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In this paper we present an approach aimed at performing many-body calculations of Born-effective charges
of crystalline insulators by including the electron-correlation effects. The scheme is implemented entirely in the
real space, using Wannier functions as single-particle orbitals. Correlation effects are computed by including
virtual excitations from the Hartree-Fock mean field, and the excitations are organized as per a Bethe–
Goldstone-like many-body hierarchy. The results of our calculations suggest that the approach presented here
is promising.
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The Born effective charge(BEC) of a periodic solid is an
important phenomenological quantity which connects the
electronic structure of the system to its phononic properties.1

Of late, in the context of ferroelectric materials and their
phase transitions, BEC has generated tremendous amount of
interest.2 Using BEC, one can also describe the lattice dy-
namics, and its coupling to infrared radiation, in a simple
intuitive manner.3 Most of the modern calculations of BECs
are based upon the Berry-phase-based theory of macroscopic
polarization developed by King-Smith and Vanderbilt.4 The
aforesaid formalism is based upon single-particle orbitals,
and, therefore, can be implemented in a straightforward man-
ner withinab initio density-functional theory(DFT),2,3 or the
Hartree-Fock(HF) framework.5 As far as many-body calcu-
lations of polarization properties are concerned, Martin and
co-workers have proposed several approaches which, to the
best of our knowledge, have not been implemented within an
ab initio methodology.6,7 Filippetti and Spaldin have recently
implemented anab initio method aimed at including corre-
lation effects by using a self-interaction-corrected(SIC)
density-functional approach.8

Recently, we have developed a wave-function-basedab
initio methodology aimed at performing electronic structure
calculations on crystalline insulators.9–12 The approach uses
Wannier functions as single-particle orbitals obtained at the
Hartree-Fock level, which can subsequently be used to in-
clude the electron correlation effects, if needed. The ap-
proach has been applied to calculate ground state geometries,
cohesive energies, and elastic properties of crystalline insu-
lators at the Hartree-Fock level,9,10 as well as at the corre-
lated level.11,12 Moreover, within the Berry-phase formalism
of King-Smith and Vanderbilt,4 we have also used our ap-
proach to compute the BECs of several ionic insulators at the
HF level.13 The purpose behind the present work is to use
our Wannier-function-based methodology to perform corre-
lated calculations of the BEC’s of insulators. Since ours is a
real-space approach, we start with the following expression
for the electronic contribution to the polarization per unit cell
(Pe) valid for insulators:14

Pe
sld =

qe

NV
kC0

slduReuC0
sldl, s1d

wherel is a parameter governing the state of crystal(for the
present case, it represents atomic displacements), V is the

volume of the unit cell,qe is the electronic charge,Ns→`d,
represents the total number of unit cells in the crystal,Re

=ok=1
Ne r k is the many-particle position operator for theNe

electrons of the crystal, anduC0
sldl represents the correlated

ground-state wave function of the infinite solid. Next we
verify that for an infinite crystal, Eq.(1) above is consistent
with the Berry-phase-based expression for the BEC’s derived
by King-Smith and Vanderbilt4 at the mean-field level. If we
express themean field(HF or otherwise) ground-state many-
particle wave functionuF0

sldl of a crystal in terms of Wannier
functions expressed in terms of square-integrable occupied
Wannier functionshWnsr −Rid , i =1, . . . ,N,n=1, . . . ,Mj lo-
cated in theN unit cells constituting the solid,10 then using
the Slater-Condon rules governing the matrix elements of a
one-body operator between two many-particle states,15 we
obtain

kF0
slduReuF0

sldl = No
n=1

M

fnE r uWnsr du2dr + neSo
i=1

N

RiD ,

s2d

wherehRi , i =1, . . . ,Nj are the lattice vectors ofN unit cells
of the crystal,Wnsrd is thenth Wannier function of the unit
cell, fn is the number of electrons in thenth Wannier function
(fn=2, for band insulators), M is the total number of occu-
pied Wannier functions per unit cell, andne=on=1

M fn is the
total number of electrons per unit cell. However, if theN unit
cells are distributed among complete shells(stars), then
oi=1

