coherent matching of antiferromagnetic clusters for finiteh,
can be read off from Fig. 2 to beDV<0.043. This is small
as compared touJu=4t2/U=0.5 as there are contributions
from bonds connecting different clusters only.

From the value of the grand potential at the optimal field
h the ground-state energy is obtained asE0=V+mkNl. We

FIG. 1. Decomposition of theD=2 square lattice intoÎ10
3Î10 clusters.
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have performed calculations for differentU. Figure 3 shows
E0 as a function ofU for the respective optimal ficticious
field h (V-CPT) and for h=0 (CPT). The results are com-

pared with those of an exact-diagonalization calculation for
the isolated cluster withNc=10 sites(direct ED). Further-
more, the results of a variational Monte Carlo(VMC)
calculation28 using a Gutzwiller-projected symmetry-broken
trial wave function and the results of an auxiliary-field quan-
tum Monte Carlo(QMC) study29 are displayed for compari-
son. VMC and QMC data for different cluster sizesNc are
extrapolated28,30 to Nc=` (and toT=0, in the latter case).

As compared to the ground-state energy that is obtained
by diagonalization of an isolated cluster(“direct ED”), the
(usual) CPT result represents a considerable improvement, as
can be seen in the figure. Note that CPT(and V-CPT) recover
the exact result in the noninteracting limit. The gain in bind-
ing energy is due to the(approximate) inclusion of the inter-
cluster hopping. A comparison of CPT with Monte Carlo
results(VMC, QMC), however, still shows a sizable discrep-
ancy. On the other hand, our variational CPT method per-
fectly agrees within the error bars with both Monte Carlo
results forE0 in the entireU range. This shows that a proper
description of long-range order is essential to get the ground-
state energy accurately. Note, however, that for the ground
state itself and for dynamical quantities, the inclusion of
short-range correlations is at least equally important(see be-
low).

Let us discuss a few other static quantities. Figure 4
shows the double occupancyd;knr↑nr↓l as a function ofU.
The double occupancy is obtained by numerical differentia-
tion of the grand potentiald=]Vsm ,Ud /]U (at its respective
minimum value). It monotonously decreases from the nonin-
teracting valued=knr↑lknr↓l=0.25 and correctly tends to ap-
proach the strong-coupling limitd=0. Already forU of the
order of the free band width, a strong suppression ofd is

FIG. 2. Dependence of the grand potentialV (per site) on the
ficticious staggered fieldh as obtained by evaluating the self-energy
functional V=VfSshdg. The lattice is decomposed into “Î10
3Î10” clusters(see Fig. 1). Parameters, on-site repulsionU=8,
temperatureT=0, half-filling. The optimal staggered field is found
to be h= ±0.18. The energy unit is given by the nearest-neighbor
hopping.

FIG. 3. U dependence of the ground-state energy per siteE0 at
half-filling and zero temperature as obtained by different methods:
direct exact diagonalization(squares), usual(nonvariational,h=0)
CPT (diamonds), and variational (h optimized) CPT (V-CPT,
circles) for Î103Î10 clusters. Additionally, results from a varia-
tional Monte Carlo calculation(crosses) (Ref. 28) and a QMC
simulation(error bars) (Ref. 29) are shown for comparison. VMC
and QMC results are extrapolated toNc=`. VMC error bars are
smaller than the symbol size.

FIG. 4. Double occupancyd=knr↑nr ,↓l calculated as d
=]Vsm ,Ud /]U, potential energy per siteEpot=Ud, and kinetic en-
ergy per siteEkin=E0−Epot as functions ofU obtained for the same
system as in Fig. 3 via V-CPT.
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found (d<0.052 forU=8). This indicates a quick crossover
from a Slater-type(itinerant moments) to a Heisenberg-type
antiferromagnet(local moments) with increasingU. The po-
tential energyEpot=Ud and the kinetic energyE0−Epot with
E0=V+mkNl andm=U /2 are shown in addition. Despite the
fact that local-moment formation is almost completed for
U=8, there is still a considerable kinetic energyEkin
<−0.915. This has to be attributed to the residual kinetic
exchange.

