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We have applied the full-potential linearized augmented plane-wave(FLAPW) ab initio method and thespd
tight-binding (TB) model to the calculations of the surface energiesESshkld and relaxations of the three
low-index[(111), (100), (110)] surfaces of platinum. The two methods give similar results, and in particular the
anisotropy ratiosESs110d /ESs111d andESs100d /ESs111d are very close. The calculation of surface energy of
reconstructeds132d Pt(110) confirms that this face undergoes a missing-row reconstruction and the corre-
sponding structural parameters agree well with experiment. The local densities of states(LDOS) calculated by

each of the methods on the flat surfaces are almost the same. We have also investigated the 6s111d3 s1̄11d
vicinal surface and found a similar agreement for the LDOS.
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I. INTRODUCTION

The surface energy represents a fundamental property of
materials. It is defined as the energy(per surface atom or per
unit surface area) needed to split an infinite crystal into two
semi-infinite crystals bounded by a crystallographic plane
with a given orientation. A variety of experimental tech-
niques has been developed to measure the surface energy,1

but all measurements are performed at high temperatures
where surfaces are badly defined. Most experimental data2,3

stems from surface tension measurements in the liquid phase
and by extrapolating the orientation-averaged surface free
energies to zero temperature. However, a detailed knowledge
of surface properties is necessary to predict the equilibrium
shape of a mesoscopic crystal and is important for the under-
standing of a wide variety of phenomena such as catalysis,
surface reactivity, growth, creation of steps and kinks on sur-
faces, etc.

The lack of experimental data can be replaced by calcu-
lations of different kinds. Generally, two main types of cal-
culations are used, based either on semi-empirical potentials
[embedded atom model(EAM),4 second moment approxima-
tion (SMA),5 effective medium theory(EMT),6 Sutton-Chen
and Finnis-Sinclair potentials7] or on the determination of
the electronic structure from density functional theory(DFT)
or parametrized Hamiltonians such as tight-binding(TB)
models. The first calculations of the surface energy of tran-
sition metals were performed using the TB scheme based on

a pured band model.8–10These first results gave an interpre-
tation of the roughly parabolic variation of surface energies
along the transition-metal series since, for these elements,
the cohesive properties of the solid are governed by thed
electrons. Quantitative results were found for elements that
are not too close to the beginning or the end of the series. On
the contrary, when thed band is almost filled or empty, the
spband plays a non-negligible role in the cohesive properties
and thus the results obtained with a pured band were, at
best, qualitative.10 In order to improve the model,spd tight-
binding methods were developed.11

Due to the development of the DFT during the last two
decades,ab initio methods can now be used to calculate
many physical properties with unprecedented accuracy.
Methfesselet al.12 have done a pioneering work in determin-
ing the surface energy, work function, and relaxation for the
whole series of bcc and fcc 4d transition metals, using a
full-potential version of the linear muffin-tin orbital(FP-
LMTO) method in conjunction with the local density ap-
proximation(LDA ) to the exchange-correlation potential. In
the same spirit, Skriver and co-workers13,14 have used a
LMTO technique to determine the surface energy and the
work function of most of the elemental metals. For Pt, a first
attempt has been done by Feibelman using LDA in a basis of
contracted Gaussian orbitals.15 Vitos et al.,16 using full-
charge Green’s function LMTO technique in the atomic
sphere approximation(ASA) in conjunction with the gener-
alized gradient approximation(GGA), have elaborated a
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very useful database that contains the low-index surface en-
ergies for 60 metals of the periodic table, but neglecting
atomic surface relaxation. In the last decades, several full-
potential linearized augmented plane-wave(FLAPW) calcu-
lations have also been carried out for the 3d and 4d transition
metals.16 In contrast, the 5d series has been much less stud-
ied with this method except for tungsten surfaces.17,18

The two methods,ab initio or TB, have their own advan-
tages and drawbacks. The strength ofab initio calculations is
their high transferability and predictive power, but they re-
main, compared with TB methods, lengthy and are usually
restricted to systems with a limited number of inequivalent
atoms. TB calculations mostly rely on some parameters
whose transferability has sometimes been questioned but
which can produce quantitative results for systems with a
large number(up to a few thousands) of geometrically in-
equivalent atoms. Thus TB methods open up the possibility
of studying rough surfaces, homoepitaxial growth, step flow
growth, surface melting, or cluster deposition. Indeed such
problems would be difficult to model withab initio methods
due to the CPU time required even on very powerful com-
puters. In any case before using a set of TB parameters in
such systems, it is necessary to first check that this set pro-
duces results in good agreement withab initio calculations
on simple systems.

In this work, we have mainly investigated the low-index
surface energies of platinum. Indeed, the study of low-index
surfaces is a prerequisite to that of vicinal surfaces of plati-
num which are often used as a template to construct self-
organized structures such as nanowires19,20 displaying spe-
cific magnetic or electronic properties. Moreover, strong
couplings between these nanostructures and the substrate
could occur. A detailed knowledge of the electronic proper-
ties of such surfaces is thus needed for future work. Here, we
focus on the main crystallographic faces of platinum[(111),
(100), and (110)]. In particular, we have calculated the sur-
face energiesESshkld and compared the results given by an
ab initio method based on a full-potential scheme to aspd
TB model. In addition, we have also investigated the
missing-row reconstruction of the(110) surface and the

6s111d3 s1̄11d vicinal surface.21 This paper is organized as
follows. In Sec. II, we summarize briefly the two methods. In
Sec. III the results are presented and discussed. Concluding
remarks are given in Sec. IV.

