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Temperature dependence of conductance fluctuations in quantum Hall multilayers

H. A. Walling,! E. G. Gwinn! J. Xu! K. D. MaranowskiZ and A. C. Gossarfd
IPhysics Department, UCSB, Santa Barbara, California 93106, USA
°Materials and ECE Departments, UCSB, Santa Barbara, California 93106, USA
(Received 15 December 2003; revised manuscript received 14 July 2004; published 30 Decemper 2004

We study conductance fluctuations in low-temperature, vertical transport through quantum Hall multilayers.
The mesas studied are fabricated from a 50-period multilayer in which 150 A GaAs wells alternate with 150 A
AlGaAs barriers that are delta-doped at their centers. We find qualitatively different temperature dependences
of the variance G2, measured near the centers of the?2 andv=1 guantum Hall states, with non-monotonic
variation in 8G%(T) at v=1. The observed temperature dependence of the correlation field is also surprising in
light of theoretical predictions for fluctuations of the edge state sheath. Including the temperature dependence
of the mean conductance and the effects of flux cancellation improves agreement between observed and
predicted temperature dependences.
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The phenomenon of “universal” conductance fluctuafions states of the lowest Landau band of the multilayer, as iden-
is a well-known tool for studying electron-dephasing pro-tified by the value of the in-plane Hall resistance of a com-
cesses in metallic systems. These reproducible fluctuatiorganion in-plane transport sample.The MBE-grown
arise in disordered systems, where electrons can take muRultilayer hasNy,e=50 layers of 150 A GaAs quantum
tiple paths through scattering sites, resulting in quantum inwells alternating with 150 A AJ;dGayeoAs barriers. The
terference. Varying an applied magnetic field changes théultilayer perioda, is 300 A and the total multilayer height,
flux linked through the interfering paths. The result of thisH. iS 1.5um. The barriers are delta-doped with Si to give the
change in their phase differences is a reproducible pattern aells a carrier concentration of 2:5610'/cn?. Layers of
conductance fluctuations unique to the disorder potential iflegenerately doped+ GaAs sandwich the multilayer. We
the sample. The designation “universal’ refers to the zeroused electron-beam lithography to define the smaller mesas.
temperature varianceiG?, of the fluctuations, which is on The top Ni/Au/Ge Ohmic contact metallization served as an
the order of(e?/h)? in metals. At finite temperaturéT),  €tch mask for a SiGldry etch that stopped within the bottom
phase coherence lengths shorten and quantum interferenBe contact layer. After depositing Ni/Au/Ge bottom con-
effects are muted as electrons dephase through inelastic phicts, we alloyed the samples at 430 °C for one minute in a
non and electron-electron scattering. As a resi@? in me- ~ rapid thermal annealer. . .
tallic systems decrease as T increases. Characterizing the be-In this study, the applied field, is perpendicular to the
havior of 8G2 as a function of temperature, then, providesPlanes of the multilayer. We measu@, at dilution refrig-

information on electron dephasing. erator temperatures by voltage biasing the sample and using
Here we study the temperature dependence of reproduc- (a) ©

ible conductance fluctuations in quantum Hall multilayers. B Y

The vertical transport mesas we study are bounded by an ... g v=2 vel |

unusual 2D system, a chiral sheath of coupled edge states i P= sy,

[Fig. (a@)]. This surface phase dominates vertical transport at €10 I

low temperatures that freeze out parallel bulk transpdrt. n+ GilAs @ et
While other groups® studied conductance fluctuations in =~ ) = '.W/WW’

in-plane transport in single-layer quantum HalQH) upper Lveredgestate = 084 H00mK | P=2m

samples, these earlier experiments generally focused on tran- <@ S o4l L

sition regions between QH states. In contrast, our vertical =

transport samples allow us to study conductance fluctuations L/R_z 0 2 4 6 8 10 12
within QH states. We study smaller samples than reported on ’ B (Telsa)
previously® to amplify the fluctuations relative to the mean

an_d _to move closer_ to the cc_)herent limit at Igw\We find a projection of the paths of two adjacent edge states onto the plane.

striking difference in behavior between the=1 andv=2 | " isine average distance between projected crossings,dad

QH states and from the behavior of conventional metalliGhe phase coherence length along the edge. Successive area ele-

systems. ) ments between the edge states link flux increments with alternating
We use 5um, 10um, 150um, and 1 mm-per-side sign on each crossingc) G,, as a function of magnetic field for a

square mesas to study conductance fluctuations in the veriiarge mesa with nominal perimet®=600 um at 100 mK. Con-

cal conductance(,, at the centers of the=1 andv=2  ductance fluctuations are hardly noticealgth.G,, as a function of

quantum Hall states. Here,=1 refers to the QH state for magnetic field for a small mesa with nominal perimeteg

which the Fermi energy lies between the spin-split extende& 20 um at 1 K (black) and 300 mK(grey).