B. One-dimensional case

One may ask whether or not the variational procedure
always yields an antiferromagnetic state, i.e., also in those
cases in which this is not expected physically. For example,
an antiferromagnetic state is prohibited in one dimension as
quantum fluctuations break up any long-range spin order.31

Mean-field methods, such as Hartree-Fock, however, often
yield a Néel state also in one dimension. In a strict mean-
field theory, spatial correlations are neglected altogether. Due
to the inclusion of short-range correlations, the variational
CPT is clearly superior as compared to mean-field theory.
For any finiteNc, however, longer-range spatial correlations
are neglected. Hence, the V-CPT may be considered as a
mean-field approach on a length scale exceeding the cluster
dimensions. We therefore expect “mild” reminiscences of
typical mean-field artifacts.

To test this, we have performed calculations for the one-
dimensional Hubbard model. The reference system consists
of a decoupled set of finite Hubbard chains withNc sites
each. Figure 5 shows the grand potentialV as a function of
the ficticious staggered fieldh for U=8. As one can see, the
minimum of V is given byh=0, i.e., the V-CPT predicts the
system to be a paramagnet, as expected physically. We con-
clude that for this case quantum fluctuations are taken into
account in a sufficient way to prevent the system from be-
coming antiferromagnetic.

The results are not so straightforward if one considers a
one-dimensional two-leg Hubbard ladder. The reference sys-
tem consists of decoupled finite ladders withNrung rungs, i.e.,
Nc=Nrung32. Results forNrung=2, Nrung=4, andNrung=6 are
shown in Fig. 6. Despite the fact that the system is one di-
mensional, the calculations predict a finite value for the stag-
gered field and for the staggered magnetization. Clearly, this
is an artifact of the remaining mean-field character on a
longer length scale. However, we can see from Fig. 6 that the
optimal value ofh rapidly decreases when improving the
approximation, i.e., with increasing size of the clusters in the
reference system. This is consistent with the fact that no
finite magnetization is expected in theNrung→` limit.

It is interesting to see what happens if one uses the
Nrung32 ladders in order to build up a true two-dimensional
system. The results are plotted in Fig. 7. In this case, the
optimal value ofh is much larger than in Fig. 6, and the
order parameter(see below) remains finite and depends only

FIG. 5. Dependence of the grand potentialV (per site) on the
ficticious staggered fieldh as obtained by evaluating the self-energy
functional V=VfSshdg. Result for theD=1 Hubbard model atU
=8, T=0 and half-filling. Reference system, decoupled set of Hub-
bard chains with 10 sites each. The inset displaysVshd on a finer
scale.

FIG. 6. Vshd as in Fig. 5 but for an infinite one-dimensional
Hubbard ladder. The reference system consists of finite(432 and
632) ladders. Arrows indicate the optimal value of the ficticious
staggered field.

FIG. 7. Vshd as in Fig. 6 but now coupling the finite ladders
(432 and 632) to a two-dimensional square lattice. Results using
the decomposition of the square lattice into 232, Î83Î8, and
Î103Î10 clusters are shown for comparison. Arrows indicate the
optimal ficticious field.
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weakly on the cluster size. This signals that for the two-
dimensional system the antiferromagnetic state is genuine, in
contrast toD=1.

Figure 7 also shows the results for the two-dimensional
lattice using different “square” clusters, 232, Î83Î8, and
Î103Î10 (the Î83Î8 cluster is obtained by discarding the
rightmost sites in the first and the third line of theÎ10
3Î10 cluster shown in Fig. 1). The comparison shows that
convergence with respect to the functionVshd is not yet
achieved for the largest cluster size considered here. In the
limit of very large clusters the SFA becomes formally exact
as the trial self-energyS is defined to be the exact self-
energy ofH8. In this limit, we expect the location of the
minima s±h0d of the function Vshd to go to zero, or the
function Vshd to become flat in a region aroundh=0. The
reason is that in the infinite system a finite value for the
staggered magnetization will already be produced by an in-
finitesimally small field. Note that for the series of 232, 4
32, 632, etc., clusters, the reference systemH8 doesnot
approach the original two-dimensional Hubbard modelH.

