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We study conductance fluctuations in low-temperature, vertical transport through quantum Hall multilayers.
The mesas studied are fabricated from a 50-period multilayer in which 150 Å GaAs wells alternate with 150 Å
AlGaAs barriers that are delta-doped at their centers. We find qualitatively different temperature dependences
of the variance,dG2, measured near the centers of then=2 andn=1 quantum Hall states, with non-monotonic
variation indG2sTd at n=1. The observed temperature dependence of the correlation field is also surprising in
light of theoretical predictions for fluctuations of the edge state sheath. Including the temperature dependence
of the mean conductance and the effects of flux cancellation improves agreement between observed and
predicted temperature dependences.
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The phenomenon of “universal” conductance fluctuations1

is a well-known tool for studying electron-dephasing pro-
cesses in metallic systems. These reproducible fluctuations
arise in disordered systems, where electrons can take mul-
tiple paths through scattering sites, resulting in quantum in-
terference. Varying an applied magnetic field changes the
flux linked through the interfering paths. The result of this
change in their phase differences is a reproducible pattern of
conductance fluctuations unique to the disorder potential in
the sample. The designation “universal” refers to the zero-
temperature variance,dG2, of the fluctuations, which is on
the order of se2/hd2 in metals. At finite temperaturesTd,
phase coherence lengths shorten and quantum interference
effects are muted as electrons dephase through inelastic pho-
non and electron-electron scattering. As a result,dG2 in me-
tallic systems decrease as T increases. Characterizing the be-
havior of dG2 as a function of temperature, then, provides
information on electron dephasing.

Here we study the temperature dependence of reproduc-
ible conductance fluctuations in quantum Hall multilayers.
The vertical transport mesas we study are bounded by an
unusual 2D system, a chiral sheath of coupled edge states
[Fig. 1(a)]. This surface phase dominates vertical transport at
low temperatures that freeze out parallel bulk transport.2,3

While other groups4–9 studied conductance fluctuations in
in-plane transport in single-layer quantum Hall(QH)
samples, these earlier experiments generally focused on tran-
sition regions between QH states. In contrast, our vertical
transport samples allow us to study conductance fluctuations
within QH states. We study smaller samples than reported on
previously10 to amplify the fluctuations relative to the mean
and to move closer to the coherent limit at lowT. We find a
striking difference in behavior between then=1 and n=2
QH states and from the behavior of conventional metallic
systems.

We use 5mm, 10mm, 150mm, and 1 mm-per-side
square mesas to study conductance fluctuations in the verti-
cal conductance,Gzz, at the centers of then=1 and n=2
quantum Hall states. Here,n=1 refers to the QH state for
which the Fermi energy lies between the spin-split extended

states of the lowest Landau band of the multilayer, as iden-
tified by the value of the in-plane Hall resistance of a com-
panion in-plane transport sample.2 The MBE-grown
multilayer hasNlayer=50 layers of 150 Å GaAs quantum
wells alternating with 150 Å Al0.10Ga0.90As barriers. The
multilayer period,a, is 300 Å and the total multilayer height,
H, is 1.5mm. The barriers are delta-doped with Si to give the
wells a carrier concentration of 2.531011/cm2. Layers of
degenerately dopedn+ GaAs sandwich the multilayer. We
used electron-beam lithography to define the smaller mesas.
The top Ni/Au/Ge Ohmic contact metallization served as an
etch mask for a SiCl4 dry etch that stopped within the bottom
n+ contact layer. After depositing Ni/Au/Ge bottom con-
tacts, we alloyed the samples at 430 °C for one minute in a
rapid thermal annealer.

In this study, the applied field,B, is perpendicular to the
planes of the multilayer. We measureGzz at dilution refrig-
erator temperatures by voltage biasing the sample and using

FIG. 1. (a) Schematic of a multilayer mesa.(b) Schematic of the
projection of the paths of two adjacent edge states onto the plane.
Lcross is the average distance between projected crossings andlp is
the phase coherence length along the edge. Successive area ele-
ments between the edge states link flux increments with alternating
sign on each crossing.(c) Gzz as a function of magnetic field for a
large mesa with nominal perimeterP0=600mm at 100 mK. Con-
ductance fluctuations are hardly noticeable.(d) Gzz as a function of
magnetic field for a small mesa with nominal perimeterP0

=20 mm at 1 K (black) and 300 mK(grey).
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lock-in techniques at 5 Hz to measure the current as we
slowly sweep the perpendicular magnetic field,B. We avoid
electron heating by using small excitation voltages(8.9 mV,
or ,6310−17 W at 70 mK) and low sweep rates
s0.1 Tesla/minuted, and collect each data point after leaving
the field static for a time following the sweep fromB to B
+dB. In the n=2 (1) quantum Hall state, we use a field
spacing,dB, of 0.002 s0.0033d T. We sweepB across the
central region of these quantum Hall states, forn=2, from
4.6 to 5.4 T, and forn=1, from 9.0 to 10.0 T.

