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We use the dynamical mean-field method to investigate electronic properties of heterostructures in which a
finite number of Mott-insulator layers are embedded in a spatially infinite band insulator. The evolution of the
correlation effects with the number of Mott insulating layers and with position in the heterostructure is
determined, and the optical conductivity is computed. It is shown that the heterostructures are generally
metallic, with moderately renormalized bands of quasiparticles appearing at the interface between the corre-
lated and uncorrelated regions.
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An exciting direction in materials science is the fabrica-
tion and study of heterostructure involving “correlated
electron” materials such as Mott insulators, high-temperature
superconductors, and magnets.1,2 The issues raised by
these heterostructures, especially the variation with position
of “correalted electron” properties, are of fundamental
physical interest and would be crucial for prospective
devices based on correlated electron compounds. Many
interesting systems have been fabricated, including
modulation-doped high-Tc superconductors,3,4 Mott-
insulator–band-insulator heterostructures,5 and a variety of
combinations of magnetic transition-metal oxides,6–8 but
there has been relatively little theoretical study of the
heterostructure-induced changes in many-body physics. The
theoretical problem is difficult because it requires methods
which can deal both with spatial inhomogeneity and strong
correlation physics.

Despite the difficulties, several interesting works have ap-
peared. Fang, Solovyev, and Terakura9 used bulk band-
structure calculations to gain insight into the effects6 of strain
fields induced by lattice mismatch in a heterostructure. Matz-
dorf and co-workers used band theory methods to study the
surface electronic and lattice structure of Sr2RuO4.

10 Potthoff
and Nolting, and Liebsch used dynamical-mean-field meth-
ods to study the consequences of the lower coordination at a
surface,11–13 and Freericks and co-workers studied a model
system with uniform electron density and a spatially varying
interaction parameter.14

All of these papers, however, treated situations in which
the electronic density remained at the bulk value, and the
physics arose from structural differences. A crucial feature of
heterostructures is an inhomogeneous electron density
caused by a spreading of charge across the interfaces which
define the system. Recently,15,16 we used realistic multior-
bital interaction parameters and a density-functional-theory-
derived tight-binding band structure to model ground-state
properties of the LaTiO3/SrTiO3 heterostructure fabricated
by Ohtomoet al.5 While this study captured important as-
pects of the density inhomogeneity, it did not address the
dynamical properties of correlated heterostructures. Further,
this study employed the Hartree-Fock approximation, which
is known to be an inadequate representation of strongly cor-

related materials, and in particular, does not include the
physics associated with proximity to the Mott insulating
state.

In this paper we use the dynamical-mean-field method,17

which provides a much better representation of the electronic
dynamics associated with strong correlations, to study the
correlated electron properties of a simple Hubbard-model
heterostructure inspired by—but not a fully realistic repre-
sentation of—the systems studied in Ref. 5. We present re-
sults for observables including photoemission spectra, opti-
cal conductivity, and charge density, and highlight the
similarities and differences to previous work.

We study a model of electrons moving on theB sites of an
infinite sAA8d BO3 perovskite lattice. The electronic Hamil-
tonian isH=Hband+Hint+Hcoul with

Hband= − to
ki j l,s

sdis
† djs + H.c.d, s1d
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1
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Here,i labels theB sites soRW i =sxi ,yi ,zid=asni ,mi , l id with a
the lattice constant. We include both an on-sitesUd and long-
ranged Coulomb interaction: the screening field from the lat-
ter is important for the electron-density profile. We empha-
size
UÞ0 on all sites. We define the heterostructure by counteri-
ons of charge +1 placed on a subsetA8 of the A sites. Here
we study ann-layer[001] heterostructure defined byn planes

of +1 counterions placed at positionsRW j
A8=asnj +1/2,mj

+1/2,l j +1/2d, with −`,nj ,mj ,` and thel j =1, . . . ,n. The
resulting potential is

Hcoul = − o
i,j ,s

e2nis

«uRW i − RW j
A8u

. s3d

Charge neutrality requires that the areal density of electrons
is n. A dimensionless measure of the strength of the Coulomb
interaction isEc=e2/ s«atd; we choose parameters somewhat
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arbitrarily so thatEc=0.8 (this corresponds tot,0.3 eV and
lengtha,4 Å and«=15, which describe the system studied
in Ref. 5). We found that the charge profile did not depend in
an important way on« for 5,«,25.

The basic object of our study is the electron Green’s
function, which for the[001] heterostructure may be written

as (kWi is momentum in plane perpendicular to[001].)

