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We study the quantum Hall states that appear in the dilute limit of rotating ultracold fermionic gases when
a single hyperfine species is present. We show that thep-wave scattering translates into a pure hard-core
interaction in the lowest Landau level. The Laughlin wave function is then the exact ground state at filling
fraction n=1/3. Wegive estimates of some of the gaps of the incompressible liquids forn=p/ s2p±1d. We
estimate the mass of the composite fermions atn=1/2. The width of the quantum Hall plateaus is discussed by
considering the equation of state of the system.
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The preparation and manipulation of ultracold atomic
gases has led to many interesting developments in the study
of quantum fluids undergoing fast rotation.1,2 The Bose-
Einstein condensates can be set in various rotation regimes
with the characteristic response of a superfluid. The conden-
sate does not acquire angular momentum below some veloc-
ity threshold. Then there is nucleation of one vortex and with
increasing velocity more and more vortices are created. They
have been observed forming the Abrikosov triangular
lattice.3,4 When the rotation frequency reaches the trapping
frequency in the radial plane, it has been predicted that quan-
tum Hall fractional states should become ground states of the
system5–8 if the gas enters a two-dimensional regime.
Trapped Fermi gases may also exhibit superfluidity if they
undergo BCS pairing condensation. If the pairing strength is
varied, it may be possible to observe the crossover from
molecular condensation at strong coupling to BCS phase
transition at weak coupling. A possible signature of the
superfluid-paired phase of fermions is the peculiar response
to stirring, leading again to vortex formation. In the fast ro-
tation limit, it is thus natural to ask if there is formation of
fractional quantum Hall states as in the Bose case and what
are their properties.

In this Rapid Communication we investigate the frac-
tional quantum Hall effect(FQHE) appearing in atomic va-
por made of a single hyperfine species of fermions. We show
that thep-wave scattering between fermions can lead to the
formation of the Jain principal sequence of FQHE fractions
n=p/ s2p±1d, in addition to the celebrated Laughlin wave
function atn=1/3, aswell as a Fermi sea of composite fer-
mions for half filling of the lowest Landau level(LLL ). We
give estimates of the gaps for the incompressible fluids gov-
erned by thep-wave scattering length and of the mass of the
composite fermions. The equation of state of the system seen
as the angular momentum of the ground state as a function of
the rotation frequency displays plateaus corresponding to the
FQHE fluids. Their widths can be estimated by taking into
account the nucleation of quasiparticles.

We consider a gas of fermionic atoms and suppose that
they are set in rotation, for example, by a stirring external
potential9 that can be applied for some time to transfer an-
gular momentum to the gas and then is removed. We are then
left with a rotating cloud and we assume that it attains ther-

mal equilibrium in the rotating frame. IfH stands for the
Hamiltonian in the laboratory frame then it becomesHR
=H−vLz in the rotating frame wherev is the rotation fre-
quency andLz the angular momentum along the rotation
axis. The Hamiltonian describingN particles of massm in
this frame can be written as

HR = o
i=1
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where thexy trap frequency isv0, the axial frequency isvz
and the angular velocity vector isvẑ. For v close tov0, the
physics is that of charge-e particles in a magnetic fieldB
=s2mv /edẑ, corresponding to a magnetic length,
=Î" / s2mvd. We assume the existence of a two-dimensional
(2D) regime in which the wave function along thez axis is
the ground state of thez-axis harmonic potential.

If we consider a single hyperfine species of fermions, then
thes-wave scattering is forbidden by the Pauli principle. The
next allowed partial wave, thep wave, leads to much weaker
interactions10 and this leads to difficulties when cooling fer-
mionic vapors. They can be evaded, for example, by sympa-
thetic cooling11 with a different atom. However it is also
feasible to use a scattering resonance, such as a Feshbach
resonance, to dramatically enhancep-wave scattering. This
has been demonstrated with40K atoms.12 The scattering even
reaches values comparable tos-wave scattering. We will see
that this means that FQHE gapped states will have charac-
teristic energies in the same range as for similar bosonic
states. At small wave vector, i.e., in the low-energy limit, the
p-wave phase shift of the two-body scattering problem be-
haves as

d1skd ,
1

3
k3a1

3, s2d

wherea1 defines thep-wave scattering length. As a conse-
quence, the scattering amplitude is no longer isotropic,
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f1sud , a1
3k2 cosu, s3d

where u is the angle between ingoing and outgoing wave
vectors. We now use an effective potential which mimics the
behavior in Eq.(3) when treated in the Born approximation.
It is given by

Ûp =
12pa1

3

m
p̂ds3dsr dp̂, s4d

where the quantitiesr =r 1−r 2 and p= 1
2sp1−p2d pertain to

the relative particle. The use of such a potential is enough for
our purpose since we will study the dynamics of the LLL
only; the massive degeneracy is lifted at first order in the
potential(higher orders involve Landau level mixing).