II. COMPUTATIONAL METHODS

A. The FLAPW method

The results were obtained with the FLAPW in bulk and
film geometry22 as implemented in the computer code
FLEUR,23 based on density functional theory in LDA or GGA.
For LDA we used the exchange-correlation(XC) potential of
von Barth and Hedin,24 and for GGA the version of Perdew
et al.25 The surfaces were modeled by slabs withn snù11d
atomic layers of Miller indicesshkld. The Pt muffin-tin ra-
dius was set equal to 2.3 a.u.s1.219 Åd. Inside each muffin-
tin sphere, the charge density and the potential were ex-
panded in spherical harmonics with angular momentum up to

l =8. Throughout this paper, the total-energy results have
been obtained using basis functions including wave vectors
up to kmax=4 a.u. amounting to around 130 basis functions
per atom. Within the irreducible wedge of the two-
dimensional Brillouin zone(BZ), eigenvalues and eigenvec-
tors were calculated using different sets of Monkhorst-Pack26

k or k i points. The calculations of bulk Pt were performed
with 216 k points in the irreducible wedge of the three-
dimensional BZ. In order to keep an equivalently dense mesh
in the two-dimensional BZ(2DBZ) we used a special
k i-point set of 57 points within 1/6 of the 2DBZ for the
(111) face, 48k i points within 1/4 of the 2DBZ for the(110)
face and 36k i points within 1/8 of the 2DBZ for the(100)
face. Self-consistency was achieved when the root-mean-
square difference between the input and the output charge
densities was less than 2310−4 electrons/sa.u.d3, which has
been proved to be sufficient.

B. The spd tight-binding method

Let us briefly describe thespdTB model for platinum. A
nonorthogonal minimal basis set ofs, p, and d valence
atomic orbitalsuill is assumed,uill denoting the orbitall
centered at sitei. Indeed platinum is at the end of the 5d
series ands andp electrons, which are better described in a
nonorthogonal scheme, play a significant role in cohesive
properties. In this basis, solving the Schrödinger equation
requires the knowledge of the matrix elements(on-site and
intersite) of the Hamiltonian and of the overlap matrix. The
intersite matrix elements of the Hamiltonian are limited to
two-center integrals. All these matrix elements are assumed
to obey given functional forms as a function of the inter-
atomic distance including parameters that are determined us-
ing a nonlinear least mean square fit onab initio bulk band
structure and total-energy curve for typically 4–6 interatomic
distances and two crystallographic structures, bcc and fcc.
The corresponding functional forms and parameters can be
found in Ref. 11. One should note that these parameters are
obtained from systems in which all atoms are neutral since
they are geometrically equivalent. When this is not the case,
for instance, in the presence of a surface, a shiftdV i is added
to the on-site terms in order to account for the effect of the
charge redistribution occurring at the surface. However, the
nonorthogonality leads to a generalized eigenvalue problem.
In this case it is well known that a rigid shift of the on-site
matrix elements of the Hamiltonian does not produce a rigid
shift of the eigenvalues.27 The potential that must be added to
the Hamiltonian matrixHij

lm to produce a rigid shiftdV0 of
the eigenvalues has the following expression in the atomic
orbital basis:27

dVij
lm = kiludVu jml = dV0Sij

lm, s1d

where Sij
lm is the overlap integral between orbitaluill and

orbital u jml. The generalization of this formula to the case of
an inhomogeneous system is straightforward:
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dVij
lm = kiludVu jml =

1

2
sdVi + dVjdSij

lm. s2d

Of course one has to subtract the double counting term due
to electron-electron interactions, which has exactly the same
expression as in the orthogonal case, i.e.,

Edc = Nvalo
i

dVi +
1

2o
i

dVidNi , s3d

whereNval, Ni, anddNi are, respectively, the total number of
valence electrons per atom of the metal, the Mulliken popu-
lation of atomi, and its Mulliken net charge. As in Ref. 28
the following relation,

dVi = UdNi , s4d

has been assumed withU=5 eV. The local chargesdNi are
determined self-consistently and obeyoidNi =0. Conse-
quently the double counting term in the total energy reduces
to

Edc =
1

2o
i

UisdNid2. s5d

The summations over the 2DBZ, involved in the TB calcu-
lations, were performed using 135, 136, and 256 Cunning-
ham specialk i points29 in the irreducible wedges of the
(111), (100), and(110) 2DBZ, respectively.