C. Order parameter

While the staggered magnetizationm for the one-
dimensional ladder system rapidly decreases with cluster
size,m remains finite and depends only weakly on the cluster
size in case of the two-dimensional system. Differences inm
are found to be less than 1%–2% for the different cluster
geometries considered in Fig. 7. A relative difference
Dm/mø0.005 is found when comparing the result for the
10-site and the 8-site cluster. The staggered magnetization is
defined asm=]V /]hext in the limit hext→0 wherehext is the
strength of an externalphysical staggered field(not to be
confused with the ficticious fieldh). Adding a respective
field term to the HamiltonianH and performing the deriva-
tive with respect tohext of the grand potential(at the optimal
ficticious field strengthh), yields m=s1/Ncdors−1dur usknr ,↑l
−knr ,↓ld where r runs over sites within a cluster,Nc

is the number of cluster sites, and knr ,sl
=s−1/pde−`

0 dv Im Gr ,r ,ssv+ i0+d. This is the usual expres-
sion for the staggered magnetization, but averaged over the
cluster. For the two-dimensional Hubbard model atU=8 we
find m<0.80.

Figure 8 shows the local average occupationknr ,↑l for the
sitesr within the Î103Î10 cluster forU=8. As any cluster
approximation(constructed in real space), the V-CPT neces-

sarily breaks the translational symmetries of the lattice: The
approximate self-energy is obtained from a translationally
noninvariant reference system which results from the decom-
position of the original lattice into decoupled clusters of fi-
nite size. This implies that the local Green’s function, which
is computed from the self-energy using the Dyson equation,
and thus the local occupations cannot be expected to be ho-
mogeneous(within a sublattice). It is interesting to see, how-
ever, that this is not a severe drawback: Fig. 8 shows that the
variations of the spin-dependent local occupation and the
local ordered moment are very moderate within a sublattice.

A much more inhomogeneous state with strongly varying
local occupations is obtained when coupling the ficticious
field h to two sites within the cluster only. This variant has
been considered using theÎ103Î10 and theÎ83Î8 clus-
ters. In this case, too, a finite optimal value forh and anti-
ferromagnetic long-range order are found(not shown). The
grand potentialV at the optimal field, however, is consider-
ably larger than in the usual case whereh is coupled to all
sites within a cluster. This shows that despite the artificial
breaking of translational symmetry, a homogeneous state is
restored as far as possible.

TheU dependence of the staggered magnetization is plot-
ted in Fig. 9 in comparison with the VMC results28

(Gutzwiller-projected symmetry-broken trial wave function)
and the results of auxiliary-field quantum Monte Carlo
(QMC).30 Within the QMC, the order parameter is obtained
from simulations of the static spin-spin correlation function
at low temperatures. It is assumed that the system effectively
behaves as if atT=0 when the thermal correlation length
exceeds the cluster dimensions.30 VMC and QMC data are
extrapolated toNc=`.28,30

As one can see from Fig. 9, the variational CPT yields a
staggered magnetization which strongly disagrees with QMC
data. In the Heisenberg limitU→`, the V-CPT seems to
predict the staggered magnetization to approach unity. How-
ever, whether it really becomesm=1 in this limit is not clear
from our calculations yet. On the other hand, physically, one

FIG. 8. Local average occupationknr ,↑l for U=8. knr ,↓l=1
−knr ,↑l (not plotted).