Figure 1(c) showsGzz measured at 100 mK on a square
mesa with nominal perimeterP0=600mm. This large sample
has indistinguishably small conductance fluctuations on the
scale of the plot. The deep minima inGzz are the QH states.
At low fields and at the peaks inGzz between QH states,Gzz
is weaklyT-dependent and scales with mesa area,A, as ex-
pected for charge flow throughout the bulk of the mesa for
fields corresponding to nearly metallic behavior. In high
fields, Gzz=Gbulk+Gsheathhas a contributionGbulk from the
bulk andGsheathfrom the edge state sheath. Within QH states,
Gbulk freezes out at lowT and Gzz>Gsheath approaches a
constant value that scales with the mesa perimeter.

Figure 1(d) plotsGzzmeasured at 1 K, using a coarse field
resolution, in a small square mesa with nominal perimeter
P0=20 mm. TheGzz axis is linear rather than logarithmic, as
in Fig. 1(c). By size scaling we expectGbulk reduced by a
factor of 900 andGsheathreduced by a factor of 30 relative to
the 150-mm3150-mm mesa of Fig. 1(c), at the same tem-
perature. In the weaklyT-dependent regions between QH
states, the observed reduction inGzz between the smaller and
larger samples is roughly as expected for bulk-dominated
transport. The averageGzz in the n=2 QH state in the small
mesa displays roughly the expected2,11 drop inGzz, assuming
sheath-dominated conductance in both samples. As shown in
Fig. 1(d), Gzz in the small mesa fluctuates strongly across the
entire field range. In the following discussion, we concen-
trate on fluctuations within the QH states.

If adjacent edge states perfectly overlaid, a perpendicular
applied B would not link flux through the surface sheath.
However, due to surface roughness and disorder, the lateral
boundaries of the electron gases in different layers will not
perfectly overlie[Fig. 1(b)]. Such relative displacement of
edge states in adjacent layers links flux from a vertical field,
producing phase shifts that result in fluctuations inGsheath.
Previous tilted-field experiments12 confirmed that a magnetic
field perpendicular to the layers does causeGzz to fluctuate.

Figures 2(a) and 2(b) showGzzas a function ofB between
T=70 mK and 1 K in then=1 andn=2 QH states, respec-
tively. We note the presence of fine and coarse field-scale
features in both states. We also observe that in then=1 state,
the fluctuations at highT have noticeably larger amplitudes
than those at lowT, in contrast to what we expect from
conductance fluctuations due to quantum interference in con-
ventional metallic systems.

To quantify the temperature dependence of conductance
fluctuations, we use the correlation functionFsB,dBd
=kfGzzsBd−kGzzsBdlgfGzzsB+dBd−kGzzsB+dBdlgl, where
Gzz is the measured vertical conductance andkGzzsBdl is the
field-dependent mean.FsB,dBd yields the variance,dG2, and

the correlation field,Bc, of the fluctuations inGzz. The cal-
culation ofF in the QH states is complicated by factors that
do not arise in studies of metal films. The range of fields
available for calculatingF is limited by the width of the QH
state, which in turn limits the accuracy ofF. Calculation ofF
is also complicated by the non-negligible field andT depen-
dences of the mean conductance,kGzzl.

The first step we take to calculateFsB,dBd from the data
is to removekGzzsBdl from the total conductance,GzzsBd. If
the estimatedkGzzsBdl follows Gzz too closely, we remove
some fluctuations in addition to the mean. On the other hand,
an estimatedkGzzsBdl that varies more slowly with field than
the truekGzzsBdl will overestimate the fluctuations. We have
examined the effects of several different ways of estimating
kGzzsBdl, and find that our results for the variance and corre-
lation fields that we extract fromF as described below are
similar across all techniques that we studied,13 as shown in
Fig. 4.

