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Quantum Hall fractions in ultracold fermionic vapors
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We study the quantum Hall states that appear in the dilute limit of rotating ultracold fermionic gases when
a single hyperfine species is present. We show thatptheve scattering translates into a pure hard-core
interaction in the lowest Landau level. The Laughlin wave function is then the exact ground state at filling
fraction v=1/3. Wegive estimates of some of the gaps of the incompressible liquids4q/(2p+1). We
estimate the mass of the composite fermiong=at /2. The vidth of the quantum Hall plateaus is discussed by
considering the equation of state of the system.
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The preparation and manipulation of ultracold atomicmal equilibrium in the rotating frame. I+ stands for the
gases has led to many interesting developments in the studyamiltonian in the laboratory frame then it beconEg
of quantum fluids undergoing fast rotatibA.The Bose- =H-wl, in the rotating frame where is the rotation fre-
Einstein condensates can be set in various rotation regime&giency andL, the angular momentum along the rotation
with the characteristic response of a superfluid. The conderaxis. The Hamiltonian describiny particles of massn in
sate does not acquire angular momentum below some velothis frame can be written as
ity threshold. Then there is nucleation of one vortex and with

increasing velocity more and more vortices are created. They N 1 1

have been observed forming the Abrikosov triangular Hg= >, —(p; - Mw2 X 1;)? + mMw?z? + =m(wZ - ?)

lattice3* When the rotation frequency reaches the trapping =1 2m 2 2

frequency in the radial plane, it has been predicted that quan- N

tum Hall fractional states should become ground states of the XOE+y?) + 2 V(=) (1)
g . . . i i L i I

systemi~® if the gas enters a two-dimensional regime. i<j

Trapped Fermi gases may also exhibit superfluidity if they

undergo BCS pairing condensation. If the pairing strength isyhere thexy trap frequency isv,, the axial frequency is,
varied, it may be possible to observe the crossover fromynd the angular velocity vector is?. For w close towo, the
molecular condensation at strong coupling to BCS phasghysics is that of charge-particles in a magnetic fiel®

transition at weak coupling. A possible signature of the=(2mw/e)z, corresponding to a magnetic lengtif
superfluid-paired phase of fermions is the peculiar respons_e\/—ﬁ/(me). We assume the existence of a two-dimensional

to .stirri.ngl, "?a.c““g again to vortex fqrmation.. In the f?‘St r0°(2D) regime in which the wave function along teaxis is
tatlo_n limit, it is thus natural to ask if there is formation of the ground state of theaxis harmonic potential.
fractional quantum Hall states as in the Bose case and what ¢ we consider a single hyperfine species of fermions, then

are the;]l_r prope_r(;ues. L _ . he f the s-wave scattering is forbidden by the Pauli principle. The
. Inlt Is Rapi C”omﬁmumcatlon we Investigate the frac-pqy¢ gllowed partial wave, thewave, leads to much weaker
tional quantum Hall effectFQHE) appearing in atomic va- jieractiond® and this leads to difficulties when cooling fer-

por made of a single hyperfine species qf fermions. We Sho‘%ionic vapors. They can be evaded, for example, by sympa-
that th_ep-wave scattering t_)etween fermions can lead to the(hetic cooling* with a different atom. However it is also
formation of the Ja”? _prmmpal sequence of FQHE_fraCt'OnSfeasible to use a scattering resonance, such as a Feshbach
v=p/(2p+1), in addition to the celebrated Laughlin wave rosqnance, to dramatically enhanzevave scattering. This
function aty=1/3, aswell as a Fermi sea of composite fer- 155 peen demonstrated Wil atoms!2 The scattering even
mions for half filling of the lowest Landau levélLL). We  rg5ches values comparablesvave scattering. We will see

give estimates of the gaps_for the incompressible fluids goviat this means that FQHE gapped states will have charac-
erned by thep-wave scattering length and of the mass of theygyistic energies in the same range as for similar bosonic

composite fermions. The equation of state of the system se€fj;tes At small wave vector, i.e., in the low-energy limit, the

as the angular momentum of the ground state as a function ‘H—wave phase shift of the two-body scattering problem be-
the rotation frequency displays plateaus corresponding to thg;

FQHE fluids. Their widths can be estimated by taking into aves as
account the nucleation of quasiparticles.

We consider a gas of fermionic atoms and suppose that 8y(k) ~ }k3af, 2)
they are set in rotation, for example, by a stirring external 3
potentiaf that can be applied for some time to transfer an-
gular momentum to the gas and then is removed. We are themherea; defines thep-wave scattering length. As a conse-
left with a rotating cloud and we assume that it attains therquence, the scattering amplitude is no longer isotropic,
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where 6 is the angle between ingoing and outgoing wave
vectors. We now use an effective potential which mimics the
behavior in Eq(3) when treated in the Born approximation.
It is given by

f,(6) ~ a3k? cos,

(4)

where the quantities=r,-r, and p:%(pl—pz) pertain to

the relative particle. The use of such a potential is enough for 04 =13 oitial & — |
our purpose since we will study the dynamics of the LLL v=1/3 charged + —
only; the massive degeneracy is lifted at first order in the 021 v=2/5 neutral w ---. |
potential(higher orders involve Landau level mixing v=2/5 charged x ---.
We now turn to the quantum Hall regime for fermions , , _ V=3/1 neutral & -
when w=w, in Eg. (1). Assuming a 2D regime witH, 0 005 0.1 (l)llb-;’ 02 025 03