FIG. 9. Comparison of the staggered magnetizationm as a func-
tion of U at half-filling obtained by different methods: variational
CPT (V-CPT), variational Monte Carlo(VMC) (Ref. 28) and quan-
tum Monte Carlo(QMC) (Ref. 30), see text. The arrow indicates
the resultm=0.62±0.04 of a Green’s-function Monte Carlo study
(Ref. 32) for the two-dimensional Heisenberg model.
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would expect a reduction of the staggered magnetization due
to transverse spin fluctuations. In the two-dimensional
Heisenberg model, several methods starting from the sim-
plest spin-wave theory up to Monte Carlo methods, predict a
reduction of the magnetization to about 60% of its saturated
value.33 On the other hand, the V-CPT agrees well with the
results of the variational Monte Carlo study, where trans-
verse spin fluctuations are not fully taken into account as
well. Furthermore, there is a very good qualitative agreement
with respect to the size ofm and the trend ofmsUd, when
comparing with the results of a dynamical mean-field
calculation34 (as the DMFT calculation has been performed
for the D=` hypercubic lattice, one must rescale the ener-
gies by a factor of 4 to obtain the same variance of the
noninteracting density of states which may serve as the en-
ergy unit).

This appears to be somewhat surprising since spatial cor-
relations are neglected altogether in the DMFT and also in
the VMC calculation where local Gutzwiller projectors are
used, while the V-CPT does include the coupling to short-
range correlations on the scale of the cluster size. One must
bear in mind, however, that the size of the order parameter is
strongly affected by the coupling to long-range spin excita-
tions. Recall that in two dimensions and for any finite tem-
perature the Mermin-Wagner theorem31,35shows that antifer-
romagnetic long-range order is destroyed due to spin waves
with wave vectorq→0. Hence, the overestimation of the
staggered magnetization could be ascribed to the residual
mean-field character of the V-CPT on a length scale exceed-
ing the size of the cluster.43 This view is also substantiated
by our results for the one-dimensional Hubbard ladder which
have been discussed above: To achieve a clear suppression of
long-range order within the V-CPT, reference systems(finite
ladders) as large as 632 have been required(Fig. 6). This is
an indication that in two dimensions aÎ103Î10 cluster
might be too small to include non-negligible effects of spin
excitations on the order parameter.

There is another important point which must be taken into
account in this context: For a cluster of a given size, an
optimal V-CPT calculation should not only consider the fic-
ticious staggered fieldh but any one-particle term in the
Hamiltonian of the reference system as a variational param-
eter. It is in fact reasonable to assume that there is room for
improvement: Consider, for example, the hopping between
nearest neighbors within the cluster as an additional varia-
tional parameter. Actually, this has already been considered
in Ref. 24 for theD=1 Hubbard model. There it was found
that the optimal intracluster hopping is increased as com-
pared to the nearest-neighbor hopping in the original lattice
although the effect turned out to be rather weak. Here, the
situation is different due to the antiferromagnetic long-range
order: In the limitU→`, an increased intracluster hopping
implies an increased effective exchange interactionuJu. As-
suming the optimal ficticious fieldh to be unchanged, this
tends to decrease the order parameterm. We have performed
corresponding calculations which show that a variational ad-
justment of the intracluster hopping at a considerably in-
creased value is very likely in fact. However, a conclusive
result has not yet been obtained. The reason is that the grand
potential as a function of two variational parameters, the fic-

ticious staggered field and the intracluster hopping, becomes
rather flat in a wide region around the stationary point. This
requires an improved accuracy in the evaluation of the self-
energy functional which is difficult to achieve with a finite
value for the(Lorentzian) broadening parameterd. Work in
this direction is in progress.27

D. Dynamical quantities

While the V-CPT must be considered as mean-field-like
on a length scale exceeding the cluster size, it does account
for short-range spatial correlations as the cluster problem is
solved exactly. For the two-dimensional Hubbard model at
half-filling, short-range spin correlations are known to mani-
fest themselves in dynamical quantities such as the local den-
sity of states.