FIG. 1. (a) Schematic of a multilayer mesg@) Schematic of the
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lock-in techniques at 5 Hz to measure the current as we 4,4¢% 1 1 1 1

slowly sweep the perpendicular magnetic figdd We avoid 718 mK (a)
electron heating by using small excitation voltagé® nV, 1.0+ B
or ~6x10YW at 70mK and low sweep rates 0.9 B

(0.1 Tesla/minutg and collect each data point after leaving ) 500 mK

the field static for a time following the sweep froBito B EO'B_M_

+6B. In the v=2 (1) quantum Hall state, we use a field NO.7 -

spacing,8B, of 0.002(0.0033 T. We sweepB across the © O'G_M_

central region of these quantum Hall states, #e12, from 70 mK

4.6 to 5.4 T, and fon=1, from 9.0 to 10.0 T. 057 B
Figure Xc) showsG,, measured at 100 mK on a square 0.4 | Al i : » -

mesa with nominal perimeté&,=600 wm. This large sample 9.0 9.2 0.4 9.6 98  10.0
has indistinguishably small conductance fluctuations on the Magnetic Field (T)
scale of the plot. The deep minima @, are the QH states.

At low fields and at the peaks i8,, between QH state§3,, : ' !
is weakly T-dependent and scales with mesa areaas ex-
pected for charge flow throughout the bulk of the mesa for
fields corresponding to nearly metallic behavior. In high
fields, G,,=Gpuit Gsheath h@s a contributiorGy,,, from the
bulk andGg,..from the edge state sheath. Within QH states,
Gpuk freezes out at lowl and G,,= Ggpeamn @pproaches a
constant value that scales with the mesa perimeter.

Figure Xd) plotsG,, measured at 1 K, using a coarse field
resolution, in a small square mesa with nominal perimeter
Po=20 um. TheG,, axis is linear rather than logarithmic, as
in Fig. 1(c). By size scaling we expeds,, reduced by a 46 4.8 5.0 5.0 5.4
factor of 900 and5gpeamreduced by a factor of 30 relative to Magnetic Field (T)
the 150um X 150-um mesa of Fig. (c), at the same tem-
perature. In the weakly-dependent regions between QH  FIG. 2. Conductance fluctuations as a function of temperature
states, the observed reductionGp, between the smaller and for (8 »=1 and(b) »=2. The curves correspond, from top to bot-
larger samples is roughly as expected for bulk-dominatedem for »=1, to T=718, 500, 400, 300, 200, 100, and 70 mK. For
transport. The averag®,, in the =2 QH state in the small »=2, from top to bottom,T=1 K, 800, 700, 600, 500, 400, 300,
mesa displays roughly the expecétdrop inG,, assuming 200, 140, 100, and 70 mK.
sheath-dominated conductance in both samples. As shown in
Fig. 1(d), G,,in the small mesa fluctuates strongly across th

f:nttlre f|ef||d rtangt;_e. In t.?ﬁ. fcilrllowmg (1|stcu55|on, WE CONCeN-c)jation of F in the QH states is complicated by factors that
rate on fluctuations within the QH sta es. . do not arise in studies of metal films. The range of fields
If adjacent edge states perfectly overlaid, a perpend'cul""zﬁvailable for calculatingr is limited by the width of the QH

applied B would not link flux through the surface sheath. state, which in turn limits the accuracy Bf Calculation of~
However, due to surface roughness and disorder, the Iaterfg als,o complicated by the non-negligible field ahdepen-
boundaries of the electron gases in different layers will NoLonces of the mean conductan(@, )