III. RESULTS

In this section, we present all the results we have obtained
using the full-potential method and thespdTB method. The
bulk structural features calculated with the two methods
agree well with the available experimental data. With the
computer codeFLEUR, we have determined the theoretical Pt
bulk lattice constant,a0, and bulk modulus,B0, to be equal to
3.89 Å and 3.14 Mbar, respectively, within the LDA ap-
proximation, and to 3.98 Å and 2.59 Mbar, respectively,
within the GGA approximation. These values are in good
agreement with the experimental values of 3.92 Å and
2.78 Mbar,30 respectively. Nevertheless, as mentioned in
other works,31–34 we find that LDA offers better agreement
for the lattice constant(−0.43% compared to experiment)
than GGA(+1.71% compared to experiment). In addition the
bulk modulus is overestimated(underestimated) with LDA
(GGA). This is clearly connected to the underestimation
(overestimation) of the lattice parameters obtained with LDA
(GGA). Within the spdTB theory, the calculated lattice pa-
rameter is 3.90 Å. This value only differs by 0.25% from the
experimental one. The bulk moduluss3.06 Mbard is close to
the value obtained with LDA. This was rather expected since
the TB parameters have been fitted to LDA calculations.11

The calculated lattice parameters will be used in the follow-
ing.

A. Electronic structure of the low-index surfaces

We start this study by considering unrelaxed surfaces, and
first we compare the band structures obtained for the(111)

face of platinum usingab initio and TB methods. The agree-
ment is almost perfect, up to 5 eV above the top of thed
band, for the projected bulk band structure as well as for the

FIG. 1. (Color online) The surface band structure of Pt(111).
Dotted lines(black) correspond to the FLAPW method and circles
(blue) to spd TB calculations. Both FLAPW and TB calculations
were done using a 13 layers slab. The zero energy is taken at the
Fermi level.

FIG. 2. Left column: LDOS on the bulklike atoms, i.e., belong-
ing to the central layer of the slab(shaded parts) and the surface
atoms(solid lines) in the case of FLAPW calculations. Right col-
umn: LDOS on the surface atoms obtained with the FLAPW
method (solid lines), and spd TB calculations(dashed lines). (a)
(111), (b) (100), and(c) (110). The origin of the energy scale refers
to the Fermi energy.
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dispersion curves of the surface states present in the gaps
(Fig. 1). Another interesting quantity describing the surface
electronic structure is the local density of states(LDOS) on
atoms belonging to successive layers. In both methods they
are defined starting from the LDOSnsr ,Ed at point r :

nsr ,Ed = o
n

ucnsr du2dsE − End, s6d

wherecnsr d andEn are the eigenfunctions and the eigenval-
ues, respectively. In the FLAPW method the LDOS at sitei
is defined as the integral ofnsr ,Ed over the muffin-tin sphere
Si centered at sitei, i.e.,

nisEd = o
n

dsE − EndE
Si

ucnsr du2d3r . s7d

In the TB approach,cnsr d is written as a linear combination
of atomic orbitalsuill with coefficientscilsEnd. The total
density of states is obtained by integrating Eq.(6) over the
whole space. This can be written

nsEd = o
i

nisEd, s8d

thereby defining the LDOSnisEd as

nisEd = o
n,j ,l,m

cil
* sEndcjmsEndSij

lmdsE − End. s9d

Thus the LDOS calculated with the two methods are not
expected to be strictly the same.

In Fig. 2, we present the LDOSnisEd for two different
sites i of the three different faces using the two methods
(note that they have been renormalized). The shapes of these
LDOS are very similar. In both methods we observe the
well-known overall narrowing of the LDOS on surface at-
oms. However, the amplitudes of the LDOS are slightly dif-
ferent especially at the Fermi level. Indeed, in any case the
LDOS are dominated by thed electron contribution and
should be very similar when these electrons are almost com-
pletely contained inside theSi sphere. In the present case

around 80% of thed electrons are insideSi (see Table I).
This is the reason for the similarity of the LDOS obtained
with the two methods. However, thed wave functions near
the Fermi level have an antibonding character and thus ex-
tend less outsideSi. This qualitatively explains the differ-
ences found near the Fermi level. This argument was
checked in detail for bulk Pt where the density of states
(DOS) of both methods are in perfect agreement.

In order to go further in the comparison between the two
methods, we have analyzed the distribution of the charge
between thes, p, and d orbitals in the muffin-tin sphere
(MTS) of the FLAPW method and in thes, p, andd orbitals
of the TB basis set. In Table I, we present the number of
electrons in each orbital for the bulklike atom(C), the sur-
face (S), and subsurfacesS−1d atoms. Note that the MTS
volume is about half the atomic volume. The comparison
between the total populations per atom given by TB and in
the MTS given by FLAPW shows that thed electrons are
strongly localized in the MTS, as stated above, while thes
andp electrons are almost equally shared in the MTS and in
the remaining volume. Moreover, it is worthwhile to observe
that on the surface atoms of the three surfaces there is a
decrease of the total charge in the MTS, this change being
mainly due to the decrease of thep population.

We have also calculated the work function(at 0 K) for
each surface orientation with the FLAPW method using the
film geometry. Unfortunately, thespd TB method does not

TABLE I. Electronic valence charge ofs, p, and d character in the muffin-tin sphere(FLAPW) or
projected on the atomic orbitals(spdTB) of the differentshkld films for unrelaxed geometries. The surface,
first subsurface, and central atomic layers are denoted as S, S−1, and C, respectively.