Figure 10 shows the spin-dependent local density of states
(DOS) rssvd for U=8 which is calculated as a staggered
average over the sites in a cluster,

rssvd =
1

Nc
o
r

s− 1dur urrssvd, s14d

whererrssvd=s−1/pdIm Gr ,r ,ssv+ i0+d. Roughly, the spec-
trum consists of two broad peaks aroundv= ±5 and two
strong and narrow peaks at aboutv= ±3. For both the high-
and the low-energy excitations a strong spin polarization cor-
responding tom<0.80 is clearly visible. There is also some
finite but low spectral weight within the insulating gap
which, however, is an artifact of the finite Lorentzian broad-
ening sd=0.1d.

The high-energy excitations in Fig. 10 are interpreted as
charge excitations(Hubbard “bands”). While these are due to
local correlations, the low-energy features(at v= ±3) result
from (short-range) nonlocal correlations. The latter will be
identified as being due to the coherent propagation of a qua-
siparticle, namely a “spin bag.” Physically, this spin bag
originates from the frustration induced by the motion of the
additional bare hole(electron) in the antiferromagnetic spin
background. The different spectral features can easily be
identified: The high-energy features are due to the bare par-
ticle “rattling around” within the spin bag. This gives rise to

FIG. 10. Spin-dependent local density of states(DOS) rssvd
(staggered average over the sites in a cluster) obtained for the same
system as in Fig. 3 via V-CPT forU=8.
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an incoherent motion and broad energy “bands,” i.e., the in-
coherent lower and upper Hubbard “bands” with a width set
by the energy scale of the bare bandwidthW=8. The low-
energy features, on the other hand, correspond to the above-
mentioned coherent motion of the spin bag resulting in a
strongly renormalized quasiparticle band with a width essen-
tially given by 2uJu=8t2/U=1.

Note that these peaks are absent in a mean-field approach
where off-site correlations are neglected altogether: A recent
DMFT study34 of antiferromagnetic order shows a rather fea-
tureless DOS consisting of the two(polarized) Hubbard
bands only. Contrary, the effect of antiferromagnetic short-
range correlations can be included in a cluster extension of
the DMFT. Additional structures appear in the DOS within
the dynamical cluster approximation(DCA), for example.
Some indications of the mentioned low-energy features can
be found by using the noncrossing approximation(NCA) to
evaluate the DCA.36 For a conclusive interpretation, how-
ever, the effects are too weak—probably due to the limited
cluster size(a 232 cluster in reciprocal space) and the finite
temperatures considered.

More elucidating is a comparison of thek-resolved spec-
tral density with available results from QMC simulations for
isolated but larger clusters. In order to illustrate this point,
we have plotted in Fig. 11 the spectral functionAksvd for
U=8 along high-symmetry directions in the Brillouin zone
of the chemical lattice. The result is compared with the result
from the usual CPTsh=0d and with numerically exact QMC
data from Gröberet al.37 which are available for anNc=8
38 isolated cluster and finite but low temperaturesT=0.1d.
The spectral functionAksvd obtained from the maximum-
entropy method(see Ref. 37) is shown in Fig. 11(bottom).
Since the spin-spin correlation length atT=0.1 considerably
exceeds the cluster dimensions, the QMC result can be con-
sidered as a good approximation to theT=0 limit. At half-
filling the spectrum almost exactly respects the constraint
Aksvd=Ak+qs−vd with q=sp ,pd which is predetermined by
particle-hole symmetry. This must be considered as a strong
check of the numerics. As for the finite system there is no
spontaneous symmetry breaking, the spectrum is spin inde-
pendent and shows perfect translational symmetry with re-
spect to the chemical lattice(periodic boundary conditions
have been used).