72

perfectly overlie[Fig. 1(b)]. Such relative displacement of The first step we take to calculaiéB, 5B) from the data

edge states in adjacent layers links flux from a vertical f|eldis to remove(G,(B)) from the total conductance,(B). If

producing phase shifts that result in fluctuationsGg,eain .
Previous tilted-field experimertfsconfirmed that a magnetic the estimatedG,{B)) follows G, too closely, we remove

field perpendicular to the layers does ca@eto fluctuate. ~ Some fluctuations in addition to the mean. On the other hand,
Figures 2a) and 2b) showG,,as a function oB between an estimatedG,(B)) that varies more slowly with field than
T=70 mK and 1 K in thev=1 andr=2 QH states, respec- the true(G,/B)) will overestimate the fluctuations. We have
tively. We note the presence of fine and coarse field-scalexamined the effects of several different ways of estimating
features in both states. We also observe that invthe state, (G,4B)), and find that our results for the variance and corre-
the fluctuations at higii have noticeably larger amplitudes lation fields that we extract frork as described below are
than those at lowT, in contrast to what we expect from similar across all techniques that we studtéeés shown in
conductance fluctuations due to quantum interference in corFig. 4.
ventional metallic systems. Figure 3 shows conductance data fer2 at 200 mK
To quantify the temperature dependence of conductanaglack curve with two different estimates ofG,(B)) (gray
fluctuations, we use the correlation functiof(B,JB)  curvey. The “loose” fit for(G,, uses a running average over
=([G,4B)~(G,4B))][G,{B+B)—(G,{B+3B))]), where 3 field range of 0.10 T inv=2 and 0.17 T inv=1 (light
G, is the measured vertical conductance 48¢/B)) is the  gray); “tight” refers to the running average over a shorter
field-dependent meaf (B, 5B) yields the variancesG?, and field range, 0.04 T in/=2 and 0.067 T irw=1 (dark gray.

®)

&he correlation fieldB., of the fluctuations inG,, The cal-
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FIG. 3. Conductance fluctuations fer=2 at 200 mK(black) — — — T
00 02 04 06 0.0 0.2 0.4 0.6 0.8 1.0

with “loose” (light gray) and “tight” (dark gray estimates of (@) Temperature (K) (b) Tomperature (K)
(G,4{B)). The corresponding correlation functions are shown in Fig.
4 (top). FIG. 4. (a) Results forv=1. (b) Results forv=2. Top: Correla-

tion function for two different mean removal methods. The symbols
- are the data and the solid lines are fits to a Lorentzian plus a con-
The results in Fig. 4 show that the parameters extracted froman The constants are different for the two mean removal meth-
the correlation fU”‘?t'O”F, are not very sensitive t_o the ods, but the variance ang, are similar. Middle: Variance v3.
method used to estimat&,,). Both the “loose” and “tight”  gottom: B. vs T. The solid lines show &2 dependence. The
estimates ofG,, yield similar variance and correlation field, gashed lines show approximately wheBg flattens out asT in-
B., as do estimatingG,, as the best-fit straight line across creases to the point whet, is set byA;. In the legend, “loose”
the field range of the calculatiofiline” in Fig. 4) and esti-  refers to the mean removal method of taking a running average over
mating(G,, as the best-fit tenth-order polynomi&poly10” a long field range, “tight” refers to the running average method over
in Fig. 4). a short field range, “poly10” is a 10th order polynomial mean re-
With (G,4B)) removed, we calculaté(B), which we fit  moval method, and “line” refers to mean removal by subtracting a
to a Lorentzian form, F(SB)=C+(5G?)/[1+(sB/B,)?], linear fit to G,{B) across the QH state.
where(8G?) is the fitted variance anB, is the fitted corre-
Systomati errors n the estimate of the mean: difierent techy, 1} 116 #=2 QH state, Fig. 4 shows that the variance,
y : (6G?), decreases with increasing temperature for

mquzes f(;r eshmaf'gndngz(B)) ﬂ've Slﬁereﬁtcflfaut similar <500 mK. At T>500 mK the variance levels off and
(6G%) andB.. We find an excellent fit to this offset Lorentz- changes little with increasing. At low T, the corresponding

ian form, as illustrated in Figs.(8) (v=1) and 4b) (v=2),  B_increases, as we expect, but for ~400 mK, the corre-
which show the results of calculatirigfor the two different  |ation field saturates.

mean estimates in Fig. 3. The shapes off(éB) curves are In the v=1 QH state, the behavior ¢6G?) is different. At
nearly identical, as shown in Fig. 4, and yield simi{@G?  T<300 mK, the variance decreases weaklyTamcreases,
andB.. but above 300 mK this trend reverses and the variance in-