Orientation Atom

FLAPW TB

s p d Total s p d Total

(111) Pt(C) 0.379 0.282 7.136 7.845 0.696 0.679 8.605 9.978

PtsS−1d 0.374 0.277 7.135 7.835 0.694 0.664 8.629 9.987

Pt(S) 0.385 0.218 7.133 7.770 0.795 0.622 8.684 10.101

(100) Pt(C) 0.379 0.281 7.135 7.844 0.696 0.678 8.600 9.975

PtsS−1d 0.376 0.277 7.125 7.827 0.701 0.675 8.602 9.978

Pt(S) 0.376 0.189 7.162 7.758 0.797 0.560 8.776 10.136

(110) Pt(C) 0.379 0.282 7.133 7.843 0.696 0.677 8.602 9.975

PtsS−1d 0.377 0.263 7.109 7.794 0.727 0.689 8.592 10.008

Pt(S) 0.365 0.164 7.198 7.752 0.784 0.503 8.869 10.156

TABLE II. Work functions (in eV) of flat surfaces.

Orientation FLAPW-LDA Others Expt.

(111) 6.53 6.07;a 6.74;b 6.12c

(100) 6.52 6.97b 5.77–6.10d

(110) 6.19

aSee Ref. 33.
bSee Ref. 13.
cSee Ref. 61.
dSee Refs. 62–65.
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allow us to have access to this physical quantity. Our results
are listed in Table II together with other theoretical calcula-
tions and experiments. The work functions of the(111) and
(100) faces are nearly the same while the values obtained by
Skriver and Rosengaard13 exhibit a deviation of 3%. It
should be noted that in the case of Ag,13 theoretically calcu-
lated work functions of the(111) and(100) faces were found
to be nearly identical. At this stage, we cannot conclude
whether this difference is realistic or not. The Pt work func-
tions W obey the relation:

Ws111d . Ws100d . Ws110d. s10d

Note however, that the(110) surface exhibits as132d recon-
struction at equilibrium. These inequalities can be explained
on the basis of geometric considerations. In general, one ex-
pects the work function to decrease as the surface becomes
more open due to the smoothing of the modulation of the
electron density at the surface. This argument apparently ap-
plies to Pt surfaces. Finally, compared to the work functions
of Skriver and Rosengaard, our values are closer to experi-
ment since it is known that the work function decreases
slightly with temperature. It should also be mentioned that
reconstruction could modify the work function value. In par-
ticular the(100) surface is metastable and can undergo sev-
eral reconstructions, thes135d being the most common
one.35,36

B. Surface energies of low-index surfaces

Let us now discuss the surface energies of the three main
flat surfaces. In a first step, no atomic relaxation has been
allowed. In the FLAPW approach, a 13-layer slab was used
to model the(111) surface, 15 layers for the(100) orienta-
tion, and a 19-layer slab for the(110) surface. These slabs

are repeated periodically and separated by 5, 5, and 8
vacuum layers for the(111), (100), and (110) surfaces, re-
spectively. Within thespd TB method, 13-layer slabs were
used for(111) and(100) surfaces and 17 layers for the(110)
surface. In both cases it was checked that increasing the
number of layers does not change the surface energy signifi-
cantly. The surface energies per surface atom were then de-
fined by

ESshkld =
1

2
fEhklsnd − nEbulkg, s11d

whereEhklsnd is the total energy per unit cell of the slab, and
Ebulk is the bulk energy per atom andn is the number of
atomic layers in the slab. Note that for the calculation of
surface energies, the determination of the bulk energy is
critical. This energy can be extracted from a true bulk calcu-
lation or from the difference of two slab calculations. We
have checked that both procedures give the same results if
the number of layers is large enough to achieve the energy
convergence. The different results are listed in Table III. The
values reported previously by Vitoset al.,16 Galanakiset
al.,37 and Skriver and Rosengaard13 are also reported for
comparison. One first notes that the values for the surface
energies obtained with GGA are the smallest ones reported in
this table, even though Vitoset al.used also the GGA in their
calculations. The FLAPW-LDA values andspdTB ones are
quite similar and differ at most by 9%. These values are the
largest and are closer to those calculated by Vitoset al. Dis-
crepancies between the FLAPW-LDA method and other
methods have been already reported by Galanakiset al.38 in
the case of Au surfaces. However, for Au the values obtained
using the full-potential Korringa-Kohn-Rostoker(FKKR)
method are larger than the FLAPW-LDA ones.

TABLE III. Surface energiesESshkld of low index surfaces of platinum calculated using thespdTB and FLAPW methods compared with
previous results from Refs. 13, 16, and 37. The experimental value is also reported(Ref. 2). All results are given in eV/(surface atom) and
refer to unrelaxed surfaces.

