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In this paper we present an approach aimed at performing many-body calculations of Born-effective charges
of crystalline insulators by including the electron-correlation effects. The scheme is implemented entirely in the
real space, using Wannier functions as single-particle orbitals. Correlation effects are computed by including
virtual excitations from the Hartree-Fock mean field, and the excitations are organized as per a Bethe—
Goldstone-like many-body hierarchy. The results of our calculations suggest that the approach presented here
is promising.
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The Born effective chargéBEC) of a periodic solid is an  volume of the unit cellg, is the electronic chargéJ(—x),
important phenomenological quantity which connects theepresents the total number of unit cells in the crysRy,
electronic structure of the system to its phononic prope%ties.:zE§1 r is the many-particle position operator for thg
Of late, in the context of ferroelectric materials and theirg|ectrons of the crystal, aridf“”) represents the correlated
phase transitions, BEC has generated tremendous amount §f,nd-state wave function of the infinite solid. Next we
interest? Using BEC, one can also describe the lattice dY-Verify that for an infinite crystal, Eql) above is consistent

namics, and its coupling to infrared radiation, in a S|mpleWith the Berry-phase-based expression for the BEC's derived

intuitive manne? Most of the modern calculations of BECs by King-Smith and Vanderbiltat the mean-field level. If we
are b_a Se.d upon the Berry-ph_ase-ba_sed theory of macrosco%lﬁpress thenean fieldHF or otherwisg ground-state hwany—
polarization developed by King-Smith and Vanderbithe

. . ) . .
aforesaid formalism is based upon single-particle orbitalsParticle wave functiond®y") of a crystal in terms of Wannier
and, therefore, can be implemented in a straightforward marunctions expressed in terms of square-integrable occupied
ner withinab initio density-functional theoryDFT), 2% or the ~ Wannier functions{Wy(r -R;), i=1,... N,n=1,... M} lo-
Hartree-Fock HF) framework® As far as many-body calcu- cated in theN unit cells constituting the solitf, then using
lations of polarization properties are concerned, Martin andhe Slater-Condon rules governing the matrix elements of a
co-workers have proposed several approaches which, to tfane-body operator between two many-particle stétese

best of our knowledge, have not been implemented within abtain

ab initio methodology:” Filippetti and Spaldin have recently

. N . . . M N

implemented arab initio method aimed at including corre-

lation effects by using a self-interaction-correctésliC) <‘I)E)M|Re|¢g)>=NZ fo | r|Wi(r)|?dr +ng ZRi :

density-functional approach. n=t =1
Recently, we have developed a wave-function-based (2)

initio methodology aimed at performing electronic structure , i i
calculations on crystalline insulatotsi2 The approach uses WhereiRi,i=1,... N} are the lattice vectors dfl unit cells
Wannier functions as single-particle orbitals obtained at th@f the crystal,Wy(r) is the nth Wannier function of the unit
Hartree-Fock level, which can subsequently be used to incell, f, is the number of electrons in tmth Wannier function
clude the electron correlation effects, if needed. The ap¢f,=2, for band insulatops M is the total number of occu-
proach has been applied to calculate ground state geometrigged Wannier functions per unit cell, amg=3>), f, is the
cohesive energies, and elastic properties of crystalline insuetal number of electrons per unit cell. However, if theinit
lators at the Hartree-Fock level? as well as at the corre- cells are distributed among complete shelitary, then
lated level!:12 Moreover, within the Berry-phase formalism =, R;=0. Combining this result with Eqgl) and(2), we
of King-Smith and Vanderbilt, we have also used our ap- obtain the mean-field expressic@ﬁg‘)) for the polarization
proach to compute the BECs of several ionic insulators at thger cell for a crystal

HF level!® The purpose behind the present work is to use

our Wannier-function-based methodology to perform corre- o M N2

lated calculations of the BEC’s of insulators. Since ours is a Pe=a/02 fnf rIWQY(r)fdr . 3
real-space approach, we start with the following expression =1

for the electronic contribution to the polarization per unit cell This equation is nothing but the Wannier-function version of