This must be kept in mind when comparing with the
V-CPT. In the V-CPT the real-space spectral function
AR,r ,R8r8,ssvd=−s1/pdImkkcR,r ,s ;cR8,r8s

† llv
sretd is spin depen-

dent, and translational symmetry holds with respect to the
superlattice vectorsR only. For a proper comparison with the
QMC data we therefore compute

Aksvd =
1

LNc
o

R,R8
o
r ,r8

eiksR+r−R8−r8dAR,r ,R8r8,ssvd, s15d

see Fig. 11(middle). If there was no antiferromagnetic order
and no artificial breaking of translational symmetry due to
the cluster approximation, i.e., ifAR,r ,R8r8,ssvd depended on
the differenceR+r −R8−r 8 only, this would correspond to
the usual Fourier transformation. Here,Aksvd is actually the
diagonal elementAk,ksvd obtained from two independent

Fourier transformations with respect to both,R+r and R8
+r 8. Taking the diagonal element, ensures a positive definite
result,Aksvdù0, and implies a spatial average over the clus-
ter sites(see Ref. 10). Due to this spatial average, the spec-
tral function is spin independent—even in the symmetry-
broken state(an integer number of antiferromagnetic unit
cells are included in a single cluster).

The CPT spectral function is calculated accordingly but
for h=0 (Fig 11, top). This means that any signatures of
long-range order are switched off in the spectrum, and only
short-range correlations(up to the cluster boundaries) are
retained. Both, the CPT and the V-CPT result, respect the
condition Aksvd=Ak+qs−vd with q=sp ,pd due to particle-
hole symmetry. Note that in both cases the spectral function
is defined for anyk point in the Brillouin zone, contrary to
the “direct” cluster method(QMC).

As already noted in the discussion of the local DOS, the
V-CPT spectrum clearly consists of four spectral features,

FIG. 11. Density plot of the spectral function for theD=2 Hub-
bard model atU=8, half-filling andT=0 as obtained by the CPT
with h=0 (top) and by the variational CPT with optimal ficticious
staggered fieldhÞ0 (middle). The lattice is covered byÎ103Î10
clusters. Bottom, QMC(maximum entropy) result, taken from Ref.
37, for the same parameters but for a finite low temperatureT
=0.1 and an isolated 838 cluster. Dark(light) areas correspond to
large (small) spectral weight.
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two high-energy “bands” which show strong damping effects
(incoherent Hubbard bands) and two narrow low-energy
bands which represent the coherent dispersion of a quasipar-
ticle (spin bag). This four-band structure is also evident in
the QMC result. Comparing the energetic positions, disper-
sions, weights, and widths of the four spectral features, one
can state that the agreement with the QMC spectrum is al-
most perfect.

Roughly, the CPT and the V-CPT spectra appear to be
similar but looking at finer structures it is obvious that the
CPT predicts a spectral function which is quite different:
First, and most important, there is no coherent low-energy
band in the CPT spectrum. This shows up when comparing
with the V-CPT aroundG for v,0 (or aroundM for v.0),
for example: In agreement with the QMC result, the V-CPT
predicts a dispersive low-energy band which extends con-
tinuously with spectral weight fromG to X and which is
clearly separated from the more incoherent feature at higher
energies. On the other hand, in the CPT spectrum this is
missing. In theG-M direction the low-energy features turn
out to be too broad and are discontinuously split into several
branches in the CPT spectrum. The dispersion aroundX is at
variance with the QMC data. Finally, at higher excitation
energies, several weak and almost dispersionless bands can
be found in the CPT spectrum while in the V-CPT there is a
comparatively smooth incoherent background. We conclude
that the variational procedure is crucial to achieve a qualita-
tively correct reproduction of the one-particle excitation
spectrum and of the coherent quasiparticle band in particular.