We now turn to the quantum Hall regime for fermions
when v=v0 in Eq. (1). Assuming a 2D regime with,z

=Î" /mvz the confinement length alongz, the interaction po-
tential can be written asgf,

4p̂ds2dsr dp̂ where the vectorsr
andp are now 2D with

gf =Î 2

p

"2

m

a1
3

,z,
4 . s5d

The coupling constantgf sets the scale of the FQHE phe-
nomenon.

The interaction Hamiltonian in the LLL can be written as

HLLL = o
m

o
i,j

VmP̂msi, jd, s6d

where m is the relative angular momentum(RAM), hence
the sum runs over all positive odd integers for fermions, and

P̂msi , jd is the projection operator for particlesi and j onto
RAM m. The coefficientsVm fully characterize the interac-
tion problem in the LLL. They are called pseudopotentials
after Haldane.13 With the purep-wave interaction Eq.(4),
only m=1 scattering is allowed and the interaction Hamil-
tonian reduces immediately to the pure hard-core model for
which V1Þ0 and all the other pseudopotentials are zero. The
hard-core model13–15 is known to constitute an excellent
blueprint of the FQHE. Notably the celebrated Laughlin
wave function,16

C = p
i, j

szi − zjd3e−oiuziu
2/4,2

, s7d

is an exact zero-energy ground state of the hard-core model.
In fact this is the most spatially compact zero-energy state
for the hard-core model. It has a well-defined angular mo-
mentumLz=3NsN−1d /2. It corresponds to filling 1/3 of the
LLL and thus is the exact ground state for ultracold fermions.
This is analogous to the Bose problem7 wheres-wave scat-
tering leads to the Laughlin ground state(with exponent 2) at
filling 1/2. It is also known that the hard-core model exhibits
the prominent Jain sequence17 of incompressible fluids for
fillings of the form n=p/ s2p±1d. We have estimated the
gaps at some of these fractions by performing exact diago-
nalizations in the spherical geometry.18,19A sphere of radius
R is threaded by a flux 4pR2B, which is an integral multiple
s2Sd of the flux quantum by Dirac quantization condition.

Incompressible fluids appear for special matching of the
number of particle vs 2S. We obtain the low-lying energy
levels for a small number of particles and then perform
finite-size scaling to obtain estimations of the thermody-
namic limit.

For the most stable fluid atn=1/3 thelow-lying neutral
excited states are dominated by a well-defined collective
density mode and we have obtained the corresponding gap
by studying up toN=13 fermions. The gap can also be
evaluated from the charged excitations, i.e., the Laughlin
quasiparticles. For thep-wave problem, there is the peculiar-
ity that the quasiholes are gapless atn=1/3. It isthus enough
to study the quasielectrons that can be nucleated by remov-
ing one flux quantum from the referencen=1/3 situation.
We find that both estimates scale nicely to a common value
.0.8gf [see Fig. 1]. For the fractionn=2/5 the gap is
.0.5gf obtained by the study of systems forN=4. . .12 fer-
mions. In this case there are the two types of charged exci-
tations, quasiholes, and quasielectrons, each having a non-
zero gap and we find that the sum of these gaps converges to
a value compatible with the neutral gap. There are fewer
available values of the number of particles as we go down
the hierarchy, and for the next fractionn=3/7, weestimate
the gap to be.0.4gf, and for 4/9 it is more difficult to give
a reliable estimate; the gap is smaller and of the order of
.0.3gf. For values of the parameters,z, ,, anda1 typical of
present experiments3,12 the gaps may be of the order of the
nanoKelvin.

For fillings less than 1/3, the fermion system no longer
displays incompressibility because there are proliferating
zero-energy states when we increase the angular momentum.
Some of these are edge excitations of the droplet and for
larger angular momentum they are quasiholes. Due to
particle-hole symmetry, these very same modes fill any gap
in the region 1ùnù2/3. The Jain sequence has an appeal-
ing interpretation in terms of composite fermions(CF).
These entities are naively fermions bound to an even number
of flux quanta of a fictitious field. The total field acting upon

FIG. 1. Energy gaps for neutral and charged excitations atn
=1/3, n=2/5, andneutral gaps forn=3/7. Thelines are our best
fits and energies are in units ofgf.
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the CFs is then the sum of the external field and the fictitious
field. When treated in a mean-field manner this explains the
FQHE of electrons as the integer quantum Hall effect of CFs.
The Jain sequence has an accumulation point atn=1/2; at
this filling the CF experience zero net flux and form a Fermi-
liquid-like ground state.20,21These CFs have remaining inter-
actions and also an effective massm* which is entirely due
to interactions. To estimate this mass, we use a special
matching of the flux 2S=2sN−1d giving zero net field on the
sphere22,23 for the CFs. In the Coulomb case, it has been
shown that many features of the spectrum can be success-
fully interpreted by reasoning with free CFs, eventually
supplemented by second Hund’s rule. There are closed-shell
configurations when the number of fermions is a square;N
=s,+1d2 and , is thus the total angular momentum of the
highest occupied orbital. It is the equivalent of the Fermi
momentum on the sphere and thus we call it,F. We expect
that the closed shell sequenceN=s,F+1d2=4, 9, 16,… dis-
play ground states with zero total angular momentum and
should have good scaling properties towards the thermody-
namic limit, as is the case for Coulomb interactions.23,24

From a closed-shell configuration one can form particle-hole
(ph) excitations; the lowest-lying excitations are obtained by
promoting a fermion from the shell with momentum,F to
the empty shell at momentum,F+1, leading to a branch
extending fromL=1 up to 2,F+1. Above this branch we
should find two-particle–two-hole states extending up to 4,F
and so on. This is exactly what we find for the hard-core
model. The low-lying levels ofN=9 fermions are displayed
in Fig. 2. Above the singlet ground state we clearly identify
the two branches predicted by the free CF model.