Gsz,z8,kWi;vd = fv + m − Hband− HCoul − Ssz,z8,kWi;vdg−1.

s4d

We approximate the self-energy operator as the sum of a
Hartree term arising from the long-ranged part of the Cou-
lomb interaction,

SHszid = o
jÞi,s

e2knjsl

«uRW i − RW ju
, s5d

and a dynamical partSD arising from local fluctuations. Fol-
lowing the usual assumptions of dynamical-mean-field
theory(DMFT)17 as generalized to inhomogeneous situations
by Schwiegeret al.,12 we assume

SD ⇒ SDsz,vd. s6d

The layerszd-dependent dynamical self-energySD is deter-
mined from the solution of a quantum impurity model17 with
the mean-field function fixed by the self-consistency condi-
tion

Gimpsz,vd =E d2ki

s2pd2Gsz,z,kWi;vd. s7d

One must solve a separate impurity model for each layer,
but the self-consistency condition[cf. Eq. (7)] implies
that the solutions are coupled. It is also necessary to
self-consistently calculate the charge density via
ntotszd=−2esdv /pdfv Im Gimpsz,vd with f the Fermi distri-
bution function. The numerics are time consuming, and it is
therefore necessary to adopt a computationally inexpensive
method for solving the quantum impurity models. We use
the two-site method of Potthoff,18 which reproduces remark-
ably accurately the scaling of the quasiparticle weight
and lower Hubbard band near the Mott transition. We
have also verified19 that the two-site method reproduces
within ,10% the T=0 magnetic phase diagram found
by Ulmke20 in a model with an unusual low-energy density-
of-states peak.

Figure 1 shows the layer-resolved spectral function

Asz,z;vd=−s1/pdefd2ki / s2pd2gIm Gsz,z,kWi ;v+ i0+d for a
10-layer heterostructure withU=16t (about 10% greater than
the critical value which drives a Mott transition in a bulk
system described byH with n=`). The spectral functions are
in principle measurable in photoemission or scanning tunnel-
ing microscopy. Outside the heterostructuresz.6d, the spec-
tral function is essentially identical in form to that of the free
tight-binding modelHband. The electron density is negligible,
as can be seen from the fact that almost all of the spectral
function lies above the chemical potential. As one ap-
proaches the heterostructuresz=6d, the spectral function be-

gins to broaden. Inside itszd5d weight aroundv=0 begins
to decrease and the characteristic strong correlation structure
of lower and upper Hubbard bands with a central quasiparti-
cle peak begins to form. The sharp separation between these
features is an artifact of the two-site DMFT[as is, we sus-
pect, the shift in energy of the upper(empty state) Hubbard
band forz=4,5]. Experience with bulk calculations suggests
that the existence of three features and the weight in the
quasiparticle region are reliable. Towards the center of the
heterostructure, the weight in the quasiparticle band becomes
very small, indicating nearly insulating behavior. For very
thick heterostructures, we find the weight approaches 0 ex-
ponentially.

The behavior shown in Fig. 1 is driven by the variation in
density caused by leakage of electrons out of the heterostruc-
ture region. Figure 2 shows as open squares the numerical
results for the charge-density distributionntotszd for the het-
erostructure whose photoemission spectra are shown in
Fig. 1. One sees that in the center of the heterostructure
sz=0d the charge density is approximately one per site, and
that there exists an edge region, of about three-unit-cell
width, over which the density drops from,1 to ,0. The
overall charge profile is determined mainly by the self-
consistent screening of the Coulomb fields which define the
heterostructure, and is only very weakly affected by the de-
tails of the strong on-site correlations(although the fact that
the correlations constrainntot,1 is obviously important). To
show this, we have used the Hartree-Fock approximation to
recalculate the charge profile: the results are shown as filled
circles in Fig. 2 and are seen to be almost identical to the
DMFT results.

FIG. 1. Layer-resolved spectral function calculated for 10-layer
heterostructure forU=16t, «=15. The heterostructure is defined by
+1 charges placed atz= ±0.5, ±1.5, . . . ±4.5 so the electronicsBd
sites are at integer values ofz.
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The existence of an approximately three-unit-cell-wide
edge region where the density deviates significantly from the
values ntot=0 and 1 characteristic of the two systems in
bulk form implies that only relatively thick heterostructures
sn.6d will display “insulating” behavior in their central
layers, and suggests that the edge regions sustain quasiparti-
cle subbands which give rise to metallic behavior. The
open circles in Fig. 2 show the charge density in the “quasi-
particle bands” [obtained by integratingAsz,z;vd from
v=0 down to the first point at whichAsz,z;vd=0]. One
sees that these near-Fermi-surface states contain a small
but non-negligible fraction of the total density, suggesting
that edges should display relatively robust metallic behavior.

The results represent a significant correction to the Hartree-
Fock calculation,16 which leads, in the edge region, to a
metallic quasiparticle density essentially equal to the total
density.

The spectral function is determined by the layer-
dependent, dynamical self-energySDsz,vd. In bulk materials
one distinguishes Fermi liquid and Mott insulators by
the low-frequency behavior ofSD; in a Fermi liquid
SD→v→0s1−Z−1dv (leading to a quasiparticle with renor-
malized mass), while in a Mott insulatorSD→v→0D2/v
(leading to a gap in the spectrum). In the heterostructures we
study, we find that outside the high-density region, correla-
tions are weaksZ<1d, and that as one moves to the interior
of thicker heterostructures, correlations increase(Z de-
creases). Mott insulating solutionssZ=0d are never found;
insteadSDsz,vd,f1−Z−1szdgv with 0,Z,1 for all layers
z, although in the interior of thick, largeU heterostructuresZ
is only nonvanishing because of leakage(quantum tuneling)
of quasiparticles from the edges, and goes exponentially to-
wards zero.