Orientation FLAPW-LDA FLAPW-GGA spdTB LMTO-GGA KKR-LDA LMTO-LDA Experiments

(111) 1.10 0.85 1.01 1.00 0.96 0.98 1.03

(100) 1.50 1.16 1.45 1.38 1.27 1.19

(110) 2.26 1.70 2.18 2.01 1.97

TABLE IV. Unrelaxed surface energy and work function of Pt(100) given by several LDA exchange
correlation potentials at fixed lattice parameters3.92 Åd.

Exchange correlation potential Surface energy(eV/atom) Work functions(eV)

Moruzzi, Janak, and Williamsa 1.50 6.21

von Barth and Hedinb 1.53 6.57

Vosko, Wilk, and Nusairc 1.50 5.96

Perdew and Zungerd 1.50 6.12

aReference 66.
bReference 24.
cReference 42.
dReference 43.
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Actually, the surface energy may be sensitive to the tech-
nical details and approximations made in the calculation.
Thus we have carried out several computations in order to
check the accuracy of our results. First, we have verified the
convergence with respect to the numberNki

of k i points.
Indeed, in Ref. 38, the authors have shown that, at least
for the (111) face, the surface energy is very sensitive to
Nki

(Fig. 2 of Ref. 38). We have recalculated the surface
energy of the(111) face withNki

=300 instead of 57 within
the LDA. The value obtainedf1.12 eV/ssurface atomdg
is similar to the one previously calculatedf1.10 eV/
ssurface atomdg, i.e., the convergence was achieved since
these two energies differ only by 2%. This feature contrasts
with the study of the noble metals done by Galanakiset al. in
which the value of the surface energy was much more sen-
sitive to Nki

. As explained in Ref. 37, unlike the(111) sur-
face of fcc transition metals, noble metals exhibit an occu-

pied surface state centered at theḠ point just above thed
band, and thus a very densek i-point grid is needed in the
calculations of the slab total energy for the latter elements.

Second, still considering the(111) face, we have also tried
to estimate the effect of spin-orbit(SO) coupling and also of
relativistic corrections of MacDonald and Vosko39 introduced
in the XC potential in LDA. Indeed, these corrections may
be important for the heavy elements of the 5d series. We
have first recalculated the lattice parameter introducing the
SO coupling. For LDAs3.91 Åd, the agreement with the ex-

perimental value becomes as good as the one obtained with
spdTB method while in GGA we get 4.01 Å. The relativistic
corrections to the XC potential do not modify the values of
the surface energy obtained previously. In contrast, the
surface energy is more sensitive to the introduction of
the SO coupling since it leads to an energy equal to
0.90 eV/ssurface atomd. This decrease of the surface energy
can be understood qualitatively using a simple TB model
limited to thed band. In this model the total energy is split
into two contributions, a band term and a repulsive term,8 the
former being the leading one. In the usual approximation
where only intra-atomic matrix elements of the spin-orbit
coupling interaction are taken into account, the second mo-
ment of the LDOS of an atom in the(111) surface and in the
bulk are respectively 9b2+3j2/2 and 12b2+3j2/2, whereb
is an effective hopping integral between nearest neighbors40

andj the spin-orbit parameter. The ratio of the band contri-
bution to the surface energy with and without spin-orbit cou-
pling is given by8

ES
bandsjd

ES
bands0d

=
Î12b2 + 3j2/2 −Î9b2 + 3j2/2

Î12b2 − Î9b2
. s12d

For Pt b.0.41 eV (Ref. 40) and j.0.62 eV (Ref. 41) we
find ES

bandsjd /ES
bands0d=0.86, to be compared with the value

0.82 found in FLAPW calculations.
Third, the choice of the XC potential could also be tested.

A large variety of XC potentials in the LDA approximation

TABLE V. Relaxed surface energies and relaxation of the inter-planar distancesDdij (in %) for ideal low
index surfaces of Pt calculated from FLAPW-LDA andspdTB.

Pt(111) Pt(100) Pt(110)

Surface energy(eV/atom)
FLAPW

1.10
TB
0.98 Experimentsa

FLAPW
1.49

TB
1.45

FLAPW
2.16

TB
2.04

Dd12 (%) +1.3 +3.8 +1.1 −1.9 −0.5 −14.0 −16.7

Dd23 (%) +0.3 +0.2 +0.2 +0.3 +0.4 +8.3 +12.4

Dd34 (%) +0.5 −0.4 - +0.9 +0.04 −0.8 −3.0

aReference 48.

FIG. 3. The anisotropy ratios
of surface energies(per atom) for
platinum,ESs100d /ESs111d (lower
values) andESs110d /ESs111d (up-
per values), using spd TB,
FLAPW, LMTO from Ref. 16 and
FKKR from Ref. 38 methods. The
two solid lines represent the ideal
first-neighbor broken-bond ratios:
4/3 for (100) and 2 for(110).
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can be found in the literature.24,42,43 We have compared in
Table IV the surface energy and the work functions of
Pt(100) using a number of these potentials. Note that we
have used the same lattice parameter, namely the experimen-
tal one s3.92 Åd. The four XC potentials give almost the
same surface energy, the largest difference being of the order
of at most 2%. Note that the work functions depend more
strongly on the choice of the XC potential, as was already
mentioned by Aldenet al.44 for Ni(100).