Figure 3 shows conductance data forn=2 at 200 mK
(black curve) with two different estimates ofkGzzsBdl (gray
curves). The “loose” fit forkGzzl uses a running average over
a field range of 0.10 T inn=2 and 0.17 T inn=1 (light
gray); “tight” refers to the running average over a shorter
field range, 0.04 T inn=2 and 0.067 T inn=1 (dark gray).

FIG. 2. Conductance fluctuations as a function of temperature
for (a) n=1 and(b) n=2. The curves correspond, from top to bot-
tom for n=1, to T=718, 500, 400, 300, 200, 100, and 70 mK. For
n=2, from top to bottom,T=1 K, 800, 700, 600, 500, 400, 300,
200, 140, 100, and 70 mK.
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The results in Fig. 4 show that the parameters extracted from
the correlation function,F, are not very sensitive to the
method used to estimatekGzzl. Both the “loose” and “tight”
estimates ofkGzzl yield similar variance and correlation field,
Bc, as do estimatingkGzzl as the best-fit straight line across
the field range of the calculation(“line” in Fig. 4) and esti-
matingkGzzl as the best-fit tenth-order polynomial(“poly10”
in Fig. 4).

With kGzzsBdl removed, we calculateFsdBd, which we fit
to a Lorentzian form, FsdBd=C+kdG2l / f1+sdB/Bcd2g,
wherekdG2l is the fitted variance andBc is the fitted corre-
lation field. The constantC largely absorbs the effects of
systematic errors in the estimate of the mean: different tech-
niques for estimatingkGzzsBdl give different C but similar
kdG2l andBc. We find an excellent fit to this offset Lorentz-
ian form, as illustrated in Figs. 4(a) sn=1d and 4(b) sn=2d,
which show the results of calculatingF for the two different
mean estimates in Fig. 3. The shapes of theFsdBd curves are
nearly identical, as shown in Fig. 4, and yield similarkdG2l
andBc.

To estimate the uncertainty in the fitted values ofkdG2l
and Bc, we form simulated data sets and analyze them
exactly as we do the experimental data. We generate
Lorentzian-correlated simulated data by convolving a
Lorentzian window with a sequence of random numbers
drawn from a Gaussian distribution. The width of the win-
dow and the number of points in the simulated data are cho-
sen to correspond to the ratio of the field range of the experi-
mental data to the fittedBc. To simulate the effects of our
mean removal process, we add a fourth-order polynomial,
similar in shape to the overall trend inGzzsBd, to the simu-
lated fluctuations. Finally, we use each mean removal algo-
rithm to remove the corresponding estimate of the mean
from the fluctuations, and calculate the correlation function.
We repeat this process for 100 simulated data sets, and av-
erage the resulting variances and correlation fields. We use
the standard deviations of these averages as the error bars in
Fig. 4.

In the n=2 QH state, Fig. 4 shows that the variance,
kdG2l, decreases with increasing temperature forT
,500 mK. At T.500 mK the variance levels off and
changes little with increasingT. At low T, the corresponding
Bc increases, as we expect, but forT. ,400 mK, the corre-
lation field saturates.

In then=1 QH state, the behavior ofkdG2l is different. At
T,300 mK, the variance decreases weakly asT increases,
but above 300 mK this trend reverses and the variance in-
creases withT. As for n=2, Bc initially increases steadily
with T, but appears to stop growing forT above,500 mK.

We attempt to understand our results in terms of theories
for transport on the chiral sheath.14,15 Most studies of con-
ductance fluctuations are done on isotropic, diffusive, metal-
lic (degenerate) samples. In such systems, there is a single
dephasing lengthl =sDtfd1/2, whereD is the diffusion con-
stant andtf is the phase-breaking time. The dephasing time
tf produces two dephasing lengths in the anisotropic edge
state sheath:14 lp=vptf along the path of the edge states,
where vp is the electron’s edge velocity; andlz, a vertical
dephasing length. In the verticalszd direction, perpendicular
to the layers, charge moves in a random walk. Forlz@a, the
layer spacing,lz=sDztfd1/2, whereDz is the diffusion con-
stant in the vertical direction.