=\%/mw, the confinement length alormythe interaction po-
tential can be written ag£*ps?(r)p where the vectors

! FIG. 1. Energy gaps for neutral and charged excitations at
andp are now 2D with

=1/3, v=2/5, andneutral gaps fonw=3/7. Thelines are our best
> 52 a? fits and energies are in units gf.
9= Tmeet ®) Incompressible fluids appear for special matching of the
number of particle vs @ We obtain the low-lying energy
The coupling constang; sets the scale of the FQHE phe- levels for a small number of particles and then perform
nomenon. finite-size scaling to obtain estimations of the thermody-
The interaction Hamiltonian in the LLL can be written as namic limit.
- For the most stable fluid ai=1/3 thelow-lying neutral
HLLL:EZVum(ivj)a (6)  excited states are dominated by a well-defined collective
m i,

density mode and we have obtained the corresponding gap

wherem is the relative angular momentufRAM), hence by studying up toN=13 fermlons_. 'I_'he gap can also be_
the sum runs over all positive odd integers for fermions, angvaluated from the charged excitations, i.e., the Laughlin
|5m(i j) is the projection operator for particlésand j onto gua5|part|cles. F_or thp-wave problem, there_ is the peculiar-
RAM m. The coefficientsV,, fully characterize the interac- ity that the quasmt_)les are gaplessatl/3. Itisthus enough
tion problem in the LLL. They are called pseudopotentialsto study the quasielectrons that can be nucleated by remov-

3 np : : ; ing one flux quantum from the referenee=1/3 situation.
after Hfldané' W.'th 'ghe purep-wave Interaction Eq(4), We find that both estimates scale nicely to a common value
only m=1 scattering is allowed and the interaction Hamil- _

) ) . 0.8y; [see Fig. 1 For the fractionv=2/5 the gap is
tonian reduces immediately to the pure hard-core model fo[zo.ng obtained by the study of systems = 4...12 fer-

\(]Vhigh V170 agiﬁlllsthe ﬁther pseudopotgntials are zer;l). Th?nions. In this case there are the two types of charged exci-

bﬁjre-(;%rte rfn?h - II—?E nNovvtnbtlo fr?nsuuljtir atnde>|<_ce ehr:itntations, quasiholes, and quasielectrons, each having a non-
P o ane QHE. Notably the celebrated Laug zero gap and we find that the sum of these gaps converges to

wave function; a value compatible with the neutral gap. There are fewer

available values of the number of particles as we go down

the hierarchy, and for the next fraction=3/7, weestimate

the gap to be=0.4g;, and for 4/9 it is more difficult to give

is an exact zero-energy ground state of the hard-core moded. reliable estimate; the gap is smaller and of the order of

In fact this is the most spatially compact zero-energy state-0.3y,. For values of the parametets ¢, anda, typical of

for the hard-core model. It has a well-defined angular mopresent experimerit$? the gaps may be of the order of the

mentumL,=3N(N-1)/2. It corresponds to filling 1/3 of the nanoKelvin.

LLL and thus is the exact ground state for ultracold fermions.  For fillings less than 1/3, the fermion system no longer

V= H (z- Zj)3e’2i‘zi‘2/4€2'

i<j

)

This is analogous to the Bose problemheres-wave scat-
tering leads to the Laughlin ground st&téth exponent 2 at
filling 1/2. It is also known that the hard-core model exhibits
the prominent Jain sequertéeof incompressible fluids for

displays incompressibility because there are proliferating
zero-energy states when we increase the angular momentum.
Some of these are edge excitations of the droplet and for
larger angular momentum they are quasiholes. Due to

fillings of the form v=p/(2p+1). We have estimated the particle-hole symmetry, these very same modes fill any gap
gaps at some of these fractions by performing exact diagan the region == v=2/3. The Jain sequence has an appeal-
nalizations in the spherical geometf!°A sphere of radius ing interpretation in terms of composite fermiog€F).

Ris threaded by a flux #R?B, which is an integral multiple These entities are naively fermions bound to an even number
(29) of the flux quantum by Dirac quantization condition. of flux quanta of a fictitious field. The total field acting upon
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L spherical geometry we have to take into account the fact that

there is a nontrivial shift between the flusand the ther-
FIG. 2. Energy spectrum foN=9 fermions in the spherical modynamic limit valueN/v. For finite numbers of particles
geometry at fillingv=1/2. The CFdeel zero flux and can be inter- the density is not exactly equal to the thermodynamic limit
preted as forming a closed shell. The inset shows the scaling of thgg|ue. Better scaling propert@sare obtained by rescaling
gap of the closed shell statds=4, 9, 16. Energies are in units f  the magnetic length by a factqiN/(2Sv) (going to unity for
and the horizontal axis is total angular momentum. N—o). We thus find Ay=4mp/(m* \;“N)_ This scaling is

) i . .. obeyed for the sizeN=4, 9, 16[see inset of Fig. Pand this
the CFs is then the sum of the external field and the fictitiouge54s to an estimate of the effective mass

field. When treated in a mean-field manner this explains the )

FQHE of electrons as the integer quantum Hall effect of CFs. * L,
: . . m* =0.5m—;".