N Ri =0. Combining this result with Eqs.(1) and (2), we
obtain the mean-field expressionsP0

sldd for the polarization
per cell for a crystal

P0
sld = qe/Vo

n=1

M

fnE r uWn
sldsr du2dr . s3d

This equation is nothing but the Wannier-function version of
the Berry-phase-based(mean-field) expression for macro-
scopic polarization derived by King-Smith and Vanderbilt,4

who gave it an intuitive interpretation as being a sum over
centers of Wannier functions of the unit cell. Note that ex-
pressions above are valid only in a real-space-based ap-
proach where square-integrable Wannier functions are used
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as single-particle orbitals. If one were to use Bloch orbitals
instead, the expectation value of position operator will have
to be computed differently.16 Having demonstrated the
equivalence of our starting expression[Eq. (1)] to the tradi-
tional theories at the mean-field level, we next examine its
implications when a many-body expression for the ground-
state wave functionuC0

sldl, expressed in terms of virtual ex-
citations from the mean-field wave function, is used,15

uC0
sldl = Cs0d

slduF0
sldl + o

n,a,i,j
Cn;a

sld uF0
sldsn → al

+ o
m,n,a,b

Cm,n;a,b
sld uF0

sldsn → a;m→ bdl + ¯ , s4d

where the Greek indicesa ,b , . . . represent the virtual Wan-
nier functions while the Latin indicesm,n, . . . represent the
occupied ones.uF0

sldsn→adl denotes a singly excited con-
figuration obtained by promoting one electron from the oc-
cupied Wannier function labeledn, to the virtual Wannier
function labeleda. Similarly, uF0

sldsn→a ;m→bdl repre-
sents a doubly excited configuration with electrons being
promoted from Wannier functionsm,n to a ,b. A noteworthy
point is that the occupiedsm,n, . . .d and the virtual Wannier
functionssa ,b , . . .d could be located in any of the unit cells
of the infinite solid. The coefficientshC0

sld ,Cn;a
sld ,Cm,n;a,b

sld , . . .j
can, in principle, be obtained using various available many-
body techniques such as the configurations-interaction(CI)
method, perturbation theory, etc. Next we examine the nature
of contributions to the polarization vectorPsld arising from
virtual excitations when a correlated wave functionsuC0

sldld
of the type of Eq.(4) is used in Eq.(1). In order to simplify
things, we restrict our discussion to the contribution of the
singly excited configurationsuF0

sldsn→adl, although in our
calculations all possible excitations needed to compute both
one- and two-body increments have been considered(see the
discussion below). Thus, the expectation value of the dipole
operator for a singly excited many-body wave function(as-
suming thatuC0

sldl is real) is

kC0
slduReuC0

sldl = NC0
sld2kr l0

sld + 2Î2No
n,a

Cn;a
sld C0

sldkaur unsodlsld

+ ¯ , s5d

where kr l0
sld=on=1

M e r uWnsr du2dr (the HF expectation value
per unit cell), and, using the translational symmetry, the sum
over occupied Wannier functions has been restricted to those
in the reference unit cell, denoted asunsodl, while the virtual
Wannier functionual can be in any unit cell of the solid. It is
clear from Eq.(5) that (a) the expectation value of the dipole
operator of the entire solidkC0

slduReuC0
sldl scales linearly with

N as it should, and(b) the correlation corrections to the di-
pole moment/cell such as the second term of Eq.(5), can be
seen as due to the interactions between the electrons of the
reference unit cell with those in the rest of the solid. Al-
though, Eq.(5) has been derived for correlated wave func-
tions containing only singly excited configurations, however,
it is easy to verify that even for more complex wave func-
tions, only two other types of matrix elements, viz.,

kaur ubsodl andkmur unsodl contribute to the correlated expec-
tation value. These matrix elements originate from interac-
tion among different types of excited configurations. Because
of the localized nature of the orbitals used, the dipole matrix
elements will fall to zero rapidly with the increasing distance
between the orbitals involved. For example, for a typical
insulating solid, the dipole matrix elements are negligible
when the orbitals involved are farther than third-nearest
neighbors.

Calculation of the correlated many-body wave function
[Eq. (4)] of an infinite solid is an extremely difficult task,
thereby rendering the direct use of Eq.(1) even more cum-
bersome. However, Stoll17 proposed the use of an “incremen-
tal” method of calculating correlated total energy(and wave
function) of extended systems based upon a Bethe–
Goldstone-like expansion of correlation contributions. The
approach was subsequently implemented by us to the case of
infinite systems, and utilized to compute the total energy/cell
and related quantities of bulk LiH(Ref. 11) and several
polymers.12 In the approach, the total energy/cell is written
asEcell=EHF+Ecorr, whereEHF is the HF energy/cell of the
system, andEcorr is the contribution of correlation effects to
the total energy/cell, computed as