To estimate the uncertainty in the fitted values(6G?  creases withT. As for »v=2, B, initially increases steadily
and B, we form simulated data sets and analyze thenwith T, but appears to stop growing farabove~500 mK.
exactly as we do the experimental data. We generate We attempt to understand our results in terms of theories
Lorentzian-correlated simulated data by convolving afor transport on the chiral sheath!> Most studies of con-
Lorentzian window with a sequence of random numbergluctance fluctuations are done on isotropic, diffusive, metal-
drawn from a Gaussian distribution. The width of the win-lic (degeneratesamples. In such systems, there is a single
dow and the number of points in the simulated data are chadephasing length=(D7,)*2 whereD is the diffusion con-
sen to correspond to the ratio of the field range of the experistant andr,, is the phase-breaking time. The dephasing time
mental data to the fitte®.. To simulate the effects of our 7, produces two dephasing lengths in the anisotropic edge
mean removal process, we add a fourth-order polynomialstate sheath |,=v,7, along the path of the edge states,
similar in shape to the overall trend ®,/B), to the simu- wherewv,, is the electron’s edge velocity; arld a vertical
lated fluctuations. Finally, we use each mean removal algodephasing length. In the verticéd) direction, perpendicular
rithm to remove the corresponding estimate of the mearo the layers, charge moves in a random walk. [E&ra, the
from the fluctuations, and calculate the correlation functionlayer spacing),=(D,74)?, whereD, is the diffusion con-
We repeat this process for 100 simulated data sets, and astant in the vertical direction.
erage the resulting variances and correlation fields. We use Theories of conductance fluctuations of the chiral sheath
the standard deviations of these averages as the error barsrggard it as an array of phase-coherent “patches,” with di-
Fig. 4. mensiond, by |,, that fluctuate independently. Treating the
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patches as a network of random resistors yields expressions N N-

for variance andB, that have different dependené&¥on|, A= 2 AL -2 A . 2)
andl, for different ratios ofl, to vertical length scales and of i=1 i=1

|, to the distanceP, around the sheatialong the edge

states. The earlier work* assumes uniform interedge tunnel- The sums are over thi, areasA, , and theN_ areasA, _
ing around the sheath. This limit is unlikely to apply to our within a phase-coherent region. ' '
samples, due to the relative meander of adjacent edge states.\We assume that the individual terms; andA_; in Eq.

In the presence of such meander, interedge tunneling will be2) are each drawn from the same distribut,) of indi-
nonuniform al’ound the Sheath, W|th Iarge Contl’ibutions frornvidua| (posn:'\/a areasAll As the number of terms in E@)
regions where adjacent edges cross over each other. For thigreases, the distribution of total are®A,,,), approaches
reason, we f_ocus on results of more recent_the(_)retlcal Rork a zero-mean Gaussia(Aq,) meXD(—A?ot/ZAISt)- For sim-
that generalize to the case of strongly varying interedge t“”plicity we take the single-area distributionP(A,)

neling. o *\2 s o
. exp(—A./2A,)%, whereA, is the characteristic single area
msﬁfneitr]st' tgt?g:]y |f0rc(t)r3n|zzog dor;;hfofmﬁhsrj%iitj [other monotonically decaying forms, such as a simple expo-
: gly P ges, b>1., nential P exp(-A;/A)), yield similar results in the analysis

weakly coupled edges, for whicH <I,, where I, ) S ;
~ (aP€/h)/HG is the characteristic distance along the edgeb?loM' The width of the distributiorP(A) of total areas is

— 1/2 * . . .
for interedge tunnelingf In the strongly coupled limit, the 'So‘bortnsl\iln Ql' ;vhereN is the number of terms in either of the
form of the correlation function is highly non-Lorenztian, Becausg(trzé correlation functidh(AB)=F(-AB), posi-
while we observe that a Lorentzian fits our data well. Thus. B ' P

the weakly coupled limit appears to be more relevant to ouf've and negativéy, yield the same correlation field, \.NhiCh
data. This limit applies in the presence of relative edge megorresponds to the change Bnthat changes the flux linked

ander if the flux linked by the vertical field between Cross-throth a phase-coherent area by roughly one flux quantum:

over points of meandering adjacent edges is much less than?&Amtf hI/Ee. ZOF a phase_ co?elrerlcle/ILengy‘thﬁ nuLmber.of
flux quantum'® Previous observations of different conduc- tﬁrms in Eq( L_Istappm)gmt\?vew- p/ Leross W fered_crosgs{ q
tivities for in-plane fields oriented parallel and perpendicular € average distance between Crossings ol adjacent edge

to the mesa wallé indicate that the multilayers studied here Stat€S [Fig'l,zj(*b)_]' In the low-T limit of large N, Ag
are in the small-flux limit, as the large-flux limit would pro- ~ (lp/Lerosd ™A, is the characteristic area for the distribution