Theories of conductance fluctuations of the chiral sheath
regard it as an array of phase-coherent “patches,” with di-
mensionslp by lz, that fluctuate independently. Treating the

FIG. 4. (a) Results forn=1. (b) Results forn=2. Top: Correla-
tion function for two different mean removal methods. The symbols
are the data and the solid lines are fits to a Lorentzian plus a con-
stant. The constants are different for the two mean removal meth-
ods, but the variance andBc are similar. Middle: Variance vsT.
Bottom: Bc vs T. The solid lines show aT1/2 dependence. The
dashed lines show approximately whereBc flattens out asT in-
creases to the point whereBc is set byA1

* . In the legend, “loose”
refers to the mean removal method of taking a running average over
a long field range, “tight” refers to the running average method over
a short field range, “poly10” is a 10th order polynomial mean re-
moval method, and “line” refers to mean removal by subtracting a
linear fit to GzzsBd across the QH state.

FIG. 3. Conductance fluctuations forn=2 at 200 mK(black)
with “loose” (light gray) and “tight” (dark gray) estimates of
kGzzsBdl. The corresponding correlation functions are shown in Fig.
4 (top).
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patches as a network of random resistors yields expressions
for variance andBc that have different dependences14,15on lz
andlp for different ratios oflz to vertical length scales and of
lp to the distance,P, around the sheath(along the edge
states). The earlier work14 assumes uniform interedge tunnel-
ing around the sheath. This limit is unlikely to apply to our
samples, due to the relative meander of adjacent edge states.
In the presence of such meander, interedge tunneling will be
nonuniform around the sheath, with large contributions from
regions where adjacent edges cross over each other. For this
reason, we focus on results of more recent theoretical work15

that generalize to the case of strongly varying interedge tun-
neling.

Recent theory for transport on the chiral sheath15 treats
two limits: strongly coupled edges, for whichlp@ l', and
weakly coupled edges, for whichlp, l', where l'

<saPe2/hd /HG is the characteristic distance along the edge
for interedge tunneling.16 In the strongly coupled limit, the
form of the correlation function is highly non-Lorenztian,
while we observe that a Lorentzian fits our data well. Thus
the weakly coupled limit appears to be more relevant to our
data. This limit applies in the presence of relative edge me-
ander if the flux linked by the vertical field between cross-
over points of meandering adjacent edges is much less than a
flux quantum.16 Previous observations of different conduc-
tivities for in-plane fields oriented parallel and perpendicular
to the mesa walls17 indicate that the multilayers studied here
are in the small-flux limit, as the large-flux limit would pro-
duce no anisotropy in the response of the multilayer to in-
plane fields.

In the weakly coupled limit,lp! l', a phase-coherent re-
gion has lengthlp around the perimeter, and heighta. Treat-
ing the sheath as annp=P/ lp by Nlayer parallel-series network
of random, classical resistors14,15 yields variance

kdGzz
2 l = skGzzl2/Nlayerdslp/Pd, s1d

whereNlayer=50 is the number of periods in the multilayer
and P is the distance around the sheath, along the edge
states. The corresponding correlation function is
Lorentzian.15 If an in-plane field component perpendicular to
the mesa walls drives the conductance fluctuations, the cor-
relation field of the fluctuations isBc=f0/ s2plpad, where the
flux quantumf0=h/e.

Here the field,B, is applied perpendicular to the layer
planes rather than perpendicular to the mesa walls. This “ver-
tical” field orientation does not change the counting argu-
ments that lead to Eq.(1). However, due to flux cancellation
effects, it does affect the dependence of the correlation field,
Bc, on lp. The different in-plane meander of edge states in
adjacent layers causes their projections onto the plane to
cross, as sketched in Fig. 1(b). In the ith region between
crossings of edge states,fi = ±BAi,± is the flux linked
through the in-plane areaAi,±. The fi alternate in sign on
each projected crossing of the edge states. The total flux
through a phase-coherent region isf=BAtot, where the net
area that links flux is

Atot = o
i=1

N+

Ai,+ − o
i=1

N−

Ai,−. s2d

The sums are over theN+ areasAi,+ and theN− areasAi,−
within a phase-coherent region.