The nonvanishingZ indicates a Fermi-liquid state with
well-defined coherent quasiparticles(thus negligible low-
frequency scattering). In the heterostructure context the qua-

siparticles form subbands, with quasiparticle energiesEaskWid
and wave functionswafz;EaskWidg, which are the low-energy
eigenfunctions and eigenvalues of

fZ−1szdEadz,z8 + m − HbandskWid − HCoulgwasz8d = 0. s8d

(We note that the two-site DMFT method used here is be-
lieved to give reasonable results forZ but of course neglects
scattering effects. NearEa=0 scattering is unimportant but
of course will increase at higher energies.)

Numerical results for the coherent quasiparticles in a het-
erostructure withn=3 andU=16t are shown in Fig. 3. For
these parameters we find eight quasiparticle bands with non-

FIG. 2. Total charge density(open squares) and charge density
from the coherent part near the Fermi level(open circles). For com-
parison, the total charge density calculated by applying the Hartree-
Fock approximation to the Hamiltonian is shown as filled symbols.
The parameters are the same as in Fig. 1.

FIG. 3. (a) Dispersion relations of filled-
subband quasiparticles calculated for three-layer
heterostructure withU=16t and«=15. The solid
and broken lines are for odd and evena, respec-
tively. (b) Subband quasiparticle weights.(c,d)
Quasiparticle wave functions fora=1,3,5 and
2,4 atv=0. Here the heterostructure is defined by
+1 charges placed atz=0, ±1 so the electronic
sBd sites are at half integer values ofz.
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vanishing electron density. The calculated dispersion rela-
tions are shown in panel(a) and are labeleda=1, . . . ,8 in
order of decreasing electron density. We observe that the
band splittings depend on momentum because of the layer
dependence ofZ. The corresponding quasiparticle weights
Za and real-space wave functionswaszd at v=0 are shown in
Figs. 3(b) and 3(c,d), respectively.(These quantities vary
somewhat over the band also.) Za is the smallest for thea
=1 subband because its real-space wave function contains
the largest weight atz= ±0.5, where the charge density is the
largest and, therefore, the correlation effect is the strongest
[see Fig. 3(c)]. Za generally increases with increasinga, be-
cause asa increases the wave-function amplitudesuwaszdu
decrease in the high-density regions(nearz=0). The anoma-
lies observed inZa at a=4,6 correspond to the increase of
uwasz= ±0.5du due to the symmetry of the wave function[see
Fig. 3(d)].

The coherent subbands may be studied by optical conduc-
tivity with electric field directed along[001]. As an example,

the heavy line in Fig. 4 shows the quasiparticle contribution
to the conductivity spectrum, calculated for a heterostructure
with n=3, U=16t and t=0.3 eV using the standard Kubo
formula with an optical matrix element obtained by applying
the Peierls phase ansatz toHband . Three main features are
evident atv=0.75, 0.55, and 0.45t; each of these has con-
tributions from two interband transitions(1→2, 2→3),
(3→4, 4→5), and (5→8, 6→7), respectively. The optical
features are not sharp because the quasiparticle band splitting
depends onkWi. The weaker features at lower energies arise
from transitions involving high-lying, only slightly occupied,
bands. The lighter lines in Fig. 4 show the optical conduc-
tivity computed using the Hartree-Fock approximation. We
see that the spectra are qualitatively similar, but that the
Hartree-Fock absorption features occur at a larger energy
because theZ-induced band narrowing is absent and ared
functions, because in the Hartree-Fock approximation the

subbands splittings arekWi independent.
To summarize, we have presented a dynamical-mean-field

study of a “correlated electron heterostructure,” in which the
behavior is controlled by the spreading of the electronic
charge out of the confinement region. Our results show how
the electronic behavior evolves from the weakly correlated to
the strongly correlated regions, and in particular, confirms
the existence of an approximately three-unit-cell-wide cross-
over region in which a system, insulating in bulk, can sustain
metallic behavior. We found that even in the presence of very
strong bulk correlations, the metallic edge behavior displays
a finite (roughly factor-of-2–3) mass renormalization. We
showed how the magnitude of the renormalization is affected
by the spatial structure of the quasiparticle wave function
and determined how this renormalization affects physical
properties, in particular, the optical conductivity. Important
future directions for research include re-examination of the
phase diagram using beyond Hartree-Fock techniques, and
generalization of the results presented here to more compli-
cated and realistic cases.
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FIG. 4. Heavy lines: low-frequency(quasiparticle-region) opti-
cal conductivity forn=3, U=16t heterostructure. Peaks arise from
transition among subbands shown in Fig. 3(a). Light lines: conduc-
tivity calculated from Hartree-Fock approximation to same
Hamiltonian.
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