(Pe) valid for insulators™* the Berry-phase-basetinean-field expression for macro-
o e o o scopic polarization derived by King-Smith and Vanderbilt,
P = m(‘l’fy |RJWYY), (1) who gave it an intuitive interpretation as being a sum over

centers of Wannier functions of the unit cell. Note that ex-
where\ is a parameter governing the state of crygtait the  pressions above are valid only in a real-space-based ap-
present case, it represents atomic displacemefitss the  proach where square-integrable Wannier functions are used
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as single-particle orbitals. If one were to use Bloch orbitals(a|r|8(0)) and{m|r|n(0)) contribute to the correlated expec-

instead, the expectation value of position operator will havaation value. These matrix elements originate from interac-
to be computed differentfl Having demonstrated the tion among different types of excited configurations. Because
equivalence of our starting expressi#y. (1)] to the tradi-  of the localized nature of the orbitals used, the dipole matrix
tional theories at the mean-field level, we next examine itlements will fall to zero rapidly with the increasing distance
implications when a many-body expression for the groundpetween the orbitals involved. For example, for a typical

state wave functiodﬂ’é”), expressed in terms of virtual ex- insulating solid, the dipole matrix elements are negligible

citations from the mean-field wave function, is uséd, when the orbitals involved are farther than third-nearest
neighbors.
(W) = Cly gy + 2 Cll® (n — ) Calculation of the correlated many-body wave function
naj [Eqg. (4)] of an infinite solid is an extremely difficult task,

thereby rendering the direct use of Ed) even more cum-
bersome. However, Stéllproposed the use of an “incremen-
tal” method of calculating correlated total ener@nd wave
where the Greek indices, 8, ... represent the virtual Wan- function) of extended systems based upon a Bethe—
nier functions while the Latin indices),n, ... represent the Goldstone-like expansion of correlation contributions. The
occupied ones|.<b8‘)(n—>a)> denotes a singly excited con- approach was subsequently implemented by us to the case of
figuration obtained by promoting one electron from the oc-infinite systems, and utilized to compute the total energy/cell
cupied Wannier function labeled, to the virtual Wannier and related quantities of bulk LiHRef. 11) and several
function labeleda. Similarly, |<I>8)(n—>a;m—>,8)> repre- polymers!? In the approach, the total energy/cell is written
sents a doubly excited configuration with electrons being®S Ecei=Enr+Ecor, WhereEyr is the HF energy/cell of the
promoted from Wannier functions,n to «, 8. A noteworthy ~ System, ande,, is the contribution of correlation effects to
point is that the occupietin,n,...) and the virtual Wannier the total energy/cell, computed as
functions(a, 3,...) could be located in any of the unit cells 1 1
of the infinite solid. The Coefficientgig‘),Cgfl,cm_aﬁ, . Ecor =2 &+ 52 Aej + 52 Agy+ -, (6)
can, in principle, be obtained using various available many- : 7 Ik
body techniques such as the configurations-interadi@h  where ¢, A€, A€, ... etc. are, respectively, the one-, two-
method, perturbation theory, etc. Next we examine the naturgnd three-body,.correlation increments obtained by consid-
of contributions to the polarization vect®® arising from  ering simultaneous virtual excitations from one, two, or three
virtual excitations when a correlated wave functi(d)wg)x)}) occupied Wannier functions, andj,k,... label the Wannier
of the type of Eq(4) is used in Eq(1). In order to simplify  functions involved! However, using the incrementally com-
things, we restrict our discussion to the contribution of theputed many-particle wave function to compute the expecta-
singly excited configurationi;bf)”(n—m)}, although in our tion value in Eq.(1) is a tedious task which we avoid by
calculations all possible excitations needed to compute botHSINg generalized Hellman-Feynman theorem, and the finite-
one- and two-body increments have been consideeelthe  field approach to compute dipole expectation vahiesc-
discussion beloy Thus, the expectation value of the dipole cordingly, we perform the incremental calculations of
operator for a singly excited many-body wave functias- ~ energy/cell with the modified Hamiltonian
suming tha{w) is rea) is Ne

H'(E\) =Ho(\) —qes-kE o (7)