Ecorr = o
i

ei +
1

2!oiÞ j

Dei j +
1

3! o
iÞ jÞk

Dei jk + ¯ , s6d

whereei ,Dei j ,Dei jk , . . . etc. are, respectively, the one-, two-
and three-body,…correlation increments obtained by consid-
ering simultaneous virtual excitations from one, two, or three
occupied Wannier functions, andi , j ,k, . . . label the Wannier
functions involved.11 However, using the incrementally com-
puted many-particle wave function to compute the expecta-
tion value in Eq.(1) is a tedious task which we avoid by
using generalized Hellman-Feynman theorem, and the finite-
field approach to compute dipole expectation values.15 Ac-
cordingly, we perform the incremental calculations of
energy/cell with the modified Hamiltonian

H8sE,ld = H0sld − qeE ·o
k=1

Ne

r k, s7d

whereH0sld is the usual Born-Oppenheimer Hamiltonian for
the solid with the given value ofl, andE is a user specified
external electric field.20 From Ecell

sld sEd so computed, one can
easily obtain

qekC0
sldur juC0

sldl
N

= −
] Ecell

sld sEd
] E j

, s8d

where j represents the Cartesian spatial components j
=1,2,3d. The partial derivatives in Eq.(8), were computed
numerically by performing the calculation ofEcell

sld sEd for sev-
eral small values of electric fieldE. The Wannier functions
used in the present work were obtained by solving HF equa-
tions in the presence of an electric field, and thus are differ-
ent from the ones used in our earlier works.9,10

Next we present and discuss our results for the cases of
bulk LiH and LiF. In the present study also we have used the
lobe-type contracted Gaussian basis functions used in our
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earlier works.9–13 Unit cell Wannier functions for both the
materials were described using basis functions centered in
cells as far as the third-nearest neighbors of the reference
cell.9,10 For LiH we performed the calculations using the
optimized lattice constant 4.067 Å obtained in our earlier
correlated calculation,11 which is in excellent agreement with
the experimental value of 4.06 Å. For LiF we used the ex-
perimental lattice constant of 3.99 Å. For both the systems,
fcc geometry was assumed, and anion and cation locations in
the primitive cell were taken to bes0,0,0d and sa/2 ,0 ,0d,
respectively, wherea is the lattice constant. For LiH, in cor-
related calculations 1s Wannier function localized on Li as
was treated as core and was held frozen, while for LiF, Wan-
nier functions corresponding to 1s orbitals of both Li and F
were frozen during the correlated calculations. For comput-
ing BEC’s, the parameterl corresponds to atomic displace-
mentsDu which was taken to be 0.01a (a is the lattice con-
stant) in the x direction for the anion. The BEC tensor for
cubic materials is diagonal and for theith atom of the cell it
has only one unique component, sayZ*sid. It was computed
using the formulaZ*sid=Zi +sV /edsDP/Dud, whereZi is the
nuclear charge of the displaced atom,e= uqeu, andDP is the
change in the unit cell polarization due to the atomic dis-
placementDu. For Hellman-Feynman calculations of the di-
pole expectation value, we used the central difference for-
mula, with the values for the external electric fieldE
= ±0.001 a.u. in thex direction.

First we verify whether the BEC’s computed using the
Wannier-function centers[Eq. (3)] agree with those com-
puted using the Hellman-Feynman theorem[Eq. (8)], at the
HF level. Good agreement between the two calculations at