The physical reason is as follows. From previous QMC
studies37 it is well known that the quasiparticle band is the
dispersion of a spin bag, i.e., an additional hole(electron)
which is dressed by the local distortions of the spin order that
are produced by the motion of the hole in the antiferromag-
netic background. Since the linear extension of the spin bag
is about 3–4 sites only, this picture is already captured by an
exact diagonalization of an isolated small cluster. However,
the emergence of a coherent band requires more, namely a
coherent motion of the spin bag on a larger length scale. This
is captured in the QMC results for a large cluster of 838
sites. Of course, the perturbative treatment of the intercluster
hopping within the CPT framework carries out a part of the
job. This results in a string dispersion in the V-CPT spectrum
with a bandwidth of about 2uJu=8t2/U=1 as can be read off
from Fig. 11. Also for the plain CPT the perturbative cou-
pling of the clusters works into the right direction: Although
the spectrum more or less consists of a two-band structure,
there is a tendency towards the formation of a gap within
each of the two bands, i.e., a coherent band tends to split off.
Within the plain CPT, however, the motion of the dressed
hole cannot be completely coherent as there is no definite
alignment of spins across the cluster boundary. Upon reach-
ing the cluster edge, the spin bag encounters a misaligned
spin with 50% probability and is partly reflected back inside
the cluster. This partial loss of coherence explains the several
bands at higher energies in the CPT spectrum which are ab-
sent in the V-CPT. The variational generalization of the CPT
cures this problem by ordering spins antiferromagnetically
with help of the ficticious staggered field not only within but
also across the cluster boundaries thereby allowing the co-
herent spin-bag propagation.

IV. CONCLUSIONS AND OUTLOOK

Correlated electron systems in two dimensions are in
many cases characterized by strong local and nonlocal but
still short-ranged correlations on the one hand and by long
range, e.g., magnetic, order on the other. Here, we have pre-
sented a variational extension of the cluster-perturbation
theory which combines the exact diagonalization of isolated
small clusters with a mean-field concept to build up an infi-
nite lattice. Conceptually, the method is based on the recently
proposed self-energy-functional approach(SFA) which sets
up a very general variational scheme to use dynamical infor-
mation from an exactly solvable reference systemH8 (the
isolated cluster) to approximate the physics of a systemH
(the D=2 Hubbard model) in the thermodynamic limit.

We have applied the variational CPT(V-CPT) to the Hub-
bard model at half-filling to study the antiferromagnetic
phase at zero temperature. The diagonalization of Hubbard
clusters of finite size(typically Nc=10) is performed using
the standard Lanczos algorithm. In comparison with results
from variational Monte Carlo and quantum Monte Carlo
studies, the V-CPT predicts the ground-state energy and re-
lated static quantities with high accuracy. While long-range
antiferromagnetic order is obtained for theD=2 model, the
V-CPT yields a paramagnetic state forD=1. This indicates
that quantum spin fluctuations which inhibit an ordered
phase in theD=1 case are included properly. For one-
dimensional Hubbard ladders the method in principle incor-
rectly predicts antiferromagnetic order; however, the stag-
gered magnetization is small and tends to vanish when
increasing the number of rungs in the cluster(up to 236).
The finite but smallm for the ladder system should be con-
sidered as a mild reminiscence of a typical mean-field arti-
fact which shows up because longer-range spin correlations
exceeding the cluster dimensions are neglected. A similar
effect is seen for theD=2 system: Here the approximation is
even stronger because the linear dimension of the cluster
must be reduced even more to keep the number of cluster
sites Nc constant. For theD=2 system, antiferromagnetic
order is expected physically and is also found by the calcu-
lations. However, longer-ranged spin correlations give rise to
a considerable reduction of the order parameter which is not
seen in the V-CPT for the maximum cluster size that has
been considered.

An important advantage of our method is that local and
off-site short-range correlations within the ordered phase can
be treated exactly. This shows up when looking at dynamical
quantities, such as the spin-dependent local density of states
or the spectral functionAksvd. The spectral function as cal-
culated from our self-consistent cluster approach agrees ex-
tremely well with the QMC(maximum-entropy) result for an
838 Hubbard lattice at finite but low temperatures. In par-
ticular, it is possible to reproduce the dispersions, widths,
and weights of the different spectral features. This is due to
the fact that the typical four-band structure arises not only
from local correlations which are captured in dynamical
mean-field theory, for example, but also from a strong cou-
pling to off-site spin correlations. The formation of a spin-
bag quasiparticle as a hole which is dressed by the distor-
tions of the antiferromagnetic spin structure that are
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introduced due to its motion, is contained in the exact treat-
ment of the cluster. In addition, the mean-field coupling of
the individual clusters mediates the information on the spin
order across the cluster boundaries and thereby gives a quali-
tatively correct description of the coherent propagation of the
quasiparticle. This is essential to reproduce the low-energy
quasiparticle band in the spectrum.