Fourth, the cutoffskmaxd of the wave vector in the plane-
wave expansion of the wave functions may be too small to
describe the wave functions outside the MTS. For the(100)
face, we have done a calculation withkmax=4.8 a.u. in order
to check the validity of our first choice. With this new cutoff,
the surface energy is also equal to 1.50 eV/atom. Thus in-
creasingkmax does not modify the surface energy.

According to these checks, LDA seems to be a good com-
promise to get a realistic description of platinum surface en-
ergies. In addition, LDA gives better agreement with experi-
ment for the atomic volume. Note, however, that, as already
stated the bulk modulus is better described in GGA. These
slight differences have been already largely discussed in the
literature.45,46Nevertheless, it should be noted that the aniso-
tropy ratiosESshkld /ESs111d given by LDA and GGA(Fig.
3) are almost the same whilespd TB gives slightly larger
values. Galanakiset al.37 have suggested that the transition-
metal surfaces usually follow the broken-bond rule but with
larger deviations than for noble metals because theird band
is not filled and their LDOS present peaks at the Fermi level

depending on the surface orientation. The number of nearest-
neighbor bonds broken by the surface is 3, 4, and 6 for the
(111), (100), and (110) orientations, respectively. Actually
LMTO, FKKR, and FLAPW give results very close to 4/3
for ESs100d /ESs111d and to 6/3=2 forESs110d /ESs111d. In
the following, we will only present results corresponding to
LDA calculations and compare them with those obtained
with the spdTB method.

The relaxation of the three flat surfaces has also been
investigated. The relaxation of the interplanar distance
between planesi and j is expressed as the ratioDdij =sdij
−d0d /d0 (in %), wheredij is the interlayer spacing between
the layersi and j , andd0 is the interlayer spacing distance in
the clean unrelaxed surface. Within thespd TB method, all
layers were relaxed whereas in the case of the FLAPW
method, only the three outermost layers were allowed to
move. We have verified the validity of this assumption on the
(100) face considering the relaxation of a larger number of
planes. In Table V the structural parameters and the relaxed
surface energies are presented. As expected, the surface en-
ergies of relaxed surfaces are slightly smaller(from −0.07%
to −6.5%) with respect to the unrelaxed cases, the largest
deviation being observed for the most open(110) surface.
Indeed the(110) surface exhibits a large inward contraction
of the first interlayer spacing by −14%(FLAPW) or −16.7%
(spdTB), and an expansion of the second interlayer spacing
by +8.3% (FLAPW) or +12.4% (spd TB). Note that the
FLAPW results are very similar to those obtained by Jenkins
et al.47 using anotherab initio code, and that thespd TB
model has a tendency to overestimate the contractions or
expansions of the distance between the layers. On the(111)
face, both approaches agree in predicting an outward relax-
ation of the top layer(also verified by experiments48).
Whereas it reaches a value of +3.8% withspd TB, it
amounts to only +1.3% with the FLAPW, in very good
agreement with the experimental results of Matereret al.48

For the(100) face, contrary to the two former ones, thespd
TB model seems to underestimate the first interlayer contrac-
tion compared to FLAPW but once more, the general tenden-
cies are similar.

In the case of platinum, it is nowadays well known and
observed experimentally, as well as found theoretically, that
the (110) face exhibits as132d missing-row reconstruction.
The experimental studies reveal a considerable variation of
the first interplanar distance: −0.26 Å or −0.28 Å by low-
energy electron diffraction,49,50−0.42 Å by x-ray photoemis-
sion diffraction,51 and −0.5±0.1 Å by neutral impact colli-
sion ion-scattering spectroscopy.52 On the theoretical side, a

TABLE VI. The relaxed structural parameters for the reconstructed Pts110d-s132d surface[Pi denotes
pairing displacements in theith row; d3 denotes buckling in the third Pt layer(see Fig. 4)].

Dd12 (%) Dd23 (%) Dd34 (%) Dd45 (%) P2 (Å) d3 (Å) P4 (Å) References

−18.8 +0.5 +1.7 +1.4 0.04 0.28 0.07 Present results FLAPW

−26 −3.7 −1.5 +2 0.05 0.42 0.08 Present resultsspdTB

−16 0 +2 0 0.03 0.27 0.07 Theory(Ref. 47)

−17.6 −0.5 - - 0.04 0.25 0.11 Theory(Ref. 57)

−20.8 −1.1 −1.1 +0.4 0.05 0.17 0.05 Experiments(Ref. 50)