the HF level will be a vindication of our approach, while any
serious disagreement between the two results will be a set-
back, and will render further correlated calculations mean-
ingless. The results from the two calculations are presented
in Table I and it is clear that the values obtained by the two
methods are in excellent agreement with each other. Next we
present the results of our correlated calculations in Table II.
This table presents the changes in the values of BEC’s as
correlation effects of increasing complexity are included us-
ing the aforesaid incremental scheme. The many-body ap-
proach used to compute various correlation increments of
Eq. (6) was the full-CI method, as in our earlier works.11,12In
the case of LiH, we have performed correlated calculation
including up to[third-nearest-neighbor(3NN) two-body cor-
relation effects,11 while for the case of LiF these calculations
have been restricted to the nearest-neighbor(NN) two-body
increments. The reason behind restricting the correlation ef-
fects for LiF to NN pairs is because the contributions beyond
that [second-nearest-neighbors2NNd, 3NN,. . .] were found
to be negligible. This is due to the fact that for LiH, the
hydrogen anion is more diffuse as compared to the fluorine
anion of LiF. Thus the valence electrons of LiH are compara-
tively more delocalized as compared to those of LiF, thereby
making the correlation effects relatively longer range in LiH.
Inspection of Table II reveals that for the case of LiH, at the
HF level the BEC is overestimated, while for LiF it is un-
derestimated. When the correlation effects within the refer-
ence unit cell are included for either of the systems, the value
of the BEC decreases as compared to its HF value. This
reduction can be seen as due to the mixing of the occupied
Wannier function of anion with the unoccupied ones of the
nearest-neighbor cation, termed “ion softening,” by
Harrison.21 However, the noteworthy point is that the ion
softening in the present case is being driven by the electron-
correlation effects. As far as the longer-range correlation ef-
fects(1NN, 2NN,. . .) are concerned, no clear trends are vis-
ible in Table II. For LiH we see monotonic decrease in the
value of the BEC with longer-range correlation effects, while
for the case of LiF the BEC increases as the nearest-neighbor
correlation effects are included. However, in both the cases,
upon truncation of the correlation series, the values of the
BEC’s obtained are in excellent agreement with the experi-
mental values. Finally, in order to get a feel for the magni-

TABLE I. Comparison of Hartree-Fock Born charges of Li com-
puted using the Wannier center approach[cf. Eq. (3)], and via the
use of Hellman-Feynman theorem[Eq. (8)].

System

Born charge

Wannier-Center approach Hellman-Feynman approach

LiH 1.0417 1.0418

LiF 0.9986 0.9983

TABLE II. Influence of electron correlation effects on the Born charge. Column with heading HF refers
to results obtained at the Hartree-Fock level. The heading “one-body” refers to results obtained after includ-
ing the corrections due to “one-body” excitations from each Wannier function of the unit cell, to the HF
value. Two-body(O) implies results include additional corrections due to simultaneous excitations from two
distinct Wannier functions located on the anion in the reference unit cell. Two-body(NN), two-bodys2NNd,
and two-bodys3NNd correspond to two-body correlation effects involving first-, second-, and third-nearest-
neighboring Wannier functions, respectively.

Born charge

System HF One-body Two-bodysOd Two-body (NN) Two-body s2NNd Two-body s3NNd Exp.

LiH 1.0418 1.0302 ¯ 1.0193 1.0183 1.0003 0.991a

LiF 0.9983 0.9913 0.9847 1.0237 ¯ ¯ 1.045b

aBrodsky and Burstein(Ref. 18).
bComputed from the experimental data reported in Ref. 19.
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tude of correlation effects with and without the electric field,
we present the values of various contributions to the corre-
lation energy/cell for the two systems in Table III computed
for the undistorted unit cellsl=0d. Results of similar calcu-
lations performed for the distorted unit cell are not presented
here for the sake of brevity. From the table it is obvious that,
as expected, the most important corrections toEcell, due to
the electric field, are at the HF level. The correlation energies
in the nonzero field are reduced by small amounts as com-
pared to their zero-field counterparts. Of course, these small
changes in correlation energies for thel=0 andlÞ0 case in
the end lead to the correlation corrections to the BEC’s as
depicted in Table II.

In conclusion, we have presented anab initio Wannier-
function-based many-body approach aimed at computing the
Born effective charges of insulators. However, it is clear
from the approach that it can also be used to compute other
properties such as high-frequency dielectric constant, piezo-
electric tensor, etc. of insulators. Work along these lines is
presently under way in our group, and the results will be
presented in future publications.
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TABLE III. Various contributions to energy per unit cell for LiH and LiF in the absence and the presence
of external electric fieldsEd for the undisplaced atomic configurationsl=0.0d. Similar calculations were also
performed for distorted unit cells. For the sake of brevity we are displaying the correlation contributions only
up to the NN two-body terms, butEcell includes all the computed contributions.

Energy per cell(a.u.)

System E (a.u.) EHF EcorrsOd EcorrsNNd Ecell

LiH 0.000 −8.061 995 −0.029 551 −0.004 153 −8.096 270

0.001 −8.065 846 −0.029 549 −0.004 153 −8.100 117

LiF 0.000 −107.045 079 −0.144 748 −0.004 434 −107.194 261

0.001 −107.048 856 −0.144 744 −0.004 430 −107.198 030

PRIYA SONY AND ALOK SHUKLA PHYSICAL REVIEW B 70, 241103(R) (2004)

RAPID COMMUNICATIONS

241103-4