duce no anisotropy in the response of the multilayer to inP(Awt), SO we expecB.~(h/e)/A,, to be the field scale

plane fields. characteristic of F(AB). Thus at low T, B.=(h/e)/
In the weakly coupled limit|, <!, a phase-coherent re- [Al(l_-cro_lep)llz]- If 15 1/T, as previously predictedlléjsing
gion has length, around the perimeter, and heightTreat- ~ qualitative arguments for the chiral shedtithenB,~ T4 at

ing the sheath as an,= P/|p by Nlayer para||e|_series network low temperatures. ThIS r(_asult is consistent Wlth the low-
of random, classical resistdfs® yields variance temperature behavior in Fig. 4, where the solid lines show a

T2 dependence. At higher temperatures that divel, flux
cancellation will not be effective ari, will be set byA}, the
2\ 2 area characteristic of the individual area distributP;),
(0629 = (G MNiayed (1/P). W so thatB,~ (h/e)/A}. The plots ofB; in the bottom row of
Fig. 4 suggest that in this intermediate temperature regime,
whereNi,,e=50 is the number of periods in the multilayer Bc=~30 mT at»=1, corresponding toA; ~1.4X 10 m?;
and P is the distance around the sheath, along the edgand B.~15mT at v=2, corresponding toA;~2.7
states. The corresponding correlation function isX 107> m? (two sets of edge states contribute to the fluctua-
Lorentzian'® If an in-plane field component perpendicular to tions atv=2, so a largeA, seems reasonabhlét still higher
the mesa walls drives the conductance fluctuations, the cof, AB; should grow as the phase-coherent area drops well

relation field of the fluctuations B.= ¢,/ (27l ,a), where the ~ below A;. Based on the plots 8 in Fig. 4, such a high*
flux quantumey=h/e. regime is not reached below 1 K.

Here the field,B, is applied perpendicular to the layer ~ We now turn to theT-dependent variances we observe at
planes rather than perpendicular to the mesa walls. This “verz=1 andv=2.
tical” field orientation does not change the counting argu- The temperature dependence of the mean apparent in Fig.
ments that lead to Eq1). However, due to flux cancellation 2 complicates comparison of the data to the existing single-
effects, it does affect the dependence of the correlation fielc@article theories for the chiral sheath. These theories yield a
B, on l,. The different in-plane meander of edge states in'-independent mean, so the rise (@,, with T shown in
adjacent layers causes their projections onto the plane toig. 2 is not encompassed by currently available models for
cross, as sketched in Fig(h. In the ith region between fluctuations of the chiral sheath. Thus, use of the
crossings of edge statesh=+BA . is the flux linked T-dependent mean in Eql) is of questionable validity;
through the in-plane ared; .. The ¢; alternate in sign on however, we do so for simplicity and in the absence of any
each projected crossing of the edge states. The total flusnore complete model.
through a phase-coherent regiondgs BA,, where the net Figure 5 plots the variance normalized K®,)?. As
area that links flux is shown,(8G2,)/(G,,? falls monotonically with increasing,
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— — — than L, in high-mobility 2DEGS. We also expect that the
1.5x103 path of the edge states will meander more in the multilayer
Né\ mesas than the edge states in clean 2DEGS, so that the nomi-
& 1.04 nal 19 of the multilayer is reduced relative to, in 2DEGs
\ by this geometrical effect.

“A 054 Assuming that it is valid to normalize the variance by a
% T-dependent mean, the predic’tédpocT‘l would vyield
0.0 (8G?)/(G)?~1/T. The lines in Fig. 5 showC/T curves with
00 02 04 06 08 10 the constan€=1.3x 1074 K adjusted to give the best overall
Temperature (K) agreement witlﬂ(ﬁeﬁz(T»/ (G,{T))? for both v=1 andv=2.

_ As shown(8G2)/(G,,? at v=2 agrees with &~* tempera-
1.5x10° 4 v=2, "Loose” [ ture dependence except at the lowest temperaturesy For
& X Tgnt =1, the data are mostly consistent withCAT dependence,

o 197 & Pavio with the sameC as forv=2, except at the lowedt For both

o v=2 andv=1, the slower thaii~* growth of(8G2)/(G,,? at

g 057 i the lowestT could perhaps reflect the onset of saturation of
v 001® the electron temperature.