FIG. 4. Schematic drawing of the geometry of the missing-row
structure for thes132d Pt(110) surface. Shaded circles correspond
to the relaxed positions and empty circles the unrelaxed ones.
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Slater-Koster parametrized TB scheme53,54 predicted rather
smaller relaxations, whereas the EAM55,56 and FLAPW57

methods gave results comparable to most of the experimental
values. We have also studied this reconstructed structure by
means of our two approaches. In order to go further than Lee
et al.,57 who also used a full-potential technique but with
slabs of seven layers only, we have modeled thes132d
Pt(110) surface by a single slab consisting of eleven layers
instead of seven. This choice was made in order to decrease
finite size effects that are present in the Leeet al. calcula-
tions since their results show that the atoms belonging to the
central layer have an atomic environment still significantly
perturbed from the bulk one. On the surface layer on each
side of the slab the missing-row structure was assumed and
the slab was repeated periodically with 8 vacuum layers(Fig.
4). With theFLEUR code the Kohn-Sham equation was solved
at 24k i points within the irreducible wedge of the 2DBZ.
ThespdTB calculations were carried out for a 17-layer slab
using 64k i points. Our results for the structural parameters
are presented in Table VI. The outermost interlayer spacing
shows a significant contraction ofDd12=18.6% (FLAPW)
and Dd12=26% (spd TB) with respect to the bulk distance.
In addition, a large vertical bucklingd3 in the third layer, and
a lateral row pairing in the secondsP2d and fourthsP4d layers
are observed. They reproduce, especially within the FLAPW
approach, the calculations of Leeet al.57 and Jenkinset al.47

and corroborate the experimental findings. Table VII gives
the surface energy pers132d unit cell for the ideal and
reconstructed Pt(110) in the relaxed and unrelaxed cases.
The reconstruction energies, namely the surface energy dif-
ference between thes132d and s131d phases pers132d
unit cell, are also reported. The two methods conclude to a
stabilization of the system by the missing-row reconstruc-
tion. Relaxation reinforces this behavior. The surface ener-
gies obtained by the TB method tend to overestimate the
reconstruction energies especially if one compares the re-

laxed values−0.47 eVd to the value given by Jenkinset al.47

s−0.2 eVd. In contrast, the FLAPW value of the reconstruc-
tion energy is in better agreement with the one given by
Jenkinset al. Finally, it should be noticed that the surface
energies obtained with FLAPW for the ideals131d surface
per s132d unit cell are not exactly twice those given in
Table III (unrelaxed case) and Table V(relaxed case). These
slight discrepancies are due to the different number of layers
included (11 instead of 17, respectively) and also, may be
due the differentk i point samplings in thes231d and the
s131d cell.

C. From low-index surfaces to vicinal surfaces

We consider vicinal surfaces presenting a periodic succes-
sion of terraces with equal widths, separated by steps of
monoatomic height(see Fig. 5). Using the simple model pro-
posed by Vitoset al.,58 we have calculated the energies of
different kinds of isolated steps. Starting from the(111),
(100), and (110) surface energies three effective pair poten-
tials (EPP) Vs ss=1,2,3d can be evaluated using the follow-
ing relation:

ESshkld = o
s=1

3

nsshkldVs. s13d

In this expression,nsshkld is the number of broken bonds in
the sth coordination shell for a surface of indicesshkld. Us-
ing the surface energies(see Table III) for each method the
values ofV1, V2, andV3 have been determined and are listed
in Table VIII. From these pair potentials, the energy of an
isolated step can be expressed as:

TABLE VII. Surface energies and reconstruction energies in eV
per s132d cell for the ideals131d and reconstructeds132d (110)
Pt surfaces.

FLAPW spdTB

s131d unrelaxed 4.36 4.36

s131d relaxed 4.17 4.10

s132d unrelaxed 4.23 4.16

s132d relaxed 3.93 3.63

Reconstruction energy(unrelaxed) −0.13 −0.20

Reconstruction energy(relaxed) −0.24 −0.47

TABLE VIII. The effective pair interactions in eV derived from the surface energies of Table III. The
values obtained using the LMTO-GGA values of the surface energies can also be found in Ref. 58.

Pair interactions FLAPW-LDA spdTB LMTO-GGA KKR-LDA

V1 0.410 0.441 0.316 0.38

V2 −0.017 −0.055 −0.0197 0.002

V3 −0.007 −0.012 0.0096 −0.016

FIG. 5. Cut of a vicinal surface through a plane normal to the
step edges:b is the distance between two consecutive steps,b0 is
the distance between two consecutive rows in a terrace,u is the
misorientation angle andp the number of atomic rows(including
the inner edge) parallel to the step edge in a terrace,f is a geometri-
cal factor depending on the vicinal surface, andh is the interplanar
spacing along the direction normal to the terraces.
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Estepspd = o
s=1

3

nstep,sspdVs,

s14d
nstep,sspd = nsspd − sp − 1 + fdnss`d,

wherep characterizes the number of atomic rows(including
the inner edge) parallel to the step edge in a terrace, andf is
a geometrical factor depending on the vicinal surface(see
Fig. 5). The numbersnsspd andnss`d are the total number of
bonds in thesth coordination sphere broken by the vicinal
and flat surfaces, respectively. Due to the short range of the
EPP,nstep,sspd becomes a constant as soon asp overcomes a
valuep`, which is actually very small: most often, according
to Vitos et al.,58 p`ø2. Raouafiet al.59 have shown that the
method proposed by Vitoset al. is quite valid if an estima-
tion of step energies to<10−2 eV is needed and step-step
interactions as well as atomic relaxation are disregarded. Us-
ing Eq. (14), we have calculated the step energies corre-
sponding to stepped surfaces with either(111), (100), or
(110) terraces. The results are listed in Table IX. The agree-
ment between all results is reasonable for the stepped sur-
faces with (111) terraces. Considering the vicinal surfaces
with (100) terraces, for which the value ofV2 plays an im-
portant role, larger differences are found. From Table V it is
indeed seen that the value ofV2 is strongly dependent on the