=1

+ D Cohad®Y(n— asm— )+, (4)

mn,a,3

(TN RJTL) = NCMA()P + 22N, ¢ cMar In(0))™
n,a

whereHg(\) is the usual Born-Oppenheimer Hamiltonian for
toey 5 the solid with the given value of, and€ is a user specified

ic fieldo )
where(r)f)”=2,'¥'=lfr|wn(r)|2dr (the HF expectation value external electric field? From E_(€) so computed, one can

per unit cel), and, using the translational symmetry, the sumeaSIIy obtain

over occupied Wannier functions has been restricted to those PV Hwdy  GERE)

in the reference unit cell, denoted [ao)), while the virtual N =" YA (8
Wannier functiona) can be in any unit cell of the solid. It is :

clear from Eq(5) that(a) the expectation value of the dipole where j represents the Cartesian spatial componént
operator of the entire solid? " |R /W) scales linearly with  =1,2,3. The partial derivatives in Eq8), were computed
N as it should, andb) the correlation corrections to the di- numerically by performing the calculation E 2),,(5) for sev-
pole moment/cell such as the second term of (By.can be eral small values of electric field. The Wannier functions
seen as due to the interactions between the electrons of thied in the present work were obtained by solving HF equa-
reference unit cell with those in the rest of the solid. Al-tions in the presence of an electric field, and thus are differ-
though, Eq.(5) has been derived for correlated wave func-ent from the ones used in our earlier woPks.

tions containing only singly excited configurations, however, Next we present and discuss our results for the cases of
it is easy to verify that even for more complex wave func-bulk LiH and LiF. In the present study also we have used the

tions, only two other types of matrix elements, viz., lobe-type contracted Gaussian basis functions used in our
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TABLE I. Comparison of Hartree-Fock Born charges of Li com- the HF level will be a vindication of our approach, while any
puted using the Wannier center approgch Eq. (3)], and via the  serious disagreement between the two results will be a set-

use of Hellman-Feynman theordfq. (8)]. back, and will render further correlated calculations mean-
ingless. The results from the two calculations are presented
Born charge in Table | and it is clear that the values obtained by the two

methods are in excellent agreement with each other. Next we
System Wannier-Center approach  Hellman-Feynman approachpresent the results of our correlated calculations in Table Il.
LiH 10417 10418 This tal_ale presents t_he cha_nges in the _values_ of BEC’s as
. correlation effects of increasing complexity are included us-
LiF 0.9986 0.9983 ing the aforesaid incremental scheme. The many-body ap-
proach used to compute various correlation increments of
_ _ _ _ Eq.(6) was the full-Cl method, as in our earlier works?In
earlier works?™® Unit cell Wannier functions for both the ' the case of LiH, we have performed correlated calculation
materials were described using basis functions centered ifcluding up to[third-nearest-neighbaBNN) two-body cor-
cells as far as the third-nearest neighbors of the referenaelation effects! while for the case of LiF these calculations
cell®19 For LiH we performed the calculations using the have been restricted to the nearest-neighbi) two-body
optimized lattice constant 4.067 A obtained in our earlierincrements. The reason behind restricting the correlation ef-
correlated calculatio® which is in excellent agreement with fects for LiF to NN pairs is because the contributions beyond
the experimental value of 4.06 A. For LiF we used the ex-that [second-nearest-neighb@NN), 3NN, ..] were found
perimental lattice constant of 3.99 A. For both the systemsig pe negligible. This is due to the fact that for LiH, the
fcc geometry was assumed, and anion and cation locations fydrogen anion is more diffuse as compared to the fluorine
the primitive cell were taken to b,0,0 and(a/2,0,0,  anion of LiF. Thus the valence electrons of LiH are compara-
respectively, where is the lattice constant. For LiH, in cor- tively more delocalized as compared to those of LiF, thereby
related calculationsslWannier function localized on Li as making the correlation effects relatively longer range in LiH.
was treated as core and was held frozen, while for LiF, Wantnspection of Table Il reveals that for the case of LiH, at the
nier functions corresponding tesbrbitals of both Li and F HF level the BEC is overestimated, while for LiF it is un-
were frozen during the correlated calculations. For computderestimated. When the correlation effects within the refer-
ing BEC's, the parametex corresponds to atomic displace- ence unit cell are included for either of the systems, the value
mentsAu which was taken to be 0.@4(a is the lattice con-  of the BEC decreases as compared to its HF value. This
stany in the x direction for the anion. The BEC tensor for reduction can be seen as due to the mixing of the occupied
cubic materials is diagonal and for tith atom of the cell it~ Wannier function of anion with the unoccupied ones of the
has only one unique component, s&yi). It was computed nearest-neighbor cation, termed “ion softening,” by
using the formulaZ’ (i)=Z;+(Q2/e)(AP/Au), wherez, is the  Harrison?! However, the noteworthy point is that the ion
nuclear charge of the displaced atoes|qe, andAP is the  softening in the present case is being driven by the electron-
change in the unit cell polarization due to the atomic dis-correlation effects. As far as the longer-range correlation ef-
placementAu. For Hellman-Feynman calculations of the di- fects(1NN, 2NN, ..) are concerned, no clear trends are vis-
pole expectation value, we used the central difference forible in Table Il. For LiH we see monotonic decrease in the
mula, with the values for the external electric fiell value of the BEC with longer-range correlation effects, while
=+0.001 a.u. in the direction. for the case of LiF the BEC increases as the nearest-neighbor
First we verify whether the BEC’s computed using thecorrelation effects are included. However, in both the cases,
Wannier-function center$kEq. (3)] agree with those com- upon truncation of the correlation series, the values of the
puted using the Hellman-Feynman theorfiag. (8)], at the  BEC's obtained are in excellent agreement with the experi-
HF level. Good agreement between the two calculations amnental values. Finally, in order to get a feel for the magni-