We can obtain an estimate of the CF mass atn=1/2 by
using the free CF model.23,24A free CF on the sphere has an
energy given byE= lsl +1d / s2m* R2d where l is the angular
momentum. As a consequence, the gap of the one ph branch
is D=s,F+1d / sm* R2d. If we fix the densityr, the scaling
law of the gap becomesDN=4prÎN/ fm* sN−1dg. In the

spherical geometry we have to take into account the fact that
there is a nontrivial shift between the flux 2S and the ther-
modynamic limit valueN/n. For finite numbers of particles
the density is not exactly equal to the thermodynamic limit
value. Better scaling properties19 are obtained by rescaling
the magnetic length by a factorÎN/ s2Snd (going to unity for
N→`). We thus find DN=4pr / sm* ÎNd. This scaling is
obeyed for the sizesN=4, 9, 16[see inset of Fig. 2] and this
leads to an estimate of the effective mass

m* . 0.5m
,2,z

a1
3 . s8d

When the number of fermions lie between closed shell val-
ues we have checked that the ground state angular momen-
tum is given by second Hund’s rule(maximumL), as is the
the case for Coulomb interactions.22

Finally we discuss the width of the Hall plateaus in the
case of trapped atomic vapors. Contrary to the 2D electron
systems in semiconductor devices, there is no source of dis-
order to pin the quasiparticles that are nucleated when we
deviate from the finetuning of a quantum Hall fraction. The
role of disorder is thus played by the finite number of par-
ticles of the system and the quantum Hall plateaus are ex-
pected to be of vanishingly small width in the thermody-
namic limit. We can give precise estimates by considering
the equation of state of the rotating system, i.e., the value of
the ground-state angular momentum as a function of the ro-
tation frequency kLzlsvd. At the critical frequency, the
Hamiltonian is rewritten as a magnetic field problem[see Eq.
(1)]. If the frequency is slightly less,v0−dv, then we have
the small field −dvLz acting upon the purely magnetic prob-
lem. It leads to a trivial shift of the energies of the FQHE
problem that will change the ground state when increased.
This is seen from the typical spectrum displayed in Fig. 3 in
the condition of the critical rotation. The Laughlin state at
Lz

Laughlin=3NsN−1d /2 is the ground state and the first excited
state is the quasielectron atLz

Laughlin−N with a nonzero gap
Dqe. When adding a −dvLz shift the Laughlin will remain the
ground state till the quasielectron energy becomes lower for
a critical value equal to

dvc =
Dqe

N"
.

102Hz

N
S Dqe

1nK
D . s9d

If we increasedv beyond this value, quasielectrons are
nucleated forming a fluid that will condense into a new

FIG. 2. Energy spectrum forN=9 fermions in the spherical
geometry at fillingn=1/2. The CFsfeel zero flux and can be inter-
preted as forming a closed shell. The inset shows the scaling of the
gap of the closed shell statesN=4, 9, 16. Energies are in units ofg
and the horizontal axis is total angular momentum.

FIG. 3. Energy spectrum forN=5 fermions in the disk geometry
as a function of the angular momentum. The Laughlin state is the
unique zero-energy state atLz=30. The lowest-energy state atLz

=25 is the quasielectron with a finite gap.
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FQHE fluid. We expect the result above in Eq.(9) to be
generic. This picture is essentially dual to the nucleation of
vortices at small rotation frequency.3

To experimentally characterize FQHE states for Fermi
gases, one possibility is to generate quesiholes by laser ma-
nipulation and detect the effect of fractional statistics by
Ramsey interferometry.25 Another signature is the peculiar
surface modes of the cloud, the so-called edge modes that
rule that transport properties of electron gases. Their detec-
tion would also give evidence for FQHE formation.26 The
collective magnetoroton mode, which is a gapped density
excitation, is also a possible signature of incompressibility.

We have shown the appearance of the Jain principal se-
quence of quantum Hall fractions in ultracold rotating fermi-
onic vapors. The composite fermion picture gives a success-
ful account of the observed fractions as well as their
collective mode excitations. The gaps we estimate from ex-
act diagonalizations are of the order of"2a1

3/m,z,
4. At half

filling of the lowest-Landau level, there is a Fermi-liquid-like
state of composite fermions and their effective massm* / m
is controlled by,2,z/ sa1

3d.
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