surface energy database. For example, using the energy da-
tabase of Galanakiset al.,38 V2 is positive, contrary to the
other methods. In addition, all calculations give a very small
negative step energy on the vicinal surfaces with(110) ter-
races for steps with(111) ledge orientation. This shows that
the ideal(110) surface is not the most stable one as discussed
in details in Refs. 58 and 60. Indeed, as stated above, the
(110) surface of Pt exhibits as132d missing-row reconstruc-
tion.

In order to conclude this study of the platinum surfaces
and also to make comparisons between the two methods, we
have carried out similar calculations for the unrelaxed

6s111d3 s1̄11d [or (233)] vicinal surface. Figure 6 gives the
geometry of this surface and indicates the geometrically in-
equivalent atoms in the unit cell when the vicinal system is
modeled by slabs of 45 layers oriented in the[233] direction
separated by 20 vacuum layers. In FLAPW calculations the
convergence was achieved using 5k i points in the irreduc-
ible wedge of the 2DBZ and the LDOS were computed with
40 k i points. With the TB method 64k i points were used in
the irreducible wedge. Within TB calculations,Estep is found
to be equal to 0.815 eV and is very close to the value deter-
mined with the EPP approach. FLAPW calculations give a
smaller values0.582 eVd. In Fig. 7, we present the LDOS of
different atoms of the stepped surface. It is seen that the

TABLE IX. Calculated step energies for several vicinal surfaces of platinum using the effective pair potential model(EPP).

Stepped surface orientation Miller indices EPP FLAPW-LDA spdTB LMTO-GGA KKR-LDA

ps111d3 s100d sp+1,p−1,p−1d 2V1+4V3 0.792 0.832 0.670 0.697

ps111d3 s1̄11d sp−2,p,pd 2V1+4V3 0.792 0.832 0.670 0.697

ps100d3 s111d s1,1,2p−1d V1+2V2 0.376 0.330 0.277 0.384

ps100d3 s010d s0,1,p−1d 2V1+2V2 0.786 0.771 0.593 0.764

ps110d3 s111d s2p−1,2p−1,1d V2+2V3 −0.048 −0.080 −0.001 −0.029

FIG. 6. Cross section by a plane perpendicular to the step edges

of the 6s111d3 s1̄11d or (233) Pt vicinal surface. Empty circles
correspond to atoms in the planey=0 whereas dotted circles corre-
spond to atoms in the planey=a/2, a being the nearest-neighbor
distance. The geometrically inequivalent atoms in the unit cell of
the 45-layer slab used in the calculations are labeled from 0 to 22.

FIG. 7. The local densities of states obtained from FLAPW(full
lines) andspdTB (dashed lines) for different atoms of the Pt(233)
vicinal surface. The numbering of atoms is defined in Fig. 6. The
origin of the energy scale refers to the Fermi energy.
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agreement between TB and FLAPW LDOS is quite good.
From the LDOS, we can say that contrary to rhodium for
which outer step edges might become magnetic depending
on the step geometry,59 it is unlikely that platinum becomes
magnetic at least for this step configuration. Indeed the
LDOS at the Fermi level are not enhanced compared to the
bulk one even on the outer edge atom. Thus, according to the
Stoner model, no local magnetic moment is expected.

IV. CONCLUSION

In this paper we have made a careful investigation of the
electronic structure of platinum surfaces by comparing two
different approaches. We have used a nonorthogonal basis set
of s, p, andd valence orbitals in the tight-binding scheme in
order to better describe the cohesive properties of platinum.
The sources of uncertainties inherent to DFT calculations
have been carefully analyzed in the FLAPW method imple-
mented in theFLEUR code. In particular, LDA and GGA ap-
proximations have been investigated. Different exchange-
correlation potentials were tested. Thick slabs were
considered in order to definitely rule out finite size effects. In
addition, parameters such as the number ofk i points, the
cutoff kmax for the plane-wave expansion, and relativistic ef-

fects were also checked. We show that the surface energy of
the (111) surface and the relaxation of the three low-index
surfaces agree well with the experimental findings using TB
as well as FLAPW-LDA methods. An outward relaxation is
found for Pt(111) while less close-packed surfaces[(100) and
(110)] exhibit inward relaxations. However, it is well known
that the(110) surface undergoes as132d missing-row re-
construction and, indeed, the calculated surface energy of
this structure is smaller than that of the ideal(110) surface.
Following the effective pair potential method developed by
Vitos et al., we have calculated the step energies for various
step geometries. Finally, we have carried out full calculations
on the(233) vicinal surface and found that the LDOS were
nearly identical with the LDA and TB methods. In the near
future, we would like to extend this study by considering
metallic adsorbed species(growth, equilibrium structures,
and electronic properties) on flat and stepped Pt substrates.
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