TABLE Il. Influence of electron correlation effects on the Born charge. Column with heading HF refers
to results obtained at the Hartree-Fock level. The heading “one-body” refers to results obtained after includ-
ing the corrections due to “one-body” excitations from each Wannier function of the unit cell, to the HF
value. Two-body(O) implies results include additional corrections due to simultaneous excitations from two
distinct Wannier functions located on the anion in the reference unit cell. Two-{ddy; two-body(2NN),
and two-body(3NN) correspond to two-body correlation effects involving first-, second-, and third-nearest-
neighboring Wannier functions, respectively.

Born charge

System HF  One-body Two-bod¥)) Two-body(NN) Two-body(2NN) Two-body(3NN) Exp.

LiH 1.0418 1.0302 e 1.0193 1.0183 1.0003 0.991
LiF 0.9983 0.9913 0.9847 1.0237 1.045P

aBrodsky and BursteirgRef. 18.
bComputed from the experimental data reported in Ref. 19.
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TABLE lIl. Various contributions to energy per unit cell for LiH and LiF in the absence and the presence
of external electric field€) for the undisplaced atomic configuratiGo=0.0). Similar calculations were also
performed for distorted unit cells. For the sake of brevity we are displaying the correlation contributions only
up to the NN two-body terms, bl includes all the computed contributions.

Energy per cella.u)

System & (a.u) Enr Ecorr(O) Ecorr(NN) Ecel

LiH 0.000 -8.061 995 -0.029 551 -0.004 153 -8.096 270
0.001 -8.065 846 -0.029 549 -0.004 153 -8.100 117

LiF 0.000 -107.045 079 -0.144 748 —-0.004 434 -107.194 261
0.001 —-107.048 856 -0.144 744 —-0.004 430 -107.198 030

tude of correlation effects with and without the electric field, In conclusion, we have presented ah initio Wannier-

we present the values of various contributions to the correfunction-based many-body approach aimed at computing the
lation energy/cell for the two systems in Table Il computedBorn effective charges of insulators. However, it is clear
for the undistorted unit cellA=0). Results of similar calcu- from the approach that it can also be used to compute other
lations performed for the distorted unit cell are not presentegroperties such as high-frequency dielectric constant, piezo-
here for the sake of brevity. From the table it is obvious thatelectric tensor, etc. of insulators. Work along these lines is
as expected, the most important correctiond=tg, due to  presently under way in our group, and the results will be
the electric field, are at the HF level. The correlation energiegresented in future publications.

in the nonzero field are reduced by small amounts as com-

pared to their zero-field counterparts. Of course, these small The work of P.S. was supported by Grant No. SP/S2/M-
changes in correlation energies for the0 and\ # 0 case in  10/2000 from Department of Science and Technol@ST),

the end lead to the correlation corrections to the BEC'’s assovernment of India.
depicted in Table 1.
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