The Jain sequence has an accumulation point=it/2; at a

1
this filling the CF experience zero net flux and form a Fermi- . .
quuid-likg ground stStéEmlThese CFs have remaining inter- When the number of fermions lie between closed shell val-

actions and also an effective mas$ which is entirely due ues we have checked that the ground state angular momen-

to interactions. To estimate this mass, we use a Speci ym 1S given by second Hund's rulenaximumL), as is the

i o - e case for Coulomb interactiof.
matCh'QS’ff the flux 3=2(N-1) giving zero net f'(?ld on the Finally we discuss the width of the Hall plateaus in the
spheré??* for the CFs. In the Coulomb case, it has beenc,se of trapped atomic vapors. Contrary to the 2D electron
shown that many features of the spectrum can be succesgysiems in semiconductor devices, there is no source of dis-

fully interpreted by reasoning with free CFs, eventually gyder to pin the quasiparticles that are nucleated when we
supplemented by second Hund's rule. There are closed-shejeviate from the finetuning of a quantum Hall fraction. The
configurations when the number of fermions is a squlre; role of disorder is thus played by the finite number of par-
=(¢+1)? and ¢ is thus the total angular momentum of the ticles of the system and the quantum Hall plateaus are ex-
highest occupied orbital. It is the equivalent of the Fermipected to be of vanishingly small width in the thermody-
momentum on the sphere and thus we calldit We expect namic limit. We can give precise estimates by considering
that the closed shell sequeniie(€+1)°=4, 9, 16,.. dis-  the equation of state of the rotating system, i.e., the value of
play ground states with zero total angular momentum andhe ground-state angular momentum as a function of the ro-
should have good scaling properties towards the thermodyation frequency(L,(w). At the critical frequency, the
namic limit, as is the case for Coulomb interactiéhd* Hamiltonian is rewritten as a magnetic field problgsee Eq.
From a closed-shell configuration one can form particle-holé1)]. If the frequency is slightly lessyy— dw, then we have
(ph) excitations; the lowest-lying excitations are obtained bythe small field dwL, acting upon the purely magnetic prob-
promoting a fermion from the shell with momentuép to lem. It leads to a trivial shift of the energies of the FQHE
the empty shell at momenturfic+1, leading to a branch prqblgm that will changg the ground state when. mc_reasc_ad.
extending fromL=1 up to Z+1. Above this branch we This is seen from the typlcal spectrum displayed in Fig. 3in
should find two-particle—two-hole states extending upfp 4 thLe ch?ndltlon of the _crltlcal rotation. The Laughl_ln statt_a at
and so on. This is exactly what we find for the hard-corelz” " =3N(N-1)/2 is the ground state and the first excited
model. The low-lying levels oN=9 fermions are displayed State is the quasielectron B§**9"""~N with a nonzero gap

in Fig. 2. Above the singlet ground state we clearly identify Aqe WWhen adding a sl shift the Laughlin will remain the

(8

the two branches predicted by the free CF model. ground state till the quasielectron energy becomes lower for
We can obtain an estimate of the CF massall/2 by  a critical value equal to

using the free CF modéF:2*A free CF on the sphere has an Ay 10PHz( Ay,

energy given byE=I(1+1)/(2m* R?) wherel is the angular ow, = ﬁqi; = T(Tr?ﬁ) 9

momentum. As a consequence, the gap of the one ph branch
is A=(€p+1)/(m* R?). If we fix the densityp, the scaling If we increasedw beyond this value, quasielectrons are
law of the gap becomedy=4mpN/[m*(N-1)]. In the nucleated forming a fluid that will condense into a new
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FQHE fluid. We expect the result above in E§) to be We have shown the appearance of the Jain principal se-
generic. This picture is essentially dual to the nucleation ofjuence of quantum Hall fractions in ultracold rotating fermi-
vortices at small rotation frequengy. onic vapors. The composite fermion picture gives a success-

To experimentally characterize FQHE states for Fermiful account of the observed fractions as well as their
gases, one possibility is to generate quesiholes by laser mgpllective mode excitations. The gaps we estimate from ex-
nipulation and detect the effect of fractional statistics byact diagonalizations are of the order ot/ mé,¢*. At half
Ramsey interferometi3. Another signature is the peculiar fjjjing of the lowest-Landau level, there is a Fermi-liquid-like

surface modes of the cloud, the so-called edge modes tha{ate of composite fermions and their effective mags m
rule that transport properties of electron gases. Their detegs controlled by€2€zl(a§).

tion would also give evidence for FQHE formatiéhThe
collective magnetoroton mode, which is a gapped density We thank Yvan Castin and Jean Dalibard for numerous
excitation, is also a possible signature of incompressibility. discussions.
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