T . T T T Another possible factor in the behavior we observe is par-
02 04 06 08 10 allel conduction through the bulk. At sufficiently high tem-
Temperature (K) peratures the bulkhopping conductance will become sig-
nificant in comparison with the sheath conductance,
invalidating analysis in terms of sheath transport alone. We
have used size-scaling calculations of the conductance to de-
termine that bulk transport through thesn X 5-um mesa
within error. Using Eq(1) with P equal toPy=20 um, the  should not contribute appreciably @,, at temperatures be-
nominal perimeter, give )~1 um as the nominal dephas- low 1 K; however, these estimates used results from samples
ing length at 100 mK, in both QH states. This is much lesswith lateral dimensions of-100 um, much larger than the
than thel | ~30 um (15 um) at v=1 (»=2), also estimated bulk localization length within QH states. If the bulk local-
usingP=P,. Thus the analysis yieldg<I , as required for ization length approached the dimension of the much smaller
validity of Eq. (2). samples studied here, the distinction between edge and bulk
Interpretation of the values of characteristic areas andvould no longer be meaningful.
lengths derived from the preceding analysis depends upon To determine the bulk localization length, we studied 1
the structure at the edge. Impurities, defects, and sidewatmm 1-mm samples of the same multilayer material in the
roughness will likely make the actual paths of adjacent edge=2 QH state® Analysis of the data in terms of models for
states resemble the banks of a meandering creek that neckgo-dimensional systems yielded an in-plane bulk localiza-
down to small widths at the projected edge crossiffgj)g.  tion length £~0.40 um in the center of the QH state. We
1(b)]. In this case the distandearound the sheath, along the found that G,, within the »=1 QH state of the um
path of the edge states, can be substantially larger than the5 um sample studied here exhibited a stronger tempera-
nominal mesa perimetelP,, so that the phase coherence ture dependence than wr2 (Fig. 2), as might arise from
length along the edge states exceedd thestimated above parallel transport through the bulk. However, estimates based
by a factor of roughlyP/P, This same meander effect on a rather small number of data points in the center of the
makes it possible for large areds to accumulate between v»=1 QH state indicate thaf is comparable in the=1 and
adjacent edge states over small distances along the nominet2 QH states. In both cases the estimated in-plane local-
perimeter,P,,. ization length at the centers of the QH states is roughly a
Studies of two-dimensional quantum Hall systems yieldfactor of ten smaller than the lengths of the sides of the 5-
values of edge state phase coherence lergtpsof approxi- ~ umX5-um mesa. Thus it still seems reasonable to think of
mately 100um, two orders of magnitude longer than the distinct bulk and surface regions.
estimated|© ~ 1 um in our three-dimensional systelh. In summary, the studies presented here address the tem-
These earlier studies of high-mobility two-dimensional elec-Perature dependence of phase coherence within a quantized
tron gases(2DEGY probed phase decoherence due toHall state. The results for the temperature dependences of the
disorder-assisted electron-electron interactions that may bériance and the correlation field are strikingly different from
suppressed in these clean materials relative to disordethose found in metallic systems and in single-layer quantum
assisted interactions in our much lower mobility sampgiee ~ Hall systems in transition regions between QH states. Taking
samples studied in Ref. 19 had mobilities of roughlyinto account the temperature dependence of the mean con-
800 000 crd/Vs, or 30 times greater than the samples stud-ductance and the effects of flux cancellation on the correla-
ied herg. Our layered system also differs from 2DEGs intion_ field yields reasonable overall agreement of
that charge fluctuations in one edge state couple to those i9G2,/(G,)? andB(T) with a dephasing timeg, = T™. The
other edge states, providing an additional dephasing mech#&w-temperature variance suggests a short nominal dephas-
nism. For these reasoms in multilayers should be smaller ing length, IE)O)~1 pum. This value is consistent with the

FIG. 5. (8 and(b) 8G§Z/<GU)2 for =1 and 2. The solid lines
show (C/T) with C=1.3x 1074 K.
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weak temperature dependence we observe in the mean cdinem the low-T variance using the nominal perimet@, is
ductanceG;, (Fig. 2), in that we see no experimental signs well below theP,=20 um of the smallest sample, in agree-
for the onset of strong localization in vertical transport. Inment with the weak temperature dependence we observe in

the weakly coupled multilayer studied here, we expect selffheé mean conductance.
intersection of phase-coherent sheath trajectories to yield an \ye thank John Chalker and Leon Balents for helpful con-

insulating (exponential decay in(G,, that sets in at tem- ygrsations. This work was supported by NSF DMR9700767
peratures for which,(T)>P.24 The I;O) that we estimate and NSF DMR0071956.
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