We assume that the individual termsA+,i and A−,i in Eq.
(2) are each drawn from the same distributionPsA1d of indi-
vidual (positive) areas,A1. As the number of terms in Eq.(2)
increases, the distribution of total areas,PsAtotd, approaches
a zero-mean Gaussian,PsAtotd~exps−Atot

2 /2Atot
*2d. For sim-

plicity we take the single-area distributionPsA1d
~exps−A1/2A1

*d2, whereA1
* is the characteristic single area

[other monotonically decaying forms, such as a simple expo-
nentialP~exps−A1/A1

*d, yield similar results in the analysis
below]. The width of the distributionPsAtotd of total areas is
Atot

* ,N1/2A1
* , whereN is the number of terms in either of the

sums in Eq.(2).
Because the correlation functionFsDBd=Fs−DBd, posi-

tive and negativeAtot yield the same correlation field, which
corresponds to the change inB that changes the flux linked
through a phase-coherent area by roughly one flux quantum:
BcAtot,h/e. For a phase coherence lengthlp the number of
terms in Eq.(2) is approximatelyN= lp/Lcross, whereLcrossis
the average distance between crossings of adjacent edge
states [Fig. 1(b)]. In the low-T limit of large N, Atot

*

<slp/Lcrossd1/2A1
* is the characteristic area for the distribution

PsAtotd, so we expectBc<sh/ed /Atot
* to be the field scale

characteristic of FsDBd. Thus at low T, Bc<sh/ed /
fA1

*sLcross/ lpd1/2g. If lp~1/T, as previously predicted using
qualitative arguments for the chiral sheath,14 thenBc,T1/2 at
low temperatures. This result is consistent with the low-
temperature behavior in Fig. 4, where the solid lines show a
T1/2 dependence. At higher temperatures that giveN<1, flux
cancellation will not be effective andBc will be set byA1

* , the
area characteristic of the individual area distributionPsA1d,
so thatBc<sh/ed /A1

* . The plots ofBc in the bottom row of
Fig. 4 suggest that in this intermediate temperature regime,
Bc<30 mT at n=1, corresponding toA1

* <1.4310−13 m2;
and Bc<15 mT at n=2, corresponding to A1

* <2.7
310−13 m2 (two sets of edge states contribute to the fluctua-
tions atn=2, so a largerA1

* seems reasonable). At still higher
T, DBc should grow as the phase-coherent area drops well
below A1

* . Based on the plots ofBc in Fig. 4, such a high-T
regime is not reached below 1 K.

We now turn to theT-dependent variances we observe at
n=1 andn=2.

The temperature dependence of the mean apparent in Fig.
2 complicates comparison of the data to the existing single-
particle theories for the chiral sheath. These theories yield a
T-independent mean, so the rise inkGzzl with T shown in
Fig. 2 is not encompassed by currently available models for
fluctuations of the chiral sheath. Thus, use of the
T-dependent mean in Eq.(1) is of questionable validity;
however, we do so for simplicity and in the absence of any
more complete model.

Figure 5 plots the variance normalized bykGzzl2. As
shown,kdGzz

2 l / kGzzl2 falls monotonically with increasingT,
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within error. Using Eq.(1) with P equal toP0=20 mm, the
nominal perimeter, giveslp

s0d<1 mm as the nominal dephas-
ing length at 100 mK, in both QH states. This is much less
than thel',30 mm s15 mmd at n=1 sn=2d, also estimated
usingP=P0. Thus the analysis yieldslp! l', as required for
validity of Eq. (1).

Interpretation of the values of characteristic areas and
lengths derived from the preceding analysis depends upon
the structure at the edge. Impurities, defects, and sidewall
roughness will likely make the actual paths of adjacent edge
states resemble the banks of a meandering creek that necks
down to small widths at the projected edge crossings[Fig.
1(b)]. In this case the distanceP around the sheath, along the
path of the edge states, can be substantially larger than the
nominal mesa perimeterP0, so that the phase coherence
length along the edge states exceeds thelp

s0d estimated above
by a factor of roughlyP/P0. This same meander effect
makes it possible for large areasA1 to accumulate between
adjacent edge states over small distances along the nominal
perimeter,P0.