There are different interesting routes to be explored in the
future: A straightforward but technically ambitious idea is to
employ a quantum Monte Carlo technique within the self-
energy-functional framework. This would offer the possibil-
ity to use a decomposition of the lattice into larger clusters
which is expected to be important for a reliable estimate of
the order parameter, for example. Another straightforward
extension of the method concerns the number of variational
parameters. For our present purposes the consideration of a
single parameter, the ficticious staggered fieldh, has been
sufficient. It is obvious, however, that the results should im-
prove when treating any one-particle parameter within the
cluster as a variational parameter. This might also affect the
magnetic properties because of the direct link between hop-
ping parameters and the effective exchange interactions.
Here an improved numerical evaluation of the theory is re-
quired which is free from the use of broadening parameters,
see Refs. 13 and 27.

An important conceptual problem of the method consists
in the fact that a suitable reference system can be found in
case of local(on-site) interaction terms only. The reason for
this restriction is that for models including, e.g., a nearest-
neighbor Coulomb interaction, the partitioning of the infinite
lattice into decoupled clusters is impossible without cutting
the intercluster interaction. General arguments,13 however,
require that the interaction part of the Hamiltonian of the
reference system be unchanged. Consequently, there is a
need for an extension of the theory to models with nonlocal
interaction terms. This will be the subject of a forthcoming
paper.39

The V-CPT compares with the recent cluster extensions of
the DMFT:16–21Characteristic to both approaches is the com-
bination of a numerically exact treatment of an isolated clus-
ter with an approximate mean-field treatment of the coupling
between different clusters. The V-CPT is, however, much
easier to implement numerically and in principle allows for a
diagonalization of larger clusters which facilitates a proper
finite-size scaling. The reason for this conceptual simplicity

is the fact that there is no coupling to bath degrees of free-
dom which is inherent to the cluster extensions of the DMFT.
Recent results24 for the D=1 Hubbard model have shown
that it is in fact more efficient to consider larger clusters
instead of a coupling to bath sites. For the two-dimensional
case, however, there is no answer to this question at present,
and it is unclear whether or not bath degrees of freedom
efficiently speed up the convergence to the exact solution
with increasing cluster size. Note that a hopping to uncorre-
lated bath sites is nothing but a modified one-particle part of
the Hamiltonian of the reference system and thus completely
in line with the general concept of the self-energy-functional
approach. In particular, it can be very interesting to consider
an extension of the V-CPT with a coupling to afewbath sites
as has been done in previous studies.13,24 There are at least
two reasons for that. First, this bridges the gap to the cellular
dynamical mean-field theory(C-DMFT)19 which is obtained
in the limit of infinite number of bath degrees of freedom.
Second, bath sites are expected to become important for the
study of doped systems as they can serve as a particle reser-
voir.

For doped systems, the variational optimization of one-
particle parameters should include the on-site energy of the
cluster sites as well as the additional consideration of a few
bath sites. This is necessary to realize fillings which are not
commensurate with the cluster size and to achieve smooth
doping dependencies in the entire doping range.

In the present paper we have focused on a ficticious stag-
gered magnetic field as a variational parameter to describe
antiferromagnetic long-range order. Moreover, one can en-
visage to introduce in the same way a ficticious pairing field
in order to study off-diagonal long-range order and supercon-
ductivity. While this introduces the numerical difficulty of
diagonalizing clusters without fixing the particle number,
such an approach offers the exciting perspective of analyzing
the effects of short-range correlations in the superconducting
phase.
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