Studies of two-dimensional quantum Hall systems yield
values of edge state phase coherence lengthssLfd of approxi-
mately 100mm, two orders of magnitude longer than the
estimated lp

s0d,1 mm in our three-dimensional system.18

These earlier studies of high-mobility two-dimensional elec-
tron gases(2DEGs) probed phase decoherence due to
disorder-assisted electron-electron interactions that may be
suppressed in these clean materials relative to disorder-
assisted interactions in our much lower mobility samples(the
samples studied in Ref. 19 had mobilities of roughly
800 000 cm2/Vs, or 30 times greater than the samples stud-
ied here). Our layered system also differs from 2DEGs in
that charge fluctuations in one edge state couple to those in
other edge states, providing an additional dephasing mecha-
nism. For these reasonslp in multilayers should be smaller

than Lf in high-mobility 2DEGS. We also expect that the
path of the edge states will meander more in the multilayer
mesas than the edge states in clean 2DEGS, so that the nomi-
nal lp

s0d of the multilayer is reduced relative toLf in 2DEGs
by this geometrical effect.

Assuming that it is valid to normalize the variance by a
T-dependent mean, the predicted14 lp~T−1 would yield
kdG2l / kGl2,1/T. The lines in Fig. 5 showC/T curves with
the constantC=1.3310−4 K adjusted to give the best overall
agreement withkdGzz

2 sTdl / kGzzsTdl2 for both n=1 andn=2.
As shown,kdGzz

2 l / kGzzl2 at n=2 agrees with aT−1 tempera-
ture dependence except at the lowest temperatures. Forn
=1, the data are mostly consistent with aC/T dependence,
with the sameC as forn=2, except at the lowestT. For both
n=2 andn=1, the slower thanT−1 growth ofkdGzz

2 l / kGzzl2 at
the lowestT could perhaps reflect the onset of saturation of
the electron temperature.

Another possible factor in the behavior we observe is par-
allel conduction through the bulk. At sufficiently high tem-
peratures the bulk(hopping) conductance will become sig-
nificant in comparison with the sheath conductance,
invalidating analysis in terms of sheath transport alone. We
have used size-scaling calculations of the conductance to de-
termine that bulk transport through the 5-mm35-mm mesa
should not contribute appreciably toGzz at temperatures be-
low 1 K; however, these estimates used results from samples
with lateral dimensions of,100 mm, much larger than the
bulk localization length within QH states. If the bulk local-
ization length approached the dimension of the much smaller
samples studied here, the distinction between edge and bulk
would no longer be meaningful.

To determine the bulk localization length, we studied 1
-mm31-mm samples of the same multilayer material in the
n=2 QH state.19 Analysis of the data in terms of models for
two-dimensional systems yielded an in-plane bulk localiza-
tion length j,0.40mm in the center of the QH state. We
found that Gzz within the n=1 QH state of the 5mm
35 mm sample studied here exhibited a stronger tempera-
ture dependence than inn=2 (Fig. 2), as might arise from
parallel transport through the bulk. However, estimates based
on a rather small number of data points in the center of the
n=1 QH state indicate thatj is comparable in then=1 and
n=2 QH states. In both cases the estimated in-plane local-
ization length at the centers of the QH states is roughly a
factor of ten smaller than the lengths of the sides of the 5-
mm35-mm mesa. Thus it still seems reasonable to think of
distinct bulk and surface regions.

In summary, the studies presented here address the tem-
perature dependence of phase coherence within a quantized
Hall state. The results for the temperature dependences of the
variance and the correlation field are strikingly different from
those found in metallic systems and in single-layer quantum
Hall systems in transition regions between QH states. Taking
into account the temperature dependence of the mean con-
ductance and the effects of flux cancellation on the correla-
tion field yields reasonable overall agreement of
kdGzz

2 l / kGzzl2 andBcsTd with a dephasing timetF~T−1. The
low-temperature variance suggests a short nominal dephas-
ing length, lp

s0d,1 mm. This value is consistent with the

FIG. 5. (a) and (b) dGzz
2 / kGzzl2 for n=1 and 2. The solid lines

show sC/Td with C=1.3310−4 K.
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weak temperature dependence we observe in the mean con-
ductance,Gzz (Fig. 2), in that we see no experimental signs
for the onset of strong localization in vertical transport. In
the weakly coupled multilayer studied here, we expect self-
intersection of phase-coherent sheath trajectories to yield an
insulating (exponential) decay inkGzzl that sets in at tem-

peratures for whichlpsTd. P.14 The lp
s0d that we estimate

from the low-T variance using the nominal perimeter,P0, is
well below theP0=20 mm of the smallest sample, in agree-
ment with the weak temperature dependence we observe in
the mean conductance.

We thank John Chalker and Leon Balents for helpful con-
versations. This work was supported by NSF DMR9700767
and NSF DMR0071956.
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